ACYCLIC MAPS AND POINCARE SPACES

Tan HAMBLETON and Jean-Claude HAUSMANN

1. The "minus" problem for Poincaré spaces

Recall that a continous map f : ¥ — 2 is called acyclic
if its homotopy theoretic fiber is an acyclic space, or equivalently
if it induces an isomorphism on homology or cochomology with any
local coefficients. If the space Y is fixed, the correspondence
f kerﬂlf produces a bijection between equivalence classes of
acyclic maps £ : Y — % and perfect normal subgroups of ﬂl(Y). A
representative Y — Y; of the class corresponding to the perfect
normal subgroup P of ﬂl(Y) can be obtained by a Quiffen plus
construction, which means that Y; is obtained by attaching cells of
dimension 2 and 3 to Y. For details and other properties of acyclic

maps, see [HH].

A space X is called a Podincané space (cf§ formal dimension n)
if it is homotopy equivalent to a finite complex and if there exists
a class [X]¢€ Hn(X;Z)so that - NX : Hk(X;B) — Hn_k(X;B) is an
isomorphism for any Zﬂl(x)—module B. If Y is a Poincaré space and
f : Y — X an acyclic map with nl(X) finitely presented, then X is
a Poincaré space. The homology condition is obviously satisfied
for X and it only remains to prove that X is homotopy equivalent
to a finite complex. As ﬂl(X) is finitely presented, the group ﬂl(X)

is finitely presented iff kern.f is the normal closure of finitely

many elements in ﬂl(Y). Hence i space Y; (P:kerﬂlf) homotopy
equivalent to X may be obtained by attaching to Y finitely many
2-cells and then the same number of 3-cells.

Let X be a Poincaré space. For each epimorphism
o T —ﬁﬂﬂl(X) with I' finitely presented and kery perfect, we
consider the problem of finding an acyclicmap f : ¥ — X, where Y
is a Poincaré space, ﬂl(Y) =T and ﬂlf = . In other words : is X
obtained by performing a plus construction on a Poincaré space with

fundamental group T) (the "minus" problem for (X,9)).
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First observe that the existence of such an acyclic map
f: Y — X implies some conditions on X. The following commutative

diagram :

Y »BT

e
+ Bo

Bl
£ at kere .
Y Q‘

o

X X

~

—> BT, (X)
shows the existence of a lifting ol i x — BF;erw of the

characteristic map a, : X — Bnl(x) (see [H-H, Proposition 3.1]).

X
Moreover, recall that for any space Z, the homomorphism

Hzaz : H2(Z;C) —_ H2(Bnl(Z);C) is surjective for any %nl(z)—modulec
(since Bﬂl(z) is obtainable from Z by adding cells of dimensionz 3).

Hence the following commutative diagram :

H, o

Hy (¥30) 2y sl (BT';C)
o H2f o~ H21
+
H.o
. 2y +
H2(X,C) 'HZ(Berr@’C)
+
H.By
Hzax 2

HZ(Bnl(X);C)

shows that for any Zﬂl(x)—module C, the homomorphisms H2u§ and
+ .
Hsz are both surjective. This, of course, implies non-trivial

compatibilities between HZ(X;C) and HZ(BT;C) = HZ(T;C).

These first remarks suggest a more natural formulation of

the above problem, using the following definition

(1.1) Definition : Let X be a Poincaré space. Let us consider pairs

(9,3), where :

1) ¢ : F——~»ﬂ1(x) is an epimorphism of finitely presented groups
with ker¢ perfect, and
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~ + - . .
2) a : X — Bl‘kerLp makes the following diagram commute :
+
.
kero
o +
o By

(¢
X-—-—-——eBTTl (X)

+

and H. .o : H_(X;C) e HZ(Berrw

2 2

%Wl(x)—module C.

;C) 1s surjective for any

Such a pair (@,E) is healizable if there exists an acyclic

map £ : Y—>X with Y a Poincaré svace, ﬂl(Y) = F,ﬂlf = ¢ and
+ ~
Oy = O.
Our problem then becomes : given a Poincaré space X and a

pair (9,%) as in (1.1), is this pair realizable ? The answer that

we are able to give to this more precise problem is contained in
Theorem (1.2) below. Recall that a group G is called focally penrfect
if any finitely generated subgroup of G is contained is a finitely

generated perfect subgroup of G.

(1.2) Theorem Let X be a Poincaré space of formal dimension nz4.

i) a pair (@,E) as in (1.1) determines an element o(p,d) in the

Wall surgery obstruction group Ln(w). If (9,3) is realizable,

then o(w,a) = 0.

ii) If Q' : X — BT‘}Jgem0 is another lifting of oy such that the pair
(w,a') satisfies to the conditions of (1,1), then
o(9,a) = o(p,a').

iii) If in addition n25 and kery is locally perfect, then o(p,a) =0

implies that (@,E) is realizable.

