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Introduction

The surgery obstruction groups L.(Z[n]) were introduced by Wall [19].
Geometrically the L-groups are defined to be the bordism groups of normal maps
with fundamental group n. Algebraically, they are stable isomorphism groups of
quadratic forms over Z[n] and their automorphisms. The L-groups L(4) of a ring
with antistructure 4 were expressed in Ranicki [12] as the algebraic cobordism
groups of A-module chain complexes with Poincaré duality.

For computational purposes Wall [21,22] introduced variant L-groups using only
forms on finitely generated free modules of even rank. We denote these variant L-
groups by L%(A), giving them the following chain complex description.

A f.g. free A-module chain complex C is ‘round’ if it has Euler characteristic

XC)=0eZ.

The ‘round L-groups’ L'(A4) are defined here to be the cobordism groups of round
chain complexes with Poincaré duality. We also define round symmetric L-groups
L}(A), by analogy with the symmetric L-groups L*(A) appearing in the surgery
product formula. A finite n-dimensional geometric Poincaré complex X with Euler
characteristic y(X)=0 has a round symmetric signature

o (X) € L{(ZIm, (X)),

and a normal map (f, b) : M — X of such complexes has a round surgery obstruction
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o/, b) € Ly (Z[m (X))

The term round was introduced by Asimov [1] in connection with the handle decom-
positions of compact manifolds with Euler characteristic 0. Previously, Reinhart
[17] had considered cobordisms with Euler characteristic 0.

The round L-groups have several advantages over the ordinary L-groups:

(i) L%(A) depends functorially on the additive category with involution of based
f.g. free A-modules.

(ii) For any rings with antistructure A4, B there are defined products

LMAYQLYB)- LY, (AQB) (m,n=0),

with L} the round symmetric L-groups, L% the projective quadratic L-groups and
LY the free L-groups defined using unbased f.g. free modules. In particular, pro-
duct of this type with the round symmetric signature ar*(Sl)eLi(Z[t, Y F=h
of the circle S! defines the split injection

X SY® - LA(A) - LY, (ALt ')
in the direct sum decomposition
Ly (Al ") =Lh, (A @ LE(A).

(iii) The round L-groups of a product A,x A, of rings with antistructure are
1
given by

Li(Ay X Ay) = Ly(A) @ L (Ay).

(iv) If A=M,,(B) is a matrix ring with the conjugate transpose antistructure,
then there is a Morita isomorphism

L, (A)=L,(B).
(v) If 7 is a finite group, then by Wedderburn’s theorem
Qlnl = [ M,, (D)
J
for some matrix rings M,, (D)) over skewfields D;. It follows from (ii) and (iv)

that with the involution g=g ' (g€ n) on Q[x] the round L-groups of Q[n] can be
expressed as

L (Ql=) =[] L(D)).
o

(vi) Let (£,0): N"—> X" be a degree-1 normal map with X a finitely dominated
n-dimensional geometric Poincaré complex. Pedersen and Ranicki [10] define a pro-
jective surgery obstruction

ok(f, b) € Ly(Z[m (X))).
If M™ is a closed m-manifold with y(M)=0, then the product Mx X is a
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homotopy finite (m + n)-dimensional geometric Poincaré complex. The L-theory
product mentioned in (ii) and the product formula for surgery obstructions show
that the product (m + n)-dimensional normal map

AXLIXDY: MXN->MxX
has finite surgery obstruction
U1 X f,1Xb) =X (M) 6%(f,b) € Lh,  ,(ZIr;(M) X 7,(X))),

with ¢(M) e L(Z[r,(M)]) the round symmetric signature of M. In particular, if
af(M)=0 or a¥(f,b)=0, then ol}(1 xf,1xb)=0.

1. Round K-theory
Let A be an associative ring with 1. An 4A-module chain complex C is finite if C
is a bounded complex of based f.g. free A-modules
C: ...—>O—>Cn—>Cn_1—>...——>cl—>co‘

The Euler characteristic of a finite A-module chain complex C is defined as usual by
X(C)= L (-)rank,(C)eZ.
e

C is round if
x(C)=0€eZ.

In the classical applications of the algebraic K-groups Ky(A4), K,(A4) to topology
and chain complexes one considers the reduced K-groups

Ko(A) = coker(K(2) = Ko(A)) = Ko(A)/{1Al},
K\ (A) = coker(K,(Z) = K (A)) = K (A)/{z(- 1)}.

A finitely dominated A-module chain complex C has a projective class invariant
[Cle Ky(A)

such that the reduced projective class [C] € Ky(A) is the finiteness obstruction: C is
chain equivalent to a finite complex if and only if [C]=0e K,(4). We shall assume
that A is such that the rank of f.g. free A-modules is well-defined, so that there is
defined an exact sequence

0= Ko@)~ Ko(A)—> Ry(A4) 0.

We do not require this sequence to split. If it does split, e.g., if A =27[r] is a group
ring, then the projective class of C can be expressed as

[C]=(X(C), [C]) € Ko(A) = Ko(Z) ® Ky(A).
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The (reduced) torsion of a chain equivalence f: C— D of finite A-module chain
complexes is defined as usual to be the element

() =1C() e K (4),

with C(f) the algebraic mapping cone. Similarly for CW complexes, with 4 =Z[r]
and the Whitehead group Wh(n) = K,(4)/{n®*} replacing K,(A).
The absolute K-groups K;(A) (i=0, 1) have several advantages over the reduced
K-groups K;(A):
(i) K;(A) is the algebraic K;-group of the exact category of f.g. projective A-
modules, so that any categorical construction translates to the absolute K-groups.
(ii) The K;-groups of a product ring 4, x A, are given by

Ki(A1 xAp)) = Ki(A)) D K;(Ay).

(iii) For any rings A4, B there are defined products
Ky(A)®K(B)~ K,(A® B).

