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The recent work of Freedman [6] shows that a simply-connected closed topological
4-manifold is determined up to homeomorphism by its intersection form and Kirby-
Siebenmann invariant (a Z/2-valued obstruction to triangulation). Moreover every
unimodular symmetric bilinear form on a finitely generated free abelian group is
realized as the intersection form of such a manifold. In this paper we study the
homotopy classification and realization of intersection forms for closed oriented
topological 4-manifolds with finite fundamental group.

In the non-simply connected case the obvious homotopy invariants are 7, , 7, as
a A=Z[n,] module and the intersection form S': n, X 7, »Z with respect to which
7, acts as isometries. To these should be added the first k-invariant

ke H?(ny, my)

which together with n; and =, gives the algebraic 2-type introduced by MacLane
and Whitehead [13). For a closed oriented 4-manifold M* we define the quadratic
2-type of M to be the quadruple

[ (M), 7y (M), k (M), S(31)]

where S(#7) denotes the intersection form on m,(M)= H, (M, Z). An isometry of
two such quadruples is an isomorphism on 7, 7, inducing an isometry of S and
respecting the k-invariant.

In Theorem (1.1) we show that the (polarized) homotopy type of a Poincaré
4-complex with finite fundamental group is determined by the quadratic 2-type and
two additional invariants. More precisely, there is an invariant in Z/|n| - Z and a
secondary obstruction in Tors (I'(n,) ® 4 Z), where I' is Whitehead’s quadratic
functor. To obtain more detailed information about these invariants, and the
relations among them induced by change of polarization, we specialize the situation
turther.
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86 I. Hambleton and M. Kreck

In Sects. 2 and 3 we consider 4-manifolds M such that =; (M) is a group with
periodic cohomology of period 4. The special case where 7, is cyclic of prime order
was studied by Wall [20].

Theorem A. Let M* be a closed oriented 4-manifold with mt; (M) a finite group having
periodic cohomology of period 4. Then the homotopy type of M is determined by the
isometry class of its quadratic 2-type. In addition, an isometry between quadratic
2-types can be realized by a homotopy equivalence.

The groups with periodic cohomology of period 4 (this means that
Hi(n,,Z)~H**(n,, Z) for all i>0) are described for example in [26], and in
particular any finite subgroup of SU(2) has this property. More generally these are
the finite groups which act freely on some simplicial complex homotopy equivalent
to S3.

Theorem A relates the homotopy classification to an algebraic problem, but
does not identify which quadratic 2-types actually occur for manifolds. Note that
without this information we would have to consider forms on arbitrary torsion-free
A modules. This is far too complicated. In (4.1) we show that a quadratic 2-type can
be realized by a manifold if and only if it can be realized stably, and the stable
question is answered in Theorem (4.2). Here a stabilization of a quadratic 2-type
replaces [n,, 7,,k, S] by

[7'51 > T @ Azr’ i*(k)’ S('B H(Ar)] s

where H(A") denotes the hyperbolic form and i : m, »m, ® A%" is the inclusion. This
operation corresponds to forming the connected sum of a given manifold with r
copies of S2 x S2. For realization of even forms by spin manifolds with period 4
fundamental groups, it turns out that there are at most two stable isometry classes of
quadratic 2-types with given signature 8/. We denote them by Q(m,,/) and
Q'(ny, ¢). Similarly for realization of odd forms, there is only one stable isometry
class Q"(ny,¢) for each signature /. These are defined in Sect. 4 just before the
statement of (4.2).

Our realization result, Theorem 4.2, combined with Theorem A, suggests a way
to obtain the homeomorphism classification. First one studies the cancellation
problem for quadratic 2-types. This is again an algebraic problem. Then surgery
theory [21, 7] should give information about which isometries of the quadratic
2-type can be realized by homeomorphisms. In Sect. 5 we carry out these steps
assuming 7, is cyclic of odd order.

Theorem B. (i) Let M* be a closed oriented 4-manifold with rn, cyclic of odd
order. Then M is determined up to homeomorphism by its intersection form on
H,(M,Z)/Tors and the Kirby-Siebenmann invariant.

(i) An automorphism of H,(M,Z) can be realized by a self-homeomorphism if
and only if it induces an isometry of the intersection form.

If the intersection form is indefinite, it is determined by signature, Euler
characteristic and type (odd or even). For example, this implies that those
Dolgachev surfaces [2] with given odd order fundamental group are all
homeomorphic.
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For another application consider the Godeaux surface X. This is the orbit space
of a free Z/5 action on the quintic in CP? defined by Xz} =0 (a generator a € Z/5 acts
by [0zy, 0225, 0% 23, & z,]). It has Euler characteristic 11 and signature —7, so X is
homeomorphic (by Theorem B) to

Y=3*4CP?48CP? ,

where Z* is the smooth rational homology sphere obtained from L3(5,1) x S! by
surgery on the circle. However, Donaldson [5] has recently shown that X and ¥ are
not diffeomorphic.

