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Let IT be a cyclic group of prime order p. According to a theorem of Reiner
[16], a finitely generated ZII-module M which is torsion free over Z has a
decomposition into Z IT-submodules

M=M(0)@M(1)@M(2) (1)

where M, is projective over ZII, IT operates trivially on M () and through p*
roots of 1 on M ;,. We call such a splitting a Reiner splitting.

Let h: M xM—ZII be a non-singular hermitian or skew hermitian form
with respect to the involution on Z IT which inverts the elements of II. Our main
concern is with conditions for the existence of an orthogonal Reiner splitting

M=MgL ML Mg, )

Such splittings do not always exist (see Example 8) and are of interest in
topology (see § 5).

It is well-known [19] that M is the pull-back of a Z-module M, and a A,-
module M, where A, =Z[z], T a primitive p™ root of 1. We show that h is the
pull-back of “almost unimodular” forms hy: My X My—Z and hy: M, x M, > A,
(Ths. 3 and 6), and further that i has an orthogonal Reiner splitting if and only
if hy and h, have “Jordan splittings” (Th.7). In §§3 and 4 we give conditions
under which h, and h, have Jordan splittings, principally under the assumption
of indefiniteness which allows the very effective spinor genus theory of quadratic
and hermitian forms to be used.

In § 5 we deal with the topological case. A smooth p-fold covering X2!— X?!
of closed oriented manifolds gives rise to a non-singular ¢-hermitian form h on
M =H'(X;Z)/Torsion (we refer to such forms as “geometric”). Conditions on h
implied by the geometry are determined (the most important coming from the
II-signature theorem of [1]) and, when combined with earlier results, show that
a geometric h always has an orthogonal Reiner splitting if it is skew hermitian
(Th. 30). Necessary and sufficient conditions involving the signature o(h,) are
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20 I. Hambleton and C. Riehm

given in Theorems 31 and 32 when h is hermitian and h, and h, are indefinite. It
is also shown (Th. 33) that a geometric hermitian form has an orthogonal Reiner
splitting if M o,=0. These theorems yield information about the construction of
X as an equivariant handlebody. This approach was used in [13] (p odd) and
[9] (p=2) and the results of § 5 can be used to extend them.

In a final section, § 6, analogous results for the non-orientable case when p
=2 and the involution is a+bT+a—bT (a,beZ, I1={1, T}) are given.

§ 1. Modules over ZI1

The results in this section are either contained in [19] or easily derived
therefrom. M is the pull-back of a diagram M,— M <M, where both maps are
epimorphisms, M, is a projective A,-module (4,=Z) and M is an IF,-module.
The given maps of M, M, and M, onto M, are all denoted x+x,, so that

M ={(xq, x,)EM;®M,: x0p=x1p}' (3)

Similarly the maps M — M, are denoted by x—x; (i=0, 1). We often consider M,
and M, as submodules of M ®M,. All of this applies when M =A:=Z]II, in
which case Ap=le. Weput I'=Z®A,.

A Reiner splitting (1) is not unique but M is characterized by r,, 1, , and cls
M where r,=number of summands in a direct sum decomposition of M, into
indecomposables, and cls M:=cls M, =the ideal class of A; belonging to M.
We have 1, +r, =rank ,, M; (i=0,1), r,=rankg M,. If two of the summands in (1)
are zero, say M =M, for i=0,1 or 2, we say M is of type i.

Proposition 1. For i=0 or 1, let N, be a direct summand of M,.
(@) N, is a direct summand of M (of type i) if and only if the image N,, of N, in
M is 0.
p
(b) There is a submodule N;, , (indices mod 2) of M, such that the pull-back
N of N—N,,«—N,., is a direct summand of M of type 2 if and only if rankg N,
=rank 4 N;.

Proof. The proof of (a) and the necessity of (b) are contained in the argument on
page 79, [19]. For the sufficiency in (b) write M;=N,®R®---®F, where rank P,
is 1 for all j. Then N,, and the B, span the vector space M,. By renumbering if
necessary we may suppose that M,=N, ®F ,®---®B, where all the sum-
mands are non-zero. Let Q;=N®BR®---@®F, and write M;,=0,®Q; where Q;
=B, ,®---®E. There is a commutative diagram

0, —2—0,

, inclusion
Q,—M,
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since Q; is a projective A;-module. Then M;=0,®Q; where Q; =(1—-©)Q: and
i»=0. It now follows by Swan’s proof that there is a submodule N, , of M,
of the required kind. [J

Proposition 2. (a) Suppose y,eHom(M,,IF,)) and i=0, or 1. Then one can find
xi€eHom, (M;, A, such that

MiL’Ai

MPT]FP
commutes.