(iv) If A=M,,(B) is a matrix ring, then by Morita theory
Ki(M,,(B))=K;(B).

(v) If 7 is a finite group, then by Wedderburn’s theorem

Qlnl = ] M, (D)
J

for some matrix rings M, (D)) over skewfields D;, so that by (ii) and (iv)
K(QlxnD) = [[ Ki(D;).
J

Round K-theory is the development of the algebraic K-groups K;(A4) (i=0,1)
using round finite chain complexes. The main result is that the projective class
[Cl€Ky(A) of a finitely dominated A-module chain complex C is the round
Jiniteness obstruction: C is chain equivalent to a round finite complex if and only
if [C]=0€ Ky(A). The absolute torsion of a chain equivalence f: C— D of round
finite A-module chain complexes is an element

W(f) €K (4)

with reduction the usual torsion 7(f) e K,(4) — see Ranicki [15,16] for details.

2. Round L-theory

Round L-theory is the development of the algebraic L-groups L*(A) (resp. L«(A))
using round finite chain complexes with Poincaré duality.
Let now A be an associative ring with 1, together with an antiautomorphism

TiA-A; a-a,
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such that

(a+by=a+b, (aby=b-a
and let e€ A be a unit such that

F=g !, d=¢ lace A.
In the case when ¢ is central in A the antiautomorphism is an involution. In general
( ,& ') is an antistructure in the sense of Wall [20,21]. The g-symmetric (resp. ¢-
quadratic) L-groups L"(A, &) (resp. L,(A, €)) were defined in Ranicki [12] to be the
cobordism groups of n-dimensional e-symmetric (resp. e-quadratic) Poincaré com-
plexes over A. For simplicity we shall denote such complexes only by the underlying
chain complex C.

Given a #-invariant subgroup X C K;(A4) (i=0, 1) of the reduced K;-group such
that t(¢) € X if i=1 there are defined the e-symmetric (resp. e-quadratic) L-groups
L% (A, &) (resp. L,,X(A, €)) of n-dimensional symmetric (resp. quadratic) Poincaré
complexes C such that for i =0 the underlying chain complex C is finitely dominated
with [C] e X € Ky(A), while for i=1 C is finite with 7(C) e X ¢ K,(A), the torsion
7(C) being that of the Poincaré duality chain equivalence C"~*— C.

We shall now define variant L-groups decorated by =-invariant subgroups
X CK;(A) (i=0,1) of the absolute K;-group. For X € K;(A) these are the bordism
groups L (A,¢) (resp. LHX(A,g)) as defined above, but restricting all projective
classes to lie in X. If [A] € X C Ky(A) these L-groups can be identified with the L-
groups associated to the image =*-invariant subgroup X ¢ Ky(4) (Hambleton,
Taylor and Williams [5]). For s-invariant subgroups X € K;(A4) we need the follow-
ing definition.

An n-dimensional algebraic Poincaré complex C is round if the underlying chain
complex is round finite.

Let X CK|(A) be a =-invariant subgroup. (It is not necessary to assume that
7(¢)€ X in the round case.) The round e-symmetric (resp. e-quadratic) L-group
L"(A,&) (resp. L'%(A4,¢)) is the cobordism group of round n-dimensional
e-symmetric (resp. e-quadratic) Poincaré complexes C over 4 with torsion

(C)e X C K (A).

In the extreme cases X = {0}, K;(4) the round e-symmetric (resp. e-quadratic) L-
groups are denoted by

Loy (A,8) = Li(A4, &), Lix (A, &)=L (A, ¢8)
(resp. LA, e) =L} (A,e),  LFD(4,0) =LA, ).
For e=1 (A4,¢) is abbreviated to 4.
Algebraic surgery was used in Ranicki [12] to identify the e-symmetric (resp. &-

quadratic) Poincaré cobordism group L’%(A4,¢) (resp. LY (A4, ¢)) (X C Ki(A4),i=0,1)
for n=0,1 (resp. n=0) with a Witt group of (—)‘e-symmetric (resp. (—)'e-




136 1. Hambleton et al.

quadratic) forms if #=2k and formations if n=2k+ 1, and also to identify for a
Dedekind (resp. any) ring with antistructure A4

Ly (A, &) =L%" (A, —e)= L% (A, &)
(resp. Ly(A, &)=L, (A, —e) =L, 4(A,¢)).

Similarly:

Proposition 2.1. The round e-symmetric (resp. e-quadratic) L-group L'y (A, ¢)
(resp. L;X (4,¢) (X CK (A)) for n=0,1 (resp. n=0) is naturally isomorphic to a
Grothendieck-Witt group of (=) e-symmetric (resp. (—)ka—quadratic) Sforms if
n =2k and formations if n =2k + 1. The round symmetric (resp. quadratic) L-groups
of a Dedekind (resp. any) ring with antistructure A are 4-periodic, with

Lix(A, &)=L (A, —e)=LI¥*(A, )
(resp. LiX(A, &)=Ly (4, —e) =L} 4(4,8)). [

In particular, L?X(A,e) (resp. L5¥(A,¢)) is the abelian group of equivalence
classes of formal differences [M,@]—[M’,¢’] (resp. [M,w]—[M’,w’']) of non-
singular e-symmetric (resp. e-quadratic) forms over A with M, M’ based f.g. free A-
modules of the same rank and

(P M—->M*—t(¢p': M >M*)e X CK,(A)
(resp. Wy +ey* M>M*)—t(y'+ew'*: M > M*e X CK|(A))

subject to the usual Witt relation with the evident rank and torsion restrictions.
Thus the quadratic round L-groups L;X(A) agree with the variant L-groups defined
by Wall [21].

