
PROJECTIVE SURGERY OBSTRUCTIONS ON CLOSED MANIFOLDS 

by 

lan Hambleton (*) 

Let ~ be a finite group and f: M n ÷ N n a surgery problem of 

closed topological n-manifolds (n ~ 5) with ~i N = ~ and wiN = w. A 

h(~ w) are the surgery basic question is: what elements of L h , 

obstructions of such problems? If ch(~,w) denotes the subgroup of 
Q 

Lh(~,w) generated by these surgery obstructions o(f), rwe can ask for 
n 

M n N n (i) a calculation of C~, (ii) specific invariants of f: + which 

detect o(f) and (iii) specific examples of surgery problems with 

a r b i t r a r y  o b s t r u c t i o n  i n  C h .  
n 

Wall proved in [W2] that o(f) is detected by restriction to the 

2-Sylow subgroup of ~ so it is natural to assume that ~ is a 2-group. 

Furthermore the calculation of Lh(~,w) is still complicated because of 
n 

K 0 or K I difficulties (see [W3] and [HM] for more details). In this 

paper we answer the analogous questions (i) (iii) about the image 

ch(~,w) of C h in LP(~,w). These groups are the geometric surgery 
n n n 

obstruction groups of Maumary [M] or Taylor IT] ; algebraically they 

are L-groups of quadratic forms on projective (instead of free) 

Z~ modules [RI]. The appropriate version of (ii) is then to ask for 

i 1 
invariants detecting o(f x id) where f x id: M x S ÷ N × S and the 

answer to (i) is now possible because the groups L p are easier to 

calculate than L h. We give in Section 3 a calculation of LP(~,w) for 
n 

a finite 2-group with arbitrary orientation character along the 

Research partially supported by NSERC grant A4000. 
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lines of [HM, ThmA] and define invariants which detect the elements 

not in ch(~,w). 
n 

It has been known [WI, p 176] for some time that part (ii) can be 

attacked by factoring o: [N,G/Top] ÷ L~(~,w) through ~n(B~ x G/Top) 
w 

and using bordism calculations to restrict the images of o. This was 

carried out and the image of o evaluated in L p by Morgan and Pardon 

(unpublished) for ~ abelian and by Taylor and Williams [TW] for 

an arbitrary 2-group (in the orientable case w ~ i). 

Another approach is based on the LN-groups of Wall [WI, 12C], 

which are obstructions to codimension 1 splitting problems. These 

groups can be used to define invariants which vanish on closed 

manifold surgery problems but still detect a large part of the Wall 

group and some calculations for dihedral and quaternion groups, based 

on [W3] were carried out in an earlier version of this work (*) 

Cappell and Shaneson independently discovered this technique [CSI] , 

[CS2] and exploited it to analyse an interesting surgery problem with 

obstruction not zero in C~(Q8) detected by a codimension 3 Arf 

invariant. This example showed that the list of invariants found by 

Morgan-Pardon (signature, codim. 0,1,2 Arf) was insufficient in L h 

for ~ non-abelian. 

Our results show that these invariants are in fact sufficient for 

all 2-groups in L p. The higher co-dimension Arf invariants all vanish 

in L p so algebraically they are in the image of Hn(Ko(~)) ÷ Lh(~)'n It 

would be interesting to know the complete list of invariants for L h. 

This has been named the "'oozing problem" by John Morgan. 

In Section 1 we describe Wall's LN-groups and develop some of 

their properties. Theorem 3 answers a question in [W1, p. 242]. In 

These results including those of Sections 1,2 in this paper were 
presented at the Ontario Topology Seminar, October 15, 1977 at the 
University of Waterloo. 



103 

Section 2 the sequences of Section 1 are used to define splitting 

invariants which generalize those of Browder and Livesay [BL] and the 

A-invariant described there is recognized as a "twisted" transfer 

homomorphism (Lemma 5). The calculation of LP(~,w) for ~ a finite 2- 
n 

group is given in Section 3 based on the sequence in [HM, Section I] 

which relates the L p groups to L h groups for summands of an 

involution-invariant maximal order in Q~ containing Z~. These in 

turn are computed by referring to [W3] for LSand applying the results 

of [HM, Section 4] in the L s- L h Rothenberg sequence. These are 

summarized in Proposition 9, Theorem i0 and Table i. The LN-groups 

needed for Section 5 are also calculated in Proposition ii and Table 

2. Our answer to question (iii) on the realization of elements in ~h 

by specific surgery problems is in Section 4. It is a special case of 

a construction found with W.-C. Hsiang. In Section 5 we apply the 

LPand LN results to prove that the cup product on HI(~; Z/2) and the 

A,B invariants detect all elements of LP(~,w) not in ch(~,w) when ~ is 
n n 

a special 2-group (i.e. cyclic, dihedral, semidihedral or quaternion). 

The computation of ~h for these groups ~ is in Propositions 12-16. 
n 

Finally in Section 6 we prove our main result, Theorem 17, answering 

questions (i)-(iii) in L p for a general 2-group. 