(b) If x;eHom, (M;, A;) has the property that its composite with A;—IF,
factors through M;— M ,, then there exists y;.,€eHom,, (M;,,, A;,,) such that
Xo@ 11 €Hom(M, A).

§ 2. Hermitian Forms

Let ~ denote the usual involution on A, the identity on Z and “complex
conjugation” on A,. Let ¢=+1 and let h: M x M > A be an ¢-hermitian form
(T-linear in the second variable). It has a unique extension to an e-hermitian
form h: V xV—->QII where V=M ®, Q. Fix a generator T of IT and a primitive
p® root of 1, 7, in A,. Identify QI =Q®F, so that T=(1, 7), where F, =field of
quotients of A;. Then V=V,@V, where V, (resp. V,) is a Q-space (resp. F,-
space) and this leads to an orthogonal splitting h=h,@®h, where h, is an -
symmetric form on V, and #, is an ¢-hermitian form on V.

1
If xeM,®M,, pxeM and so the map xv—+l—)(px) is a I-isomorphism

Mo@®M,~I'M<V where '=Z@®A,. We identify via this map, so the M; are
lattices in V;. Define h; to be the restriction of h; to M, (i=0, 1). Thus

h(x, y)=(ho(xo, yo), hi(x1, y1)€A 4
so there is an e-symmetric bilinear form h,: M, x M,—TF, satisfying
hp(xp? yp) =h0('x0’ yO)p= hl(xb yl)p =h(X, y)p (5)

Now suppose h is non-degenerate, ie. the adjoint map M —M* given by
y—h( ,y) is injective. Then for i=0 and 1, h; is non-degenerate and

M ={yeV;: h(M,,y)= A}

is a lattice containing M; and isomorphic to M} via h;. We define the Jordan
invariants of h; to be the invariant factors of M; in M. If M;— M} is bijective,
i.e. all Jordan invariants are= A,, h; is non-singular or unimodular.
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Define n,=p, and n,=t—1"! if p is odd, n; =2 if p=2. When p is odd, (n,)
=mn,A, is the only ramified prime in A,. We call h; almost unimodular if its
Jordan invariants are all 4; or (m), i.e. ;M < M,.

Theorem 3. Let h be an ¢-hermitian form on M. Then there are unique e-hermitian
Jorms hi: M; x M;— A; (i=0, 1) satisfying (4) and there is an e-symmetric form h,:
M, x M ,—TF, satisfying (5)._

Moreover if h is non-singular, h, is non-singular and h, and h, are almost
unimodular; in fact

MG/Mo~Z/(p)y°, M /M, =(A4,/(m)". (6)

We note that it follows from §1 that the number of Jordan invariants of h;
which=4; is r, for both i=0 and 1.

Proof. By what has already been proved we may assume h non-singular. Now M,
=M, ®M,,, for i=0,1s0 M} =M,®M,,; where e.g., M|, is the annihilator in
M} of M,);. It suffices to show that

M;=n, M, ®M,);. (M

Now h;(M;, M), =h,(M,, M ,)=0 (Prop. 1(a)), so the left side Sright side. But
by Proposition 1, ker(M;—»M )=M ,®n; M ,,; whose inner product with the
right side of (7) is=(=;), so if x; is in the right side and y;=h,( , x;)e M¥, it follows
from Proposition 2(b) and the non-singularity of h that h;( , y,)=h;( ,x;)eM¥ for
some y,eM;, so x;=y;eM; and (7) follows. The non-singularity of h, is a
consequence of M{™ =M, ®n; M, and

Proposition 4. h,, is non-singular iff ker(M; - M ,)=M{ for i=0or 1. [
Here, for any ideal 4 of 4,,
M{={xeM;: h(x,M)<A}.

For the next two results, we do not assume that a form k is given on M, but only
that M is the pull-back of (epimorphisms) M,—M,«M,. Lemma 5 follows
easily from the definitions.

Lemma 5. Suppose an almost unimodular form h; is given on the Amodule M;.
Then there are modules P' and Q' such that

M}=P®Q, M,=P&rQ.
Let P (resp. Q) be the annihilator of Q' (resp. P') in M;. Then
M,;=P®Q, M™=n,P®Q, M}=P®dn 'Q.

Theorem 6. Let ¢= +1 and suppose e-hermitian forms h,, h, and h, are given on
M, M, and M, satisfying for i=0 and 1

hi(xi’ yi)pzhp(xipa yip) (8)
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for all x; and y; in M;. Then there is a unique e-hermitian form h: M x M - A
satisfying (4). hy and h, are the component forms of h as defined in Theorem 3. The
form h is non-singular iff h, and h, are almost unimodular and h, is non-singular.