We can also define relative and triad L-groups. Let

be a commutative square of rings with antistructure. Fix /=0 or 1, and let
X; CK;(A)) be *-invariant subgroups for j=0, 1,2, 3, such that (f;;)«(X;) C X,. Just
as in [13] we can define variant and round versions of the relative and triad L-groups
to obtain the corresponding versions of the sequences of 2.5.1 and 6.1.1 of [13, pp.
167, 484].

The Mayer-Vietoris sequence for an arithmetic square (discussed in [13, p. 374]
for the usual L-groups) also holds for L-groups based on subgroups of K or K.
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One can use the comparison sequences in Section 3 below to prove that relevant
triad L-groups vanish.

3. Comparison sequences

Given *-invariant subgroups YCXCKi(A) (i=0, 1) such that (e)e X if i=1 let
L y(A,¢) (resp. L Y(A, €)) be the cobordism group of n-dimensional g-symmetric
(resp. ¢-quadratic) Poincaré pairs (D, C) over A such that

[CleY, [DleXcRyA) ifi=0
wC)eY, oD, C)eXcK(A) ifi=1,
so that there is defined an exact sequence
n 2 LY(A )2 Li(A,0) > Ly (A, 0) > Ly (A, )— -
(resp. -~ L) (A,e)= LY (A, &)= LY Ao~ LY (4,6

Let Z, act on X/Y by the duality antistructure, so that the Tate Z,-cohomology
groups H*(Z,; X/Y) are defined as usual. It was proved in Ranicki [12] that the
maps

L v(A,€) (resp. Ly (A, 8)) > H"(Z5; X/Y);
(D,Cy~[D] ifi=0, oD,C) ifi=1

are isomorphisms, so that there is defined a comparison exact sequence of the
Rothenberg type

n Ly (A ) Ly (A, 8) = H'(Zy; X/Y) = LYy (A, 8) > -
(resp. - =L, /(A,8) > LY(A, &) > H"(Zy; X/Y) > LY (A, &)~ ---).

Similarly:

Proposition 3.1. Given sinvariant subgroups Y C X CK(A) there are defined
relative round L-groups L'y .y(A, ) (resp. LY (A, g)), with isomorphisms

Lixiy(A,6) (resp. L*T1(A,6) > A"(Zy; X/Y); (D,C)w (D, C)

and comparison exact sequences

o Liy(A, €)= Lix(A,6) > H"(Zy; X/ Y)Y~ Ly (A, £) > -
(resp. --~—>LLY(A,E)HL;X(A,S)—»H”(ZZ;X/Y)—>LrY A,e)>- [

n—1

Let X C K|(A) be a *-invariant subgroup such that 7(+¢) e X, and let X C K,(A4)
be the image *-invariant subgroup.
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Proposition 3.2. The relative L-groups L’}a x(A,8) (resp. Lf’ "X(A, €)) in the exact
sequence
2 Lix(A,8) > Ly(A, ) > LY y(A,6) > Ly (A, 8) =
(resp. = L3X(A,6)> LY (A,6) > LF™¥(4,8) = L'X (4, e)— )
are such that the Euler characteristic defines isomorphisms

Ly (Ae) (resp. L¥™(A,8)~ A"Z5; Ky@); (D,C)=x(D). [

The generator 7€ Z, acts by the identity on Ky(Z)=2, so that

75

H'(Zy, Ko(2)) = {0 if n= {? (mod 2).

Proposition 3.3. Given *-invariant subgroups Y C X C K\(A) such that t(+&)e Y it

is possible to combine the various comparison exact sequences into a commutative
braid

LfX(Aj’_\H"(ZZ;X/Y)/\ L% (A, ¢)
SN S NS
Liy(A,€) L(A,¢) Ly '(A4,¢)
NN SN
L'%(A,S)\_/‘f”(lz; Ko(Z))\_/Lfi (A,

There is a similar braid in the quadratic case. []

The hyperquadratic L-groups L"(A, £) were defined in Ranicki [13] to fit into an
exact sequence

...ﬁLf(A,8)_>L"X(,4,8)—>L"”(A’g)—>LnX¥1(,4,8)_,...

for any *-invariant subgroup X C K;(A) (i=0, 1), such that 7(c)e X if i=1.

Proposition 3.4. The hyperquadratic L-groups L*(A,&) are such that for any
*-invariant subgroup X C K|(A) there is defined an exact sequence

> LX(A €)= Ly(A, 8) > L"(A,8) > LY (A, ).

If ©1(x¢€) e X there is defined a commutative braid of exact sequences
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— T —_ e
Ly (A, €) L'(A,¢) L¥(A, ¢)
SN S NS
L¥(A,€) L (A,€) LY (A, ¢)
NN SN
Li(4,¢) H"(Z; Ky(2)) Lix'(A4,¢)
v \_/

with X C K (A) the image of X. [

4. The round L-theory of Z
We start by recalling the ordinary L-theory of Z:

Proposition 4.1 (Ranicki {12], resp. Kervaire and Milnor [71). The symmetric (resp.
quadratic) L-groups L*(Z) (resp. L«(2)) of 7 are given by

z z 0
z 0 1
n _ 2 _ : =
L'@D=1,"> L= z, ifn=| (mod4). []
0 0 3

The isomorphism
L*@y-~27; C~a(C)
(resp. Ly(Z)—7; C~o(C)/8)

sends a 4k-dimensional symmetric (resp. quadratic) Poincaré complex C over Z to

the signature (resp. +(the signature)) (C) of the non-singular symmetric (resp.
even symmetric) form

F*CO)xF*(C)~7
defined on the f.g. free abelian group F**(C)= H**(C)/torsion. The isomorphism
L¥* @)~ 2,; C-d(C)

sends a (4k + 1)-dimensional symmetric Poincaré complex C over Z to the deRham
invariant d(C) of the non-singular skew-symmetric linking form
T2k+l(c)x TZk+1(c)_>®/Z

on the finite abelian group T2 *!(C)=torsion(H**!(C)), which is the parity of
the number of 2-primary components in the decomposition of T2+ 1(C) as a direct
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sum of cyclic groups. (The formula for d(C) of Ranicki {12, p. 243} is wrong, and
should have read d(C)=rankz,(Z,®, T+1(C)).) The isomorphism