While working on these questions I have had many stimulating and 

helpful conversations with Wu-Chung Hsiang, Ib Madsen, Jim Milgram, 

Bob Oliver, Larry Taylor and Bruce Williams. I also appreciated very 

much the hospitality of the University of Geneva where I lectured on 

these results during the Spring of 1980. 
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I. Obstructions to Codimension One Splitting 

First we recall the LN-groups of Wall. Let p ~ ~ be an inclusion 

of groups where o is of index 2 and X ~ Y a universal 2-fold cover 

inducing p + w. Let Z be a K(p,l) meeting the mapping cylinder My of 

p in X and write K(O + ~) for the triad (My %2 Z; Z, X). Wall then 

considers a cobordism group of objects consisting of: a finite 

Poincar~ pair (Nn,M) and a manifold pair (wn+I,v), a finite Poincar~ 

embedding (N,M) ÷ (W,V) and a smoothing of the embedding M + V 

together with a map (W; N, W - N) + K(p + =) compatible with 

W(My %2 Z). These cobordlsm groups are denoted LNn( p ÷ ~) and Wall 

proves 

Theorem I ([WI, 11.6]). 

There is a natural exact sequence 

(I.I) ...Ln+l(#) ~ Ln+2( p + ~) ÷ LNn( p + ~) + Ln(~) ÷ .. 

Remarks (1) For (p ~ ~) = (I ~ Z/2) the LN-groups were first 

discovered by Browder-Livesay [BL] and this sequence by Lopez de 

Medrano [LM], 

(il) In Wall's treatment the L s groups are understood, 

(iii) If ~: ~ ÷ Z/2 denotes the homomorphism with kernel p and 

w: ~ + Z/2 the orientation character for ~ ~ Z the groups Lk(W) have 

orientation w~ while the relative ones Lk( p ÷ ~) have orientation w, 

(iv) Geometrically the first map j is obtained by pulling back the 

orientation llne bundle over the surgery problem. 

In [WI, 12C] Wall gives implicitly another cobordlsm description 

of these LN-groups along the lines of [BL]. Let (N~,M I) be a manifold 

pair with a map to Y compatible with w(Y). Form E, the pull-back of 

My over N 1 and let 8E = ~0 E L/ ~i E where 81E is the pull-back over M I. 
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(W n+l The objects in the new cobordism group will be manifold pairs ,V) 

together with a homotopy equivalence 

h: (W,V) + (E,81E) 

such that h is transverse regular on M1 ~ DIE and the induced map 

-I 
~ l h :  M = h (M 1 ) + M 1 i s  a h o m o t o p y  e q u i v a l e n c e .  T h e  r e s u l t i n g  

cobordism group is again LN (p + ~). This Involves the appropriate 
n 

version of Wall's ~ - # Theorem. In this formulation there are 

versions for compact smooth, PL on Top manifolds with different 

assumptions on the torsion of h. Using the methods of [PR] there is a 

version for paracompact manifolds modelled on N x R. These different 

versions lead to groups LN s , LN h and LN p. 

The main result of [WI, 12C] is the following expression for the 

LN-groups in terms of ordinary L-groups. Recall from [W3] that if R 

-I 
is a ring with involution ~ and u e R x such that u = = u and 

c~c~ - 1  
x = uxu for all x e R, there are Wall groups L (R,~,u). 

n 

Theorem 2 LN n (p + ~,w) ~ Ln(Zp, ~, - w(t)g0 I) where t e # generates 

#/P' t2 = go e p and x ~ = w(x)t-lx-lt for all x e p. 

Remarks 

(i) In [WI] this was proved under the assumption that t is central 

of order 2. Similar techniques suffice for the general case. 

(ii) The result hold for LN s LN h or LN p (see also [R3]) Our first 

result is 

Theorem 3 There is a natural isomorphism of the exact sequence of 

Theorem I with the sequence: 
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(l.2)...Ln+l(Zp + Z~,~,u) ÷ Ln(Zp,~,u) ÷ Ln(Z~,~,u)... 

(-l)w(t)g01- as above. The isomorphism for the middle term where U 

is that of Th. 2 and for the last term "scaling by t". 

Proof (Sketch). One approach is to follow the spectrum method of 

Quinn [Q] and Ranicki [R2]. Let L(Z~, w~) denote the simplicial 

monoid with n-simplices of algebraic Poincar~ (n + 2)-ads over 

(Z~, w~). Similarly let L NN(p ÷ ~,w) be a simplicial set of algebraic 

codimension 1 splitting problems. Then Wall's chapter 12C can be 

interpreted to give the left vertical arrow in a diagram: 

L_~N(p ÷ ~,w) + L(Z~, w$) 

+ + 

L(Zp,a,u) + L(Z~,~,u) 

The right vertical map is scaling and both induce isomorphisms on 

homotopy groups. The long exact sequences of homotopy groups are the 

two sequences (I.I) and (1.2). 

2. The A,B, Invariants 

We define two invariants for splitting problems. First consider 

the homomorphism(where p = ker(~:~÷Z/2)) 

A: Ln(~,w) + LN n_2(p + ~) 

defined by the composition of L (~ ,w) ÷ L (p ÷ ~) and the map 
n n 

Ln( p + ~) ÷ LNn_2( p + ~) from Theorem I. 

This homomorphism can be given a more geometrical definition by 

choosing a manifold X n-I with #i X = ~ and WlX = w and considering the 

action of x g L (~,w) on the base point id: X + X in S(X) via the Wall 
n 

realization theorem [WI]. This produces a new element f: M n-I ÷ X in 
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S(X) and so a splitting problem relative to any p ~ # of index 2. 

