Existence of Free Involution on 5- Manifolds
IAN HAMBLETON

Introduction. Let M be a closed, oriented, simply-connected manifold
of dimension five. If, in addition, w,(M) = 0 then M is classified up to diffeo-
morphism by the structure of H,M [4]. In this paper we determine which of
these manifolds admit a smooth, free, orientation-preserving involution. Since
for these manifolds Tors (H,M) =~ B @ B for some finite abelian group B [1],
our answer will be expressed as restrictions on the groups B. In the statement
of the theorems, B(;, denotes the 2-primary summand of B and s(K) denotes
the direct sum of s copies of a group K.

Theorem 1. Let M® be a closed, oriented, simply-connected manifold of dimen-
ston five with wo(M) = 0. If H,M 1s finite, let H,M = B @ B, then M admits
a smooth, free, orientation-preserving tnvolution if and only if B s, is not isomorphic
to

@ zZ/4

(i) s(Z/4) D t(Z/2) for t odd

or

Gii) Z/8 @ t(Z/2) for t odd.

Theorem 2. Let M° be as in Theorem 1. If rank (H.M) = 1, then M admits
a smooth, free, orientation-preserving tnvolution.

The method given here for the proof of Theorem 1 generalizes to the case
of free Z/p actions on 5-manifolds for p an odd prime. The basic algebraic
facts needed for this case (as for p = 2) are contained in the paper of G. Szekeres
[5]. I am indebted to Professor S. Conlon for a letter explaining the results of [5].

Our method also gives necessary conditions for the existence of free involu-
tions on (n — 1)-connected (2n + 1)-manifolds for n > 2 which are n-parallelis-
able but does not appear to work for 5-manifolds with w, = 0.

Sections 1 and 2 contain the algebraic results needed, including a statement
of the relevant parts of [5]. In Section 3 this algebra is related to the geometry
of our situation and Sections 4 and 5 contain the proofs of the theorems just
stated.

1. Finite A-modules. Let A be the integral group ring of Z/2 and G be a
finite abelian group with an endomorphism 7 such that 7° = identity. In this
777
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section we describe the classification of the isomorphism classes of pairs (G, T')
(called finite A-modules) and compute the image of the obvious map:

{finite A-modules} — {finite abelian groups}.
For the application to 5-manifolds, the A-modules will satisfy an additional
condition:

Definition 1. A finite A-module G is cohomologically trivial (CT) if H (Z/2; G)
= 0forz > 0.

A necessary and sufficient condition is given for a CT finite A-module to
admit a non-singular equivariant linking form.

We begin the classification by observing that a finite A-module G splits
as a A-direct sum into its p-primary parts. Furthermore, if p is odd, the inde-
composable p-torsion A-modules are of the form (Z/p", T) where Tz = =z
and these are all CT.

It remains to consider finite 2-primary A-modules G. By the Krull-Schmidt
Theorem, every such module splits uniquely (up to isomorphism and rearrange-
ment) into a direct sum of indecomposables. We now describe the classification
of the indecomposables due to G. Szekeres [5]. Set ¢ = T — 1, = = T + 1
and observe that these are nilpotent endomorphisms of G with the properties:

¢t =1 =0 and = + (—1)%¢" = 2"
For each z # 0 in G we define
i(x) = max {ieZ | ¢'(z) = 0} and
j(x) = max {je Z | n'(z) = 0}.
In addition, if 2* is the minimal exponent of @, then @ is a module over
R, = Z[0/@2", ¢ — 1) = Z[g, 7/@'"", «'"', m$, 2,2 + ¢ — 7).
Using these notations we define the basic A-modules.

Definition 2. An R,-module G is an open chain if it is generated by k > 0

elements 2, , - - - , x; satisfying the following conditions:

1) Letd, = i(x) + 1,4, = i(z,) forr > 1,4, = j(z,) forr < k,and ji = j(x:) +
1. Thens, >0andj, >0forr =1, ---, k.