(1.3) Remarks : a) The Wall group used in (1.2) is the obstruction
group for surgery to a homotopy equivalence (sometimes called Lg).

Recall that the group Ln( ) fits in the exact sequence :

L_(T) L_(n, (X)) L_(o) L, (D)

b) The same theory holds for simple Poincaré spaces [Wa, Chapter 2].

using simple acyclic maps (the Whitehead torsion of an acyclic
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map £ : ¥ — X is well defined in Wh(ﬂl(X)) ;if this torsion
vanishes, the acyclic map is called simple). The relevant Wall

group is then Li(@).

c¢) The same theory holds for non-orientable Poincaré spaces. The
relevant Wall group is then Ln(w, wl(x)), where wl(X) : ﬂl(X)—+Z/2Z

is the orientation character for X.

Proof of (1.2) : Write Br" for BF;er@' Let us consider the pull-back
diagram :

T ——— BT

I b

x 22— pr*

The fiber of g is the same as the fiber of 1, therefore g is an
acyclic map. If F is the homotopy theoretic fiber of & one has the

following diagram :

7r2(X) —_— ﬂl(F) —_—— TTl(T) — TTl(X) —_— 1
bs - -
1 (BIY) — . (F) r T/kenp————s 1

Hence ﬂl(T) = T if 7m.0 is surjective. But this is the case, as can

2
be seen by the following diagram :

o (X) _ 1, (X) —_—_ HZ(X;TT]_(X))

s

+ o~ _ ~_+ o +
My (BT ) —— H, (B[ ) —— H, (BT ;7 (X))
the right-hand vertical arrow being surjective by Part b) of (1l.1).

Let Z be a space . We denote by Qi(z) (Poincané bordism
group} the bordism group of maps f : U — % where U is an oriented
Poincaré space of formal dimension n. According to the theory of
Quinn ([Qnl], see [HV2] for proofs), these groups fit in a natural
long exact sequence :

H  (Z2;M8G) —— L (m(2)) — Qi(z) — H_(Z;MSG)
(nz4)
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If Z' is a subspace of Z, one defines Qi(Z,Z') similarly,
using Poincaré pairs, and on gets a corresponding sequence.
Specializing to Z = X,2' = T and using the fact that T --» X is an
acyclic map, one gets the following commutative diagram in which

the rows and columns are exact :

P
Hn+l(T;MSG) —_— Ln(I‘) —_— szn(T) —_— Hn(T,MSG)

| L l

P
Hn+l(X;MSG) —_— Ln(ﬂl(X))—*Qn(X) —_— Hn(X;MSG)

| oL

0 —— L_(®) — 2 (X,T) —— 0

This permits us to define o(p,a) as the image of

. P . P P
[1dx]€ @ (X) under the composite map 2 (X) — Qn(X,T)—-Ln(w).

Now, suppose that (9,d) is realizable by an acyclic map
f : Y — X with Y a Poincaré space. Thus, £ factors throuch a map
f : Y — 7T representing a class in QE(T). As f is acyclic, its
mapping cylinder constitutes a Poincaré cobordism from idX to £.
Therefore, the class [idX] is mapped to zero in Qi(X,T) (since £

factors through T) and (¢,a) = 0. This proves part i) of (1.2).
To prove ii), let us consider the pull-back diagram
T' —e— BT
| .
X _OL__..BF+

and form again the pull-back diagram

H €&

———
————

> €3

in which all the maps are now acyclic. Then the composed map
T — X 1is also acyclic. Denote by o: f=ﬂl(§)—a»nl(x) the induced

homomorphism. One has a commutative diagram
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P
Qn(X,T)

AN

Qi(x) g (X,T) «= L_(®) — L(0)

Q (X T')

Therefore, d(p,d) and o (p,d’) are both image of a single element
of Ln(¢). This proves Part ii) of (1.2).

Let us finally prove part iii) of (1.2). If o(9,a) = 0,
then there is a map BO : YO — T representing a class in Qi(T) such
that goBO is Poincaré cobordant to idx. To show that (¢,a) is
realizable, we shall find a representativef : Y — T of the class

BO such that ﬂlﬁ and B, : H*(Y;an(x)) — H*(T;an(x)) are

isomorphisms.

By construction of the space T, the group kery acts
trivially on WZ(T) (use [HH, Proposition 5.4] to the maps 1 and g).
As kery is locally perfect, one can construct, as in [H2, proof of

Theorem 3.1),a finite complex T, and a commutative diagram :

1

such that 94 is an acyclic map and WlY is an isomorphism. Thus,

Tl is a finite complex satisfying Poincaré duality with coefficients
Zwl(X) and Bl can be covered by a map of the Spivak bundles. By
surgery with coefficients for Poincaré spaces (the Cappell-Shaneson
type of generalization of [Qn, Corollary 1.41; for proofs, seelHV2]),
the map B determines an element O(B ) € F (w), where T (¢) is the
Cappell- Shaneson surgery obstructlon group F (ZT — Zﬂ (X)) defined
in [CS]. The existence of the required map B t Y — T will be

implied by the nullity of O(Bl).

