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Local Surgery Obstructions and Space Forms

Ian Hambleton®'* and Ib Madsen?

! Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
2 Matematisk Institut, Universitetsparken, 8000 Aarhus C, Denmark

The space form problem, concerning the existence of free actions of finite
groups on spheres, has now been substantially solved except in dimension three
[3, 4, 8, 11, 13, 14]. This paper gives an effective method for the uniqueness
question: which homotopy types are realized by such actions. Our results are
fairly complete for 2-hyperelementary periodic groups and give new necessary
conditions for actions even on S3. In particular Corollary C below eliminates
certain homotopically non-linear actions which presented an obstacle to know-
ing precise dimensional bounds (see [4; Conjecture D]). The methods also
apply to the euclidean space form problem of semi-free actions on R"** fixing
R* [2] where the linear model is a free representation direct sum with a trivial
representation. A free action on S"~! yields a semi-free topological action on
R" by “coning”.

The method involves the calculation of a certain local surgery obstructions
(§§2, 3). The basic cases are the 2-hyperelementary type I groups: extensions of

the form
1-Z/m->n—Z[2>1

where m is odd. We write o for a Sylow 2-subgroup of = (and identify it with
Z/2%). Let t be the twisting defining the extension, and let

t(0)=1Im(t: Z/2*— Aut(Z/m)=Z/2"

These are groups with periodic Tate cohomology of period 2!+1 We assume
throughout that 1 <I<k so that m is non-cyclic and satisfies Milnor’s necessary
condition (no dihedral subgroups) for acting freely on a sphere [8]. Under this
assumption, 7 admits free linear representations in the period dimension so has
linear actions on the sphere. In fact, let ¥ be a faithful complex character of
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192 [. Hambleton and Ib Madsen

Z/m-2*~! and denote by ge(Z/m)* a generator of Im¢. Then
Vag+gf+..+p7 !

extends to a free z-representation of real dimension 2'*! where a generator T
of Z/2* acts by:
T(zy,25,- s 250)=(Con-1221,21, 255 erZa1_ 1)

Here and everywhere below (; denotes a primitive i'th root of one. The
homotopy type of this action is that of the orbit space N=S(V)/n and is
determined completely by the generator (Chern class)

g=c,(V)eH* " '(n;Z).

According to [11], any other possible homotopy types in this dimension
are given by the generators rg where r is an integer relatively prime to |x|.
More generally, the homotopy types in dimension 2'*!s—1 are given by rg®.
Our problem is: as r varies, which of the generators rg® describe the homotopy
types of (i) free m-actions on $2~! or (ii) semi-free m-actions on (R*** R¥) for ¢
=2'"*15and k=0?

The following results illustrate the method. They answer (i) in some cases
and (ii) in general. From our earlier results [2] it is enough to set k=0 in (ii).
Note also that reversing the orientation of S9~! changes r to —r so that we
may assume r = 1(mod 4) without loss of generality.

Theorem A. Let g=2'*'.525 and r=1(mod4). Let n be a 2-hyperelementary
type 1 group with —1€t(o) and kert of order 2. Then n acts freely on S~ with
homotopy type rg* if and only if r is a 2'-th power (modm), where m is the odd
part of |=|.

Theorem B. Let q=2'*'.524, and n a 2-hyperelementary type 1 group with
|kert|=2. Then m acts semi-freely on (R4 0) with homotopy type rg° if and only
if r is a square (modm), for every odd divisor m of |n| such that Z/m>ic has
—1et(o).

Remarks. (1) When —1¢€t(o) the condition re(Z/m)*?' in Theorem A is neces-
sary for the action to exist even if |kert|>2.

(2) A generator rg* is linear if and only if r is a 2'-th power (modm) and
minus a 2' power (mod2*¥) [6], so as k increases many homotopically non-
linear actions result.

An important special case occurs for k=2 and /=1 when 7=0(4m) is a

quaternion group.

Corollary C. Let n=Q(4m) and q=4s=4. Then if © acts semi-freely on (RY,0)
the action is homotopically linear.

This result was conjectured in [4]. It is an essential step in analysing the
actions of type II groups on spheres or euclidean spaces (cf. [2, 4]).

The first author would like to thank the Institut des Hautes Ftudes Scienti-
fiques at Bures-sur-Yvette (France) for its hospitality during Spring 1983 while
part of this work was done. '
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1. Fibre Preserving Maps of Vector Bundles

Let &9, #? be vector bundles over a space X with structural group O(q). The set
of stable homotopy classes of fibre preserving maps

S(E9)——— S(n?)
(1.1)
X

is a representable homotopy functor [1, §4] with classifying space denoted
05°/0. Since the degree of such a fibre-preserving map is well-defined up to
sign (orientation-reserving bundle automorphism of ¢ or 5 are allowed in the
equivalence relation), there is a function

|deg|: QS°/O—Z*.

The components (QS°/0), of QS°/O are just the classifying spaces for maps of
fixed degree r=0. Whitney sum then provides a pairing of classifying spaces:

(1.2) (5°/0), x(25°/0),,—(Q5°/0),,

There is a mapi: QS°/O— B0 induced by sending a triple (¢%,¢,7% over X
to the reduced KO element [£9—#?], and a mapj: QS°—QS°/O obtained by
regarding a map X —QS° as a stable homotopy class of fibre preserving mapst:
X x 81~ 15X x 897! for q large. Since the degree is only defined up to sign, the
result is a fibration [1, 4.3]:

(13) 0.,(5°)~(Qs°/0),~BO

for each r=0. For r=1 we identify Q. ,(S°)=G, the H-space of stable ho-
motopy classes of homotopy equivalences of S9! as g—oo and (QS°/0),
=G/O0.

Let [r] denote the element of [X,Q,5°] represented by id xr on X x §47*
where r: S§77'->$57"! is a degree r map. Then by composing with j:
0,5°-(08°/0), and taking Whitney sum we define

(1.4) 3,: G/0—(QS°/0),.
(1.5) Proposition. The map 9, is a Z[1/r]-homotopy equivalence. [

This result can be applied to the situation where n=m,(X) is finite since
(0S°/0), is an infinite loop space when r is inverted. Let X(o) denote the
covering space of X with fundamental group c< .