2) Set y, = ¢z, and 2, = 'z, . Then 2z, = y,,, forr =1,2, -+ , bk — L

3) Write A for the subgroup of G generated by (2, , - - - , 2—,) and denote by

z,* the coset of A in G represented by z, . Then 4 = (2,) @ -+ D (%-1)
and G/A = (=)@ -+ @ @)

Remark. The order of G is then 2= “"*i”~! and the module G is uniquely
determined by the set [¢; , 71 ; <+ ; %, Jil-

Definition 3. An R,-module G is a closed chain if it is generated by &k > 0
elements z, , - -+ , 2; satisfying the following conditions:
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1) Set i, = i(,), j, = j(@,) forr = 1, --- , k. Then ¢, > 0 and j. > O for
r=1,---,k

2) Let & be the smallest divisor of k, k = kd such that ¢, = 4, and j, = j, when-
ever r = s (mod k). Write

Yy = ¢z, and 2, = n'"z,, then 2, =y, for r=1,--- ,k— 1.

3) z = Z.-O‘H A\.¥.i+1 where the A\, equal 0 or 1 and satisfy
@ N =0
(ii) the polynomial f(z) = 2° — D_,.o* " A,2" is either irreducible or a power
of an irreducible polynomial over the field F, .
4) Write A = (z,, - - - , z) and denote by z.* the coset of 4 in G represented by
z, . Then

A=@)@ D@ and G/4 = @)D O @)

Remark. In this case the order of G is 2= “"*I" and the module can be
specified by the set [¢, , 41 ; =+ ; %, ji , [(2)].

Theorem 3 [5. p. 11]. Suppose G is a finite A-module with exponent 2'. Then
@ s indecomposable if and only if G is an open or closed chain.

As mentioned above, in our applications the modules G with H'(Z/2;G) = 0
for © > 0 will be needed, Since

H""(Z/2; @) = ker ¢/im 7
and

H*Z/2; G) = ker n/im ¢
we observe:

Corollary 4. The closed chains are the only finite indecomposable A-modules
of 2-primary order which are cohomologically trivial.

From the explicit definition of the closed chains, we calculate which finite
abelian groups admit a CT A-module structure. It is enough to consider the
2-primary part again since every p-primary group has such a structure.

Theorem 5. Let B be a finite abelian group. Then B admits a cohomologically
trivial A-module structure if and only if B s, is not isomorphic to one of the groups:
Z/4, Zs @ t(Z/2) for t odd, or s(Z/4) @D t(Z/2) for t odd.

Proof. We suppose first that B has 2-primary order and is not isomorphic
to one of the groups listed in the statement. We can write (additively)

B=A@s(Z/4) ®UZ/2)

where A is a direct sum of groups Z/2"* for various k 2 3or A = 0.
We consider five cases in showing that B admits the required A-module
structure.
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Case 1. A = 0. If B is not one of the listed groups, the modules
A/2N, /\/4/\7 (1, ;1,1 fke) =2+ 1]
and [1,1; -+ ;1,1;f(e) = 2" + 2+ 1]

provide the A-structures needed. The third module is a structure on Z/4 @
Z/2 @ Z/2 and the fourth is a structure on k(Z/4) where k > 1 is the number
of generators in the bracket.

The remaining cases all assume A > 0.

Case 2. s =t = 0 (mod 2). In addition to A/2A and A/4A as above, we
need only provide a CT structure on Z/2" for n = 3. This is given by T'(z) =
@ + 1z

Case 3. s =1t =1 (mod 2). We need a structure on Z/2" @ Z/4 @ Z/2 for
each n = 3. Thisis provided by [n — 1, 1; 1, 2; f(2) = z + 1].

Case4. s=0,t=1 (mod2).If A D Z/2" for n > 3 we can use the structure
(mn—1,2;f) =2+ 1lonZ/2"P Z/2. 1f A = r(Z/8) (where r > 1) we use
(2,1;2,1;-+-;2,2;f(z) = z+ 1] onr(Z/8) P Z/2 (the bracket has r generators).
Otherwise, A = Z/8 and s > 0, s0 we use [1, 1;2,2;1,1; f(2) = z + 1] on
Z/ISPZ/IADPZ/AD Z)/2.