In [4, Corollary 4.2] Donaldson also proves that there is no self-diffeomorphism
fof X such that

f*(fx);%x@.g@i , l=1,2,3 or 4 N

where X'y is the canonical line bundle and & is the flat complex line bundle
associated to the universal covering X¥—X. He then asks whether such a self-
homeomorphism exists. Since X is homeomorphic to Y it follows from Theorem B
that the answer is yes. These observations are summarized in

Corollary. (i) There is a smooth manifold homeomorphic (but not diffeomorphic [5])
to the Godeaux surface.

(ii) There exists a homeomorphism (but no diffeomorphism [4]) f of the Godeaux
surface such that f*(Ax)= A x@L® for i=1,2,3 or 4.

There are many obstacles to extending the results above to manifolds with more
general fundamental groups. It is however sometimes useful (and technically much
easier) to classify only up to finite ambiguity.

Corollary to (1.1). There are only finitely many homeomorphism types of closed
oriented 4-manifolds with given finite n; and given Euler characteristic.

1. On the Homotopy Classification of Polarized Poincaré 4-Complexes

MacLane and Whitehead [13] introduced an invariant for a CW-complex X given
by the isomorphism class [, (X), 7, (X), k(X)]. Here mr, (X) has to be considered as a
left 7, (X)-module and

k(X) € Ext*(Z, n, (X)) = H? (m (X), 13(X))
is given by the exact sequence

0-H,(X)-»H, (X, XV)»C,»Cy—»Z~0 .

~

m, (X)

In this sequence XV is the 1-skeleton of X, X is the universal cover, C, is the cellular
chain complex of X and the homology groups with Z-coefficients are as usual
considered as n, (X)-modules. Two triples [r,, 7,, k] and [n7, 73, k'] are isomorphic
if there exist isomorphisms between the m,’s and 7,’s respecting the n;-module
structure and mapping k into the corresponding k'.
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We call [, (X), m,(X), k(x)] the algebraic 2-type of X. It determines the 2-type of
X or equivalently the homotopy type of a 2 stage Postnikov tower of X: This is a
3-coconnected CW-complex B (n;(B)={0} for i>3) such that there exists a
3-equivalence X— B. B is the total space of a fibration B— K(n,(X), 1) with fibre
K(m,(X), 2) and the fibration is determined by the k-invariant k(X). The homotopy
type of B depends only on [rn, (X), n,(X), k(X)] and is denoted by B(X).

In the following we want to prove a result about the classification of oriented
connected 4-dimensional Poincaré complexes X which have the same algebraic
2-type [n, 7y, k] or equivalently with B(X)~ B. Asin similar situations it is easier to
determine the corresponding polarized objects. A B-polarized oriented 4-dimen-
sional Poincaré complex is a 3-equivalence f: X— B. We denote the set of polarized
homotopy types over B by #fP(B).

We need the following notation. For a left n;-module =, let I'(n,) be the left
n;-module of integral symmetric bilinear forms on n¥. We denote the intersection
form of an oriented Poincaré complex X by S(X). If f: X— B is a 3-equivalence
we consider S(X) to be a form on nz(B)%nz(X);Hz(X’).

Theorem 1.1. Let B= B(n, n,, k) be a 3-coconnected CW-complex with fundamental
group ny and SFP(B) non-empty.
(1) If n(B) is finite there is an exact sequence

0-Tors(I'(n,(B)) ® 4Z)— S P (B)— H4(B, B) x {symmetric Z-forms}
e on m,(B)
Z)|\my|Z
(i) If ny(B) is infinite and H,(B; Q) =+{0}, the map &{"(B)— H,(B; Z) sending
X, 1) to £, [X] is injective.

In the proof we define a free action of the torsion subgroup of I' (%, (B)) ® 4 Z on
ZFP(B), and show that the set of orbits injects into the right side. The map into the
right side is given by the image of the fundamental class f,[X] e H,(B, B) and the
intersection form on X.

Remark 1.2.1f his anisometry between the quadratic 2-types of X and Y then by [13]
there exist 3-equivalences f/: X—B and g: Y— B realizing h (i.e. h=g,'of,). The
Theorem implies that for =, finite we have an obstruction in Z/|n,|*Z and a
secondary obstruction in Tors(I'(n;) ® 4Z) for realizing A by a homotopy
equivalence.

Proof. Let f: X— Band g : Y- B be 3-equivalences preserving the intersection form
on 7, in case i) and having same invariant in H,(B; Z) in case ii) (implying that the
intersection form on H, is preserved). We first note that (X,f) and (Y,g) are
homotopy equivalent over B if there exists a map h:X—Y such that goh is
homotopic to f. We have to show that 4 is then a homotopy equivalence. As fand ¢
are 3-equivalences, h induces isomorphisms on 7, and H,(X) for i<3. Poincaré
duality implies that the same holds for i>3 if 4 has degree 1. If H,(B; Q)+ {0} the
degree is 1 since 4 preserves the intersection form. If =, is finite and non-trivial we
control the degree on the universal covering using the fact that H,(B; Q)+ {0}.
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These arguments show that we only have to study obstructions for the existence
of h.