Proof. Only the sufficiency of the last statement will be verified. Let ne M*. As in
the definition of h, and h, from h, one can show that n=n,®#, where n,eM*
=Hom, (M;, 4;) for i=0,1. Then 5,=h,( ,y) for some y, in M. Since
M cker(M;—»M,) by (8), M{™<M and so n(M{™),=n,,(0),=0 (indices
mod 2). It follows easily from Lemma 5 that y,eM,. Moreover ne M* implies
ho(xo, yo)p=h1(x1, yy), for all x in M, whence y,,=y,, by (8) and the non-

degeneracy of h,. Thus yeM and since h( ,y)=n, h is non-singular. []

Let h; be a non-degenerate form on M;. Then h; (or M,) is called A-modular
(4 an ideal in A,) if the Jordan invariants of M; are all=A. A splitting M,
=N, L N,L...L N, is called a Jordan splitting if for each y, N, is A,-modular
with A,+ A, when pu=v. A Jordan splitting for an almost unimodular lattice is
of the form N, L N, where N, is unimodular or 0, N, is (%;)-modular or 0.

Theorem 7. If h: M xM—A is a non-singular e-hermitian form, M has an
orthogonal Reiner splitting if and only if M, and M, have Jordan splittings with
respect to hy and h, resp.

Proof. Since M, and M, are orthogonal with respect to A, their submodules M ©)
and M,, (from any Jordan splitting) are orthogonal with respect to h. If (2) is an
orthogonal Reiner splitting, it follows easily from (7) that M;=M,,,L M, is a
Jordan splitting. Conversely if M;=J,1 K; is a Jordan splitting (i=0,1), M{™
=m;J; L K;, so by Propositions 4 and 1, M=K, K,1J is an orthogonal

Reiner splitting where J is the pull-back of Jo—> M, «J;. [

Example 8. Let p=5. Then p=t+1~ ' is a root of X?+X —1=0, so p=3(—1
+ 1/5) (choosing a suitable embedding A, — C) and is a unit. Define M=Ax@® Ay
where Ax=Zx is of type 0 and Ay is of type 2, and let h be the hermitian

form on M with matrix with respect to the generators x, y, where

3z
ST+T™ !
X=1+T+---+ TP !. By projecting the matrix entries into A, and 4,, we see

15 5 L
that the matrices of h, and h, are resp. ( 5 2) and (p). Thus h, is unimodular

and h, is almost unimodular (since its discriminant is 5 and so its invariant
factors are 1 and 5), so h is non-singular by Theorem 6. But h, does not have a
Jordan splitting since otherwise 2= +(a®+ 5b*) would be solvable in Z and 2
would be a quadratic residue (mod5). Thus h does not have an orthogonal
Reiner splitting by Theorem 7. []

Proposition 9. (a) Suppose h; is an almost unimodular e-hermitian form whose
Jordan invariants A; and (n;) have multiplicity r, and r; resp. Then for i=0, 1, the
form h¥:=mh; on M} is almost unimodular, in fact has Jordan invariants A; (r,
times) and (n;) (r, times).

(b) If M;=J L K is a Jordan splitting with respect to h;, then M =7 K1 J
is a Jordan splitting with respect to h*, and conversely.
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(c) The map x+>m;x: n; *M;— M, gives an isometry hf* ~yh, where n=+1.
If pisodd and i=1, = —1 and h{ is (—e¢)-hermitian; otherwise n=1 and h} is e-
hermitian.

Proposition 10. Assume h is a non-singular e-hermitian form.
(a) When p=2 and e= —1, ry, r, and r, are all even integers.
(b) When p is odd and e= —1, r, and r, are even.
(c) When p is odd and ¢=1, 1, is even.

Proof. Proposition 9 follows from the definitions and Lemma 5. The forms h,),
on M;,=M/M{™ and (h{), on (M),=M}/(M})™ are non-degenerate and
Proposition 10 follows easily from Proposition 9 and the fact that an alternating
form has even rank. []

Proposition 11. Suppose that h; is almost unimodular and that N is an isotropic
direct summand of M, of rank 1. Then there is a submodule P of rank 1 such that
N®P is an orthogonal direct summand of M;, and h;(N,M;,)=h,(P, M;)=A; or
().

Proof. Since n; M = M;, h;(N, M,)= A, or (n;). Suppose first that it is A;. Define
P to be a direct complement in M; of the orthogonal complement of N. Then L
= N + P is non-singular and so splits M; orthogonally since the composite of the
canonical homomorphisms L—M;—>M¥—L* is an isomorphism. If h;(N, M,)
=(mn;), apply the first case to (M, h}) and n; ' N (the condition hf(n; ' N, M}¥)

=/, follows from Lemma 5) and then use M,;=(M}, h})™. [

§ 3. Jordan Splittings over A,

Throughout this section p is odd and h; is an almost unimodular &-hermitian
form on M, with Jordan invariants A, and (zn,) of multiplicity r, and r, resp. If f
is any form, we set f(x, x)= f(x).

