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In this paper we establish an effective method for calculating the oriented
surgery obstruction groups L, (ZG) for G a finite group of 2-primary order. We
show that these groups depend explicitly on the rational representations of G
and certain facts about the reduced projective class group K,(ZG), and prove
that most of the relevant structure of K,(ZG) in turn depends only on the
rational representations of G.

Surgery obstruction groups in various geometric situations were introduced
by Wall [20]. He proved that the ones studied here are basic for the classifi-
cation (up to h-cobordism) of closed, oriented manifolds with finite fundamental
group [23].

Our method, an extension of a program first proposed in [3], uses the
Ranicki-Rothenberg exact sequence [16, Theorem 4.3]

#) o L (ZG) > I, (ZG) -5 HYZ/2; Ro(ZG) — LZG) ..

The calculation of I, (ZG) for G a finite 2-group now appears relatively easy.
In Bak [2], Pardon [15], Carlsson-Milgram [4], Kolster [11], and an earlier
version of this paper [25], the answers were first worked out. In Theorem A we
summarize these results and point out that If,(ZG) depends only on the
structure of QG. Since all the calculations are now documented in the literature
we omit them and prove only this last statement (see § 3).

Our main concern, however, is with studying the map d, , in (). The
involution on K4(ZG) is given by [P]— — [P*] where P* is the dual module to
P, and only the 2-torsion part of K,(ZG) matters in (x). We define a finite
abelian 2-group with involution W,(G) which depends only on the rational
representations of G and a involution preserving map ¢: W,(G)— K,(ZG)
which is onto the 2-primary part of K,(ZG). Then we prove that d, , , factors, as
a composite

dic+ 1

I, ,(ZG)— HYZ/2, W/(G)) —=— H*Z/2, K,(ZG))
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**  Partially supported by NSF grant MCS 76-0146-A-1
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where d,,; depends only on the rational representations of G. This is
Theorem B and complete information on d), is given in Lemmas (5.1)~(5.7), so
the calculation of the I, (ZG) groups up to extens1ons is reduced to determining
¢, which depends on Im (K,(Z,6)—> K (QZG)) Here the recent work of Oliver
(“SK, for finite groups rings: II”, Aarhus University preprint, 1980) may be
useful.

To demonstrate the effectiveness of our method we list in §2 some explicit
calculations for special cases (Theorems C, D, E) including cyclic, elementary
abelian, generalized quaternion, dihedral, semi-dihedral, and 2-Sylow subgroups
of the symmetric groups. (Proofs are given in §§6, 7.)

The results for the semi-dihedral, and quaternion groups are new and have
been applied in [1] to construct examples of semi-free group actions on
homotopy spheres which are not twisted doubles of actions on disks.

Also, these results have played a crucial role in recent work on free actions
of finite groups on spheres by Milgram.

In §§ 1, 2 we review some facts about the rational representations of finite 2-
groups, and state our main results, Theorems A to E. The remaining sections
contain proofs.

Bak [2] has prev1ously considered the groups I” «(ZG) where G is a finite
group with normal abelian 2-Sylow subgroup, so our results overlap for abelian
2-groups. Wall [22] has made extensive calculations for arbitrary finite groups
of the “intermediate” obstruction groups L_(ZG). The relation of these groups
to I, (ZG) is given by an exact sequence [22, 5.4]:

0— Ly (ZG)— Ly (ZG) > WH(G)®Z/2— Ly (ZG)— LY, _1(ZG)— 0.

Using our results the maps in this sequence can be calculated in many cases to
settle extension problems. For example, L, and I are both of exponent 2 for G
a generalized quaternion group of order =16 (cf. [22, 5.2.4]).

§ 1. Rational Representations of a 2-Group

There are four basic types of 2-gfoups necessary in studying the rational
representations:

(@) Z/2"={x|x*"=1}n ; 1 (cyclic)

(b) D2"={x,y|x*" '=y?=1,yxy~'=x"'}n2=2 (dihedral)

(c) SD2"={x, y|x*""" =y2 =1,yxy~'=x2""""1}n>4 (semi-dihedral)

(d) Q2"={x,y|x*" *=y?=(xy)?} n=3 (generalized quaternion).

(1.1)

It is well known that the irreducible faithful representations of these groups
are given as follows (here {, is a primitive 2*-th root of 1):

(@) Q&
(b) M,(Q(+Lc)

1.2
129 MQe-i)
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-1

@) T= (Q—(C—l;r—c—)) QG+ @0 (T

-1, -1\ . .
nion algebra over Q({,+ (%) (Here ( (’2 ) is the quaternion

), the “usual” quater-

algebra Q(,j) {i’=j=—1, ij= —ji}.)
The involution gr—~g~! on QG induces the involution {,—{;' on the
centres of (a), (c), and the identity on the centres for (b), (d). As algebras with
involution (a), (c) then have type II in the classical notation or type U in Wall’s
notation, and (b), (d) are type I, but more exactly, type O and Sp respectively in
Wall’s terminology. (See [22, p. 5] for definitions.) The following is a refinement
of earlier results of Roquette and Witt.

Theorem 1.3 (Fontaine [6]). Let G be a finite 2-group, and M an irreducible QG-
module. Then there exist subgroups H<K of G, and an irreducible Q[K/H]-
module N such that

(a) K/H isin (1.1)

(b) N is a projective module over one of the algebras in (1.2), and

(c) Viewing N as a QK module then M=N ®xQG

(d) The irreducible simple subalgebra of QG corresponding to M is of the
form M ,(A), where A is the algebra in (1.2) corresponding to N.

In particular, the rank, type (in Wall’s notation) and centre describe a simple
summand of QG up to isomorphism as an algebra-with-involution.