As in [H1,83] , it can be checked (see [HV2]) that the

image of 0(81) under the homomorphism Fn(m) — Ln(nl(X)) is the
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obstruction to gloBl being Poincaré cobordant to a homotopy equi-
valence. The latter is obviously zero since, by construction,
gloBl = goso is Poincaré cobordant to idX. Since both I' and ﬂl(X)
are finitely presented, kery locally perfect is equivalent to keroy
being the normal closure of a finitely generated perfect group.
Therefore, the homomorphism Fn(w) —aLn(ﬂl(X)) is an isomorphism

[H1, Theorem 1]. Then 0(61) = 0 and Part ii) of (1.2) is proved.
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~

2. The invariant o(¢,a) as part of a total surgery obstruction

theory

Let X be a Poincaré space of formal dimension nz4. By (1.2)
to each pair (w,E) as in (1.1), one can associate the element
0(@,&) € Ln(w). This gives a large collection of invariants associa-

ted to X. In this context, Theorem 2.1 of [HV1] may be rephrased as
follows :

(2.1) Theorem Let X be a Poincaré space of formal dimension n25.
Let (w,a) be a pair as in (1.1) with ker ¢ locally perfect. If X has
the homotopy type of a topological closed manifold then ole,d) = 0.

Thus, the elements o(w,a) occurs as obstruction for X being
homotopy equivalent to a closed topological manifold and we can
except some relationship between our 0(@,5)'5 and the total surgery
obstruction of [Ral. We are indebted to A. Ranicki for pointing out

a mistake in our first draft of this section.

Let X be a Poincaré space of formal dimension 25. According

to [Ral, there is an exact sequence :
(2.1) . > 52 (X) S H (X)L (g (X)) = (X » H (X)L

and an element s(X) € ;9i(x) which vanishes if and only if X is
homotopy equivalent to a closed topological manifold. Here the
groups are defined for m>0 by

Lgm(x) = JTm(O* : X#\II;.

o — Ly (1 (X))

where o, is the assembly map and]ﬂgO is the l-connective covering of
the spectrum]@o(l) (see [Ra, p.285); we use the notations of [Ral).
Observe that our definition onSﬁ(x) slightly differs from the one
in [Ral] (we take the whole spectrum;go(ﬂl(x)) instead of its
l-connective covering). This difference only affects the group

Oy # XpLo(1)— L, (m, (X)) we can define : ZZi(x) = ﬂm(g*). This

gives the exact sequences :

<§€(X). Since the assembly map o, can be extended to

» I K SHE (X (1)) L (1] (X)) >0 00 » By (X, (1)) ~
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and
A —
m 7Y
(2.2) ... = H (G2) - S0 B L) — B (T

Let us define 5(X) = A_(s(x))€ F(x).
1f (w,g) is any pair for X as in (1.1), consider the pull-back

diagram :

which gives rise to the following diagram :

Hn(iggo) — L () —-——.LV;(lT) —_ Hn_ll(T;];_,O)
(2.3) Hy (XLg) — LY (1) (X)) — Z(X) — B (XL)

|

0 —— L

B oe— D B

in which rows and collumns are exact. One has also the corresponding
diagram for:si(x). Let Ny egi(x) — Lm(w) be the composed homo-
morphism Lgi(x) — L§§(X,T) “— Lm(f)' Define nm :¢§§(X) — Lm(w)
accordingly, and notice that N = nmoxm.

(2.4) Proposition 1In Ln(w), one has the equalities

n (s(X)) = n_ (5(X)) = o(0,0).

Proof This follows directly from the definitions, since there is a

homomorphism GX : Qi(x) — isi(x) such that the following diagram

s N S
- gPx) 22— 1, Six
L, (T (X)) — 27 (X) 2 (x) 7 (%)

I

~ P X,T >
(@) —— of x,mXl- Hxm D L

commutes and §,([1d.1) = s(x) [Ra,pp.307-308].
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(2.5) Corollary Let X be a Poincaré complex of formal dimension

nz5, and let (¢,a) a pair as in (1.1). Suppose that the Spivak
bundle for X has a TOP-reduction £ which defines a surgery obstru-
ction o(f) € Ln(ﬂl(X)). Then, o(p,o) is the image of o(£) under the
homomorphism Ln(nl(x)) — Ln(w).

Proof By [Ra,p. 298] , the element o (£) has image s(X) under the
homomorphism Ln(nl(X)) — <Sf(x). The result thus follows from (2.4).
Thus, if s(X) = 0, one has o(p,a) = 0 for any pair {(p,a) as in (l.1).
A converse to this fact might be obtained by considering some "test
pairs" (@ ,E ) for X as follows : let J&z, i=0,1,..., and

XX
= Uing be the smallest classes of groups such that

&% contains the trivial group
G EeQ{ iff at least one of the following

conditions holds :

o = 6,NG,, all in & | such
that G = G,» ., G, and the inclusionsG =G, are V -closed in

1°G,7°2 0
the sense of 0[Cl] : if gEGi and g2€ G, then geGo.