(1.6) Corollary. Let r be odd and suppose n=mn,(X) is finite. Then the restric-
tion map
Resy: [X,(0S°/0),1®Z;~[X(0),(05°/0),1®Z,,,

is injective for o a 2-Sylow subgroup of n. []
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Finally, we recall the Adams map (cf. [1, §6])
.7 ,: BO(2)—(QS8°/0),
defined on [X, BO(2)] for r odd by:

%(8)=[<,t,,¥"¢]

where & is a 2-plane bundle over X. Let u,.: 0(2)—0(2) be defined by u,(z)==z"
for zeS* =80(2) and y,(c)=c for ce0(2) denoting “complex conjugation.. Then
Y ¢ is classified by ¢ Bu,
X — B0(2)—— B0O(2)
and

t,: S(O)->SW"%)

is given by t,(x,z)=(x, z").

We remark that there is evidently a version of this theory for topological
bundles and fibre-preserving maps. This leads to classifying spaces (QS°/TOP),
and a map (Q5°/0),—(QS°/TOP),.

2. Degree r Normal Maps

In surgery theory the space G/O=(QS°/0), is used to describe the set of degree
1 normal maps which target a Poincaré duality space X of formal dimension n.
More generally, for each integer r=0 let .4,(X) denote the set of normal
cobordism classes of degree r normal maps

br
In—

L

N"—p—»X
where N" is a smooth closed manifold of dimension n, 7y is its stable tangent
bundle and p, is a vector bundle map covering the degree map p,. If r=1, it
follows that the vector bundle —¢ is stable fibre homotopy equivalent to the
Spivak normal fibre space v, of X. In general, this holds only when r is
inverted.

(2.2) Theorem. Let X be a finitely-dominated Poincaré complex and v be a
vector bundle-reduction of vy. Then for any r =0 there is a bijection

T,: #(X)~[X,(Q5°/0),]

Proof. Let W be a regular neighborhood of X" embedded in R"** (for k large).
Then there is a diagram

ow » W —15X

]

S()—— D()—— X
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with (D(v), S(v))—(W,0W) a homotopy equivalence. First we will define the
map T,. We suppose that (p: No X, p: ty—&) is a degree r normal map and
consider the composition:

Jor N5 XW-y*(Q).
If f, ~ f;, is an embedding then
V(DB 1y = f*(Tye) = fT@* (D n* 1y)
where w: p*(¢)— W is the bundle projection. It follows that
) 2P* ()@ =1, Dept",

so v(f,) is stably trivial. Let

¢ P >Rt
denote the collapse map on Thom spaces and note that there is a homotopy
equivalence

e -y (™.
The composite with the (n+ k)-fold suspension of p,
(2.3) tH (EDY) T =TT - (eTH T
is induced from a map

t: S(EDVDey)—>S(eh ).

If p has a degree r, then t has degree r on each fibre so is classified by a
map X —(QS°/0),. Since this construction respects normal cobordism classes
we get T,: 4,(X)—[X.(05°/0),]

The inverse map to T, is defined by transversality: each element of
[X,(QS5°/0),] can be represented by a triple ({,t,&%*) for k large. Then consid-

er the induced map .
to: SO S(ey
and define N=t;'(X) where t,~t, is transverse to X—WoS(h). If
n*: y*({)—» W is the projection, then
n* y*(C)@Tw|N: Tv@v
and so (after stabilizing) we get a degree r normal map

br
Ty——{—V

|

N—— X
Dr

as required. This construction gives an inverse map for 7,. [J
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Remark. When the bijection T, exists we will use it to define 6,: A (X)— A4, (X)
relating the degree 1 normal invariants with the degree r normal invariants.

The remaining property of A4(X) we need is the existence of a surgery
obstruction map (where n=n,(X), and 4A=2; ®n*®SK,(Z, n)):

Mg N (X)=L(Z,ym)

whenever X" is (weakly) simple and r is odd. This means that the finitely-
dominated Poincaré space X is equipped with a simple base measured in
WH(Z,r) for C (X)®Z, (cf. [2, §8]). This will be the case for example when X
is a finite simple Poincaré space. If dimX is odd, I*=L. For any r, the
construction of Ranicki [9: 3.8, 4.1] produces a based quadratic structure over
Z[1/r]n on the cone complex C*(p’,)®Z [1/r] and therefore an element
A(p,,p)eL (Z[1/r]x). If r is odd, completion at 2 gives the desired element.

To adapt Ranicki’s construction to our setting note that the “geometric
Umkehr” map [9, 4.2] needed exists only after inverting r. A degree r normal
map determines the map t* of (2.3) which is a Z[1/r]-homotopy equivalence.
Let

(2.4) F: Z"*X X"+ N,
be the composition of (t*)~! with the Sm-dual of Tr(p): Tr(vy)— Tr(—¢).

Now assume that X" is an odd dimensional finite Poincaré complex with vy
reducible. In §4 we will need to investigate the diagram:

[X,(0S°/0)]— > L@, )

2.5) o is

[X,G/0] ——— LZn)

where i, is induced by completing at 2. We will use the results of [2, §6]: if ©
=Z/m>o is a 2-hyperelementary group (modd, ¢ a 2-group) the L-groups
have a functorial splitting indexed by the divisors of m. The top component of
2,(p,. B,) is denoted Ay(p,. B,)(m)

(2.6) Proposition. Let X" be a finite (weakly) simple Poincaré complex with vy
reducible and n=n,(X) a 2-hyperelementary group. If (f: M—>X, froy—=disa
degree 1 normal map, then

Xy, (LI Nm)= iy A'(f,7)(m)e Ly, m)(m)

in the top component

L,(Z,7)(m)S L,Z, ).
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Proof. The element &,-(f,f) is represented by the product degree r normal map
[1, §5]:
(M—f>X) X (r-pt—pt).

This is just the disjoint union r-M of r copies of M each mapped by f (and
covered by f on t,,). This normal map can be written as a composite:

2.7) rM— ML L x

satisfying the local version of [9, 4.3]. Therefore

BN+ M=>M)=230, (£]).
However A4(r- M— M) arises from the product formula [9, 8.1]:
(2.8) LY(Z) QL (Zn)~Ly(Z )

applied to A4(r- pt—pt)el(Z,) and the symmetric signature o*(M)eL(Zn). By
definition of the top component [2, 6.9] and the fact that ¢*(M), when local-
ized at 2, is in the image of L'(Zo), we obtain that JA(r- M—M)(@m)=0. In top
component L= []

We conclude this section with another property of the top component of a
surgery obstruction.