Proposition 12. Suppose h, is isotropic and unimodular, ¢=1, and M, is of rank 2.
Then h,(M,)= AY:=subring of elements of A, fixed by ~.

Proof. Consider M, as a lattice in V; and write M, = Ax, + Bx, where h,(x,)=0

and h,(x;,x,)=1. Since M, is unimodular, B=A""', and, since the trace

- 1)
Tr( Y r‘) from A, to A is —1, TrAd,=A9 and it follows that we may
1

suppose h;(x,)=0 as well. By (7.2), [2], we may assume that A is an integral
ideal such that the conjugate ¢ of any prime divisor P of A is not a prime
divisor of A. Consider the lattice A,y,L A4~ 'y, on V, with h(y,)=1, h(y,)=
—1. It is unimodular and is split by the isotropic module B(y, +y,) where B
=A,nAA"'=A4 and so by the previous argument must be isometric to M,.
Thus 1=h,(ax, +bx,)=Tr(ab) for some ax, +bx,eM, so if ceA}, c=h,(cax,
+bx,)eh,(M,). O

The ring A9 (or its field of quotients F) has (p — 1) distinct imbeddings into
R and corresponding to each of them h, has a signature which we denote a;(h,),
1Sis3(p—1).
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Theorem 13. h, has a Jordan splitting if
lo,(h)ISr, for all i, when e=1,

lo;,(h)|=Sr, for all i, when ¢= —1.

Proof. By Proposition 9 it suffices to consider ¢=1, and we may assume r», =1
and r, 22 by Proposition 10(c). Thus h, is isotropic [17] so by Proposition 11,
M, is split orthogonally by a unimodular or (n;)-modular isotropic plane H.
Suppose H is unimodular. Then we can find xe M; —n; M which is orthogonal
to H and satisfies h,(x,M,)=(r,). Thus h,(x)e(n,)nA}=n3A49 so by Pro-
position 12 we can find yen, H so that x +y is isotropic. Thus A(x + y) is a direct
summand of M, for an ideal A2(n;'). Thus h,;(A(x+y),M,)=(rn,) so by
Proposition 11 we may suppose that H is (n,)-modular. The theorem now
follows by induction. [J

When o(h))=0,(h;)="---=0,,-1)(h;), we shall say that h, has equal signa-
tures, this is the case when h arises geometrically (cf. Th. 27).

Lemma 14. If M, is indefinite and if some lattice L in its genus has a Jordan
splitting, then M | also has a Jordan splitting. Moreover, if L has a Jordan splitting
in which each of the two components has equal signatures, then M, has a Jordan
splitting with the same property.

Proof. We may assume h, is not unimodular or (7,)-modular. Let L=N_L P be a
Jordan splitting. Denote by J the set of ideals 4 of A, with norm (from F, to F))
= A9, and by J, the set of principal ideals a4, with norm a=1. By 5.2(i), [17]
there are lattices N, =N, N,,...,N; in the genus of N such that the s ideals
[N/N] (=product of the invariant factors of N; in N) run over a complete set of
representatives of J/J,. Define L,=N,L P for i=1,...,s. Then [L/L;]=[N/N.]
and since the L; are all in the genus of M,, they represent all classes in that
genus. (As remarked on p.244 of [21], the group E(A)/f,(E,) in the proof of
5.24(i) on p.400, [17], is trivial and so by that proof two indefinite lattices R and
S in the same genus are in the same class iff [R/S]=aA, with norm a=1. See
also 5.28, [17].) Thus M, is equivalent to one of the L; and so has a Jordan
splitting. The last statement of the lemma follows easily. [

Theorem 15. If h, is indefinite with equal signature, M, has a Jordan splitting in
which each of the two components has equal signatures.

Proof. By Proposition 9 we may suppose ¢=1. Since n,¢ F; but n}eF}, n? <0 at
each real place of F} and it is easy to see that there is an hermitian space W, of
dimension r, with diagonal form {+1,..., +1, +#}) of determinant =} such
that the number of positive (resp. negative) entries is < the number of positive
(resp. negative) entries in a diagonalization of V;=F M. We may therefore
suppose that V, =W, L W, by a theorem of Landherr (5.8, [17]). Since det M, is
a unit at all finite primes =(n?), W, supports a unimodular lattice J by
Proposition 6, [20], and local class field theory. Similarly by considering =y *h,
on W,, we see that W, supports a (n,)-modular lattice K. Since JL K is in the
genus of M, by Theorems7.1 and 8.2 of [11] and Proposition 3.2 of {17], the
theorem follows from Lemma15. []
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§ 4. Jordan Splittings over Z

Throughout this section we consider the almost unimodular lattice M, with -
symmetric bilinear form h,, with Jordan invariants Z and (p) of multiplicity r,
and r, resp. The results apply also to M, when p=2.