(a) there exist group&;Gl,G2 and G, = G,NG

0
or

(b) G = Gy*&, with Gy € & _,

(2.6) Proposition Let X be a finite complex of dimension n. Then

there exists a pair (wx : T
(1.1) such that

nr, €

X
2) BFX is a finite complex of dimension n

< nl(x),ax) satisfying 1) and 2) of

3) EX is a homotopy equivalence.

The pair (wx,gx) is associated to a triangulation of X, according an
algorithm as in [B-D-H] or [Ma]. Its construction is given in §4.
Recall that a standard conjecture is that EO(G) = 0 = Wh{(G)

for G € &/(l). (or even for G such that BG is a finite complex).

(2.7) Theorem Suppose that ﬁO(G) = Wh(G) = 0 for all G € % . Then,
for X a Poincaré space of formal dimension n>5, the following con-

ditions are equivalent

(1) P. Vogel informs us that he has recently obtained a proof of

this conjecture.
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1) s(X) =0
2) o{9,d) = 0 for any pair (¢,a) for X as in (1.1)

3) ol ) = 0 for some pair wx,ax) of (2.6).

x’g‘x
Proof : Condition 1) implies Condition 2) by (2.4). The implication
from 2) to 3) is straightforward. Therefore it remains to prove that
3) implies 1). As the map ax is a homotopy equivalence, the diagram

for {5§(X) similar to (2.3) gives the long exact sequence

—_ e n
ZZ m
(2.8) ... (BT — y;(x) =L (o) — S (BL) — ..

m-

Therefore, it suffices to establish that LZH(BFX) =0

for mzn. As dim BFX = n, this focllows from the focllowing lemma :

(2.9) Lemma Let G €=Q/such that ﬁO(P) = 0 = Wh(P) for any subgroup
P of G with PE«QV. Then the homomorphism

O ¢ Hm(GQLO(l)) — Lm(G)

induced by the assembly map 3* is an isomorphism for m =z dim BG and

is injective for m = dim BG - 1.

Proof We shall prove Lemma (2.9) for G &QZ by induction on j, using
the classical idea of S. Cappell [C3] . The claSS<97 contains only
the trivial group and Hm(ptg;&1))isisomorphlc to Ih(l) for m=0

(this is the main point where we need the spectrunlgb(l) instead of

L,) . Also H_; (ptiL (1)) = 0, thus lemma (2.9) is proved for G e%.

If now G €<Q§, then

Ho (BG L ()= H (BG L (1)&H_(BG, L (D)— H (BGIL (- H__; (BGyL (1)

| l l l

) — L.(G) ® L (Gy)) —— L (G) —— L__,(G)

in the first case and

0 — Hm(GO;]LO(U)--> Hm(GﬂLOU)%ﬁ Hm_l(GoﬂL&1ﬁ—» 0

L | l

0— L (G) ——— L (G) —— L (G

) —— 0

0
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in the second case, in which all the rows are exact. The exact

sequences involving L-groups are those of [Cl] . As dim BGl and

dim BG2 are < dim BG and dim BG0 < dim BG-1 (in both cases), the

induction step follows from the five lemma.

Using Exact sequences (2.2) and (2.3) together with Lemma

(2.9), one obtains the followina theorem :

(2.10) Theorem Suppose that §O(G) = 0 = Wh(G), for all G € X lLet
X be a Poincaré space of formal dimension nz5 and let (wX,EX) be a
pair as in (2.6). Then :

a) Nyt L9:1(X) — Lm(wx) is an isomorphism for mzn+2

b) One has an exact sequence :

n n
n+1 n
0= <§ﬁ+l(x) - Ln+l(wx) —Z— <5f(x) I Ln(wx)

Finally, we mention the following proposition which will

be of interest in Remarks 4 and 5 below :

(2.11) Proposition Let G be a group as in (2.9) such that BG is a

(finite) complex of dimension n . Let X be a space with ﬂl(X) = G
and such that the canonical map X — BG induces an isomorphism on
integral homology. Then <>§(X) =<§§(X) = 0 for m>n,L§i(X) Z % and

Fx) = o.
n

Proof This follows from Lemma (2.9) and from the comparison of the

exact sequences (2.1) and (2.1 bis) for X and for BG.

2.12) Remarks 1) If one is interested in Statements (2.9), (2.10)
and (2.11) only modulo 2-torsion, one can drop the assumption

iO(G) = 0 = Wh(G) for G €<9/as well as the condition V- -closed in
the definition of the class &f(this would simplify §4). Indeed, the
exact sequences of surgery groups used in the proof of (2.9) always

exist when all the groups are tensored by %Z[1/2].