Lig i o)—17; Cra(C)

sends a (4k + 2)-dimensional quadratic Poincaré complex C over Z to the Arf in-
variant a(C) of the non-singular quadratic form on the Z,-vector space
H2k+ I(C; 12)‘

In order to compute the round symmetric L-groups (resp. quadratic) L-groups
L}(Z) (resp. L'(Z)) it is necessary to use the semicharacteristic X1,2(C) of Kervaire
[6]. This is defined for any (2n — 1)-dimensional chain complex C over a field F to be

n—1

xi(C)= ¥ (-)rank,H,(C)eZ,
i=0
and is such that for a 2n-dimensional symmetric Poincaré pair (D, C) over F

x(D)—=x,,2(C)=rank of the (—)"-symmetric form (H,(D)x H,(D)—F)

(=dimension of the image of the adjoint map
H,(D)— H,(D)*=Homg(H,(D), F)) (mod 2)

[6, Lemma 4.1]. The mod 2 semicharacteristic played an important role in the
work of Kervaire and Milnor [7] on simply-connected surgery.

The deRham invariant d(C)e Z, of a (4k + 1)-dimensional symmetric Poincaré
complex C over Z, was expressed by Lusztig, Milnor and Peterson [9] as the dif-
ference of the mod 2 and rational semicharacteristics

AC)=x1,2(C; Z3) = x1,2(C; Q) e Z5,
where x;,,(C; F)=x,,(F®; C). Now d(C)=0e L**"(2)=17, if and only if C is

null-cobordant, that is if there exists a (4k + 2)-dimensional symmetric Poincaré pair
(D, C) over 7 with boundary C, in which case

x(D)Y=x,,(C; Q) (mod 2),
since non-singular skew-symmetric forms over @) have even rank.

Proposition 4.2. The round symmetric L-groups of Z are given by

z z 0
Z,®7Z Z,®7Z, 1

e e R N B D)
0 0 3

and the round quadratic L-groups of Z are given by
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Z Z 0
V4 Z 1
rh _ 2 s — 2 : =
L)(7)= 7y L, (2) 2,®7, if n ) (mod 4),

Proof. We define below explicit invariants on all the round L-groups of Z. The
quadratic-symmetric-hyperquadratic and the Rothenberg exact sequences show
that these invariants give isomorphisms.

Various fractions of the signature ¢(C) define isomorphisms

Lf@-z; C~a(C)2,
L¥2)~7; C~a(C)/4,
LD =L (7)~7; C~o(C)/8.
The isomorphism
L?}’f“(z)_*Zz@Zz; C o (x12(C; Z3), 1, 2(C; Q)

sends a round (4k + 1)-dimensional symmetric Poincaré complex C over 7 to
the mod2 and rational semicharacteristics. (The mod2 semicharacteristic
X1,2(C; Z,) € 7, is the obstruction to C being round cobordant to a complex C’ with
torsion homology groups H.(C’).) The isomorphisms

LY (D)= 2y; C=x,0(C5 73) = x15(C; Q)

are defined using either the mod 2 or the rational semicharacteristics, which coincide
on (2/ + 1)-dimensional quadratic Poincaré complexes C over Z. The isomorphisms

L (@)~7,; C-u(D,C),
L¥*2(2)~7,; Cw-1(D,C),
Ly (D)~ 7,®2y; Cw((C), (D, C))

are defined using the torsion 7(D, C) of a round algebraic Poincaré null-cobordism
(D, C), with a(C) the Arf invariant. The isomorphism

LN D)~ 2,®2y; C-(d(C), u(D,Z;® C))

is defined using the deRham invariant d(C) and the torsion 7(D, Z; ® C) of a round
finite null-cobordism (D,Z;® C) over Z; of Z;&® C. Every (4k+ 3)-dimensional
round quadratic Poincaré complex C over 7 is the boundary of a (4k +4)-
dimensional symmetric Poincaré pair (D, C) over Z, and the residue mod 4 of the
signature g(D) of the symmetric form on H**(D)/torsion defines the isomorphism

Lix+3(D) =2y Cro(D). U
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5. Morita theory
Let (A4, o, u), (B, B, v) be two rings with antistructure, expanding the notation to in-
clude the antiautomorphisms
a:A—A, B:B—B,
which were previously denoted x— x.
Definition 5.1. An (4, a, u)-(B, ,v) coform is a pair (3M 4, y) with zM, a B-A-
bimodule which is f.g. projective over B and
WiA-M' QgM

an A-A-bimodule map. (Here M' refers to the A-B-bimodule structure obtained
from the B-A-bimodule structure of M using ¢ and £.)
Furthermore, we require that the diagram

A—Y— MeyM
T T
A M'®zM

commutes, where
T(@)=u a(a), T(my @ my)=m,®vm,.

The coform is said to be non-singular if the map

A~ M@y M 2> Homz(Homy (M, BY, M)
sends 1 € A to a B-module isomorphism
J(w(1)) : Homg (M, B) ~> M.
Here j(m, ® my)(f)=B""(f(m,)m,.
A similar definition can be found in Hambleton and Madsen [4].
We can form the set of non-singular (4, a, #)-(B, 8, v) coforms into a Grothen-
dieck group. First of all, (M, w) and (M’, y’) are isomorphic if there exists a B-A-

bimodule isomorphism f: M— M’ with (f®f)- w=w’. The sum operation is de-
fined by (M, ) ® (M, y’), with w @ ' given by

VOV A= M @ M)YD (M) @ M)S(MOM') Qp (MO M).