Another useful property of QG for G a finite 2-group is the existence of an
involution invariant maximal order # < QG containing ZG [15,§5]. Further, if
QG= HD is the decomposition into simple algebras, then /4 = l_[Jl where

M, is an involution invariant maximal order in D,. Indeed .#, can be chosen to
be a full matrix ring over

Z(Ck)’ MZ(Z(Ck+Ck_1))9 MZ(Z(Ck_Ck_l))

or a maximal order in the quaternion algebra I, for some k, in the four cases of
1.2).

Theorem A. Let G be a finite 2-group and QG=]]D, where the D, are simple

involuted algebras. (1) There are groups A,(D,) depending only on type of D,, the
centre of D, and i such that

IBZG) =[] A(D,) for 0<i<3.

(2) Let £(x) be the number of simple summands in D, ®oR. The non-zero groups
A,(D,) are:

(@) 44(Dy)=(Z)’® for each D,.
(b) A,(D))=(Z/2)* **! if D, has type Sp and centre Q({,+{;*) for k=2.
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(c) A,(D)=(Z)™ if D, has type U; A,(D)=Z/2 if D,=Q with trivial G-
action; A,(D))=(Z/2)* >~ if D, has type Sp and centre Q(,+{; ') for k=3.
(d) A5(D,)=Z/2 if D, has type O and D, Q with trivial G-action.

The I? groups above were obtained for G abelian in [2], If in [4], [15] and
I modulo an extension problem in [15]. The remaining ones are now in [11].
We remark that 4,(Q) is detected by the ordinary Arf invariant. Other explicit
generators for these groups are given in §5. It is of interest to know the
divisibility of the varous signatures in IZ and I5. These are actually determined
by the following method of calculation.

Let .# as before be an involution-invariant maximal order in QG containing
ZG and consider the diagrams of exact sequences derived from [17, 7.3]:

o I, (QG) —— I(26)— I4(26) @ I5(QG) — L (QG)— .

| |

oo I, (QG) —— (M) —— Iy(A) @ E(QG) —— LL(QG) —

where XA=ker (Ko(#)— K, (QG)) and Y=Im(K,(QG)— K,(QG)). Using the
fact that Z,G is maximal for p odd, we obtain

o By (M) — B(ZG)— L4(2,G) @ Li(M)—> Ly(My) > ....

This exact sequence gives the groups in Theorem A. In § 3, we will establish the
first part of Theorem A.

The next step in computing I, (ZG) is to show to what extent the rational
representations also determine

(1.4) dysr: B, (ZG)— HY(Z/2; Ro(ZG)).

Let )
D(G)=ker (K ,(ZG)— K o(H)

and observe that since Cl(.#)=ker (K,(#)— K,(QG)) has odd order [8] when
G is a 2-group,

(1.5) H*(Z/2; Ko(ZG))=H*(Z/2; D(G)).
Although D(G) is not determined by QG, generators of it are.

Lemma 1.6. Given ¢ such that 2/ #,c2.,G, there is a finite group W,(G) with
involution such that

(@) W,(G) has exponent 2°,
(b) there is an epimorphism of Z/2-modules

¢: W,(G)— D(G)
() W,(G)=]]W,(D,) as Z/2-modules where the W,(D,) are finite Z/2-modules
depending only on ¢, the type, and the centre of the simple summand D, of QG.
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Proof. We need the description given in [18] of D(G) in terms of units. Let
K'|(#) denote the image of K, (.#) under reduced norms in the product of the
units of the centres of the .#, where .# =][].#,. Similarly, we define K (M,)

and have a map K',(#)— K/, (#,). Also there is a map
K(Z,6)— K ()

defined by applying the reduced norm at each summand of .4, to the image of a
unit from Z,G. From [18, p. 14] there is an exact sequence

K,(Z,G) ® K, (M)~ K, (M,)— D(G)—O.

If D(G) has the involution induced by [P]+— —[P*] and the K, groups have the
involution “conjugate transpose”, then this is also a sequence of Z/2-modules.
Since 2‘’.#,=Z,G we can define

I,={14+2alaeM,} <Z,G*
and define W,(G) by the exact sequence
(1.7) I, ® K (M) Ky (M) — W,(G) 0.

Now both (a) and (b) are clear and (c) follows because I, splits as .//22 does.
Our main general result about d, , ; is the following.

Theorem B. Let G be a finite 2-group.
(1) The boundary map d,_, , in (1.4) factors as

I, . (ZG)—""> HYZ/2; W,(G) —2— HY(Z/2; D(G))
(2) For each simple summand D, of QG there exists a homomorphism
&y 1(@): Ayy 1 (D)~ HYZ/2; W,(D,))

such that d, ,=]]d,_ («) under the splittings of Theorem A.1 and (1.6)c.

In §4 we will calculate the groups H*(Z/2; W,(D,)) for all possible D, (it will
frequently be convenient to denote these groups by H*(W,(D,))) and in § 5 we will
calculate all the maps d;, ;(x). When combined with Theorem B, this reduces
the computation of I (ZG) up to group extensions to the computation of

(1.8) @, HY(W,(G)— H*(D(G))

and this is the information about K ,(ZG) needed in addition to the structure of
QG to obtain the surgery obstruction groups.
§2. Applications

To illustrate the method, we give the surgery obstruction groups for several
classes of 2-groups. (Previous specific calculations are in [2] and [22, 5.4].) The
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first result gives the answer up to extensions for elementary abelian 2-groups
(note that K,(ZG) has been computed in this case [24, Th. 12.9]), wreath
products of Z/2 (the 2-Sylow subgroups of the symmetric groups) and products
of these, all of which are among the large class of groups satisfying the
assumptions of

Theorem C. Let G be a finite 2-group with only type O summands in QG. Then
H*(Z/2; K,(ZG))— L4(ZG)
is injective for k=2 (mod 4) and zero for k=2(mod 4).