If e=—1, M, has a Jordan splitting by a theorem of Frobenius (Th.1, §5,
[3]) so we may assume h, is symmetric. If the rank of M, is 2, the existence of a
Jordan splitting is easily determined by reduction theory (see e.g. [6]) so we may
assume rank M,=3.

If L is any lattice (with a bilinear form), we shall denote its p-adic completion
Z ,®4Lby L, in this section only. A lattice L with form f over Z or Z, is called
even if f(x)e2Z, for all x, otherwise it is called odd; the lattice L with form af,
where a is a scalar, is denoted by ao L. We record several useful results:

Theorem 16 (see 93:29, [15]). Let L1 K and L'=J'1 K' be Jordan splittings of
almost unimodular Z,-lattices. Then L and L are equivalent if and only if

(a) they are equivalent over Q,,

(b) J and J’ have the same parity, and 3o K and %o K’ have the same parity,

(c) detJ =detJ' mod2°Z, where s=1 when J and 3o K are odd, s=2 when
one is odd and the other is even, s=3 when both are even,

(d) when J is odd and K is even, J 1 {detJ.detJ") and J'L {1) are equivalent
over Q,.
Theorem 17 (see Satz 5, [12] and Th.4.2, [7]). Let L and L be almost unimodular

indefinite Z-lattices of rank=3. If L and L are in the same genus, then they are
equivalent.

Theorem 18 (see 93:18, [15]). An even unimodular lattice over Z, is an orthogonal

1
) except possibly for one

direct sum of planes all of which have matrices ( 10

1
5]
o denotes the signature and [ ] is the greatest integer function.

2
with matrix ( 1

Theorem 19. If p is odd, an indefinite even lattice M, has a Jordan splitting if and
only if r, is even and

(@) a(M)=0 (mod8),
(b) lo(Mo)|=8[ry/8]+8[r,/8].

Remark. The conditions r, even and (a) are equivalent to the p-modular Jordan
component of L, being hyperbolic or, equally well, to (hé ), being hyperbolic.
See Proposition 20.

Proof. We note first that M, even and unimodular implies rank M,=r, +7, is
even. The necessity follows from the fact that the signatures of the Jordan
components of M, are =0(mod 8) since they are even and modular ([18]).
Conversely we may assume o(M,)=0 by scaling by —1 if necessary. Write
o(My)=8m,+8m, with meZ, 0<8m,<r, for i=0,2. Define s;=3(r,—8m,), L,
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. . 01 . .
=(s;H).L (m,I3) where H is a hyperbolic plane ( 1 0) and [ is the even positive

definite unimodular lattice of rank 8. Put L=L, 1 (po L ). Then a(L)=0a(M,)
so L,~M,,, so detL=detM, since both are +p", so L,~M,, for all g+2,p.
If My,=J,L K, is a Jordan splitting, det K,=det(pe L) by Proposition 20, so
det J,=det L;) and L,~M,,. By Hilbert reciprocity, L and M, are equivalent
over Q,, hence over Z, since they are even and unimodular. Thus L~M, by
Theorem 17, so M, has a Jordan splitting. [J

Proposition 20. Suppose that both h, and h§ are even. Then the p-modular Jordan
component of M, is hyperbolic if and only if r, is even and o(M ,)=0(mod 8).

Proof. Define
aMy)=Y ™V WeC

where the sum is over all ueM /M, and, if u=x+M,, Yy(u)=1h,(x) +ZecQ/Z.
Put A(M,)=Arga(My)eR/Z. Then, [5], A(My)eiZ/Z and, if we consider
A(M,) to be in Z/8Z by multiplying it by 8,

o(My)=AM,) (modS8).

If My,=J L K is a Jordan splitting at p, ME/M,=p 'K/K =:k and a(M ) is
equal to
a(k): = Z e2rigw/p
uek
where g: k—IF, is the quadratic form induced by 3hg. Note that A(k)=A(k)
+A(k") if k=K LKk". If p=2, h§ is even by hypothesis; a direct computation

4 2
shows that A <(2) (2) =0and 4 ( ) 4 =4 so the proposition follows by Th. 18.

Suppose p is odd. If xelF, then a({«)) is a quadratic Gauss sum and can be
evaluated using pages 85-87, [14]. The result is A({a, B>)=0 if (o, ) is a
hyperbolic plane, otherwise A({a, f>)=4. The proposition follows since K is
hyperbolic iff k is hyperbolic. []

Theorem 21. Let p be odd and let M, be odd, indefinite and of rank = 3. Then M,
has a Jordan splitting if and only if, when p=1(mod 4), (h{), has determinant 1.