We let Cf(A, o, u; B, B, v) denote the resulting Grothendieck group, to be denoted
Cf(A, B) for short.
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Let (C, 7, w) be yet another ring with antistructure. Given two non-singular
coforms (3M 4, ) and (N, ¢) we define ¢ -y as the composite

1 1
0w A M @y M=M'®,BR; B2 M @y N' @ N@y M

O, (N®y M) ®c (N®y M)

where u is defined by
WM QpN' > (NQgM)'; m@n-n@m.
This product defines a pairing of Grothendieck groups
Cf(A, B) ®7 Cf(B, C)— Cf(A, C).
There is also defined a pairing
Cf(A4, C)®; Cf(B, D)~ Cf(A®; B, CR; D);
(M4, )® (pNg, 9)~ ((C®;/ D)(M®Z N)(A®f By ¥ Xz ®),
with w &, ¢ the composite
YR

Ww&R;¢:AQ; B (M'Q®cM)®; (N'Qp N)

5 (M®; N) ®c, p (M@, N).

This construction will reappear when we discuss products in Section 6 below.

Next we shall describe our basic transformation. Recall that our object of study
is a projective A-module chain complex C and some sort of equivariant homology
or cohomology for the involution

T:C[®AC—>C[®A C; Cl®C2_’C2®uCl.

Now suppose given a non-singular coform (z3M 4, ). We send the chain complex
C to M®, C. We further define a map

A:iC'®4C> (MR, C) ® (MR, C)
as the composite

1 1
C'®, C=C'®,A®, C- 242

u®1

C'ROM MR, C

M®,C) ®z(MR;C),

where u(c@m)=m @ c. One checks that A is Z,-equivariant and then uses 1 to
transport the quadratic, symmetric or hyperquadratic structure on C to one on
MR, C.

So far we have not used the non-singularity of the coform. Only if the coform
is non-singular does the above construction send Poincaré complexes (resp. pairs)




144 1. Hambleton et al.

to Poincaré complexes (resp. pairs). In particular, a non-singular (4, a, ¥)-(B, f3, v)
coform (M, y) determines a homomorphism of the projective symmetric L-groups

Wa: Ly(A, au)= LB, B v); (C9) > MR, Cy®9),

with similar maps in the quadratic and hyperquadratic cases. See Proposition 5.6
below for the precise circumstances under which  is defined for L-groups with
decorations other than p.

If the coform (M, y) is isomorphic to (M’,w’) then M &, C is isomorphic to
M'®,4 C as a symmetric (resp. quadratic, resp. hyperquadratic) complex, for any
such complex C. Also, (M@ M')®, C is isomorphic to M& 4 C)DM' Q4 C).

Definition 5.2. The quadratic Morita category, Quad-Morita, is the category with
objects rings with antistructure, such that the morphisms from A to B are the
elements of the Grothendieck group Cf(A4, B).

We have shown that the various types of projective L-group L;“, L%, L* all define
functors

L : Quad-Morita — Abelian groups.

The round L-theory also defines a functor on this category:

Theorem 5.3. Let (M, ) be a non-singular coform. The morphism of K,-groups
M®,4-:K{(A)~ K (B)

sends =*-invariant subgroups to =-invariant subgroups. Let X CK,(A) be a

x-invarignt subgroup, and let Y C K|(B) be a =-invariant subgroup containing the

image of X. Then the transformation on chain complexes discussed above defines
a map of round symmetric L-groups

W L;kX(A, a, M)_>Lr*y(B, ﬂa U); (Cy ¢)H(M®A C) W®¢)s
with similar maps in the quadratic and hyperquadratic cases.

Proof. The hardest part is to see that our transformation lands where we claim. We
discuss the needed result.

We need to modify slightly the definition of a round chain complex. A komotopy
round complex is a finite-dimensional f.g. projective A-module chain complex C
together with an isomorphism

Codd= Z Coii17 Coven= Z Cais
H 1
so that
[Cl1=0€e Ky(A).

Then C has a round finite structure in the sense of Ranicki [16], i.e., an equivalence
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class of round finite complexes D with a chain equivalence D~ C, such that
(D= C—-D’')=0€K,(A) for equivalent D, D",

Given a homotopy round n-dimensional symmetric (resp. quadratic) Poincaré
complex C we can define the torsion of the duality map as an element

(C)=1(C" *>C)eK;(A),

using the round finite structure.

Proposition 5.4. The round symmetric (resp. quadratic) L-group L7\ (A, a, u) (resp.
L:,X (A, u)) (X CK(A)) is naturally isomorphic to the cobordism group of
homotopy round n-dimensional symmetric (resp. quadraticy Poincaré complexes
over A with torsion in X CK;(4). [

The proof of Theorem 5.3 is now immediate from Proposition 5.4. [

Corollary 5.5. The maps defined in L-theory by (M, w) in Theorem 5.3 depend only
on the class of (M, w) in Cf(A, B).

The ordinary (unround) theory is not nearly so nice, since we need based f.g. free
A-modules to define torsions, or at least s-based f.g. s-free A-modules. Under cer-
tain additional hypotheses, these troubles can be overcome.

Proposition 5.6. Let (M,y) be a non-singular (A,a,u)-(B, B,v) coform. Let
X CK((A) be a invariant subgroup containing t(+u). Also, let Y CK,(B) be a
x-invariant subgroup containing 1(+v) and the image of X. Finally suppose M is
s-free and s-based, and that the torsion of jy(l): Homgz(M, By~ M is also in Y.
Then the transformation on chain complexes discussed above defines a map of sym-
metric L-groups

Wai L3(A,0,u) > LE(B, B,0); (C,9)~(M®, C,y R p),
and similarly for the quadratic and hyperquadratic cases.
Proof. The proof consists of tedious verifications. [
Corollary 5.7. If (M, y) and (M, ') are isomorphic, then the two maps defined in
Proposition 5.6 are equal, provided that the torsion of the isomorphism M — M’ lies

inY. [

We conclude Section 5 with some examples.