(2.9) Proposition. Let X" be a finite (weakly) simple Poincaré space with =
=m,(X) 2-hyperelementary and vy reducible. If (fo,fo) and (fl,fl) are degree 1
normal maps to X, then

X (o Jo)m)= 2 (f,, J1)(m)e Ly(Z ) (m)
where m=|mn| 4q.

Proof. This is a formal consequence of the Ranicki sequences:

o H (X)) —— L@n)»%(X) »H, (X;IL,)

| |

...oH (Br;IL)—>— L(Zn)— % (Bn)—~H,_,(Bn;1Ly).

The elements (f,, fo) and (f;, f,) arise from different reductions of vy; according
to [10] their surgery obstructions A'(f;,f;) have the same image, namely the
total surgery obstruction, s(X)e&(X). From the diagram

A (forfo) = A (fi, fi)elm(A: H,(Br;ILo)— L,(Z 7))

But Im 4 is detected by restriction to a 2-Sylow subgroup ¢ <= and so its top
component is zero. []

Remark. If X is only finitely-dominated, the same conclusion holds in the top
component of IX(Zn).
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3. Degree r Maps of Swan Complexes

Let = be a group with periodic cohomology. A Swan complex for n in
dimension n is a finitely-dominated oriented Poincaré complex X of formal
dimension n with 7, X =7 and X~5". From [11] the homotopy type of X is
determined by its first k-invariant g(X)e H"* !(n; Z). Furthermore, if X, X, are
two Swan complexes in dimension n then for any integer r (prime to |n|) such
that g(X,)=rg(X,) there exists a degree r map p,: X,— X, which is unique up
to homotopy.

(3.1) Proposition. Suppose that N" is a smooth oriented manifold of dimension n
with t, N=n and N~S". If X" is any Swan complex in dimension n and g(X)
=r1g(N), then there exists a bundle map p,: ty—& covering the degree r map
p.s N-X.

Proof. Choose s so that rs=1(mod|z|) and notice that g(N)=sg(X). Therefore
there exists a degree s map p;: X—> N and we set £ =p¥(z,). To obtain p, we
note that p}p¥(ty)=(p,° p,)*(ty). Localized at |n|, (p,o p,)*(ty) =Ty and localized
away from |z| both bundles are trivial. []

Since we know that any Swan complex X" has a vector bundle reduction
for vy, the degree 1 normal invariant set is non-empty. We wish now to
compare the surgery obstruction of a degree 1 normal map (f;: M—X,
fi: 1py—V) to that of (p,: NoX, p,: 14— &) in the case when = is a type I group
and N is the orbit space of a linear action. More precisely, let © be a
metacyclic group

(3.2) | >Z/n>n—Z/25>1

where m is odd and the action map ¢: Z/2*—(Z/m)* has image Z/2' for some I,
1<I<k. Let x be a faithful character of Z/m-2*~! and set

(3.3) Vey=x+u% +...+15

where g generates Im¢. This gives a free representation of = in the period
dimension 2'*!. To obtain the situation of the last section, let N=S(V)/n and
X be another Swan complex in this dimension n=2'*'—1 with

(34) g(X)=r-g(N)=r-cu(V).

We now fix a reduction v of the Spivak normal fibre space vy and use it to
identify

(3.5) A (X)=[X,(0S°/0),] and A'(X)=[X,G/O]

by T, as in (2.2).

It will be convenient to vary r by a multiple of |z| so that r is prime to all
the torsion in =,(Q,S°), the i™ stable stem, for i<dim X +1. Since the
homotopy type of the Swan complex X depends only on the residue class of r
(mod |n|) this choice of r involves no loss of generality for our applications.
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Moreover, under this assumption the map
(3.6) 5, [X, G/01—~[X.(@5°/0),]

is a bijection by (1.5). In fact, since dim X is odd the rational localizations of
both sides are trivial. From the fibration (1.3) and the “loop-sum” identifi-
cation [1] of Q,8°~Q, S° it follows that the r-localizations of both sides are
also trivial.

We now take r=1(mod 4) to fix the orientation on X.

(3.7) Proposition. Let r=1(mod 4) be prime to n,(Q,8° for i<dim X + 1. Then
there exists a degree 1 normal map (f, f): M— X such that

N Prs 5=, N (f, e N(X).

Proof. From our identification (3.5), the normal invariant A'(p,, p,) gives an
element in [X, (9S°/0),]. The result follows from (3.6). [

This Proposition is all we need for our calculations of surgery obstructions
in this paper. However, in some situations it may be necessary to fix the
integer r (not only its residue class mod |z|). This can occur for example in
studying the possible linking numbers of fixed-point sets in non-free actions
(this was pointed out to us by P.Loffler and T.tom Dieck). To control the
normal invariant in these situations, one needs more precise information about
the restriction of our degree one normal map (p,, p,) to a 2-Sylow subgroup.

We indicate how such information can be obtained, using Adams’ map o,
from (1.7).

Let 6=Z/2" be a 2-Sylow subgroup of = and 6 a suitable faithful character
of ¢. Then

211

Resi(V)= Y 672 '+1,
i=0

If W denotes the right-hand side of this expression, let

21
WO =g+ giki+1
2

and define Y =S(W®)/s. Although W® does not in general extend to a free n-

representation,
Res?(rc (V) =rcy(W)=c(W")

so there is an orientation-preserving homotopy equivalence
g: Y- X(o)

where X(c) denotes the o-covering space of X. Let §: 1,—~(g~")*1y be a bundle
map covering g.

(3.8) Theorem. Let h: X(a)— Y be a homotopy inverse for g and let [, ]e 4 (Y)
be represented by o, (S(W') x_,0)e[Y,(QS°/0),]. Then

A ((h, h)o Res(p,, b)) =[¥,]-
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Proof. Consider the triple

te
(3.9) S(67) x .0 ——> S(6") x 6"

S(0")fa
as in (1.7) where t,(w,z)=(w,z"). Deform ¢, to a map transversal to the zero
section by Hw,z)=w,z"—sw) 0<s=1.
Then H, is transverse and
H{ '(w,0)={(w, 2)|z =w}={(z, 2)| 2 S(0)}

S(0) x,0—2— 50 %, 0

(3.10) j j
SO —2— S"Ys.