A(x) is just the cobordlsm class of this splitting problem in 

LNn_2(p ÷ ~). 

In the case n E 0(4), (p c ~) = (I "- Z/2) and w El, this is the 

=-invarlant of Atiyah-Singer. From the geometrical definition it 

follows that A(x) = 0 if x acts trivially on S(X n-l) for some compact 

Top manifold X as above. The subgroup of Lh(~,w) generated by all 
n 

such x is called the inertia subgroup lh(~ ,w) so we have 
n 

lhh(# ,w) ¢'- ker A(p + ~) for any subgroup P C ~ of index 2. Since 

inh(~ ,w) C ch(~ ,w) , the subgroup of Lh(~n ,w) generated by closed 

manifold surgery problems,and A(x) = 0 for x e ch(~,w) also, the A- 

invariant can be used to estimate the size of ch(~,w). Our results in 

Section 6 will show that the images of lh(~,w) and ch(#,w) in LP(~,w) 
n n 

are equal for ~ a finite 2-group. 

Question: 

~? 

Are lh(w,w) and ch(~,w) always equal for any finite group 
n n 

To define the next invariant we let A (P ÷ ~) = ker A and choose 
n 

a (possibly different) subgroup p ~n of index 2. Define 

b 

B: An(P + ~) + LNn_3(P' ÷ ~,w~) 

as follows: if x ~ A (p + #) choose y e L (~, w~) mapping to x in 
n n 

sequence ( I . 1 ) and consider A(y) ~ LNn_3(p ' + g,w~ ) . The 

indeterminacy in A(y) is the image of the composite 
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y:  LNn_I(O + ~,w) + L n _ l ( ~ , w  ¢) 

¢ 

L n _ l (  o '  + ~, w¢) + LNn_3( p '  + ~,  w e ) .  

where the horizontal maps come from two sequences of type (I.i). We 

define LNn_3(p' ÷ ~,w~) to be the quotient by Imy and let B(x) = A(y). 

If x e lh(~,w) then A(x) 0 and B(x) = 0. We can identify the 
n 

composite y algebraically (Lemma 6) when P' = p by considering a 

functor ¢: ~(Zp,a,u) + Q(Zp,a,u) where a,u are as in Theorem 2 and 

Q(Zp,a,u) is the category of quadratic forms over (Zp,a,u) on free (or 

projective) modules [W3]. If (M,f) represents a quadratic form then 

¢(M,f) is represented by the module M t((m ~ t).x = m(txt-l)~t) and 

form f(m ~ t, n ~ t) = t-lf(m,n)t. This induces a homomorphism 

¢ : L n ( Z p , a , u )  + L n ( Z p , a , u )  

Lemma 4. The composite 

i i 

L n ( Z p , a , u )  + L n ( Z ~ , a , u )  + L n ( Z p , a , u )  

is i+¢, where i, is the inclusion map and i the restriction. 

The map A can be identifed as just the transfer of the twisted 

anti-structures. 
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Lemma 5. The composite 

S, i 
Ln(~,w) ÷ Ln(ZW,a,w(t)g0 11 + Ln(Zp,a,w(t)go 11 

is the map A where S, is induced by "'scaling by t" under the 

identification 

Ln(ZP'e'w(t)g-l)o ~ LNn-2CP- + ~,w) of Th. 2. 

Proof: 

(2.1) 

From Theorem 3 we have a commutative diagrams (u = w(t)go I)- 

S, 
L (~,w) ~ L (~,a',u) 

n = n 

+ + j, 

Ln(P + #,w) ~ Ln+l( p + #,a,u) 

+ + 2, 

LN n_2(p + #,w)-~= Ln(Zp,~,u) 

-i -i 
where e'(x) = w(x)t x t for x e w differs from 

-I t =(x) = ¢(x)w(x)t-lx on elements of ~ - p. The map j, is analogous 

to that of (I. I) and the composite 8,j, = i We have used the 

identification Li(R,~,u) = Li+2(R,~ , - u) given in [W3]. 

As a consequence of (2.1) in the proof of Lemma 5: 

Lemma 6. 

The diagram 

LNn_I(O + w,w) 
Y 

II 

i+# 

Ln_l(p,~ , - w(t)gol)-~ 

LNn_3( p + ~, we) 

tl 

L n _ l ( p , ~  , - w ( t ) g o  1) 
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commutes, where the vertical isomorphisms are from Th. 2. 

3. Calculation of LP(~,m) 

In this section we adapt the method described in [HM, Section i] 

to compute LP(~,w) for ~ a finite 2-group and w: ~ + Z/2 an arbitrary 
n 

orientation character. The first step is to identify the types of 

simple involuted algebras in Q~ corresponding to the absolutely 

irreducible characters X of 7. If X is not Q(x)-primitive then there 

is a proper subgroup p ~ and a character E of p such that ~ = X, 

Q(~) = Q(x) and ~ is Q(x)-primitive IF]. If D(X), the summand of Q# 

containing X, is involution invariant then we can distinguish two 

cases: 

(i) when D(~) is involution invariant also (in Qp) or 

(ii) when distinct summands D(~) and D(~t), t ~ p are permuted by the 

involution. In case (i) ker ~ ~ ker w so that it suffices to consider 

the summands of Q(p/ker~), or equivalently to determine the summands 

of Q~ for special 2-groups (cyclic, dihedral, semi-dihedral, 

quaternion) with arbitrary orientation character. Otherwise if case 

(ii) applies whenever X is induced by ~ as above we say that X is 

w-Q(x)-primitive. 