The I*-groups for each of the 2-groups G listed in (1.1) can also be given.
Since D(G)=0 for the dihedral groups [7], their I’-groups are covered by
Theorem A. Since G=Z/2" is abelian its I*-groups appear in [2]. We will check
this result by our methods in §7 and obtain: for G=2Z/2", I')=(Z)*" '+!
@ H°(Z/2; D(G)); L, =0; Ly =Z/2; ', =(Z)*" '~ ' ®Z/2® H°(Z/2; D(G)).
Theorem D. Let G=Q2" then I',=(Z)*" **3; I, is an extension of Z/2 by
(Z/2*" 7 =22 if n=3and I',=Z2®(Z/2)*" ' if n24; I',=(Z/2)"" .

Since SD2" has a subgroup Q8, the results of Ullom [19, 3.5, 3.9] give an
isomorphism induced by restriction:

H*(Ko(SD2")— H*(K,(Q8))=Z/2.
Theorem E. Let G=SD2" then I')=Z7Z/2@ (Z)*"’*+?"**3;, I' =7/2;
LYy=7/2@® (Z)*""; I, is an extension of Z,/2 by (Z/2)"~".
In stating the above results we have not specified the divisibility of the
signatures although this is determined in the calculation. This data would be

helpful for comparison with [22] particularly in finding maps in the K-
Rothenberg sequences.

Remark. In Theorem D, the extension for I%, is split for n2>4.

§ 3. Proof of Theorem B

Our procedure for factoring the maps d, involves standard “mixing” con-
structions for modules over ZG. The only addition is that we simultaneously
mix the forms.

Consider the pull-back diagram

26— M
(3.1) J 1"
ZZG—J—» ./?2

where # is (as in §1) an involution-invariant maximal order for ZG in QG.

Suppose P is a projective ZG module, then tensoring P with (3.1) over ZG gives
a pull-back diagram
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P—— AQRP
2,6QP—— #,P

and by Swan’s basic result, Z,G ® P, and M, ® P are free. Next, suppose P
admits a non-singular hermitian form b: Px P—ZG. Then there are forms
(matrices)

B: (2,G6® P)x(2,G® P)—»2,G
Jj(B): (M, ® P) x (M, ® P)—.M,

associated to B, and if # ® P is also free (i.e., if [P] e D(G)) there is also a matrix
pairing

A: (M ® P)x (M ® P)— M.

If P is now reconstructed via the diagram

P M DP
(3.2) M,Q P
C

where C is an isomorphism, and i’ is the usual inclusion of free modules then we
must have

(3.3) C-i'(A)- C*=j(B).
Conversely, if we are given
Ay M) M"— M
B,: (2,6 x(2,G)'—2,G
together with an isomorphism C, so that (3.2) is satisfied, then on P defined via
(3.2) using C,, we will have a non-singular bilinear form. (The above remarks
hold equally, of course, for quadratic forms.)
We shall denote the non-singular e-quadratic form obtained in this way from
A,, B, and C, by
0=[P,A,,B,,C,k].

Remark 3.4. From (1.5) it follows that every projective P with a non-singular e-
quadratic form may be obtained in this way for a finite 2-group G.
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From (3.3) it follows that C, represents a class [C,] in H'(W,(G)).

Similarly, any e-quadratic formation [17] over ZG can be reconstructed
from suitable formations over .# and Z,G using an equivalence over .#,. Again
from (1.5) it follows that the formations over .# and ZZG may be assumed to
consist of a hyperbolic form on a free module with two free lagrangians. The
equivalence of the two formations over .#, yields two projective lagrangians
P, P, for the formation 0 over ZG constructed as pull-backs of free modules
using matrices C,, C, in GL,(.#,). By definition [P,]—[P%*] is the image of
the class of 0 in I?,,, ,(ZG) under d,,,, [17]. With these preliminaries, it
follows that C,=C,(C¥) represents a class [C,] in H°(W,(G)). From the
naturality of these constructions it is easy to check that

(3.5) d1[0]=0,[C,]

for all r and all [6] in I, ,(ZG). Actually the class [C,] in H*(W,(G)) also
depends only on [6] in certain circumstances. From (1.6) we have components
of [C,] at the summands of QG. Let [C,], denote the component at the trivial
representation.

Lemma 3.6. Let 0 be an ¢-quadratic form or formation representing an element of
L, ,(ZG).

(1) If k+1=2r so 6=[P,A4,,B,,C,], and B, is hyperbolic, then [C,]
depends only on the class of 0 in I%,,(ZG).

(2) Let k+1=2r+1 and 0 be trivial over Z,G. Then if r is odd, [C,] can be
chosen so that [C,]o=1.

If r is even, or r odd and [C,]o=1, [C,] depends only on the class of 0 in
, . .(ZG).

Proof. (1) From the definition of W,(G) in (1.7), the indeterminacy in the choice
of C, which is not factored out is the group of stable automorphisms of
hyperbolic forms over Z,G. Since I%,, , ,(Z,G)=0, these are trivial in H*(W,(G)).

(2) The indeterminacy in the formation case can be described as the images
of (—¢)-quadratic forms over Z,G under the map I, ,,(Z,G)— H°(W,(G)).
These are trivial if e=1 and for e= —1 give a class 4 in H°(W,(G)) which is non-
trivial at each of the 1-dimensional representations. In fact this class 4 is given
by the image of the generator of I%,(Z,G) = Z/2 which has determinant — 5. Since
H°(W,(D,)=2Z)2 if D, is type O (see §4) it follows that [C,] can be chosen so
that [C,]o=1 when ¢= —1. Note that the unit —5 in (Z,G)* has non-trivial
image at each 1-dimensional representation so this indeterminacy is factored out
in the projection ¢: W,(G)— D(G).