Now let W=60@ W, and take the join of (3.9) with S(W,)/o. The result is

SWO) x, W "% S(WO) x, W

N

Y

The map H@®id is a homotopy of ¢,®id to a transverse map and the resulting
normal map is the join of (3.10) with S(W,)/c, namely:

Res(ty) — o (

(3.11) J [
N(o) Y

where {=S(W™) x_ W. By construction (check first for q°) g*Res(ty)={ where
4, Y-N is the degree s map for rs=1(mod|z|). On the other hand, the
normal map (h, h)o Res(p,, p,) is represented by the diagram

Res p, h
Res(ty)— Res(é) — g* Res(¢)

w1 T

N(@) — X(0) — Y
Resp, h

where ¢ =p¥t,. Therefore

g*Res({)=g*(Res p)*Res(ty)=(Res p,o g)*Res(ty)={
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since Resp,og=~gq, by uniqueness of these degree s maps. Similarly hoResp,
~g, so (3.12) has the same normal invariant as (3.11). [

We can now combine (3.7) with (2 6), (2.9) to obtain the desired relation
between the surgery obstruction of (f,f) and (p,, p,) evaluated in L L(Z ).

(3.13) Proposition. Let (f.f): M—X be a degree 1 normal map and (p,, p.):
N—X be the degree r normal map in (3.1). Assume that X is a finite weakly
simple complex and r=1(mod4). Then the image of A’ (f,peLs(Zn) in the top

component is . . R
2SN m)=25p,, p)(m)e Ly(Z,7)(m).

Proof. Since n=2+1_1=3(mod4) we have surgery obstructions in L3(Z,m).
Also L(Z,m) is 2-local and so

APy, ) =458, (f.])
by (3.7). The rest follows immediately from (2.6) and (2.9). O
(3.14) Corollary. If X is finite and r =1(4) then

() m)=A(N)(m) — AX) (m)eIm(HO(Wh' (Z 1)~ L3 (Z, 7).

Proof. Since p, is a 2-local equivalence this is just [2, 8.6]. Recall that 4(N),
A(X) are the Reidemeister torsions of these complexes. [

(3.15) Remark. When I'y(Zn)— L4(Z,7) is injective (e.g. for m prime) where
U =Im(Wh'(Zn)- Wh'(Z 7))

we have determined also the image A*(f,f)(m) of X'(f,f)(m) in Ly(Zm)(m).

When X is not finite but the cohomology class {o(X)} of its finiteness
obstruction is trivial in H°(K,(Zn)), we have defined an invariant 4,(X) in
[2, 8.12] by considering the cohomology long exact sequence induced by

0— Wh(Qr)/Wh'(Zr)— Wh(Qn)/Wh'(Z7)— K o(Z7) 0.

Using this invariant and the é-invariant of [2, 4.3, 4.22] we can give a formula
for 22(f,f)(m). Recall that I%(Zn) is determined by the semicharacteristic, the
cohomology finiteness obstruction and this d-invariant which takes values in a
quotient of HO(Wh(@Q,n),). Here + denotes the part of Wh(®, ) given by the
type O representations. Since we have assumed Milnor’s condition (kert=1)
the semicharacteristic vanishes.

(3.16) Proposmon Let X be finitely-dominated and {o(X)}= 0eH(K o(Z ).
Let (f,f) and (p,,p,) be the normal maps used in (3.13) and r=1(mod 4). Then

SO2(f.])m)=A(N)— 4o(X)e H (Wh(@,m),)/1
where
[=IX(Z,n)+ H(Wh (Zn))+d* H' (K (Z )
and
d*: H‘(Ko(Zn))—’H"(Wh(Qn)/Wh’(Zn))*HO(Wh(@zﬂ)+)/H°(Wh’(Z7t))-
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Proof. The argument is contained in [2, 8.17-8.23] so we include only an
outline. Replace (f, f) (p,, p,) by suitable normal maps (,y)): M—>X and
(¢,,4,): N»X where X is finite. The construction of these normal maps (cf.
[2, 8.18]) ensures that (3.13) still holds and so we get

(3.17) A5, ) (m) = A(N) = A(X)eIm(HO(Wh'(Z ym))— L(Z,, m)).

Now the argument for [2, 8.21-8.23] proves that the image of (3.17) in the
group H*(Wh(Q,n),)/I is the formula required. []

4. Reidemeister Torsions

The results of the previous section expressed the surgery obstructions of a
degree one normal map (f,f): M—X over a Swan complex X in terms of
Reidemeister torsion invariants. We now attempt to calculate these invariants.

To each Swan complex X with k-invariant g(X)eH"*!(n;Z) there corre-
sponds an extension with finitely generated projective Zz-modules

0—-ZHP—..—»P>Z—-0
and an invariant 4(g(X))=[]{4,(g(X)): p|Ix|}, where

4,(g(X)eK,(Q,n)/K (Z,n),

defined in [4] or [13] Often we write A(X) instead of A(g(X)) and consider it
as an element of K,(@Qn)/K,(Zn) by giving it the value zero at primes which
do not divide |r|. In the exact sequence

(4.1) K (@m)— K,(@Qn)/K,@Zn)-> K, (Z=) -0

d(4(X)) is the obstruction to choosing X finite (given g(X)) and if 6(4(X))=
then any preimage 4(X)eK,(@Qn) is the Reidemeister torsion for a choice of
(simple) homotopy type for X.

Suppose N is a manifold representing a generator g(N)eH"*!(n;Z), and
suppose further that

g(X)=r-g(N)eH"* (n; Z)
where r is prime to the group order, and r=1(mod4). Then 8(4(X)—A4(N)) is
the Swan image of r in K,(Zn), represented by the projective ideal (r,2), X

=2{glgen}.
Let e=1/|n|Z be the usual idempotent in Q. Then r-e+(1—€)eQmn is a
unit and defines an element in K,(Q=), whence in K,(@Q,m)/K 1(an) for each p.

(4.2) Lemma. With X, N as above

4,X)—4(N)=[r-e+(1—e)] for r||r|
=0 for rq=|.
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Proof. We must compare the multiple extensions associated with k-invariants
g(X) and g(N). Let C, be the based complex representing g(N). The con-
struction of [11, §2] shows that one may choose a complex P, realizing g(X)
with C;=P, for i <n. Moreover there is a chain map

0-Z—~C,—C,_—..—»Cy—Z—0

S

0-Z—~PE—>P_ ,—..—» B—->Z—0.