The following eight types (D,T) must be distinguished to fully 

describe the summands in Q~ where D is a simple involuted algebra, T 

the (anti-) involution on D and ~ denotes a primitive 2k-th root of i. 

(3.1) On: Q(~ + ~) , T = ~ (k i) 

Ob: Q(~ _ ~) , T = _~ (k)3) 

Oc: Q(i), i T = i 

Ua: Q(E), E~ = 

Ub: Q(E), T = _~ (k>3) 

Uc: Q(~ + ~), ~ = -~ (k~3) 
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Ud : 

Ue: 

Sp: 

GL: 

Q(¢ _ ~), CT : _~ (k>3) 

F = (-i, -_-___--_!), T = _~ (k>3) and e~ = -el, 

k Q(~+~) 
Y 

e 2 = -e 2 where {l,el,e2,ele2 } is the usual 

basis of F k over its centre Q(¢+~). 

Fk ' T = ~ (k>2) and e~ = -el, e~ = -e 2. 

D is the sum of two simple algebras 

interchanged by the involution. 

Now the result corresponding to [HM,I.3] is 

Theorem 7. Let ~ be a finite 2-group and w: ~ + Z/2 an orientation 

-i 
character. Under the involution induced on Q~ by x + w(x)x 

(x e ~), the involution-invariant indecomposable summands of Q~ are 

either type GL or isomorphic to one of: 

(i) M£(D) with involution A + X A T X -I for some X ¢ M£(D), where A T 

is T-conjugate transpose, X T = XX for ~ = -+ i, and (D,T) is in 

(3 . i ) .  

(2) M£(D) with involution as in (I) and D = D(~) for some w-Q(~)- 

primitive character of a subgroup p ~ ~. 

As in the orientable case, it follows that there exists an 

involution-invarlant maximal order v ~  Q~ containing Z~ which splits 

as ~ = H ~ where ~ ~ is a maximal order in an involution-invariant 
v 

summand of Qn. A list of the types occurring for primitive characters 

can be made from (3.1) replacing Q by Z except for Ue, Sp where a 

maximal order in F must be chosen. Our method of calculation will 
k 

rely on the sequence [HM, 1.4]: 

(3.2) . +  L h I(A ) LP(z~) L h ~ h h A 
. . . .  n+ 2 n(Z2~) ~) L (~) + Lh(~ 2) .... 
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so we need (by Theorem 7) to compute Lh-groups for the antl-structures 

(~ ,T, ± I) where~is Morita equivalent to a simple summand of ~ and 

T the involution. For the summands corresponding to Q(x)-primitive 

characters X of ~, this is done by using the results of [W3] together 

with calculations of H (KI(~) from [HM, Section 4] to find L h through 

the LS-L h Rothenberg sequence. For the remaining summands we need 

some further properties of the A,B-invariants. Let (~,~,u) denote an 

anti-structure on the maximal order ¢~ , induced by an anti-structure 

(Z~,a,u), so that 

(¢~,~,u) = I(~( ,%,u ). 

Proposition 8. 

(I) There is a commutative diagram of exact sequences: 

h A ^ h 
'''÷ Li+l(~2) + LPi+I(Z~ + Z2~) ÷ Li ( ~ ) 

II 

A 
Li+l (~ 2 ) + 

+ Lh (~(2) 

+ ¢ I[ 

h(~2~) 0 Lh(~) h ^ LP(z~) ÷ L i 
. + Li~ 2 ) 

¢ + 

Li(Z2~) ~ Li(Z2~) 

with the middle horizontal sequence from (3.2). 

(2) Let Q~ = ~D and define 

hi(D ~ ) h ,a ,u = El+l( ¢~ ~ + ~ )~,a ,u ) 

Then there is a natural splitting of the top sequence in (I) and 
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L~+I(Z~ + Z2~) ~ HAi(Dv ~v 

We now observe that the spectrum argument for Theorem 3 is 

equally valid for Z2~ or the relative groups of Z~ ÷ Z2~. Therefore 

we have A (and B) invariants defined for these groups also (using a 

subgroup p ~ ~ of index 2) which are compatible with those of Z~: 

p h ^ p ^ 
+ L (Z~) + Li(Z2~ ) + L (Z~ ÷ Z2~) + ... 

+A +A +A 

÷ L (Zp,~,n) + L i p,~,u) + L (Zp ÷ Z2p,~,u) * ... 

is a commutative diagram with (Zp,~,u) the anti-structure of Theorem 2 

A h A h ^ 
(Note that A = 0 on L (Z2w) since L i (Z2p) Li(Z2~).) Again Lemma 5 

identifies these maps A as the twisted transfer maps. This 

h 
interpretation also makes sense on Li(~) since ~, a maximal 

involution-invariant order for Zp, can be chosen so that ~ contains 

the image of ~ under the usual augmentation c: Q~ + Qp where 

E(x) = 0 if x ~ p and then an augmentation map c: ~ ÷~ is defined by 

restriction. If h: P x P +~ is the form over ~ , Eoh : P x P ÷~ 

is the restricted from over ~ . From this definition it is clear 

that if ~ C  ~ corresponds to an absolutely irreducible character X 

h ) lies in the summands of ~, then the image of A restricted to Li(~ 

u ~  * 
Li( ,~,u) corresponding to characters ~ of p with ~ = X. Now we can 

deal with the summands corresponding to w-Q(x)-primitive characters 

X. 