Case 5. s =1,t= 0 (mod 2). We need the modules [1, 1; 1, n — 1; f(2) =
24+ 1lonZ/2"PD Z/4 (n = 3).

Conversely, suppose B is a finite 2-primary A -module which is cohomologically
trivial. First we show that no closed chain has underlying group in the list. It
then follows easily that no direct sum of closed chains is in the list. Suppose
that B is a closed chain of exponent 4. If B % A /4A thenz, < 2 and j, < 2
for all 7 so that 2, = §, = 1forr = 1, --- , k. In the notation of Definition 2,
the relations are rz, = ¢z, r =1, -+, k — land 7z, = Dm0’ " NibZair1(¥).
If the number of non-zero coefficients A, is odd we use the relation 7 — ¢ = 2
and (*) to obtain

20z, +uw) =0

where u 5 0 is a sum of some generators z, for 1 £ r < k. Then, additively we
have

B = (z,) (‘B c @ (@p-1) @ (zr + w) (“D (o1
=~ (k — 1)(Z/4) @ 2(Z/2).

We remark here for use in §2 that part 4 of Definition 3 implies ¢(z, + u) = 0.
If the number of non-zero coefficients A, is even, we obtain similarly a relation

227), + d)xk = 2u

where u 5 0 as before is a sum of some generators z,(1 < r < k). In this case,
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B=(2)® - D (v
= k(Z/4).

We observe that each closed chain of exponent 4 has two Z/2 summands or
none and the result is established in this case. There remain the groups of the
form Z /8 @ t(Z/2) for t odd. We reduce the question to the case ¢ = 1 where the
result can be verified by direct calculation.

Let {z, v, , --- , y.} be an additive base for B where x has order 8 and y,
has order 2 for 1 < r < t. Let K be the sub-module generated by {y,, -+, v.},
then K =< (t + 1)(Z/2) or t(Z/2) and 0 —» K — B — B/K — 0 is exact where
B/K = Z/4 or Z/8. If we suppose B is CT then H*(Z/2; B/K) = H'*'(Z/2; K)
and so the possibility K = (¢ + 1)(Z/2) and B/K == Z/4 can be eliminated.
This is because H*(Z/2; Z/4) = Z/2 (for all 1 > 0) with any A-structure on Z/4.

If K =2 t(Z/2) and B/K =2 Z /8 then there exists a A-direct summand K, C K
such that K, = (¢t — 1)(Z/2) and K, is CT. Then B/K, == Z/8 @ Z/2 must
have a CT structure. We now suppose B =2 Z/8 @ Z/2 where Tz = ax + by
and Ty = y (o(z) = 8 and o(y) = 2 as above). Thena’ = 1 (mod 8) and b = 1
because T* = 4d, and from the exact cohomology sequence arising from

0—-2Z/2—-B—7/8—0,

we deduce @ = =1 (mod 8). If Tz = 2 4+ y, Ty = y then y e ker ¢ but y ¢ im =,
while if Tx = —x + y, Ty = y then y ¢ ker = but y ¢ im ¢. In either case B is
not CT.

2. Linking forms on finite A-modules. In this section we give the structure
of CT finite A-modules which admit non-singular linking forms. Such forms
have been studied in the context of surgery theory (see [3], [7] for example).

Definition 4. Let G be a finite A-module. A linking form on G is a non-
singular bilinear form

b:GXG@—-Q/Z

such that
1) b(Tx, Ty) = b(x,y) forall =z, yed,
2) b(x,z) = b(x, Tx) =0 forall zeG.

Property 2) implies that b is strictly skew-symmetric. For finite groups G
admitting a non-singular skew-symmetric bilinear form it is known that G =
B @ B for some group B. [6]. If B is a A-module, let B* = Ext,' (B, A).