Proof. If My=J1 K is a Jordan splitting, det K= +p"™, whence the necessity.
Conversely it is easy to see that one can choose J=(#1,..., +1) and
K={+p,..., +p) so that JL K~ M using Theorems 16 and 17. [

Theorem 22. Let p=2 and suppose that h,, is indefinite and even and that h§ is even.
Then r, and r, are even. Moreover M, has a Jordan splitting if and only if

(a) 6(My)=0(mod 8).
(b) lo (M)l <8[ro/8]1+8[r,/8].
The proof is very similar to Theorem 19 and is omitted.
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Theorem 23. Let p=2 and suppose that h, is indefinite and even and that hy is
odd. Then r, is even. Moreover M, has a Jordan splitting if and only if

(a) o(My)=s(mod 8) for some integer s satisfying |s|=<r,,
(b) lo(Mo)|<ro+8[r,/8].
Remark. Condition (a) is obviously vacuous when r,=4.

Proof. The unimodular Jordan component of M, is even, hence r, is even. If
M,=J1 K is a Jordan splitting, g(J)=0(mod 8) since J is even and unimodular;
thus (a) and (b) follow from ¢(My)=a(J)+ o(K).

Conversely we may assume o(M,)=0 and rank M ,=3. Let s be the largest
integer <a(M,) satisfying (a). If 6(M,)=s, define

J=3rnH, K=s{1)>L13i(r,—s)H.

If 6(M,)>s then s>7,—8 so
o(Mg)—s<ry+8[r,/8]—r,+8=8[r,/8]+8

80 0(M,)—s=8[r,/8]. Define t=(c(M,)—s)/8 and
J=tLL ¥(r,—80H, K=s{1>L(p—Is)H

where s{1) is interpreted as (—s){—1> if s<0 and as O if s=0. Put L
=J1 (20 K). Then one can check that M ,~L using Theorems 16 and 17 (note
that a unimodular Jordan component of M,,, being even, has determinant
=(—1)*"2(mod 4) by Theorem 18). []

Theorem 24. Let p=2 and suppose that h is indefinite and odd and that h& is
even. Then r, is even. Moreover M has a Jordan splitting if and only if

(a) c(My)=s(mod 8) for some integer s satisfying |s|<r,,

(b) lo(Mo)|=r,+8[ry/8].
Proof. Interchange the roles of h, and hf and apply Theorem23 and
Proposition9. []

Theorem25. Let p=2 and suppose that h, is indefinite of rank<3 and odd
and that h{ is odd. Then M, has a Jordan splitting.

Proof. One shows in the usual way that

My=~{(£1,...,+1>L {(£2,...,+2%). O
As a supplementary result we have
Theorem 26. If p is odd, M, has a Jordan splitting if either (a) or (b) holds:

(a) lo(ho)| <7, and (hg), is hyperbolic.

(b) la(ho)| <71, and hy, is hyperbolic.
Proof. Assume (a). Then r, is even and we may assume that it and r, are >0.
Then h, is indefinite and by Theorem 21 we may assume it is even as well. By
Proposition 20, (M y)=0(mod 8), so |o6(M,)|<8[r,/8] and the theorem follows

from Theorem 19. Under assumption (b), the result follows by using the first part
and Proposition9. [
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§ 5. Geometric Forms

Let X be a smooth, closed, oriented manifold of dimension 2! and IT a finite
group that acts differentiably on X, preserving the orientation. The integral
bilinear form B(x,y)=(xy)[X] on M =H'(X;Z)/Torsion is [I-invariant, uni-
modular and e-symmetric where e=(—1)". If we set

h(x,y)=) B(g"'x,»)g
gell
then h: M x M—ZII is a non-singular e-hermitian form and B=¢;h where ¢,:
A—Z is the augmentation, ¢,(} m,g)=m;.

Extend B and h to W=R®,M and choose on W a positive definite inner
product <, > invariant under I1. Define AcEnd, W by B(x,y)={x,Ay)». Then A
commutes with I1, and its adjoint 4* =¢A.

Suppose now that [ is even. Then the positive and negative eigen-spaces of 4
give a decomposition W=W ™1 W~ invariant under II. The two real repre-
sentations p* and p~ of IT thus defined are independent of the choice of ¢, >.
The II-signature of X is defined as

Sign(I, X)=p* —p~eRO(IT)= R(IT)

and the value of its character on gell is Sign(g, X).

Suppose [ is odd. Then A4 is skew adjoint so J = A/(AA*)? satisfies J? = —1,
Thus W yields a complex representation p of IT and the II-signature in this case
is

Sign(I1, X)=p —p*eR(II)
where p* is the contragredient representation.