For each prime p which divides the group order ¢: Cn®2p—>13,®2p is an
isomorphism, so the base for C, defines a base for B,@Zp. The required
formula now follows directly from the definitions. []

It is convenient for explicit calculations to use Frohlich’s description of (4.1)
in terms of character homomorphisms. We recall the setting. Let @ > @ be any
sufficiently large number field (containing the |z['th roots of 1) and let Q be the
Galois group for @/@. Let Rn denote the complex representation ring of .
Then (4.1) is isomorphic to the sequence

Hom(R7, J(@))

+ D *)-2
4.3) Homy (R, @) %= 8 s

% K o(Zn)— 0.
Here J(Q) denotes the group of finite ideles and Homg (,) denotes the subset
of all character homomorphism which map symplectic characters into totally
positive elements.

Below we shall need the explicit isomorphism between (4.1) and (4.3), so we
recall it (see [2, §6]). Given a representation p: n—-Gl (@) there is an induced
representation of Q@7 in M, (®), whence a homomorphism

K,(Qn)-K,(M,(@Q)=Q".
This defines a monomorphism

4.9 0: K,(@Qn)—»Hom,(Rn,Q*)

which maps isomorphically onto Homg (R, @ ). If @ is replaced with its finite
completion Qp, 0 becomes an isomorphism. With these facts it is clear that
(4.1) and (4.3) are isomorphic sequences.

We are only interested in computing the 2-local part of the finiteness
obstruction and of the Reidemeister torsion. The 2-local K-theories have
induction and restriction homomorphisms. In technical terms, they are Mackey
functors over the 2-local Burnside ring Q(n),,=Q(M)®Z,,,. Now, Q(n),,, de-
composes into a product of rings corresponding to the minimal 2-local primes
of Q(n). Hence any functor over Q(m),, (e.g. the K-theories) decomposes ac-
cordingly.

For 2-hyperelementary groups,

|->Z/m->n—>0—1,
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with m odd and ¢ a 2-group, the above 2-local decomposition of, say K,(Q),,,
becomes a decomposition indexed by the divisors of m,

@D
Kl(Qn)(z)gdlz K1(Q7t)(d)~

Moreover, K,(Qn)(d)=K ,(Qr,)(d) where n, is the subgroup of n generated by
Z/d and o. Hence it suffices to consider the top component corresponding to
the divisor m.

Let {p,,-...,p,} be the prime divisors of m and let m;=m/p,. The idempotent
E which corresponds to the top component K,(Qn)(m) is given by

4.5) E= f] (1—E), (E)"=Ind,o Res;

)'=E;o...o E; (p, times) and

=

where 7;=Z/m; >0, (
Res;

K](Q”)(z)‘:m;—l:LKdQ”i)(zr

The monomorphism 6 in (4.4) is natural with respect to both induction and
restriction; in view of (4.2) we must evaluate EO(re+(1 —e)). First we specify
necessary notations:

m=pi..pf;  m=m/p,
n=Z/mx<o; t:c—>Aut(Z/m), k=Ker(t)
(4.6) ¥ is a faithful character of Z/m
{Xo»---» Xy =Irr(K)/Q,  F,=trivial characters of .
,=Ind}(¥®x), 1=Z/mxx.

Let R,t=Rn be the Q-submodule of the complex representation ring generat-
ed by {x;}. This inclusion defines an isomorphism of the top component:

EHomy(R7,Q@*)-=> Homy(R, 7, Q)
and we have

(4.7) Lemma. In Hom,(R,7,Q*),

E@(re+(1—e))(xo)=r"""™  m square-free
E((re+(1—e)(x)=1, otherwise.

Proof. It follows from the definition (4.4) that for the central idempotent ecQr,
0(e)(p)=1, unless p: n—>Gl,(Q) is the trivial representation with p(g)=1 for all
g. Hence

Eb(re +(1—)(x,) = 0(re + (1 — ) (E* (1)) =1
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for j>0. For j=0 we get by (4.5) that

t

EO(re+(1 - ) (xo"" = T (EF)0(re-+(1 —e) "

i=1

t (— 1)t

— (e +(1—e)) (ﬂ Ind,.Resi(XO)) :
i=1

It is easy to verify that

t
]_[ Ind;Res;(x,)=1Ind ;o Res -(xo)

where 7=Z /i >1a, m=m/p,...p,. Since the multiplicity of the trivial character
in the right-hand side is 1 if m=1 and O otherwise the lemma follows. O

It is inconvenient (and not necessary for us) to work with the top com-
ponent of (4.3) directly. Instead we consider the subsequence

Hom (R T, (j )
4.8 Homg (R, 7,0 )5~ o
) o ( )2) pl|—|£| Image(K (Z 7‘)(2))

L & D(Zm)(m) )0

where ¢ denotes the ring of integers of @ and D(Zn)<= K,(Z~) is the subgroup
of elements which vanish in K, of the maximal order. We have

Homg(R,7,0,)= ] (Z,®4)"
Jj=0

Homy,(R, 7, 0*)=A; x A¥x [] Af

jz2

where 4; denotes the ring of integers in the character field Q(x;). Thus the only
problem is to calculate Image (K, (Z »7)-
Each of the representations x; of Qn factors over Q({,)o=Q()o

1 Qu=Q[Z/m)'c—> QL) oM, Q1)

and we must determine the image of the induced homomorphism

(X))« ~
KL(Z,m)(m)— (Q, Q1))
(4.9)
K,(Z,®Z[{,]) o)

For a p-adic field L, U, denotes the units (of the ring of integers) and U}
< U, the units congruent to 1 modulo the uniformising parameter.