2) From Proposition (2.11), it follows that éﬁ?az“) = 0 for m>n and
J%%an) = Z.This result is mentioned in [Ra, p.310].
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3) The class &7 has been chosen minimal in order to obtain (2.6)
and (2.7). But Lemma (2.9) is valid for a larger class in whiagh we
allow HNN-extension (with the relevant Vv -closed condition). As in
2), one is then able to prove for instance that $§?x) = 0 for m>3
and <§§(X) = Z for X belonging to a large class of sufficiently
large 3-manifolds (the result is valid mod 2-torsion for all suffi-

ciently large 3-manifolds).

4) We now construct a Poincaré space Y of formal dimension n such
that o(9,a) = 0 for all pairs (p,0) for Y as in (1.1) but which is
not homotopy egquivalent to a closed topological manifold. We assume
that ﬁO(G) = 0 = Wh(G) for all G e thus it suffices to prove that
s(Y) = 0 by (2.7).

We apply (2.6) to the case X = s™. We thus obtain a group
Fn €such that BFn is a finite complex of dimension n and
H, (BI ;Z) = H,(s™:%).

The Atiyah-Hirzebruch spectral sequence shows that
Hm(BFnﬂgo) = L (1) for l<msn and the homomorphism H (BT L,) =L, (T,)
induced by the assembly map coincides with the inclusion
Lm(l) — Lm(Fn). Thus, the reduced surgery group
ﬂn(Fn) = coker(Ln(l) — Ln(Fn)) is isomorphic to ¢§§(BPn) =2Z by
(2.1) and (2.11).

Let us consider the Poincaré homology sphere bordism group
QiHS(BFn) defined in [H3], whose elements are represented by maps
£f:3— BTn, where I is an oriented Poincaré space with the homolo-
gy of s”. For nz6, the theory of [H3] gives an isomorphism

QPHS
n

(BT ) S (sh) el () Zzez

so that/EEi class of £ : T — BFn corresponds to the pair

(degf, f£,(0)), where c€ Ln(nl(z)) is the surgery obstruction for any
surgery problem with target X. As Fn is finitely presented and
Hl(Fn;Z) = H2(Fn;Z) = 0, it actually follows fggg [13, "proof of the
surjectivity of on"] that for any class of Q; (BFn) has a repre-
sentative £ : ¥ — BFn with ﬂlf an isomorphism . Therefore, the pair

(1,k) with k#0 corresponds to a map £ : ¥ ~ BFn such that
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- f induces an isomorphism on the fundamental groups

- f induces an isomorphism on integral homology (since degf = 1)
~ Y has not the homotopy type of a closed topological manifold
(otherwise k would be zero).

S(Y) = 0 (since L9rf(y) =0 by (2.11)).

5) The following is a version of the Novikov Conjectuxe : if G is

a group such that BG is a Poincaré space of formal dimension n, then

a)<5z(BG) = 0 for m>n and <5§(BG) =%
b) s(BG) = 0

Proposition (2.11) shows that a) is satisfied if G € ./

(modulo the vanishing assumptions on io and Wh). On the other hand,

the space Y of Remark 4) above has fundamental group Fn EJ&i the
same integral homology as BTn and thus satisfies a) by (2.11).

But s(Y) #0. This shows some independence between condition a) and
b) and emphasizes the importance of the assumption that BG itself

be a Poincaré space in the Novikav conjecture.
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3. Homotopy equivalences of closed manifolds

As one might except, the results of 81 and 2 have analogues
for homotopy equivalences of closed manifolds. We give here the
"simple homotopy" version of this theory, which seems more natural

in this framework.

(3.1) Theorem Let j : M — N be a simple homotopy equivalence
between closed manifolds of dimension nz5. Then any pair (¢,%) for
N as in (1.1) with kery locally perfect determines an element
o(j,@,a)e Li+l(w) such that the following three conditions are

equivalent :

a) there is a commutative diagram :

. OLN
M—3=s N ~—5 BT
£y le ~ 11

where M_ and N_ are closed manifolds, f,, and fN are simple

M
acyclic maps and j_ is a simple homotopy equivalence.

b) any commutative diagram

N

N ~—= BT

Wl

M —2o N —2, BT

with N_ a closed manifold and fN a simple acyclic map can be

completed in a diagram as in a).

c) o(j,w,a) = 0.

Proof Recall that in the proof of (1.2) we checked that in the
pull-back diagram :

the map g is acyclic, nl(T) = I and kery acts trivially on 7_(T).

By [H2, Theorem 3.1], there is a commutative diagram :

2
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N_-——e T
f\/s
NNy

such that fN is a simple acyclic map and ﬂl(N_) = 1. (T) = TI'. (This

1
existence of fN shows that b) implies a).)