Example 5.8. Let f: A B be a map of rings with antistructure. Let zM, =3B,
with
bl(b)a = blbf(a) € BMA'




146 1. Hambleton et al.

Thus M is free of rank 1 as a B-module, with base 1. Define
WiA-M'Q@pM; a-1Q® f(a).

The maps in 5.3 and 5.6 are the usual maps covariantly induced by f in L-theory.

Example 5.9. Let ¢ be a central unit in A such that a(e)=¢. Let ;M ,=A, with
a(a)a,=a,aa,, and let

W:A-2ARL A, a~eRa.

Let &4 denote the induced map in round L-theory, and in ordinary L-theory for
subgroups of K,(A) containing 7(g). Note that if e=—1, &4 is just the map taking
each element in an L-group to its inverse.

Example 5.10. Let g: A — A be an inner automorphism, such that

g:A—A; a-rar”!

defines an automorphism of a ring with antistructure. This occurs if and only if
a(r)=r""e where ¢ is a central unit with a(e)=¢ and rur~'=u. Define AMy=A,
with a,(a)a,=a,ag(a,), and also 4N, = A, with a,(d)a, =a,aa,. Define f: N— M by
Sf@y=ar™'. In this case Corollaries 5.5 and 5.7 show that gx«=£&4 in round L-
theory, and also in ordinary L-theory if r is contained in the decoration subgroup
of K.

Corollary 5.11. Let ¢ be a central unit, so that a(e)e = —1. Then all round L-groups
are Z,-vector spaces. The ordinary L-groups with t(g) in the decoration subgroup
of K,(A) are also 7,-vector spaces.
Example 5.12. Let

(B’ ﬂ, U) = (Al XAZ, ay X s, Uy X uZ)'

Define gM 4, = p(A))4,; bl@)a, =pr (b)aa,, where pr,: B— A, denotes the projec-
tion. Define y:A4,—(4,)'®4, A, by w(a)=1®a. The Morita maps induced in
round L-theory split the maps covariantly induced by the projection. Moreover, if
we include using y4 and then project out to A,, we get the 0 map in round L-
theory. This proves:

Corollary 5.13. Up to natural isomorphism
Lx, x x)(A1 X Az, 0y X 0, 1y X 1)) = Lix (Ay, oy, u;) D Ly (A, 03, 1),

and similarly for the quadratic and hyperquadratic L-groups. [

Note that the module M in Example 5.12 is rarely s-free (as a B-module), so we
almost never get a decomposition as in 5.13 for ordinary L-theories.
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Example 5.14. Hambleton, Taylor and Williams [5] and Hahn [2] define the notion
of quadratic Morita equivalence using forms. We explain this as follows. Define an
(4, o, u)-(B, B,v) form as a pair (zM4, ) with ;M a B-A-bimodule which is f.g.
projective over B and A : M®, M' - B a B-B-bimodule map. Furthermore, it is re-
quired that the diagram

M®, M B
TO TO
M® M B

commutes, where
T°W)=v'B7'),  TUm®m)=mQ@u'm,.

The form is non-singular if ad(1): M~ Homg(M, B)' "is an isomorphism of B-
modules, where

ad(A)(m ) (my) = A(my, m).
There is a natural 1-1 correspondence
{non-singular (A4, a, u)-(B, 5, v) coforms)
2 {non-singular (A4, &, u)-(B, §,v) forms}.
The map from forms to coforms is the following: the composite

ad(H)® 1
AU

w: A—Endz(M)E Homg(M, B)®z M M'®zM

defines . Conversely, the composite

1 (evaluation)

M@, M Gp(1) ' ®1 (M*)' R, M '
defines A given .
The Morita equivalence maps defined in Hambleton, Taylor and Williams [5]
agree with the maps defined here once one corrects for
(i) the fact that we have switched from right to left modules,
(ii) the switch of units from u to u ',

(iii) the symmetry formula 2.5 in [5] has a typographical error — the last m v
should be vm,.

Example 5.15. One way to get a form is to use a trace. Let i: B—A be a map of

rings (not necessarily preserving the antistructures) such that A is a f.g. projective
B-module. A trace is a linear map
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X:A—B

such that
(i) X is left B-linear when we regard A as a left B-module.
(ii) For all ae A4,

v BTN X (@) =X o (a)).

Define an (A, o, 1)-(B, §,v) form (M, ) by M, = A, with b(@)a, =i(b)aa,, and
LARLA-B; a,Qay— X(a,0 (ay)).

If A is non-singular we can use 5.14 to get a coform and hence maps in L-theory,

usually referred to as transfer maps. For example

(a) If i: H— G is an inclusion of a subgroup of finite index define a trace by
g ifgeH,
X Z[G]1—~ZIH); g~ .

0 otherwise,

with the antistructure g— +g~' (g€ G) on Z[G], ¢=+1. The resulting transfer
maps

Ax: L(ZIG]) = L,(ZIH])

are the usual transfer maps associated to finite covers in topology.
(b) If i: H— G is an index 2 subgroup and

teG-H, Bl@=wge"', v=-1,
a(h)y=who(h)tht™,  u=w() 2,
with ¢ : G — Z, the projection such that ker ¢ = H, then

0 ifgeH,

X:Z|G]~Z[H]; - .
[G] [H]; & {gt ifgeG-H

is a trace whose resulting transfer map
As: L(ZIG a,u)~ L, (Z[H], B, v)

is the ‘twisted transfer’ of Hambleton [3] and Hambleton, Taylor and Williams

[5].