To define d;,, using the above construction we note that the image of
I’\(ZG), I%,(ZG) or 2, . ,(ZG) in the corresponding I?-group of Z,G is trivial.

Definition 3.7. Let xe L, ,(ZG) be represented by a form ( formation) 0 which is
trivial over Z,G (and if k=2r+1 with r odd the associated [C,] has [C.le=1).
Let

4, (x)=[C,] in H'(Z/2; W,(G)),
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and set d , ,(x)=0 when x generates the summand
Ly(Z) of IH(ZG).

From (3.5), (3.6) and the remark just before (3.7) we see that 4, , is well-
defined on all of I,  (ZG). Furthermore,

(3.8) dk+1=(p*'d;c+l

which is the first part of Theorem B.
In order to check the second part of Theorem B we must refer again to the
pull-back diagram (3.1). First we note that

,(Z26)=1]4,(D,)

as claimed in Theorem A. In fact, If,(ZG) is the internal direct sum of the
subgroups A,(D,) defined by all possible pull-backs of forms (respectively
formations) over .# mixed with all automorphisms (respectively forms) over .#,.
To these must be added only the subgroup I%,(Z) denoted A,(Q) in Theorem A.

From this definition of the splitting of I, (ZG) it follows that d; , , also splits:

dir1= I—[d;c+ 1 (@),
where *
(3.9 dip 1 (@): Ay, (D)~ HYZ/2; W,(D,)).

and Theorem B is proved.

§ 4. Calculation of W,(G)

The main result of this paper is the calculation of d;, ; and hence of I%(ZG) in
any specific case. In order to state the answer it is necessary to calculate the
right-hand side of (3.9). For this we need information about the units in the
centres of the factors of .#, which are Z,((,), Z,(4,) or Z,(t,) where {={(, is a
2"root of 1, A,={,+{; ' and 1,={,—{, . According to [14, Th. 5.7],

4.1) Z,) =22 (23,
4.2) 2,(A) =Z)2 &2,
(4.3) Z,(t,, ) =22 &2

where Z; is the additive group of Z,. Also Z,((,)/2,(4,) and Z,(z, /254
are quadratic extensions (with ¢ denoting a generator for the Galois group Z/2),
and we must determine the structure of the units (4.1), (4.3) considered as
modules over the Galois group. In each case the norm map is given by x> x-tx
and 2,(A,)*/norms=2Z/2 (combine [5, Cor., p. 197 with [5, Prop. 4, p. 136]).
Since ¢,=1+4, has norm —1 using the extension Z,(4,)/Z,, it is not a norm
from Z,((,) or Z,(t,, ;). Hence there is a unit v, in Z,({,) with v,-tv,= —1, and
similarly a unit p,, , in Z,(t,,,) with g, - tp,,,=—1.
We denote the Z, group-ring of Z/2 by Z,[Z/2].
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Theorem 4.4. Assume n>3. As a module over Z.,[Z,/2] under the Galois action,
2,() =2 oM@ (2,[Z/)> !

where 2. is generated by ¢, (fixed under t), M =23 @ Z/2" (with action t(a,b)
=(—a, —b+2""")) is generated by v, and {,.

Theorem 4.5. Assume n>3. As a module over Z.,[Z/2] under the Galois action,
2,0t,.1) =2 ®N®(Z,[22)"

where 2.3 is generated by &, and N =23 ®Z/2 (with action t(a,b)=(—a,b+1) is
generated by p, ., and —1.

Proof of (4.4). We will first find generators for Z,(4,)* over Z, and write =1,
for convenience. For this it is sufficient to find generators of Z,(4)* modulo
squares and by Hensel’s lemma there is a surjection

Z,()* [1+4D) > Z,()* NZ, (D)),

where J is the maximal ideal generated by . Now Z,(1)* =(1+J)*, and so
there is an exact sequence:
a+25*  (A+I* 1+a0x
- —> > -
(1+4J)  (1A+40)*  (A+20)*

Now the map 2a+ 1+ 2a induces an isomorphism:

2Z2,()\* (1+2J)~
(422(/1)) T a+4n=

and this subgroup has generators
1424, 142242, 14243, .,14242" 72715,

Here we have used the relations (1;)>=2, (4,)*" *=6(mod4J) for n=4 which
imply 8 =0 (mod 4J).
For the quotient group we have the isomorphism

1+J)

(1+I)X—»(—1——;_—2.—]—)—)(~

where I is the ideal generated by 6 in the truncated polynomial algebra
F,(0)/{6* "+ =0} and the map is defined by:
1+a,0+a,0*+...—~1+a,Ata, A% +...

(@;=0or 1 for all i=1).
From this isomorphism it is clear that the elements

142, 1423, 1445, ..., 14227721

project to generators of the quotient group.
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Lemma 4.6. The elements 5, 1+A%*~! for 1<k<2""3 and 1-24*"! for
1<¢<2"3—1 generate Z,(A)*/(1+4J)*.