(4.10) Proposition. For p|m,
(Xj)*(Kl(ipn)(m)) = H(UE)(Z)

where L runs over the p-adic completions of Q(y)-
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Proof. Let m=p°m, with m, prime to p. If T is a generator of Z/m, let JCZ T
be the two-sided ideal generated by (1 —T™). This is contained in the radlcal
of Z 7, so there is an exact sequence

(1+)*—K,(Z,1) > K (Z,71,)—0
where m, =Z/m, >10. The composition
K,Z, 7)o K, (2 o) K (Z,m,)

is an isomorphism, so the top component K (2 n)(m)~EK,(Z »M)2) 18 con-
tained in the kernel of ¢,. In fact, the image of (X,) in (4.9) is equal to the
image of

+(1={,)Z,®Z[(,]'0)~ K, (@Q,8Q(,) 0)— (Q,0Q(x;)"

Smce g is a 2- -group Z L®Z[{, )¢ is a maximal order in Q ®Q(¢,) o, so if

7)), maps K, Q ®Q(C Yo) into [[L* then it maps K (Z ®Z[C 1'0) into
HJUL On the other hand, (F,®Z[{,])'c is semi-simple and is mapped by %
into the product of the units of the residue fields. The exact sequence

(XJ)*

1+(1-(,0Z,QZ[{,]'0)-K,(Z,®Z[(,]'0)~K,([F,RZ[{,] 0)
completes the argument since U; is the kernel of U, —»L*. [
We have left to consider the difficult case:
Kl(zzn)(m);K1(22®Z[Cm]t0)(z)-

A general calculation of this group (and of its image in Homy(R,, 7, @; )) seems
to be out of reach at present. Even when the Sylow 2-subgroup ¢ is cyclic we
are not able to get complete information, so we content ourselves with some
general remarks which give an easy calculation in some special cases.

If the kernel k=Ker{t: c—>Z/m*} is cyclic of order 2° then we have a
Morita equivalence

Z,0Z[(,Yo=M, (Z,®A[K])
with A=Z[{,_]°. Thus
K, (Z,m)(m)= K1(22®A[K])(2) g(ZZ®A[K])("2)_

and we must calculate the cokernel of
(4.11) (Z,®A[K]5~ [1@Z,®4))%
j=0

where as above 4; denotes the ring of integers in Q(x )=QC, )]

(412) Lemma. The cokernel in (4.11) is trivial if k<Z/2 and in general has
exponent 25~ 1,
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Proof. For k=17Z/2, look at the diagram
1> 1+(1=T)Z,®A[Z/2])p)— (2, x A[Z/2])5— (Z,®A)5—1

1— (22®A)(§) —_— 2'(22®A)(X2) —’(22®A)(§)”"1
In general by induction it is enough to look at

cok{1+(1=T> Z,RA[Z/,.])" ~(Z,®A[(,:])" }(2)-

For each prime 4|2 in A4, we obtain a local ring R, with maximal ideal 4 such
that 4> '=(2) which contributes a factor (R, /(2))* to the cokernel. Since
(Rﬁ//f)X is of odd order and

(L+ A7) [+ 227 )
has exponent 2 the result follows. [l

We return to the geometric situation of Lemma 4.2: X and N are Swan
complexes for the group = in (4.6), N is a manifold and the k-invariants are
related by the equation g(X)=rg(N). Following the notation in (4.6) we let A
=Z[{,]° be the ring of integers in Q(x,) and consider the reduction homo-
morphism

o: (4 x)(z)"’(A/m)<X2)2(Z/m)6)'
We can collect our calculations from (4.2), (4.7), (4.10) and (4.12) in

(4.13) Theorem. Suppose m is square-free.

(i) A necessary condition for 63(X )m)=0 in KO(Zn)(m) is that reIlmage(®).

(i) If the kernel k=12Z/2 then the condition in (i) is also sufficient, and when it
is satisfied, R .
A(X)(m)— A(N)(m)eHomy(R,,m,0),
maps y, into @~ '(r) and y; into 1 for j>0. If m is not square-free then A(X)(m)
= A(N)(m).

The reader should notice i~n connection with the above theorem that the
finiteness obstruction 64(X)eK(Zn) is in fact 2-primary, so there is no harm
ir~1 only considering the 2-local situation. This follows from induction since
K(Z7), is detected by p-hyperelementary subgroups (i.e. cyclic subgroups for

p+2) and each k-invariant on a cyclic subgroup is realized by a suitable lens
space.

(4.14) Lemma. If m is a prime and t(6)<(Z/m)* has order 2', then the image of
@ consists of the 2'~'-st powers in (Z/m)*.

Proof. Since u,(m)={4~"*({}, — 1/, —~ DeZ[n,]*, where n,={,+{, ", reduces
to r in the residue field IF, it is clear that r*'"'eIm®. Indeed, if

N:Z[n,) —A"

denotes the norm then ®(N (ur(m))=r2" '
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Conversely, if reIm @, consider the diagram

A* ——(Z/m)"

Z* ——(Z/m)*

where N, (r)=r"~"2"_Since (Z/m)* is cyclic of order (m—1) we can only have
N]((DA(V)): i], when VG(Z/m)xzhl' 0

(4.15)  Remark. If —1et(0), |t(c)|=2" then 2'~'-st powers in (Z/m)* are always
in the image of @ even when m is not a prime. Indeed, it suffices to check the
square-free case. If m=p,...p, and S is a non-empty subset of {p,,...,p,} define
u(8)=(Cs—DALs—1), {s=TT{(,,|p;eS}. Then

u,(m)=I1(u,(S) """

has @(u,(m))=r. Note that since o is cyclic and —let(o) the order of t(g) is 2
in each factor (Z/p;)*.

(4.16) Theorem. Suppose —1€t(c) and that t: c—(Z/m)* has image of order 2'.

(i) When ker t has order 2, X is homotopy equivalent to a finite complex if
and only if r is a 2!~ *-st power (modm).
(ii) For 122 the cohomology class of dA(X) in H°(K o(Zn)(m)) is zero if and
only if r is a square (modm).
(iii) For =1 and |kert|>2, the cohomology class of 0A(X) in H(K ,(Zm)(m))
is zero if and only if r is a square (modm).

Proof. Assume first that kert has order 2. Part (i) is proved in (4.13)-(4.15).
For (ii) we notice from (4.8) that the action of Z/2 on D(Zn)(m) is trivial, so
that the Tate cohomology group H°(D(Zr)(m))=D(Zn)(m)/2. Hence when
r=s*(modm) we see that 34(X)=0.