Proposition9. Let X he a w-Q(x)-primitive character of w and ~ a 

character on p ~ ~ of index 2 with ~ = X and Q(~) = Q(X)- 
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(I) The summand D(~) ~ Qp corresponding to ~ is involution-invariant 

in the twisted anti-structure (Qp,~,u). 

(2) If (D(x),T,I) corresponds to X under the usual anti-structure on 

Q~, the map A followed by projection induces an isomorphism 

A: A (D(x),T,I) + A (D(~),~,u) 

n _  _ 

From this result we can see that a complete computation of L~(Z~) by 

our method will depend on calculation of LN$(Zp ÷ Z~) also. In fact 

it is enough to give this calculation when p is a special 2-group 

since then the preceeding method (which applies to (Zp,~,u) as well) 

gives an inductive procedure. Here we will only carry out the last 

step for p cyclic since this suffices for our application. 

First we state the L p results. 

Theorem I0. Let # be a finite 2-group and Q~ = HD where D are 

i n d e c o m p o s a b l e ,  i n v o l u t i o n - i n v a r i a n t  a l g e b r a s .  The g r o u p s  A~(D v )  a r e  

zero for D of type GL but for summands corresponding to the other 

types (3.1): (here Z denotes the group of signatures) 

(i) 

(2) 

(3) 

A0(D v) = Z for Dv of type 0a, Ua, Ud or Sp. 

AI(D v) = Z/2 if D has type Ub, Uc Ue; 
v 

AI(D v) = (Z/2) 2n-2+I if D has type Sp and centre of degree 2 n-2 

over Q. 

A2(D v) = Z if Dv has type Ua or Ud; 

2n-2_i 
A2(D v) = (Z/2) if D v has type Sp and centre of degree 2 

n-2 

over Q. 

(4) A3(Dv) = Z/2 if D has type Oa, Ub Uc or Ue; 
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A3(D v) is order 2 m+2 if D v is type Ob or Oc and centre of degree 

2m over Q. 

p h ^ 
(5) The map L2k(ZZ) + L2k ( = = Z2#) Z/2 is onto (and splits) if k l,or 

if k 0 and the map w: # + Z/2 is non-trivial but does not 

factor through the projection Z/4 ÷ Z/2. 

h(_2~) ÷ L (Z~ ÷ Z2~) hits diagonally (a) the elements (6) The map L 0 

from characters of degree i and type Oa if w - 1 or (b) the elements 
^ 

from LO(~2) for characters of degree 1 and type Oe if wtl. 

Remark: The fact that L~(Z~) splits whenever it is onto LP(~2#) 

follows from the fact that there is a codim 2 Arf invariant problem 

(Section 4) with obstruction non-zero in L (Z2n) in that case. 

As a corollary to this Theorem we can compute L p for special 2-groups 

(Table i). Note that when making these calculations the Morita 

equivalence and scaling needed to reduce D to one of the types given 

may change the unit by -I. This is denoted by Oa- for example in the 

case of the dihedral groups. 

In the LN calculation for cyclic 2-groups two new types appear: 

(3.3) Od: Q(~), T = ~ (k > 3) 

Uf: Q(~), T = -~ (k > 3). 

Proposition ii. 

Let LPi+I(ZP + ^z2p,~,u) = ~Ai(D ,~,u) where Qp = ~Dv. Then for D 

of the t y p e  Od ,  A 3 ( D  ) h a s  o r d e r  2 m+2 w h e n  t h e  c e n t r e  o f  D h a s  d e g r e e  

2m over Q and Ai(D ) = 0 for i e 3; for D~ of type Uf, Ai(D ~) = Z/2 

for i = 1,3 and zero otherwise. 
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The LN groups for p cyclic are now given in Table 2. Note that 

h ^ 
if p is cyclic and type Oa, Oc or Od is present, L0(Z2p,~,u) injects 

into L;(Zp + Z2p,e,u) and hits (diagonally) the contribution to the 

h ^ 

group from L0(,~2) for these summands. Similarly if type Oa is 

h 
present, L2(Z2p,=,u ) injects into L;(Zp + ~2p,~,u). 

4. Codimension k Arf Invariants 

Let ~ be a finite 2-group and p c ~ a subgroup of index 2. If 

xn-I 
is a closed PL manifold of dimension n-I with ~i X = ~ and 

w = Wl (X), we can construct some elements in lh(~,w) whose surgery 
n 

obstructions are related to splitting invariants. (This construction 

is a special case of one which arose in work with Wu-Chung Hslang). 