Proof. We leave the case n=3 to the reader and assume n=4. Let m=1+2a
+2"~3 for 0<a<2""* and calculate (mod 4J):

(L4472 = 142074 222+ 4= (14207)(1+222+%),

This relation shows how the elements 14242+ are derived from the indicated
generators. Similarly, let m=2+4a+2""> where 0<a<2""> and expand
(144™? to get the elements 1+24**®* and so on. This accounts for all units of
the form 14 24%* except 1+242" *=5 (mod 4J). The remaining units needed are
1+24%"*~' and —1. These are obtained from the relations:

14+ =(-1)(1+242"77)
and
A+227"7 (222" 22 =1+ 22"

Lemma 4.7. The elements 5, 1 + 1 and its Galois conjugates generate Z,(2)*.
Proof. Let @ generate Gal(Q,(1)/Q,)=2/2""2

Then (1+A°=1+3+{"3=1+4+43(mod 4J). It is sufficient to find ele-
ments y, spanned by 5 and the conjugates of 1+ A such that

7=1+2A*)mod (1 +J**1) for k=0.
These are provided by defining

P=+DT A, =T s e = Ve

We can now complete the proof of (4.4). From (4.7) and the fact that 5
=norm (1+2i), we see that there are global units u,,...,u,.-2_, which are
norms of units from Z,(¢)* and together with —1 and e=1+ A generate Z,(4)*.
Now let u;=w;-tw; for some w;eZ,({)*. It is easy to check that
€ns Cps Vs Wis Wiy oo, Won-2_ 5 and 1+2i generate Z,(0)* as a Z,[Z/2] module.

The argument for (4.5) is very similar and will be left to the reader. In
particular, there are elements w; with norm a global unit in this case also.
However, 5S¢, is a norm from Z,(z,,,) and generates the cokernel of Z,(4,)*
upon factoring out global units (in fact, norm (u, (1 +7,,1)=>5¢,).

The cases not covered in the above are Z,(i)* =Z/4®Z,[Z/2] with gen-

erators i, 1+2i and 2,()/ —2)* =Z/2®Z,[Z/2] with generators —1,1+71/—2.
Lemma 438. (a) For n=3, W,(Z,((,)=(Z/2)?" -1 @Z/2°[Z/2] generated by
Vs WiseosWono2_, and 14+21i;

(b) W,(Z,(i))=2Z/2°[Z/2] generated by 1+2i;

(© for nz3, WUZ,(t,,)=(Z/2)" "' ®Z/2'[Z/2] generated by
Hpy1>WiseeosWonoz_p and p, (147, ,);

() W,(Z,( —2))=2/2°[Z/2] generated by 1+ —2.
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Proof. This is immediate from the previous discussion. Note that on the Z/2’
factors in (a) and (c), the involution acts as —1.

Using this result we can calculate H*(W,(D,)) for D, of type U.

Lemma 4.9. (a) If D, has type O, W,(D,)=2/2’ generated by 5.
(b) If D, has type Sp with centre Q(4,),

WD) =22 !

generated by 5, €,, U, ...,uyn—2_, and —1 (notation from before (4.8)).
(c) In each case, W,(D,) has trivial involution.

Proof. (a) This follows from Lemma 4.7.

(b) Since ¢, has norm —1 (see [4, 4.5]) it is negative at an odd number of
real places of Q(4,). Therefore ¢, and its Galois conjugates are not factored out
in W,(D,) as D, is ramified at all real places (cf. [18]).

(c) Since Q(4,) is totally real, the involution on W,(D,) induced by “con-
jugate transpose” is trivial.

§ 5. Calculation of d; , , ()

The maps d; , (o) are given in Lemmas (5.1)—(5.7).
In this section we will use the notation (and results) of §§3, 4. Let 0
=[P, A,,B,, C,,] represent an element of If;(ZG) where B, is hyperbolic.

Lemma 5.1. Let A,, be hyperbolic except at a single representation of type O, then
dy[P,A,,B,,C,]=1.

Proof. The assumption means that 0 is in A,(D,) where D, has type O (see §3).
From (3.6), (3.7) d,[0]1=[C,] in H'(Z/2; W,(D,)). However (3.3) gives a relation
of the form:

—1=(det Cm)2 b

where beZ(4,)*. This equation in Z,(4,)* implies that det C,, is a global unit
(see (4.2)) and so [C,,]=1.

Lemma 5.2. Let A,, be hyperbolic except at a type Sp summand M, (I (F)) where
F(F)=( )and F=£Q, then

(a) the class of A,, in the Witt ring is determined by its signatures at the real
places of F,

(b) if A,, has signature 0 except at the i-th place where it has signature —2,
then

-1, -

(P, A4,,B,,C,]1=[67"]

where 0, is any unit of F negative at the i-th place and positive at the remainder.
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Proof. The first part follows from [13, p. 119] and (4.9). For the second part we
first recall that the maximal order .# can be chosen to have the form
M, (V)@ M, where A is a maximal order in I'(F) invariant under the standard
involution. This follows from work of Scharlau on the structure of involution-
invariant orders. If F=Q({+{~ ')+ Q then

T(F)®Z,=M,Q,({+{™")
and #,=A4"®Z, is conjugate to M,(Z,({+{~")) where the involution induced

on the matrix ring is
) 0 1y_,/0 -1
T'X'_’(—1 O)X(l 0)'

It follows that 1 =e+¢ for some e in A4 so all elements of the centre are even.
(Equivalently, from Kolster [11] we know that WQg *(4; min)= WQg (4, max)

0, 0 .
for such orders). Now define the form A4, to be ( Ol B 1) at 4" and hyperbolic at

the other representations. Then under the isomorphism above

0,

(0,. 0) 0,
—
0 -1 -1
-1
Hermitian forms over (M,(Z,({+{")),7) are Morita equivalent to skew-sym-

metric forms over (Z,({+ ('), id) so after a short calculation we get the Morita
equivalent form 0

hence dy[P,A,,B,,C,]1=[6;1].
The situation at the ordinary quaternion algebra I'(Q) is slightly different.