Conversely, if r#s*(modm) then 0A(X)=[(r,1)] is non-trivial in
H°(D(Zr)(m)) when [ 2. It suffices to consider the case of a prime m, since we
can restrict to such a subgroup. We have the sequence (see (4.3) and (4.8)):

O*D(Zﬂ)(m)*K?(Zﬂ)(M)-*F(A)(z)@F*(A)<z,—>0

where I'(A), I'*(A) denote the class group, strict class group of Q(x,). The
sequence decomposes into two sequences corresponding to y, and y, and
0A(X) lies entirely in the y, part (denoted the+ part in [2]). It follows from
[2, (9.28)] that 04(X)={[(r,1)] maps to zero in H*(K o(Zn)(m)) if and only if

{r}elmage(®,: L'P—(4/m)3,)

where L=Q(x,) and L'® denotes the elements in L with even valuation. By
taking norms and noting that Q®=@Q *? it is clear that the condition cannot
be satisfied.
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Now suppose |kert|>2. We prove first that the condition r=s*(modm) is
sufficient for the vanishing of {04(X)} in H°(K,(Zn)(m)). Actually we show the
element vanishes already in H°(D(Zr)(m)).

Set k=kert. From (4.8) we obtain

@17) A*xA*x [[(4)" 2] @,®4)* (Z,®@A[x])j % ]_[ (4;/m)),
jz2 jzo

and, modulo Im &, A(X)(m) is represented by (r,1,...,1) in each product on the
right-hand side (see (4.2) and note that A(N)elm d5) The finiteness obstruction
is trivial in D(Zn)(m)=cok @ if and only if A(X)(m)eIm &. For the cohomology
class note first that when r=1(mod 8) and re(Z/m)AXZ the class {(r,1,...,1)}=0
in H° of the right-hand side of (4.17), hence {04(X)(m)}=0 from (4,2) and
(4.12). If r=5(mod 8), let T denote a generator of k~Z/2° and consider the unit
in (Z,®A[x])*:

—A+T+T H=(=3,1, =1,..., =(L+1,0), .. ) [ Z, @A),

jz0

where n,=(;+{; . Let

u=(1,1,—1,..., —(1+n,9), .- 1_[

and now alter our representative for 4(X)(m) by @(u). Since HO((Aj/m)X)=0 for
j=2 it follows that

(4.18) {A(X)(m)— A(N)(m)} = @, {u}

and so {04(X)(m)} =0.

Conversely, if r=s*(mod m) we must show that {04(X)(m)} +0. For (ii) this
follows from the case |kert|=2, established above. Indeed, we simply project ©
to the quotient group T=Z/m x & with kert=27Z/2.

For (iii) the argument is more complicated. We project to #=Z/m x & with
kert=2Z/4, and assume that m is a prime. Explicating (4.12) in this case gives

2
[1(Z,@A)HMNEZ,®A[K])) = A/2.
j=0

We have A,=A4,=A=Z[n,], A,=A[i], and
2
O: AX x A¥ x AF A2 x [] (4;/m)3,
j=o0
is given as the pair ¢=(¢,®"), where ¢ maps into A/2 and " maps into
[ [(A4;/m)3,. Using the isomorphisms

(A8 =A,2=A4/2  for j=0,1

(4,25 =A/2 for j=2,

®'(ay,ay,a,)=pal@o)+pa(a;)+pa(ay), the sum of the reduction modulo the
square of the uniformiser. The second component is

9" (ag, ay,a3)=(pm(@o) Pu(@1)s Pm(@2))-
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Let EcQ(y,,) be the maximal 2-power degree extension of @ and let B be
its ring of integers. Set B,=B, =B and B,=B[i]. Consider the B-analogue of
@ above,

2
¢B: B())( X BT XB; —)B/ZB X l_[ (B’-/m)é)-
j=0

The norm homomorphism N: A-B induces norms of A ;s (A;/m)3, and
(4;/4)3,. Under the identification of (A/4)3, with 4/2, the norm corresponds to

the trace, and
@0 N =(Trx N¥)o .

Since |4:B| is odd, N(r)=r'*8! is a square (modm) if and only if r is. So it
suffices to prove that the class of (0,7,1,1) in H(coker ®,) is non-zero when
r=£s%(mod m).

There are two cases to consider according to the congruence class of
m(mod 4).

For m=3(mod 4), B=7Z and

Pp: L™ X Z[i]* >Z/2 x (F,* xIE; xIE,%),,,.
The map is @g(x,y)=(x-y,x,1,y), so
cok @ =(IF,5?) ;) X (F,),-
The natural projection into the cokernel,
Z)2 x ([, xIE) xIF%), —F5% xIFx,

sends (x,,X,,X3,X,) into (i(x,)x,x3,x,;) where i: Z/2—IF,%? is the injection. In
particular (0,r,1, 1) maps into (r, 1).

The involution on cok @, sends (u,v) to (u~"',v) so H%(cok &,5)=Z/2@Z/2.
Consequently, the class of (0,r,1,1) is non-trivial.

For m=1(mod 4), we take the norm, (trace) from B to Z,

x =7 % ®5 : x
B} x BX x B[i]* ———> B/2B+ [] (B;/m)3,
j=0
N lTrxN

Z* x()XZ* — T2 x (15 x (1D x (1D x (1),
We have used that (Z[i]/m)* =IF,* xIF,* (interchanged by the involution) and
that the norms
N: (B;m)j3—~IEx, N:B[i]*->Z[i]"
both have images { +1). There is an induced
N: cok ®y—>cok P=Z2DZ2DZ/2.

The involution on cok & is trivial, and N clearly maps the class of (0,r,1,1)
non-zero.
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Thus for all primes m, {04(X)}#0 in H(D(Zr)(m)) for case (iii). We have
left to check that the element maps nontrivially even into HO(K(Zn)(m)), but
this is clear from the proof, since it consisted of taking norms down to @Q and
@Q(i), where the class group is trivial. [l

(4.19) Corollary. When re(Z/m)* 2,
Ao(X)m)=A(N)(m)e HO(Wh(Q, ), )/I.

Proof. See (3.16) for notation. The (4 )-part corresponds to the 4™ factor of the
domain of @ where u is trivial. [

(4.20) Remark. From (4.17) and (4.12) we can see that 0A(X)(m)=0 if
re(Z/m)** and re(Z/2%*** where d=min(l,k—!—1) without assuming |kert|
=2 or —1let(o). If in fact d=I then g(X) is a linear k-invariant so there is
nothing to check. If d=k—1—1<I then A(X)(m)— A(N)(m) is trivial 2-adically
(by (4.12)) and a 2-th power (modm). Choose r, =1(mod2*) and r, =r(modm)
aAnd let N, be the linear space form with k-invariant g(N,)=r,g(N). Then
AX)(m)=A(N,)(m). O

5. Surgery Obstructions

Let n=Z/m>ic be a 2-hyperelementary type I group such that t: 6—Aut(Z/m)
has image Z/2'. It was pointed out in the introduction that there exists an
orthogonal space form in the period dimension 2'+'.