I1-Signature Theorem (p. 582, [1]). If IT acts freely on X then Sign(g, X)=0
forall gx1inIl.

We now specialize to the case IT cyclic of prime order p and we refer to the
¢-hermitian forms that arise from manifolds with free IT-action as geometric.

Theorem 27 (C.T.C. Wall). If h is a geometric e-hermitian form and p is odd, then
h, has equal signatures.

Proof. The argument is similar to that on page 175, [22]. Q,,(BIl)=
Q,,®Q,,(BI) and each o,(h;) is a bordism invariant, defining a homomor-
phism g;: Q,,(BII)—~Z. Since Q,;(BII) is a p-torsion group it suffices to compute
on the summand Q,, (corresponding to trivial p-fold covers) where the result is
clear, [

We say that h has equal signatures if o;(h,)=0(h,) for all i. We define the
signature of a non-degenerate alternating form to be 0.

Theorem 28. If h is a geometric hermitian form, r, and r, are even and h has equal
signatures. In addition when p=2, h§ and h} are even while h, and h, are both
even or both odd.
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Proof. Suppose p=2. If xeM, hy(xq,x0)=h,(x,,x,)(mod 2) and so h, is odd iff
hy is odd (this is obviously independent of h being geometric). Now by
Theorem 7.4, [4], ¢, h(x, Tx)=0(mod 2) for all x in M, which is equivalent to
ho(xg,Xxo)=h,(x,,x,)(mod 4). If zeM(*)* then (2z,0)e M whence hd (z,2)=2h,(z, z)
is even. Thus h is even and hf is similarly even.

Return to p arbitrary. Now W*=R% | R[t]% as an RIT-module. Define
dy and di similarly. It is easy to see that the II-signature theorem is equivalent
to

df —df =d; —d;.

Since r,+r,=d;" +d; for i=0,1, we deduce ry=r;(mod2). Thus r, and r, are
even by Proposition 10(c) when p is odd, by Corollary9, [8] when p=2.

Now ¢, is 1/p times the Z-algebra trace of A and the latter is the direct sum
of the algebra traces of Z and A,. It follows that a(¢,h)=a(hy)+ o (Tr h,). But
since dimpW™* =dg +(p—1)d{ with a similar formula for dimgW~, a(e,h)
=dimW*—dim W™ =pac(hy) and so o(Trh,)=(p—1)a(h,). This finishes the
proof for p=2, and for p odd it follows from Theorem27 and the following
lemma.

Lemma 29. If p is odd and h, is hermitian,

-1
o(Trhy)=2 Y o,h).
i=1

Proof. By taking an orthogonal decomposition of h, (over F,) one reduces to the
case of rank 1, say h, is the form xajy on F, X F,. Now extend by R to an IR[t]
form. Since R[t]=C**~Y, Tr(xay)=Y Treg(x;a;7;) where, e.g., ay,...,a;5,_1,
are the conjugates of acFy. But o(Tr(x;a,y,)) =2signa;=20,(h,). [

Theorem 30. If p is odd and h is a geometric skew hermitian form, r, and r, are even
and h has equal signatures.

Proof. Consider U=Cu as a real space with basis {u,iu}, (i=} —1). Then i has

0 o
matrix (1 o) If g is a non-zero skew hermitian form on U, say g(u,u)=ai,

acRR, then if G is the matrix of g,

signa
VGG .
=6/ ( signa 0 )
If we put a complex structure on U by making i act as J, we get the original one
if a<0 or its conjugate if a>0.
Now consider h: W x W—RII. Choose a decomposition RII=R@C*?~1

27
in which T=(1,{, ¢, ...,08%~Y) with {=exp ( P ) Then W=W, LW, L

L W,,_1 where W, is a real vector space W, j=1, is a complex
space on which T acts as (/. Let ho,hy 15050y 4(p— 1) bE the component forms. If
15j<3(p—1), decompose W, orthogonally into (complex) lines and use the
procedure above to put a new complex structure on each of them. This
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yields W;=U;L U_; where T acts on U; as ¢ and on U_; as {9, and W=

' U; where Uy,=W,. The II-signature theorem says that the repre-
lsjelcfljfa(lii_olr)l of IT on W=} U, is real. The characteristic polynomial of T on W’
is f=[] X~ whe]rzomjzdim@ U, Since feR[X], f=f so m;=m_; for
all j, i.Jt: (;he index o;(h;) of the skew hermitian form h, ; is 0. Thus h has equal
signatures and the evenness of r, and r, follows easily from this.

Theorem31. If h is a geometric skew hermitian form on M, then M admits an
orthogonal Reiner splitting.