Lemma 5.3. Let A,, be hyperbolic except at M, (I'(Q)), then A,, has signature 2r
and

dy[P,A,B,C]=(—-1)".
Proof. Again the class of 4, is determined by its signature, so we may assume m

=2and 4,= ((1) (1)) Now let
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v=itj+k+2+4G+1)+...

and note vD= —1. Then set e=1(1+i+j+k),
1 /v O
Cz—(—é e) (0 1)

, 0 1
C2-1(A2)-C’§=(1 0).

and get

It is easy to check that [C,]=—1.
These results give d;, for type O and Sp.

Lemma 54. Let A,, be hyperbolic except at a single representation D, of type U
with centre Q({,) or Q(z,. ), then the image of d;,() is generated by the elements
[w;] (¢f. Lemma 4.8).

Proof. From results of Weber [8], the subgroup of Z(4,)* spanned by ¢, and its
conjugates contains units with arbitrarily prescribed signs at the real places.
Also from (1.4) and [13], 4,,(D,) is a subgroup of I%, (Z((,)) which is contained
in I%,,(Q(¢,). Hence A,(D,) is detected by signatures and by (4.7) the forms
ujp L{~1), {=1) L{~1) and 2(<e,» L{—1)) are equivalent over Q((,) to
generators. To see that these rational lattices contain integral lattices we use the
criterion of [21, Prop. 6]; the units u; are those used in (4.8). To calculate dj(«)
we can work over Q,({,) and find the images of these generators in H*(W,(D,)):

(L om) Co ) b )= 0)
_% %Wj_l 0 u; W}__1 %Wj—l —1 0

where U;=w;-tw; and w;=tw,. Therefore if

-1 1 wit
= d — J
A, ( u,.) and C, (_% %w.-l)

we get do[P,A4,,B,,C,]=[det C,]=[W,;]. The same result for d, follows from
scaling the generators by i to get generators for the appropriate summand of
X (#). From this result and (4.8) we see that each summand of type U
contributes at most two Z/2’s to I%,, ,(ZG) (see §7 for an example of this
calculation).

Lemma 5.5. The cokernel of d,(a) for a summand of type Sp with centre Q(4,) is
generated by [5] and [¢,] for n2>3.

Proof. Let D denote a summand of type Sp with centre Q(4,) and /' <D a
maximal order. By Morita theory we can assume that D is a quaternion algebra
(see (1.2)d) and A" a maximal order inside it (5.2). Assume n=3, then from the
Rothenberg sequence I*,(#;)=Z/2 and I%;,(4#")=0 from [15, 8.16]; while I, (4"
=7/2)>"""-2 maps trivially to I*,(#;) from [15, 8.10] and the appendix by
Springer to [10]. In addition, Springer’s description implies that I*,(A) is
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generated by forms (8> L (j> where the unit  in Z(4,)* is a norm from Z,((,)*
but +0 is not a norm at any real place. Therefore we can take d=u,,u,,..
U,n-2_, in the notation of §4.

Now let

*

J(D)=1m (K} (X))@ I, K} (H3))
as in (1.7) so that
0— J(D)— K, (H;) — W,(D)—0

is an exact sequence of Z[Z/2]-modules. The remarks above give an exact
sequence

0—Z/2— A,(D)— (Z/2)*" *~2 0.
Since the generators of I%(.#;) after Morita equivalence are represented by

. 0 1 N
matrices ( 1 0), the discriminant map

Ly(Ay) - H (K (H)=Z)2

is onto (the right-hand side is generated by [ — 1]). Using the pull-back square of
§3, we find the commutative diagram (here J=[]J(D,)):

Iy, —— I,ZG6) ——IhZ,G)®I)(A)

|

H' (K (M ) — H" (W,(G)—— H°(J)
where the lower row contains the exact sequence
0— H' (K (A;))— H" (W,(D))— H°(J (D)) 0.

The generators {8j) L{j> map to [8] in H°(J(D)) by checking as in (5.2) and
hence all generators of H'(W,(D)) are hit except [5] and [e,].

Lemma 5.6. For a summand D, of type Sp, d}(«) is an isomorphism.

Proof. As above we consider the map
dy(«): A,(D)— H%(Z/2; W,(D))

using the pull-back square (3.1) and let # <D be the maximal order. An
element x of A,(D) is represented by a formation 6 over 4" together with a
skew-symmetric form  over .#, with boundary i, 0 (see [17] for definitions).
Then d] sends x to the class represented by the discriminant of ¥. To see that d
is in fact an isomorphism in this case we note that the indeterminacy of this
construction lies in I*,(D) so that A, (D) may be identified with

cokernel (I%,(D)— I, (D,)).
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Now R R
Ly(D,)=IW(Q,(4,)

where the right-hand side denotes the kernel of the rank homomorphism on the
Witt ring [13, p. 66]. From [13, pp. 76, 81] there is a non-split exact sequence
(for n=3)

0—Z/2—IW(Q,(4,)— Q,(4,)/(squares) -0
and a generator of the Z/4 can be taken to be {—1) 1 {¢,(2—4,)). In this case,

both {(—1) 1{2—4,> and 2({—1) L<{¢,(2—4,))) are in the image of I*,(D) so
that

A,(D)=Z,(A,)* [(squares)
by the discriminant map and the lemma follows. If n=2, the element

(i+j>1<i) comes from I*,(D) and I',(D,)=~Q, /(squares) by the discriminant.
Hence

A, (D)=2} /(squares)
as before.

Lemma 5.7. The image of d’y(a) for a summand D, of type O is Z/2 generated by
[5] except when D,=Q, the trivial representation.

Proof. This follows from (4.9)a and a similar commutative diagram to that used
in (5.5). The generator of I%)(.#;) has discriminant 5 and
Z/2=Eo(-/‘Af2)_’A3(D)

is an isomorphism when D+ Q.