Let X denote the Swan complex with k-invariant g(X)=rg(N) where (r,|r|)
=1. The effect of changing orientation on X is to replace r by —r, so there is
no loss of generality in assuming r= 1(mod 4).

Let (f,f): M- X be the degree 1 normal map from (3.7). We shall use (3.14)
and (3.16) to evaluate its surgery obstructions in L%(Zn) and I%,(Z ).

Suppose x=kert has order 2. The arithmetic sequence

(5.1) I (@) —— Ly ) —— L@@ L Qm) —

was evaluated in [4, §4]. Its top component decomposes into a direct sum of 2
sequences (denoted the (+) part and the (—) part) compatible with the decom-
position of (4.8) corresponding to x,, ¥ ;-
Let A be the ring of integers in Q(y,)=®Q(x,) and consider the reduction
maps
Dy (2)"’(A/4A)(2)—‘A/2A

B Ay~ (A/mA).

The top component of the finiteness obstruction for X is given as the class of r
in the cokernel of @,, when m is square-free and |ker ¢|=2 (Theorem 4.13).

If X is homotopy equivalent to a finite complex then each choice of finite
cell-structure, or rather of simple homotopy type, gives a surgery obstruction
l’z(f,f)eL’3(22 n), which only depends on X and (f,f).
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(5.2) Proposition. Suppose X is homotopy equivalent to a finite complex and
|kert|=2. If m is square free and U=Im(K',(Zn)— K',(Z,n)) then

3(L)=0 in LYZ,m)m)
if and only if Oe ,(@; () modulo H*(K'(Zr)(m). If m is not square-free then
A3(£,1)m)=0.
Proof. 1t is clear from (4.13(ii)) and (3.14) that it suffices to consider the (+)
part. By [4, Lemma 4.11] one has
L%(Z,m), (m)~ A/2 A modulo H(K'(Z~), (m))

and from (4.11), K,(Z,n) +(m)g(iz@)A)(xz). The natural map from
H%K (Z,7), (m)) into LY(Z,), (m) is induced by ¢, and the result follows by
(.14). [
(5.3) Corollary. If —1let(o) and |kert|=2 then AY(f,f)=0 if and only if
re(Z/m)*?.

Proof. Let N:Z[n,]*—A* be the norm homomorphism. In the course of
proving Lemma 4.14 we found that when m is a prime,

D(NW)=s>", u=0""2g—1/0,-1).

Thus @ ,(N(u)*)=s* so that 0e%,(®d; !(s*'). When m is composite use (4.15)
instead for the required units. To see that the condition is necessary, suppose m
is a prime and consider the diagram

Zn,)2——Z[n,)* ——TF,;
Tr N N
.

AR2A 24 4* — S

Tro No Ny

~

Z2 —— Z¥ — SF;

The composite Nyo N is the (m—1)/2 power map, so if s is a generator of IF,*
then s~ V"2 = —1(modm) and hence Tr,¢ ,(N(u))=*0.

Finally, K'\(Zn), (m)=Ker{®,: A~ (A/m™),} since the kernel of @ in (4.3)
is precisely K'\(Zz)(m). Thus H°(K',(Zn), (m))—L,(Z,n)(m) has image the sub-
groupo ,(Ker @,).Since Try(¢ 4(Ker &,))=0,¢ ,(N(u)) 0 modulo H°(K (Zx),, (m)).

O

Proof of Theorem A. Since the AY-obstruction calculated in (5.3) is the image of
(£, f), the condition re(Z/m)*?' is necessary for the action to exist, regardless
of which finite cell-structure is chosen on X.

Conversely if the condition is satisfied we can assume that A(X)(m)
=4(N)(m) by varying the linear space form N as in (4.20). The surgery obstruc-
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tion group is given by an extension
0—cok y,—Ly(Zm)—kery;—0

from (5.1). But by [4, Theorem A] the image of A'(f,f) in ker , is trivial. Now
if r=1(mod4), the k-invariant becomes linear over the subgroup p<S=n with
Imt=Z/2 since re(Z/4m)*? and so Res’? 1'(f,f)=0. However, the calculation

of [4, 4.15] give cok yo(m)=H((A/m)*)/{ £ 1>

cok ¥o(p)=H"(Z[n,,)/m)*){ £ 1)

with the restriction map induced by the inclusion A< Z[7,]. O

and

Proof of Theorem B. A necessary condition for the action to exist is that
{04(X)(m)} =0 in H°(K,(Z7)(m)) whenever mo=Z/m>ic is a subgroup of 7
with —1et(o). For [=2 or I=1 and |kert|>2 this happens precisely when
re(Z/m)** by (4.16). If I=1 and |kert|=2 (5.3) shows that re(Z/m)*?* is neces-
sary for the iY-obstruction to vanish. But from [2, 5.18, 9.31] the 13-
obstruction determines the AP-obstruction with indeterminacy

ker(®@,: F?/F*25HC(A/m)*)).

Now the same “norm argument” as in (5.3) proves that re(Z/m)*? is necessary
for A?(f,f)=0 also.

For the converse, recal that the surgery obstruction to an action of n=Z/m
g lies in o

I5(Z )=} I5(Zn)(d)
dlm

by [2, §6] where the d-component is determined by restriction to the subgroup
Z/d><6<n. We may assume that d>1 since the lens spaces cover all possible
homotopy types. In addition from the arithmetic sequence [2, 7.2]:

- LY (S(d)— I EZm)(d)~ [ LR () D LE(S ()
lyd
it is easy to see that I(Zn)(d)=0 if —1¢t(o) for Z/d ><0. Indeed under this
assumption S(d) is type U and Ryd) is type U or GL. For the remaining
components we use (4.19) and (3.16) to conclude that the surgery obstruction
vanishes. [

(54) Remark. In (4.20) we showed that A(X)(m)=A(N,)(m) if re(Z/m)*?*" and
re(Z/2)*** where d=min(l,k—1—1). Therefore X is finite and the surgery
obstruction is given by (3.14). It follows that 7 acts freely on S7-1 with this k-
invariant.
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