Theorem 6. If (G, b) is a linking form on a CT finite N-module, then G ==
B @ B (additively) where B admits a CT A-structure. Conversely, if B is a CT
fintte A-module, there exists a linking form on the A-direct sum B @ B*.

Proof. 1If (G, b) is a linking form, we may assume that G is a 2-torsion group.
In order to derive a contradiction we also assume that G = B @ B where
B=17/4 s(Z/4) @ t(Z/2) or Z/8 D t(Z/2) (for t odd).
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Casel. G=22(Z/4). The only CT structure on this groupis A /4A . However,
this implies b = 0 on G by property 2 in the definition of linking forms.

Case 2. G = 2s(Z/4) D 2t(Z/2) fortodd. Let =G, PGP --- P G
be the A-splitting of G where each @, is an indecomposable module (a closed
chain) of exponent 4. As we remarked in §1 when considering such closed chains,
there exists an z e G; such that Tz > z and x generates an additive direct sum-
mand. Let J be the A-submodule of G generated by x, so J = A/2A, and
let J* be the annihilator of J. Since J C J* we may use the following result of
W. Pardon [2]:

Lemma 7. LetJ C ( be a totally isotropic CT submodule of a finite C'T module
G with linking form. Then J*/J is CT and admits a linking form.

We assume that if G =2 2s(Z/4) @ 2t(Z/2) for t odd admits a linking form
then it is the module of this type of smallest order to do so. This, however,
leads to a contradiction as follows. Since 0 — J* — G — J* — 0 is exact, the
additive structure of J* is:

Tt e {2s(2/4) @ (2t — 2)(Z/2), or
(2s — 1)(Z/4) P 24Z/2).

We use here the fact that the subgroup generated by z is a direct summand
(=2 Z/2). Since z also generates an additive direct summand of J*, we get from

0->J—=J"—>J/J—0
the possibilities:
T o {23(2/4)@(% — 4)(Z/2), or
2s — 2)(Z/4) D 2(Z/2).

(Some additive structures are ruled out by the requirement that J*/J is CT
and admits a linking form). Since each of these is a CT module of the required
additive type and of smaller order than G it cannot admit a linking form. This
contradicts Lemma 7.

Case 3. G = 2(Z/8) @ 2t(Z/2) for t odd. We first establish:

Lemma 8. If (G, b) is a linking form where G is as above and t > 2, then G
contains a submodule J = A /2 which is an additive direct summand.

Proof. We choose an additive base for @ and let K be the A-submodule
generated by the basis elements of order 2. Then

F(Z/S)’
G/K =\Z/8@ Z/4, or
12(Z/’4).

If the first possibility occurs, K is an additive summand of G and H'(Z/2; K) =
r(Z/2) where » < 2 for all ¢ > 0. Therefore, K contains a A-direct summand
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(¢t — 1) A/2A and the result is verified since t > 1. If G/K = Z/8 D Z/4,
then K contains a A-direct summand ¢{(A/2A) and by changing base in K,
we can find a A-summand (¢t — 1) A /2A of K which is an additive summand of G.

Finally, if G/K = 2(Z/4) then again K contains a A-summand #(A/2A).
If p : G — 2(Z/8) is the projection homomorphism (of abelian groups) and
u, v the order 8 generators in an additive base for G, then consider p(rz) where
the submodule (z, T'z) is one of the A /2A summands of K. The possible elements
p(rz) are 0, 4p(u), 4p() and 4p(u + v). By a basis change in K we can assume
that p(rz,) is non-zero for the generators z; of at most two of the A/2A sum-
mands of K. Then K contains a A-summand (! — 2)(A/2A) which is an
additive summand of G.

Using this lemma, we can by the method of Case 2, reduce to the groups
witht = lort = 2.