Let X + Bw + B(~/p) = BZ/2 be the composite of the classifying map for 

Wl x with the reduction and form 

f: X + RP £ 

for some £ ~ n by slmplicial approximation. If f is made transverse 

regular to RP £-k for some k ) 0 we obtain X k = f-l(Rp%-k)C X. When 

the fundamental class [Xk] of X k represents a non-zero class in 

Hn_k(X;Z/2) let k < [n/2] and choose an embedded submanifold SkC X of 

codlmension k representing the Poincar~ dual of [Xk] under the 

isomorphism Hk(x;z/2) = HOM(Hn(X;Z/2), Z/2). Now let (E,~E) denote 

the disk and sphere bundle of the normal bundle to SkX(I) in X x I and 

consider [ E , ~ E ; G/TOP ,* ] . Assume n-k - 2(4) and let 

U k e [E,~E;G/TOP,*] be the THOM class of the normal bundle. This 

defines a surgery problem (rel~E) with target E and so we obtain a 

normal map 
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F : wn ÷ X × I 

which is a homeomorphism on ~±W by replacing the interior of E with 

the surgery problem. The surgery obstruction o(F) e L~(~,w) for this 

problem is by definition the "codimension k Arf invariant". Clearly 

o(F) e I~(~,w) and this surgery problem exists only when (f,=)k # 0 

where 0 * ~eHI(Rp£;z/2). 

5. Closed Manifold Obstructions for Special 2-Groups 

In this section we will use the calculations of Section 3 and the 

fact that the A, B invariants of Section 2 vanish on closed manifold 

obstructions to compute I~(~,w) = Im(l~(~,w) ÷ L~(~,w)) for ~ a 

special 2-group. It will then be observed that cb(~,w) = I~(~ w) by 
n 

giving explicit surgery problems for each element. Essentially we 

show that the A, B invariants detect the elements not in lh(~,w) by 
n 

calculating the maps in the LN sequences of (1.1). Those in l~(~,w) 

are all detected by the ordinary signature (arising from the map 

L0(~,w) + L0(1) = Z defined when w E I) and Arf invariants in 

codimensions ~ 2. 

(a) ~ cyclic 

F r o m  T a b l e  I ,  t h e  t o r s i o n  i n  L ~ ( ~ , w )  c o m e s  f r o m  L o r  t h e  

r e p r e s e n t a t i o n  o f  t y p e s  Oa ,  Oc,  Ub. F o r  ~ = ( Z / 2 , ± )  t h e  a n s w e r  i s  

well-known: codim. 0,i Arf invariants (w~l) and codim 0,2 Arf 

invariants (w~l) account for all the torsion. If ~ = (Z/4,+) no new 

classes arise but if ~ = (Z/4,-) there is a codim 1 Arf invariant (and 

no codim. 2 Arf). Consider the splitting diagram (of sequences (I.i) 

combined with the usual relative sequences). 
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0 

L$(Z/4 ,-) 

+ 

(Z/2) 2 

+ 

LN2(Z/2 ÷ Z/4,-) + L2(Z/4,+) + rel + 0 

II II 

8Z ~ 4Z ~ Z/2 

+ 

LI(Z/4,-) ÷ L2(Z/2 ÷ Z/4,+) 

0 

This diagram shows that one Z/2 in L~(Z/4,-) is detected by the codim. 

1 Arf invariant while the other has A = 0 but B ~ 0 so does not lie in 

~h(~n ,w). For (z/mn,+), L~(~) ~ L~(Z/2) by projection so the c0dim. 1 

Arf again detects. If ~ = (z/2n,-), the part from type Oc is detected 

by projection (z/2n, -) ÷ (Z/4,-) and for the rest consider: 

LI(Z/2n,-) (Z/2) t (type Ub) 

+ 

LN ° ÷ Lo(Z/2n,+) + LI(Z/2 n-I ÷ z/2n, -) 

Since poker (LNo(Z/2n-I ÷ Z/2 n,-) + Lo(Z/2n,+)) is free abelian, A * 0 

on all of LI(Z/2n,-). A similar argument works in L3(z/2n, -) for the 

type Ub contribution 

Proposition 12 For ~ = Z/2 n and £ ~ 0,1,2,3 (mod 4): 

C£(~,+) = Z, 0, Z/2, Z12 

and 
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_fZ/2, 0, Z/2, 0 

C£(~ ' - )  -L O, O, z /2 ,  z/2 

if n = 1 

if n > 2 

(b) ~ dihedral 

Here for w = (+,+) we must consider only L~. 

L~(D2 n) = (Z/2) n+l and L~(Z/2 n-l) = Z/2 injects: 

Since 

0 + L2(D2n+-) 

Z/2 @ Z 

L3(z/2n,-) = Z/2 

+ 

L3(D2 n) (Z/2) n+l 

+ 

+ tel 

Here l denotes the signature part of L 2 and rel is the relative group 

2 
in the vertical sequence. Therefore ker A = (Z/2) and these are both 

in C3(D2n): one from C3(Z/2 n-l) and the other a codim, i Arf. 

P (Z/2) n-2 nd A # 0 on all these. For For (D2 n , +-) , L I a 

(D2 n -+) we first calculate that 

p(z/2n-i = L I ,-) ÷ L (D2 n, -+) 

= D2 n-I so that we take P instead to compute the A-invariant. Then 
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0 
+ 

LP(D2 n, -+) = (Z/2) n-2 

+ 

L P ( D 2 n , + + )  + r e l  
o 

II + 

LP(D2n-I,++) = E' 
O 

The transfer map LP(D2 n) ÷ LP(D2 n-l) is injective on the cokernel 

of LNP(D2n-I÷D2 n) ÷ LP(D2 n) so A ~ 0 on all of LP(D2 n -+) 
O O 

In LP (D2 n , -+) the type Uc classes are not hit from 

L p (Z/2 n-I P , --) = Z/2 (hit from 3 , -) so that since L (D2 n 

LN2(Z/2n-I + D2n)) the A-invariant detects 

coker (L~(Z/2 n-I -) ÷ L~(D2 n -+)) 

Finally the type Oa class is hit from L~(Z/2 n-I , 

C3(D2n, -+). 