For P a closed manifold of dimension n, let J%%P(P) be

the Sullivan-Wall set of topological structures on P [Wa, Chapter 101

According to [Ra, p.277] there is an identification F (p) —

TOP
—a<§ﬁ;l(P). Let h : Q_ — N_ represent a class+1n <>§OP(N_).
Using a simple plus cobordism (W,Q ,Q) (i.e. Q_=~W) one gets a

simple homotopy equivalence n* : Q — N whose class in :SiOP(N)

+y .
is well defined. One checks that this correspondance [h] — [h'] is
actually given by the composite

o~ fN* ~ .
F (N ) — éill(N_) ——#<5ﬁ;l(N)—-» . Finally, observe

TOP TOP
that one has the following commutative diagram :
f
S N

\ / g*
Fon o

The map éill(N—) — 5ﬁ;1<T) is an isomorphism by the

Ranicki exact sequence [Ra, p.276] indeed the map N_-— T induces
an isomorphism on the funcamental groups and on the homology.

These considerations make Theorem (3.1) straightforward if
we define 0(j,9,a) to be the image of [j]ELSp (N} under the compo-

N n TOP
site map %OP(N) 27, mElL L (g) (see (2.3) and (2.4)).

n+l

If (wN,EV) is a pair for N as in (2.6), the homomorphism
I\
‘Sﬁ;l : J%il n+1 Oy
the analogue of (2.7) :

(N) — L ) is injective by (2.10). One thus obtains

(3.2) Theorem Let j : M — N as in (3.1). Assume that EO(G) =
= Wh(G) = 0 for all G €., Then, the following conditions are

equivalent :
1) j is homotopic to a homeomorphism

2) o(j,»,d) = 0 for all pair (v,a) for N as in (1.1)
3) (j,wN,dN) = 0 for some pair (wN,aN) for N as in
(2.6)
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4. Proof of Proposition (2.6)

our proof makes use of Statements (4.1)-(4.4) below. The
proof of (4.1) is given at the end of this section.

(4.1) Lemma Let Ri (i€I) be a familly of groups having a common
subgroup B and let R be the amalgamated product (*B)iEI Ri' Let

S be a subgroup of R and let Si = snRi. Suppose that the following
conditions hold :

1) the union of Sisgenerates S
2) 8, is vV ~closed in R, for all i

3) if s.,b8, €B with s,,8. €S, and b€ B, then b€ S,.
177 i’7i i i

Then S is V -closed in R.

(4.2) Examples a) Condition 3) holds trivially if Bc Si for all

i€I. For instance, if B = 1, case of a free product.

b) If B is V -closed in Ri for all i€l, then B is V -closed in R

(case Si = B).

c) If JEI and B is VvV -closed in Ri for i€I\J, then the subgroup
generated by UiEJ Ri is vV -closed in R. (Take Si = Ri for i€J and
Si = B for igJ).

(4.3) Lemma If Gl and G, are groups in &, so is Glez.

Proof Let G, € J&; and G, € Jy;. The proof is by induction on m+n.

1
The statement is trivial if m+n = 0 and the induction step is
easily obtained, using the isomorphisms

Glx(GZ*G G3) = (GleZ)*Gle(Gle3) and Glx(ZxG) = (GlXG)XZ.

(4.4) Lemma There exists an acyclic group A in J&Z such that
dim BA = 2. (G aeyelic means that H,(BG;Z) = 0 where Z is endowed

with the trivial G-action).

Proof : Let G = <a,bla3 = b5> (the group of the (3.5)-torus knot;
one could take another (p,g)-knot with p and g relatively prime

odd integers). The group G belongs to J&;. One has G/[G,G] infinite
-1 2
b

cyclic generated by m = a . The commutator group [G,G] is free
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of rank 8 on [al,bj] for i = 1,2 and 1l<j<4. The center 7 (G) of G
s e . 3
is infinite cyclic on a™.

(4.4.a) Sublemma The equation mkxm-k = x—l is possible in G only

if x = 1. The equation mkxm-k = x is possible in G iff x = mz

with z€ g (G).

As the proof of (4.1), our proof of (4.4.a) uses the Serre
theory of groups acting on trees. It is also posponed till the end

of this section.

The element u = [a,bl generates a Vv -closed subgroup U in G.
Indeed, U is V -closed in [G,G] (since u is part of a basis of [G,G])
and [G,G] is V =-closed in G (since G/[G,G] has no 2-torsion). On
the other hand, the element m generates a subgroup M of G which is

X, As G/[G, G] is

also V' -closed. Indeed, suppose that g2

infinite cyclic generated by m, one has k 2i and g = yml with
i

vy € [G,G]. Then, one has m2i = 92 = ymlym
mlym_l = y_l. Thus y = 1 by (4.4.a).