Example 5.16. Liick and Ranicki [8] define a transfer map in quadratic L-theory
L, (A)— L, ,(B) given an n-dimensional symmetric Poincaré complex (C, ¢) over
B together with a morphism of rings with involution U: A — Hy(Homg(C, C)). (For
simplicity we are taking ¥ =1, v=1 here, and ignoring decorations.) For n=0 such
a complex is essentially the same as a non-singular 4-B coform (M, ), with
M=C,, amb=U(a)(mb), and the transfer map agrees with the Morita map
L, (A)—~ L, (B). Moreover, there is defined in [8] a cobordism group L"(A4-B) of
such complexes, such that the transfer is the evaluation of a product pairing
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Ly(A)®Q L"(A-B)= L, 5(B).

This suggests that the Grothendieck group Cf(A-B) of coforms in 5.5 could be
replaced by a Grothendieck-Witt group.

Given a non-singular (A4, o, u)-(B, B, v) coform we can define relative L-groups.
Specifically, let ;M4 be the coform and let X C K,(A4), Y CK,(B) be *invariant
subgroups such that Y contains the image of X. The procedures in [13] suffice to
define relative quadratic round L-groups LLY’ rX(BMA) to fit into an exact sequence

= LA o)~ LY (B, B v) = L X (M)~ LXK (A, u) -

There are similar sequences for the symmetric and hyperquadratic L-groups. We can
also replace K| by K;. If the hypotheses of 5.6 hold we can also define L,)f’ Y(BMA)
with the obvious properties.

There are also triad L-groups defined whenever

(AlM/ll) ®/41 (AIMA()) = (A_xMAz) ®/12 (AZMA())'

6. Products

For any rings A, B there is a product pairing of algebraic K-groups
K (A)® Ky(B)— K{(A R B);
(fPoPYQQ]I-1(f®1:PRQO~>PRQ),

where fe Hom,(P, P) is an automorphism of a f.g. projective A-module P and Q
is a f.g. projective B-module. There is a similar pairing

Ko(A)® K (B)~ K((A® B).

The methods of Ranicki [15,16] show that there are defined similar products in
L-groups. Given a homotopy round m-dimensional ¢-symmetric Poincaré complex
(C, ¢) over A and a projective n-dimensional #-quadratic Poincaré complex (D, y)
over B there is defined a homotopy round (m + n)-dimensional (¢ ® #)-quadratic
Poincaré complex (C® D, ¢ ® w) over A ®; B, with torsion

(CRD,¢pQy)=1(C, )R [D] € K (A Xy B).

In particular, if D is homotopy round, then (C® D, ¢ ® w) is homotopy round
simple. There is a similar product for symmetric complexes. Products of Poincaré
complexes induce products in L-groups, such as:

Proposition 6.1. Given rings with antistructure (A,¢),(B,n) and *-invariant sub-
groups X CK(A), Y CKy(B), ZC K (AR, B) such that X® Y C Z the product of
complexes induces a product of L-groups
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LA, &)®LY(B,n)~ L, (AR B, e®y). [

(Recall from Proposition 5.4 that the cobordism of homotopy round Poincaré com-
plexes is isomorphic to the cobordism of round finite Poincaré complexes.)
Example 6.2. Product with the round symmetric signature of the circle
oX(SHeLh@tt ') (@=17")
defines split injections of ordinary L-groups
a¥(SH® ~ 1 LA~ Ly (AlL 1),
o (SH® —: Ly(A) = Ly, (Al 7)),

where the decoration t refers to the *-invariant subgroup {7(¢)} ¢ K,(A[t,t"']). See
Ranicki [14] for details of this application of round L-theory. These remarks and
Proposition 3.2 can be used to prove a splitting theorem for the round L-groups.

The Morita maps of Section 5 are compatible with products:

Proposition 6.3. Let (4 M,,w) and (g Ng, @) be non-singular coforms, and
let XCK\(A), YCKyB), ZCK,((ARB) be =*-invariant subgroups such that
X®YCZ. Then there is defined a commutative diagram of round L-groups

L7 (A, &)@ LY (B, n) L, (A®; B e®n)

W® Py W ®0)

LA, €)Y Ly (B,n") Ly (A’ ®2 B,e'@n')
with X' CK((A"), Y'CKy(B’), Z’CK,(A'®, B’) =invariant subgroups such that

X'®Y'CZ', and such that X' (resp. Y') contains the image under the Morita map
of X (resp. Y).

Proof. We check the commutativity of the diagram on the chain level by using the
external product of coforms defined in Section 5. [

Remark 6.4. There are two other useful versions of 6.3:
(i) The roles played by K, and K| may be reversed.
(ii) The quadratic L-groups may be replaced by symmetric L-groups.

The product of a finite (i.e. based f.g. free) m-dimensional e-symmetric Poincaré
complex (C, ¢) over A and a finite n-dimensional x-quadratic Poincaré complex
(D, w) over B is a finite (m+ n)-dimensional (¢® #)-quadratic Poincaré complex
(C®;D, 9@ y) over A®; B, with torsion
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(C®; D, ¢ @ y)=1(C,9) ® x(D)+ x(C)R (D, y) e K| (AR, B).
This product formula for torsions can be used to obtain versions of Propositions
6.1, 6.3 in which the factors are ordinary L-groups with K,-decoration, as follows.
Proposition 6.5. Given =-invariant subgroups X C K,(A), YC K,(B), ZC K,(A®, B)
such that

(e e X, ey, XQIBI+4l1®YCcZ
there is defined a pairing of L-groups

LA, R Ly(Bm) =Ly (AR B e® ).

Given also non-singular coforms (4 M 4, ) and (g Npg, ¢) satisfying the conditions
of 5.6 there is defined a commutative diagram of L-groups

LR(A,&)® Ly (B, n) Ly (A®; B.e@n)

W ® Py (W& @)«

LRA(A,eYRLY (B, n")

Ly oA’ ®; BLe'®n')
with X'CK{(A"), Y'CK|(B"), Z'CK\(A'®, B’) -invariant subgroups such that

weNeX,(n)eY , X' R[B'1+[A'1Q® Y CZ', and such that X' (resp. Y') contains
the image under the Morita map of X (resp. Y). U

A statement similar to 6.4 also holds in the case of 6.5.