-) so is in 

Proposition 13. For ~ = D2 n and £ E 0,1,2,3(mod 4): 

C£(~, ++) = Z, 0, Z/2, (Z/2) 2 

C~(~, +-) = Z/2, O, Z/2, 0 

C£(~, -+) = Z/2, O, Z/2, Z/2 

(c) ~ semi-dihedral 

Since the projection L~(SD2 n) + P(D2 n-I ) 
L i detects the torsion 

classes except from the Ob representation, it suffices to consider 

these in L~(SD2 n, -+) . However these elements are not hit from 
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LP(sD2 n- 1 L2 (Q2 n- I L2 (SD2 n , ++) and the inclusion map , ++) + , ++) does 

not hit the signatures at the Ob representation. Therefore a 

combination of the A-invariants for D2 n-lt-- SD2 n and Q2n-l~ SD2 n (in 

codimension one) detects these elements. A similar arguments works 

for LP(sD2 n, --). 

Proposition 14 The projection map 

L~(SD2nl , w) + L~(D2 n-l, w) 

induces an isomorphism on C£. 

(d) ~ quaternion 

First let ~ = Q8 and w ~ I. 

From the diagram: 

L3(Z/4) = Z/2 

L3(Q8) = (Z/2) 

Z~ Z/2 + 

II 

L2(QS, +-) ÷ rel + Z/2 + 0 

we see that C3(Q8, ++) 

A ~ 0. 

( z / 2 )  2 
and the other generator of L 3 has 



0 + L (QS, +-) 
o 

II 

Z/2 
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0 

4, 

L t ( q s )  = ( z / 2 )  

+ 

÷ r e l  + Z / 2  

so the A-invariant detects one Z/2 in LI(Q8). The other is detected 

by the codim 2 Arf invariant in L (Q8, +-) since by projection 
o 

L (Q8, +-) + L (Z/2, -) and the splitting diagram is natural. Since 
o o 
3 1 

= 0 for ~ c H (Q8; Z/2) the codimension 3 Arf invariant does not 

exist and C1 (Q8) = 0. Notice that in the Cappell-Shaneson example 

different index 2 subgroups were used to do the iterated splittings. 

2 
They exploited the fact that ~ 6 # 0 for a,6 generators of 

HI(Q8; Z/2). 

For (Q8, -+) one Z/2 of L~(Q8, -+) = (Z/2) 2 is in the image of 

C3(Z/4, -) and the other is detected by the A-invariant. 

Proposition 15 For ~ = Q8 and £ = 0,1,2,3 (mod 4) 

(Z/2) 2 C£(~, ++) = Z, 0, Z/2, 

C£(~, +-) = Z/2, 0, Z/2, Z/2 

Next let ~ = Q2 n for n > 4. Since 

L~(Z/2 n-l) ÷ L2(Q2 n) 

is onto (wEl) and the torsion-free part of L~(Z/2 n-l) can be detected 

by the A-invariant (modulo the image of L~(z/2n-2)), C2(Q2 n, ++) = Z/2 
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detected by the ordinary Arf invariant. 

This can be seen considering the Frobenius inclusion 

Q2n~ Z/2 n-I ~ Z/2 = (Z/2 n-I x Z/2 n-l) ~ Z/2 

into the wreath product. This has the property that if X is the type 

Sp character on Q2 n induced from ~ on z/2n-l~ Q2 n then X extends to 

which is induced from ~ x i on Z/2 n-1 x Z/2 n-1. Since the translates 

of ~xl in the wreath product are distinct the construction at the end 

of Section 5 eliminates the other elements of L2(Q2n). 

The same argument proves the C (Q2 n, +-) = Z/2. Now in the 
O 

splitting diagram ker A ~ LI(Q2 n, ++) is detected by Lo(Q2 n, +-) so 

C1 (Q2 n, ++) = 0 as for Q8. Similarly, in L3(Q2n, +-) the image of 

L3(Z/4 , -) gives one closed manifold class. The remaining elements in 

ker A are detected by L2(Q2n ++) so C3(Q2 n +-) = Z/2 

For (Q2 n, -+) the diagram: 

L~(Q2 n-l, ++) 

+ 

L~(Q2 n , -+) 

+ 

L~(Q2 n, ++) + rel 

and the fact that the Ue class in L~(Q2 n, -+) is not hit from 

L~(Q2 n-l, ++) shows that the projection 

C3(Q2 n, -+) + C3(D2 n-l, -+7 
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is an isomorphism. A similar argument proves that CI(Q2 n, --) = 0 

u s i n g  the  s p l i t t i n g  d i a g r a m  w i t h  s u b g r o u p  (Q2 n-1 + - )  

Proposition 16 Let ~ = Q2 n n > 4 and £ = 0,I 2,3 (mod 4) 

C£(Q2 n, ++) = Z, O, z/2, (Z/2) 2 

C£(Q2 n, +-) = Z/2, O, Z/2, Z/2 

C£(Q2 n, -+) = Z/2, 0, Z/2, Z/2 

6. Closed Manifold Obstructions for Arbitrary 2-Groups 

In this section we will give the calculation of C£(~,w) for ~ a 

finite 2-group in terms of the characters of ~. 