"

ymlym—lm21 which implies

Let Gl and G2 be two copies of G, with corresponding
1 and m,,u,
is in the class J&g. By the Mayer-Vietoris sequence for amalgamated
products, one checks easily that H,(P) = 0 if = # 0,1 and Hl(P) =%,

generated by m

elements my,u . By the above, the group P = Gl*GZ/{ml=u2}

2°
Let us consider the subgroup Q of P generated by uy and m,.
As MNU = (1) in G, Q is free on u, and m. [Se, Corollary p.1l4].

and we have Qr\Gl = U1 and QﬂG2 =1M2. Wezwill prove that Q is
V' -closed in P, using (4.1) with Ri = Gi’ g =58, Sl = Ul and
52 = M2 . It just remains to check Condition 3) of (4.1) Which
we do by showing that the equations miusmj = ut and uimsuJ = mt
are possible in G only if s = t = 1.
Let us first consider the equation mius . ut. Passing to
G/{G,G] shows that j = -i. Thus ut is the image of u® under an

automorphism of the free group [G,G]l. This implies that t = ts.

One checks easily that this contradicts (4.4.a).

As for the equation u'mud = mt, one must have s = t for
homological reasons. The equation is then equivalent to m wn S = ot
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which drives us back to the former case.

Let P be another copy of P. By the above, the group
A = PXE/{m2£ﬁl, ulzﬁz } belongs to J&Z. Using the Mayer-Vietoris
sequence again, one checks that A is acyclic.Observe that dim BA=2.

(4.5) Remarks on the proof of (4.4) : a) The subgroup U cGlCQ:A

1
is Vv -closed in

generated by uy is V" -closed in A. Indeed, U

Q= leMl and Q is V-closed in A by (4.2.b).

1

b) Acyclic groups can be obtained by the amalgamation of two copies

of a free group F of rank 2 over a suitable subgroup 5 (see {BDH ,

(4.6) Proof of Proposition(2.6)Following the procedure of [Mal, we

consider for any polyedron L (polyedron = finite simplicial complex)
the following condition (L)

Condition M%QL) : There exists a map t : (UL,TL) — (CL,L) (where

CL denotes the cone over L) such that, for each connected
subpolyedron M of L, one has :

a) tit Teem) : £ 1 (M) — oM ana tieT ) : £t (M) — M are acyclic
maps

-1 - -1 -
b) t ~(CM) = BFCM and t " (M) = BPM , where FM and FCM
in ¥ ;moreover,dim Bl = dim M and dinlB . = dimM + 1

are groups

c) ker(FM — ﬂl(M)) is locally perfect

d) If M' is a connected subpolyadron of L containing M, the inclu-

sion t-l(CM,M)c t_l(CM',M') induces four homomorphisms

CM

o
=
g —

M! CcM!
which are all monomorphisms and V -closed (a monomorphismy : G - G'
is V -closed if y{G) is V -closed in G').

We shall prove that Condition ML) holds by induction on

dimL = 1 One takes t to be the identity map on TL = L and on the
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(1) (0)

l-skeleton UL of UL which is LUC{L ). Let A be the acyclic

group constructed for (4.4) and ulE A be the element considered in

(4.5.a). Then BA can be taken to be a polyedron having a
subpolyedron isomorphic to the boundary of a 2-simplex which re-

present the class u; . Form the polyedron
UL = UL(l)U.(.LL (cay ) /{90 = (u;).}
a o 16

where (BA)0 is a copy of BA and ¢ runs over the set of 2-cells
of CL. One easily check Conditions a)-d), using (4.4),(4.5.a),
(4.2.b) and (4.2.c) for the latter.

Induction_step : one assumes by induction that .Z(L) holds if

dimL <n-1. By induction on the number of n-cells of L, it is enough
to prove that v%ﬂLo) implies ML) when L is the union of L, with
one n-simplex o. As n22, 30 is connected and one may assume that

L0 is connected.

As a%ﬁLo) holds, t_l(Cac) = U3o and t—l(ao) = T30 are
subpolyedra of UL, and TL, respectively. Let TL be TL_ U U'30,

0 0 0
where U'30 is another copy of U3o attached to Tdo and extend t to

TL by sending U'30 to ¢ . Then TL = BTL where FL is the free product

[_ [ with amalgamation over T

L Ctas {(where C'30 is another copy of
0

Is]
_l N
C30). Observe also that t (LlJCLO) = BFLL)CL , where rLU CL is

C'BO*FCL with amalgamation over Fao and tgat
)T

= 1 N N D
TC'BO Fao Cao FZ(ao) is a subgroup of TLlJCLO As in [BDH,

Theorem 6.1] one embedds Fz(ao) into the acyclic group

(AxFaO)*I’C80 = FCZBO (amalgamation over T

of (4.4)) by sending g — g if g€T

the free product T
(*

Ng? A is the acyclic group

-1 .
and g — aga if g€ FC' ’

Cao

where a A - {1}. Take UL = TLU UL, Um where m is the mapping

cylinder of the above embedding and extend t to UL by sending m

30

onto Co. One easily check Condition a)-c) of A%%L) (observe that
FCZBO€ %/ by (4.4) and (4.3)). For Condition d), one checks that

the monomorphisms FY — T corresponding to all the inclusion

X
Y —— X of the following diagram :
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‘3)\‘ (1) lM

Czoo — CL

are V -closed. This is done as follows :

- inclusions () are {/—~closed because M%QLO) holds.