In fact, for ¢t = 2 we need only consider the situation described above where
G/K = 2(Z/4). An additive base {u, v, ¥, , Y2, ¥s , ¥«} can then be chosen with
u, v of order 8 and y; order 2 (1 £ ¢ < 4) such that:

Ty, = y, + 4u, Ty, = y, + 4,

Tys = ys , Ty, = ys , Tu = eu+2, and Tv = e + 2, .
Here 2, , 2, are of order 2 and eis a unit in Z/8. However, there is no CT structure
of this form. This can be verified by calculating:

kerw:{(zl)zz)ya)y4,2u+y1,2?)+y2> e=1 or 5

(zlyz'.’:ya;?/4,2u,2v> e=3 or 7
and

1

im¢___{(zl,z2,4u,4v) e=1 or 5
Qu+ 2,20+ 2,) e=3 or 7

In either case, ker w/im ¢ ¥ 0 and so the structure is not CT.

There remains the case t = 1, where G = 2(Z/8) @ 2(Z/2). If the module G
is decomposable, there is a direct summand J = Z/8. Since J C J* we can
proceed as before and get a form on J*/J = 2(Z/2). Since this group has only
one CT structure, namely A /2A, which clearly does not support a linking form
we have a contradiction. If G is indecomposable, then we calculate that it has
the structure [2, 1; 1, 2; 1, 1; f(2) = 2 + 1] or[1,2; 1, 1; 2, 1; f(2) = 2z + 1].
Neither of these supports a linking form. The first can be described by generators
u, v of order 8 and z, y of order 2 such that: Tu = —u + 2z, Tv=v + 2, Tx = 2
and Ty = y + 4u + 4v. Now b(u, v) = b(Tu, Tv) implies b(u, 4v) = 0 s0 4v is
in the radical of b. The second possibility is also ruled out in this way.

The proof of Theorem 6 will be completed by establishing the converse. Let
B be a CT finite A-module with resolution 0 — F — F’ — B — 0 where F =

" =~ sA for some integer s. We may choose A-bases for F, F’ and write
4)
0—>sA »>sAN —>B—-0

where (A) is an s X s matrix with entries in A. Consider the exact sequence:
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L)
-4t o
0—->sA@PsA — sANPsA—->B@PB*—0.

This induces in the usual way a linking form on B @@ B*.

3. Structure of Tors (H,M). The algebra of the first two sections will now be
related to the geometry. If M°® admits a free orientation-preserving (o.p.)
involution then the groups H, M become modules over A. In particular, if we
assume w,(M) = 0 the finite A-module G = Tors (H,M) admits a linking form
as defined in §2. This follows from the discussion of [7, p. 250]. Note that property
2 is a result of the fact that the quadratic refinement q(z) of b(z, ) is identically
zero in this case.

Theorem 9. Let M® be a closed simply-connected 5-manifold with w,M = 0
and H,M finite. If M admits a free orientation-preserving involution then in the
induced A-module structure, H,M is CT.

Proof. Since w,M = 0, the method of [7, p. 249] can be applied to construct
an equivariant cobordism W*® by surgery such that W = M \U (—N) where
H,N is a finite A-module with |[ztA| < 2 for all z e H,N.

Since N° is also a simply-connected 5-manifold with free o.p. involution,
H,N = 2s(Z/2) with trivial A-module structure is only possible if s = 0.
This follows by an easy argument with the spectral sequence of the double
cover. Therefore N & S° and from the exact sequence of A-modules:

0—- HW — H,(W,oW) > HM —0
H,M is CT since Hy(W, W) = H,(W, M) is A-free and Hy,(W) =
Hom, (Hs(W, oW), A).

4. Proof of Theorem 1. To prove the theorem it is only necessary to put
together the results of the previous sections. Let M° be a 5-manifold with free
o0.p. involution satisfying the conditions stated. By Theorem 9, G = Tors (H.M)
is CT in the induced A-module structure. Since, as observed above, G supports
a linking form we may use Theorem 6 to conclude that G =2 B @ B where B
has a CT A-structure. Now Theorem 5 gives the condition on B, .