7. Spectra

Let (A4, ¢) be a ring with antistructure, and let X be a =-invariant subgroup of
K:(A) (i=0,1) such that 7(¢) € X if i=1, so that the e-symmetric (resp. &-quadratic)
L-groups L¥(A,¢) (resp. L (A, ¢)) are defined. In Ranicki [11] e-symmetric (resp.
é-quadratic) Poincaré n-ads over A were used to define a simplicial spectrum
lLOX(A, €) (resp. LL(),( (4, &)) with homotopy groups

(L% (A, e) =L (A, &) (resp. m,(LY(A, ) =L} (A,¢)).

Similarly, given a #*-invariant subgroup X CK;(4) (i=0,1) there are defined
simplicial spectra with homotopy groups the variant L-groups decorated by X, using
projective algebraic Poincaré rn-ads with classes in X if =0, and round algebraic
Poincaré n-ads with torsions in X if i=1. For /=0 the spectrum is denoted by
L% (A, &) (resp. L{(A,¢)), and for [4]e€X it is naturally isomorphic to L%(4,e)
(resp. 15 (A4, &)) with X ¢ Ky(A) the image *-invariant subgroup. For i=1 the spec-
trum is denoted by IL?X(A, £€) (resp. lL{,X (4, ¢)), with homotopy groups the round e-
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symmetric (resp. &-quadratic) L-groups
T, (LPx (A, ) = Lix(A,8)  (resp. m,(L5"(A,8) = L (4, £)).

In this section we list a few of the spectrum level maps which induce maps pre-
viously considered on the level of homotopy groups.

Example 7.1. A non-singular coform (zM,,w) induces maps of symmetric L-

spectra
Wi L%(A4, )~ LY(B, ) if i=0,

wa: LA, 8) = L0 (B ) if i=1,

for any s-invariant subgroups X C K;(A4), Y CK;(B) (i=0,1) such that M&®, X C Y.
The induced maps in the homotopy groups are the Morita maps . in the symmetric
L-groups. Furthermore, if (3M 4, ) satisfies the conditions of 5.6, then there are
also such maps for the L-spectra decorated by X C K;(4) (i=0, 1). Similarly in the
quadratic and hyperquadratic cases. Isomorphic coforms give rise to homotopic
maps.

Example 7.2. The product pairings of L-groups obtained in Section 6 are all induced
by product pairings of the corresponding L-spectra. In particular, the spectrum ver-
sion of 6.1 is a map

L (A, ALY (B, )~ L7 (A ®, B),

with X CK(A), YCKyB), ZCK(A®;,B) =-invariant subgroups such that
X®RYcCZ

Remark 7.3. The spectrum maps of 7.1 and 7.2 are compatible. The resulting com-
mutative diagrams of spectra give rise to the commutative diagrams of 6.2-6.4 on
the level of homotopy groups.

Example 7.4. The usual symmetric L-spectrum of Z, L} (Z), is a ring spectrum. The
round L-spectra tL?X(A, g), L5'(A,¢) defined for any =-invariant subgroup
X C K|(A) are module spectra over L)(7). Therefore by Taylor and Williams [18]
they are generalized Eilenberg-MacLane spectra when localized at 2.

Given a Z[Z,]-module G let IH4*(Z,; G) denote the simplicial spectrum obtained
by the Kan-Dold construction from the Z-module chain complex Homl[zz](W, G),
with W the complete free Z[7,]-module resolution of Z, so that

n,(H*(Zy; G)) = H,(Homyp, (W, G)) = H"(Z5; G).

Example 7.5. The comparison sequence of 3.2 is induced by a fibration of spectra

LF¥(A, &)= L5 (A, &)= IF* (Z,; Ko(2)).
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Similarly for all the other comparison sequences in Section 3.

Note that 7.4 applied to 7.5 shows that

I} (Za; Ko@) = V' Z2K(Zs,0),
i=0

a product of generalized Eilenberg-MacLane spectra.

Example 7.6. In some cases the ‘rank map’
rk: LY (A, &)~ B*(Z; Ko(2)) (X C Ry(A))

can be determined. Wall [22] observed that if 4 =Z[n] with involution g— w(g)g ',
then rk is trivial for all &, and the resulting short exact sequence

0-Z/2— L \(4,8)~> LY _(4,6)~0

is split. This splitting is induced by a splitting of spectra.
The rank map is a split surjection on the spectrum level in certain other cases.

Proposition 7.7. Let A be a ring with involution containing an element e A such

that

e+e=1, el=ec

>

For a -invariant subgroup X C K,(A) such that ©(—1: Ae—> Ae)e X there is a map
of spectra

T (225 Ko@) = L5 (A4)
such that rk - t=1. We are taking ¢ =1 here, abbreviating (A, ¢) to A.
Proof. The rank map of spectra splits if (and only if) it induces a split surjection
of homotopy groups
rky: LXA) > BO(Zy; Ko(2) = 7,.
The non-singular (—)-quadratic form (A,e) over A has rank 1 and torsion

(A, e)=1(e +(-)e: A~ A)

0 o o (0
:{T(—I:Ae—»Ae)eXgKl(A) 1f1={1 (mod 2).

The element (A4, e)eLﬁi(A) is of order 2, since the isomorphism of (—)-quadratic
forms over A

(e Saeay o)) (rea(; )
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has torsion

(—1:Ae— Ae)

() = { .

o 0
e X c K (A4) ifiE{l(modZ). O

In particular, the condition of Proposition 7.7 is satisfied for X =K,(A4), so that
there is a splitting map

T: 1% (Zy; Ko(2)) = Li(A).
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