These results (5.1)-(5.7) give a complete calculation of d’ and lead directly to
answers for I" in many cases. Consider the situation of Theorem C where G is a
finite 2-group with only type O representations. Then d,=0 from (5.1), d,=0
since I2,(ZG)=1Z/2 (Arf invariant), d, =0 since I¥,(ZG)=0 and d} is onto from
(5.7). By (4.9)a, W,(G) has trivial involution so D(G) does also and d;, is onto.

§ 6. Proof of Theorem D

Let G=02" in the notation of (1.1)a and observe that

~(=L-L .
Q6= (Q(ln_l)) ®M,Q(4,_,)®... & M,(Q) @ Q*

From Theorem A:
=27+ =22 Y
I5,=7/2 if n=3 and I5=Z2®(Z/2* ! if n24;
I2,=(Z/2)".
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Recall from [7], [18, p. 33] that D(G)=Z/2 generated by (1,1,...,1,5) in
W,(G). As in (1.7) we will denote elements of W,(G) by an array (x, x, ..., *) of 2-
adic units corresponding to the summands of QG and the cohomology class in
H*(W,(G)) by [#,%,...,+]. The notation is chosen sothat the left-hand entry
corresponds to the quaternion algebra and the last four entries to the one-
dimensional representations sending (x,y) to (—1, —1), (—1,1) (1, —1) and (1,1)
respectively.

Lemma 6.1. For G=0Q8,
&y 1t By \(ZG)— HYZ/2; K (ZG))
is onto for k% 1(4) and zero for k=1(4).

Proof. Since W,(G) has trivial involution, and d},d} hit the generator of D(G),
(by (5.6) and (5.7)) both d, and d; are onto. Since I£,(Z(Q8)=7Z/2 detected by the
Arf invariant, d,=0. From (5.3) the element [—1,1,1,1,1] is in the image of d,
so it is enough to check that (—1,1,1,1,1) also generates D(G). In fact the 2-adic
unit

A+x+y)A+2x)(1+2xy+2y)~t

H(391, 1, 133)(_3’ 1, 1,3’3)(1, L, 1’393)=(— 1’1’ 1, 1’3)’
so (—1,1,1,1,1) also generates K,(ZQ8). In this calculation we have factored

out squares (since the answer is in Z/2) and multiples of 8. Note that in every
place except the quaternion representation we can factor out —1.

Lemma 6.2. For G=Q2"(n>3), the non-trivial element of D(G) is represented by
&,_, at the quaternion algebra and ones at the remaining representatons.

Proof. The first part of the argument will also give another proof that D(G) is
generated by (1,1,...,1,3) so the Swan homomorphism is onto. From our unit
calculations in §4 it is easy to see that W,(Zz(lj)) is generated by 5 and
W,(I'(Z,(4,_,)) is generated by the units 5, ¢,_, and its Galois conjugates (4.7).

The first step is to check that the four elements with 3 at a single one-

dimensional representation and 1 otherwise are all equivalent.

This can be seen by comparing successive quotients of the units:
1+2x—-(-3,3,...,3,1,1,3,3)
14+2y+—(-3,3,...,,3,3,1,1,3)

1+2xy—(-3,3,...,3,1,3,1,3)
3—(1,1,...,1,3,3,3,3).

Now the sequence of units
14+2x¥ 77> (-3,3,...,3,1,1,...,1)

for 1<j<n-2 (the first 1 occurs in the (j+ 1)-th place from the left) shows that
the element with — 3 at the quaternion place and ones at the remainder and all
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the elements with 3 at a single matrix representation and ones at the remainder
are trivial in D(Q2)". Since 14+x*"’+y—(3,1,...,1), it also follows that
(—1,1,...,1) is trivial. Finally note:

(B+4(s),1,...,1,3), s odd
B+A(s),1,...,1), s even

where A(s)={;_, + (. %,. These relations show (1,1,...,1,3) generates D(Q2").

To complete the proof we must check that (1+4,_,,1,...,1) is equivalent to
the generator. As in §4, we can factor out 44, _, (since squares are trivial) and
get:

(6.3) 1+x‘+yb—>{

A+ A6) =1+ A6)3 =1 +3A(5) (1 +34(s)2).
But A(s)?>=A(2s)+2 gives
1434(5)* = — 1+ 34(25)=(= 1) (1 + A(29)).

Therefore
14+3A6)=(—1)1A+A(s)(1+A(25)),
and we obtain
(6.4) (=1D)" " 2(143A6) (1 +34(25) ... 1 + 342" 25))=3(1 + A(s)).

The result follows now by combining (6.3) with (6.4) for s=1.

This result proves that d, is onto for G=Q2"(n>3) as well and (5.6), (5.7)
again imply that d,,d, are onto. For d, we can use (5.5) or use naturality since
the restriction map

D(Q2")— D(Q8)

is an isomorphism [7]. Theorem D now follows.

We see that I% is a split extension in this case by comparing the Rothenberg
sequences for 08 and Q2" (n=4) by the restriction map and noting that on the
type Sp summands A4,(D,) the restriction map is just the norm homomorphism
2,(A,_,)*—Zy (mod squares) by (5.6). From (6.2) the restriction map is zero
hence the sequence splits.

§ 7. Proof of Theorem E
When G=SD2"(n=4),

QG=M,(Q(r,_1) ® M,(Q(4,_,) @ ... ® M,(Q) ® Q*
so that

By=(Z)y*" 2" +3, 1 =0; [L,=Z2@Z""
and I#,=(Z/2)".

In §2 we mentioned the fact [19] that D(SD 2")=Z/2, detected by restriction
to the subgroup Q8 of G. From (6.1) and naturality this gives d,=0. Also (5.7)
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implies that d, is onto since D(SD2") is equal to the image of the Swan
homomorphism, so has generator [1,1,...,1,5]. From (5.1), d; is zero on the
type O summands and d,=d, is zero on the type U summands. Therefore d,=0
and the values of I*, (ZG) are determined.