Proof. Since h, is skew symmetric it has a Jordan splitting by a theorem of
Frobenius (§ 5, [3]) and so has h, if p=2. If p is odd, h, has a Jordan splitting by
Theorems 15 and 30, so the theorem follows by Theorem 7. []

Theorem 32. Let p be odd. If h is a geometric hermitian form with indefinite
component forms hy and h,, M has an orthogonal Reiner splitting if and only if,
when hy is even, |a(ho)| < 8[r,/8]+ 8[r,/8].

Proof. The necessity follows from Theorems?7 and 19. Conversely h, has a
Jordan splitting by Theorems 15 and 28. By Theorems 19 and 21, and Pro-
position 20, it suffices to show that (hg ), is hyperbolic.

Suppose that h arises from the p-fold covering y: X**—X** Then M
=H?**(X,Z)/Torsion and we put N=H?*(X,Z)/Torsion. The map y*: N-»M
has image =M, and is a monomorphism since it induces an isomorphism
Q®;N->Q®;M (Ch.3, [4]). Let g: NxN—->Z be the cup-product pairing;
it is unimodular by Poincaré duality. Then for all x, ye N,

p*g(x, ) =ho(y*x,7* y). )

If t*: M—N is induced by the cohomology transfer map, t*y*(x)=px for all x
(ibid) so y*N2pM,. Also y* N M "M ,=M{P by Proposition4. By Lemma 5

1 ;o . .
and (9), the map —y*: (N,g)—(M{,h,) is an isometry onto a unimodular
p

submodule N'2M,=(M#)®. Since the discriminant of (M ¥, k) is +p~", the
index of N' in M is p*™, hence its image in (M§),=Mg /M, has dimension 37,.
But this image is a totally isotropic subspace since h& =ph, and so (h§ ), 1s
hyperbolic. []

Theorem33. Let p=2. If h is a geometric hermitian form with indefinite com-
ponent forms hy and h,, M has an orthogonal Reiner splitting if and only if

lo(ho)| <1, +8min{[ry/8], [r,/8]}
and
o (hy)=s(mod 8)
where s=0 if h, is even, otherwise |s|<r,.

This follows easily from Theorems 28, 22, 24.



32 1. Hambleton and C. Riehm

Theorem34. If h is a geometric hermitian form and if ry=0, then M has an
orthogonal Reiner splitting.

Remark. Such forms arise when [ is even and X?' is (I—1)-connected. Thus
Theorem 34 can be used to generalize results of [13].

Proof. Since h has equal signatures and |o(hy)|<r,, h, is indefinite (under the
assumption r; #+0) and the theorem follows easily from Theorems 28, 22, 24. []

Summary. The following conditions are necessary in order that the non-singular e-
hermitian form h be geometric. (The conditions are not independent.)

(i) h has equal signatures (Ths. 28 and 30).

(i) When e=1, h§ and hi are even when p=2, and h, and h, are both even or
both odd (Th. 28).

(iii) r, and r, are even (Ths.28 and 30).

(iv) r, is even unless e=1 and h,, is odd (Prop. 10, Th. 18).

(V) If p is odd, (h§), is hyperbolic (proof of Th.32); if in addition h, is even,
a(hy)=0(mod 8) (Prop. 20).

(vi) If p=2 and xeM, hy(xq, xo)=h,(x,,x,)(mod 4) (proof of Th. 28).

§ 6. The Non-Orientable Case

We now consider the forms which arise in geometry from 2-fold covers
X?'> X2 of closed manifolds where X is orientable and X is non-orientable and
prove that an orthogonal Reiner splitting always exists.

Theorem. Let p=2 and suppose h is a non-singular hermitian or skew hermitian
form on M with respect to the involution a+bT—a—bT on A. In any Reiner
splitting (1), M, and M ,, are totally isotropic, and there is a Reiner splitting in
which M o,®M ,, is orthogonal to M ,,.

Proof. If h is skew hermitian, Th is hermitian so we need only consider the
hermitian case. The proof is similar to (and much easier than) those in §2 and so
we merely sketch it.

Extend h to 'M x TM—T =Z®Z; since (a, b)=(b, a), M, and M, are totally
isotropic and there is a non-degenerate pairing #: M, x M, —Z such that

h(x,y)=n(x0, 1), 1(yo>X1))-
If n': M,—Mf¥ is the associated monomorphism, one can show that
n'(Mo)=2Mt,®Mp,, (10)

for any Reiner splitting (1) where MY, e.g., is the annihilator in MF of M ,), (cf.
proof of Th. 3). We let M, =M, ®M,,, be the inverse image of (10). It follows
that M =M, @M ;)@ M|,, is the desired splitting where M(,, is the (type 2) pull-
back of My ,—>M, <M, O
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