Conversely, if G = B @ B where B, satisfies the stated condition, then B has
a CT A-structure and so there exists a linking form on G defined by a resolution:

0—>F—>Hom (F, A) > B@B*—0
A

where B @ B* has the direct sum CT structure. Any such sequence gives a
prescription for surgery on the identity map RP® — RP® [7, p. 256). After
performing the surgery we obtain a manifold M’ with free orientation preserving
involution and w,M’ = 0 such that H,M = H,M’. Therefore M is diffeomorphic
to M’ [4] and the proof is complete.
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5. Proof of Theorem 2. Let M°® satisfy the conditions stated and suppose
rank H,M = 1. As before, since w,M = 0, G = Tors (H,M) = B @ B for
some group B. If B has a CT A-structure then the same argument as in §4
gives a manifold M’ with involution such that H,M’' = G or H.M' = G @ Z.
Then connected sum with copies of 8* X S° in the orbit space gives M’ with
H,M" =~ H,M and so M"" ~ M.

The proof of the theorem will follow from this technique provided we can
construct manifolds with involution realizing the cases G = Z/4 D Z/4,Z/2 D
Z/2 and 2(Z/4) @ 2(Z/2). More precisely, we will construct manifolds X, , Y,
with involution for 7 = 1, 2, 3 such that:

HX, = Z@® 2(Z/4)
H.X, = Z® 2(Z/2)
H,Xs = Z @ 2(Z/4) D 2(Z2/2)

and H,(Y,) = Hy(X;,) ® Z fori =1, 2, 3.
To construct the manifolds X, , we start with the double cover §* X §* —
RP? X &°. Let the double cover M, — M, be the result of equivariant framed

surgery on an embedding in S* X §° representing kz where 2 generates
H,(RP* X 8" ; A) =

Lemma 10. If k i3 a power of 2, then H ,(M,) = Z @ 2(Z/k).
Proof. Let N° be the trace of the surgery and consider the braid:

/\/\/\

Hi(M,)

/\4\(&)\2/
NVAVAVA

Hz(M,)

\_/\/\/’
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From the properties of this diagram [7, p. 247-8], H,(N, dN) is an extension
of L by Z. where L is a A-module with underlying abelian group Z @ Z/k,
and H,(M,) is an extension of L by Z/k. We obtain the short exact sequence.

0— Z/k — Tors (H.M,) > Z/l -0

where I £ k and [ is also a power of 2. However Tors (H,M,) = B @ B for
some group B so Tors (H.M,) = Z/k @ Z/k.

This lemma contains the construction of X; = M, and X, = M, . To obtain
X; we begin with X, and perform surgery as above on 4x where z ¢ H,(X,)
projects to a generator of H,(X,)/Tors (H,X,) = Z_ . If N again denotes the
trace of the surgery, the braid in this case is:

/\/\/\

Ha(X,)

/\/“u”\/

Hs(N) Hy(N,0N) Z/40Z /207 /2

\\/\/\/\\

Hy(X)
\\/’ NS \/

and H;(X;) is an extension of Z P Z/4 by Z/4 @ 2(Z/2). Since Tors (H;X;) =2
B @ B for some B, Tors (H,X;) = 2(Z/4) D 2(Z/2).

Now that the manifolds X, are constructed, the following construction
produces the ¥; . For ¢ = 1, 2 or 3 let X;(0) denote X; — f.(S* X D*) where
f: : 88 X D' — X, is a tubular neighbourhood of an embedded circle invariant
under the involution. Then 6X,;(0) = S' X §° with the antipodal action in
each factor and we can define

Y. =X,0\UD X 8)GE=1,2o0r3)
]
by identifying the boundaries. The involution on X;(0) extends to Y, in the
obvious way.

From the Van Kampen Theorem, in the orbit spaces,
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mY, = Z/2.
and we have the exact sequence of A-modules:
0 — Hy(X:(0)) = Hy(Y:) = H\(S' X §)—0
Il
Z

Since H,(X;(0)) = H,(X;), Tors (H,Y,) = Tors (H.X;) forz = 1, 2, 3.
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