As a further example of these calculations we give another proof of Bak’s
result on I, (ZG) when G=Z/2" (The groups are listed in §2.) Since

QG=Q()® Q- ) ® ... ©Q((,) ® Q?
then

IB=(Z)* '+, I5,=0, [Lb=22@®(Z)* '~!, =12

Here the difficulty is that D(G) is quite complicated [9]. However d, =0 clearly
and d,=0 also since the element [1,1,...,1,5]=0 in D(G) (ie., the Swan
subgroup is trivial [19]). From (5.4), the cokernel of dj, or d;, on H'(W,(G)) is
generated by the 2-adic units v,,v,_,,...,v; at the type U summands (except
Q({,) from (4.8)). By definition, v,-9,= —1 so in the cohomology group we can
use instead of v,, any unit with norm —1 (moduluo 44,). Let vi=1+2i4{;
—{3" for 3<k<n and note that v;-V;=(1+2i+{;—{3H(1-2i+{5'—(5)=
— 1. These elements however are trivial in H'(D(G)). Consider the units (from
Z,(G) o, =142x%+ x> ' —x=2*"' 1<k <n—2 and note that

an-ZH(v;a3,39"-:3a3)

o,_3—(1,v,_4,3,3,...,3,3)

2= (1,...,1,v,,3,3,3,3)
a0, (..., 1,1,v5,3,3,3)

modulo the image of d;, or d, and the images of 1+x%*—x~2" for k=0.

The sequence of 2-adic units 1+2x%" for 0<k<n—1 shows that the elements
with 3 at one place and trivial elsewhere are all equivalent to [1,1,...,1,3]=1in
D(G). This proves that dy,d, are onto and finishes the calculation of I, (ZG).

References

1. Anderson, D., Hambleton, I.: Balanced splittings of semifree actions on homotopy spheres.
Algebraic Topology, Waterloo 1978. Lecture Notes in Mathematics 741. Berlin, Heidelberg, New
York: Springer 1979

2. Bak, A.: The computation of surgery groups of finite groups with abelian 2-hyperelementary
subgroups. Algebraic K-Theory, Evanston. Lecture Notes in Mathematics 551. Berlin, Heidel-
berg, New York: Springer 1976

3. Bak, A, Scharlau, W.: Grothendieck and Witt groups of orders and finite groups. Invent. Math.
23, 207-240 (1974)

4. Carlsson, G., Milgram, R.J.: The structure of odd L-groups. Algebraic Topology, Waterloo 1978.
Lecture Notes in Mathematics 741. Berlin, Heidelberg, New York: Springer 1979

5. Cassels, J.W.S,, Frohlich, A.: Algebraic Number Theory. Washington: Thompson, 1967

6. Fontaine, J.M.: Sur la décomposition des algébres de groupes. Ann. Sci. Ecole Norm. Sup. 4,
121-180 (1971)



52

oo

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

22.
23.
24.
25.

I. Hambleton and R.J. Milgram

. Frohlich, A., Keating, M.E., Wilson, S.M.J.: The class groups of quaternion and dihedral 2-

groups. Matematika 21, 64-71 (1974)

. Hasse, H.: Uber die Klassenzahl Abelscher Zahlkorper. Berlin: Akademik-Verlag 1952
. Kervaire, M.A,, Murthy, M.P.: On the projective class group of cyclic groups of prime power

order. Comment. Math. Helv. 52, 415-452 (1977)

Kneser, M.: Galois Cohomology of Classical Groups. Tata Institute Lecture Notes. Bombay,
1972

Kolster, M.: Computations of Witt groups of finite groups. Math. Ann. 241, 129-158 (1979)
Milnor, J.: Introduction to Algebraic K-Theory. Annals of Math. Studies 72. Princeton:
Princeton U. Press 1971

Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Berlin, Heidelberg, New York: Springer
1973

Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Warsaw: Polish
Scientific Pub. 1973

Pardon, W.: The exact sequence of a localization for Witt groups II: numerical invariants of
odd-dimensional surgery obstructions, preprint (1978)

Ranicki, A.: Algebraic L-theory: I: foundations, Proc. London Math. Soc. (3) 27, 101-125 (1973)
Ranicki, A.: Localization in quadratic L-theory. Algebraic Topology, Waterloo 1978. Lecture
Notes in Mathematics 741. Berlin, Heidelberg, New York: Springer 1979

Reiner, I.: Class Groups and Picard Groups of Group Rings and Orders. CBMS Series 26.
Providence: Amer. Math. Soc. 1975

Ullom, S.: Non-trivial lower bounds for class groups of integral group rings. Ill. J. Math. 20,
361-371 (1976)

Wall, C.T.C.: Surgery on Compact Manifolds. London, New York: Academic Press 1970

Wall, C.T.C.: On the classification of hermitian forms I. Rings of algebraic integers. Comp.
Math. 22, 425-451 (1970)

Wall, C.T.C.: Classification of hermitian forms VI. Group rings. Ann. of Math. 103, 1-80 (1976)
Wall, C.T.C.: Formulae for surgery obstructions. Topology 15, 189-210 (1976)

Wall, C.T.C.: Norms of units in group rings. Proc. London Math. Soc. (3) 29, 593-632 (1974)
Hambleton, 1., Milgram, R.J.: The surgery group I%(ZG) for G a finite 2-group. Algebraic
Topology, Waterloo 1978. Lecture Notes in Mathematics 741. Berlin, Heidelberg, New York:
Springer 1979

Received November 6, 1979/Revised May 19, 1980