- " {22 " " " inclusiéns (1) are, using
(4.2.b) and (4.2.c¢).

- if inclusion (33 is V ~-closed, then inclusions (4 are V closed,
using several times (4.2.b) and (4.2.c). For instance, the
inclusion Lc CL has to be decomposed :

LcLUCOge (CXacU L)y Lu Cao(CLO) , etc.

It thus remains to prove that Inclusion {3 is V -closed.
To simplify the notation, write Inclusion (3) under the form
G'*HG —_— (AxH)*HG (G' a copy of G). As for the proof of (4.4.a) and
(4.1), we shall use the Serre theory of amalgamated product acting
on trees [Se, 4 and 5]. Recall that an amalgamated product
Rl*BR2 = R acts on a tree TR characterised by the following
properties : there is a fundamental domain which is a segment

P e Q isomorphic to the quotient tree R\T_ with isotropy
———

R

p = Rl'RQ = R2 and Re = B. Applying this to R = (AxH)*HG

and making the normal closure G of G act on TR’ one see that a

groups R

fundamental domain isomorphic to E‘\?R is given by the following
tree :

Set of edges in Q

bijection with .
A - {1} (x€ A—{l})\b{

. i _ -1 .
The isotropy group are : Rxe = H and RXQ = xGx ~. Using

[Se,55] one deduces that G is the free product of the groups
xGx—l (x€ A) amalgamated over their common subgroup H. Therefore,
the subgroup G'*HG of R which is the subgroup generated by G and
aGa-l is V¥V -closed in G by (4.2.c) (the inclusion H< AxH is

vV -closed since A€.% and groups in % have no 2-torsion). On the
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other hand, G is V -closed in R since R/G = A has no 2-torsion.

Therefore, G'*HG is Vv -closed in R.

Proof of Sublemma (4.4.a) Observe that the first statement is

implied by the second since WX = 7L implies that n2Km 2K =,

To establish the second statement, observe that the tree TG has
fundamental domain 5..:1__J9 with isotropy groups GP = <a>,

GQ = <b> and Ge = £{G). One has the following situation in TG :

-1 e Abze

a e .
me e
P a

By [Se, Proposition 25 §6], one deduces that the subgraph
drawn above is part of an infinite chain L on which m acts by a
translation of amplitude 2. Observe that the orientations of the
edges of L imply that m is a generator of the oriented-automo-
morphisms group of L. Now, if mk commutes with x, one deduces from
[Se, Propositions 25 and 27 §6] that xL = L and thus xe = mie for
some i. As G_ = C(G), this implies that xm € ¢(G).

Proof of Lemma (4.1) The Serre tree TR has here fundamental

domain (isomorphic to R\<?R) a cone on the set of vertices

{Pi}i€I (the cone vertex is called P; the edge from P, to P is

called ei) , and the isotropy groups are RPi = Ri' RP = Rei = B.
Let TS be the smallest subgraph of TR such that

{ei;lEI}C {Edges TS} and STs = Ts. As S is generated by Si = SP ,

Ts is connected by the obvious generalisation of [Se, Lemme 2, $.49]

and thus TS is a subtree of TR.

Let g€ R such that 926 S. As an oriented automorphism of

T g has either a fixed vertex or there is an infinite chain L

RI
in T on which g acts by a non-trivial translation [Se, Proposition
25 §86]. Suppose that g has a fixed vertex V. Hence gzv = V and,

as gTSn TS # ¢, g must fix the whole path joining V to TS'
Therefore one may suppose that V€ TS which implies that g = trit
with r; € R, (for some i) and t€S. Thus, ri = t g%t e sn R = S,.

1

As Si is Vv -closed in Ri, one has t gt € Si and then g€ S,
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It then remains to check the case where g translates a
chain L. As ng S, one has Lc TS (otherwise gTS TS = @#). Therefore,
by replacing if necessary g by one of its conjugate by an element
of S, one may suppose that L contains the edge e, for some i€I.

As TsrlorbitR(P) = OrbitS(P), there is h€ S such that
b = h_lg€ Rp = B. One has 92 = hbhb € S which means bhb€ S. As

LT the vertex Pi is common to the edges e and s;€; with SiESi'

SI
Observe that the path joining hb(siei) to Pi contains siei,and

therefore bhb(siei)E T_ implies that bsieie TS. The latter means

S
bsi = Sig for some giE Si and b€ B. This contradicts Condition 3)

of (4.1).
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