Theorem 17 Let ~ be a finite 2-group and w: ~ ÷ Z/2 an orientation 

character. 

( 1 ) If w- 1 , T 0 = Z , E I = 0 , C2 = Z / 2 and 

C3 : C3 (~ (~) ÷ / [ ~ , ' ~ ] ) ~  Hi(n; Z12). 

These are detected by signature, codim 0 Arf, and codim 1 Arf 

respectively. 

(2) If w~l, ~0 = Z/2 when w does not factor through Z/4, otherwise 

C0 0 , C1 : O, C2 = Z/2 and C3 = (Z/2)s where 

s ~ # {summands of Q~ of type Sp, Oa and Oc}. These are detected by 

the codim 2, codim 0 and codim 1 Arf invariants. 

Proof: Let f : M n ÷ N n (n > 5) represents a surgery problem of closed 

L h TOP n-manifolds with a(f) e n(~,w). The result is first proved in 

dimension 4 by calculating the possible image of [X4,G/TOP] in L~(~,w) 

so we assume inductively that it is true for dimensions ~ n. We let 
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a = i,o(f) g LP(=,w) and assume that a = (a ) e ~ A (D(x)) using the 
n X n 

X 

description of L p in Proposition 8. This is possible since any 

i,o(f) from Ln(~2~) can be eliminated by taking the contribution to 

sum of this problem with a simply-connected surgery problem or ~ codim 

2 Arf invarlant. Furthermore by Proposition 9 we can assume that 

a = 0 unless X is induced from a primitive character. 
X 

Let X be a character of ~ for which a ~ 0 and choose p C ~ with 
X 

a character E such that E = X, Q(E) Q(X), E is primitive and 

p/ker E a special 2-group. 

Lemma 18 By the inductive assumption (and subtracting off codim k Arf 

invariants as before) we can assume that there exists b e L~(p,w) such 

that b has image a under the map 

L p(p ,w) ÷ L p(~,w). 

Assuming this we notice that by construction b E # 0 hits a and b E is 
X 

detected by 

L~(p,w) ÷ L~(p/ker E, w) 

If N = N 1U N 2 where ~IN1 ~ and ~IN2 = ~I(~N2) = p, we can assume 

-i 
that f = fl U f2 where fl : M1 = f (NI) + N I is a homotopy 

equivalence and f2 : M2 = f-l(N2) + N2 is a problem over p with 

obstruction b. Now define fl : M1 ÷ 51 (the covering with ~I = p) 

assuming P 4 ~ and observe that the splitting problem ~fl : ~MI + aNl 

relative to any index 2 subgroup Po ~ P vanishes in LNn_2(Po + p) 

because it is null-bordant using (MI' ~I ) and the second description 
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of Section I for LN. This splitting problem is also the boundary of 

1~:pl copies of f2 : M2 + N 2 where the copy corresponding to a coset 

-i 
tp has fundamental group identified as tpt ~- ~. Since p~ ~ the 

t 
characters E determine distinct summands of Qp and since the A- 

invariant splits according to the decomposition of Qp (see the 

discussion following Prop. 8) it follows that A(b~) = 0. If p is not 

normal in ~ we modify the argument by first identifying in pairs 

(using covering homeomorphisms) those boundary components of (MI' 71) 

-i 
for cosets tp such that tpt # p. Similarly, B(b~) = 0 and by 

naturality (choosing Po ~ ker E) the same is true for the image of b E 

in L~(p/ker E,w). The calculations of Section 5 now imply the desired 

descripton of b E . Since b~ and hence a is represented by a codim k 
X 

Arf invariant for k ~ 2 it can be subtracted off and the argument 

repeated. 

Proof of Lemma 18 Consider the splitting diagram: 

LP(p ,w) 
n 

+ 

LP(~ ,w) 
n 

A 

LPn-l(~'w~) ÷ LP(p÷~,w) + LNn_2(p+~,w) 

Since f : M ÷ N is a closed manifold problem there exists a normal map 

g: M' + N' induced from f by transversality on a characteristic 

codimension 1 submanifold N' C N corresponding to the subgroup p ~ 

of index 2 (see Section 4). Then i,o(g) g L p (~,w~) hits the image 
n-I 

of i,a(f) in L~(p + ~,w) and by the inductive assumption i,o(g) can be 

represented as a sum of suitable (n-l)-dimensional (simply-connected) 
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signature or codim k Arf invariant problems for k < 2. 

However the signature problem does not exist in codimension 1 

(the complement of a tubular neighbourhood of N' ~ N provides a null- 

bordism) and the codim. 0 Arf invariant on N' gives a codim i Arf 

invariant on N. The other terms in the sum, codim i or 2 Arf 

invariants, do not give rise to non-zero elements in L~(p+z,w) even 

when they exist because they lie in summands of L p (~ w~) detected by 
n-i ' 

representations on subquotients of z of the form (Z/2, ±) or Z/4, -) 

and the calculations of Section 5 apply. 

This argument shows that by adding suitable n-dimensional closed 

manifold problems to f: M ÷ N we can assume that the image of i.o(f) 

in LP(p ÷ ~,w) is zero. 
n 
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