Lemma 1.3. The only obstruction for the existence of h as above is the vanishing of
f*[X] —g*[Y] GH4(B)-

We postpone the proof of this Lemma and first finish Theorem 1.1. Since Lemma
1.3 implies statement (ii), it remains to study H,(B) in more detail to obtain
statement (i). The natural homomorphisms give an exact sequence

0— H,(B)®+Z — HyB)- H,(B,B)— 0 .

~ ~

I'(m) ®4Z Z/|my| - Z

The exactness of the sequence and the isomorphism on the right side follows by
comparing it with the corresponding exact sequence of a Poincaré complex X
dmlttmg a 3-equivalence into B. The isomorphism on the left side follows because
B=K(ny(B),2) and thus H,(B)=I(n, (B)) [12]. Under this identification the
intersection form on X corresponds to f, [X]. For later use we note here that the
torsion subgroup of H,(B) ® 4Z is mapped isomorphically to the torsion subgroup
of H,(B) if f,[X] is mapped to a primitive element in H,(B) ®,Z
Combining this information with the fact that the kernel of the transfer map on
H,(B) is the torsion subgroup, the proof of Theorem (1.1) follows if we can define
an action of Tors (I'(n,) ® 4Z) on &P (B) which under the map &°(B)— H,(B)
corresponds to addition in H,(B). For then we have a commutative diagram

FLP(B)/1ors > Hy(B, B) x {symmetric Z-forms on n,(B)}

1 |=

H4(B)/Tors —~ H,(B, E) X H4(§) s
where Tors stands for Tors (I'(n,) ® 4 Z).

Remark 1.4. 1t is useful to notice that the invariant in H,(B, B) is trivial if
f[X1= g*[f’] and Tors(H,(B) ® 4Z) 5 Tors (H,(B)). Hence this invariant is
unnecessary whenever these torsion subgroups are isomorphic (which as mentioned
above follows if there exist any (X, f) such that £, [X] maps to a primitive element in
H,(B) ®4Z). We will study this question in Sect. 3.

As #FP(B)—H,(B) is injective, the action with the desired properties exists if
for (X,f)e #FP(B) and aeTors (I'(n,) ® 4Z) we can construct (X,,f,) € P (B)
with (fa)* [Xa] =f* [X] +a.

Given (X,f) e P (B) we write X = Ku,D* with K a 3-complex. We do this in
such a way that the orientation of X corresponds to the standard orientation of D*.
For ae Tors (H,(B) ® ,Z) let a be the result of mapping a pre-image of « in H,(B)
by the map H,(B)— H,(B, K)=n,(B, K)—>n;(K).

We define X,:=KuU,.,D* As B is 3-coconnected there is a unique (up to
homotopy) extension of fix to X, denoted by f,. Now X, is a 4-dimensional
orientable Poincaré complex (orient it by the standard orientation of D*). Indeed
Hy(X,)~ H,(X,, K)~Z is generated by [D*, S3] denoted [X,], and X, is an oriented
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Poincaré complex if
N [Xa]: H*(fa)—’H4-—*(j;a)

is an isomorphism. But this is the case if and only if the intersection form on X, is
unimodular since the homology of X, is nontrivial only in even dimensions. We will
show that X and X, have the same intersection form.

The intersection form is determined by

(Fox X =tr f((£) 4 [Xo]) € Ha(B) =T () .

We will see from the following diagram that (f), [X,] =/, [X]+ . Since tr f(x)=0
this implies (7,), [X,]=7, [X]. We first look at X=Ku,D* and determine £, [X] in
the diagram

A
I

Hy(X) 5 Hy(X, K) « Hy(X, K) & my(X, K) — m3(K)

7 | | | ||

H,(B) = H,(B, K)‘*"H4(§, E) & T4 (B, K) = n3(K)

T I

H.(B)®.Z H,(B)

In the upper line 1 € A is mapped in 73(K) to g and in H,(X) to [X]. Following the
second line g is mapped to f, [X]. We consider now the same diagram for X, instead
of X. The lower two lines are not changed. Thus if we replace g by g+a’ the
commutativity of the lower part of the diagram implies that g+« is mapped to
J+[X1+awhich by the upper half of the diagram is (f;),, [X,]. This finishes the proof
of Theorem (1.1).

Proof of (1.3). We choose an orientation preserving embedding D* < X such that
K:=X—-D* is homotopy equivalent to a 3-complex. Since g:Y—B is a 3-
equivalence we can consider Y as a subcomplex of B with same 3-skeleton. We can
homotop f: X— B such that f(K)<Y.

We want to extend f|x up to homotopy toamap : X— Y. If we cando thisg -
and f will automatically be homotopic. For by assumption we have a homotopy on
K x I and since m,(B)={0} there is no obstruction to extending it to X x I.

There is a single obstruction in H*(X; n3(Y)) which decides whether we can
extendfto h [1]. As Bis 3-coconnected, 713(Y) <-m (B, Y) and under this coefficient
isomorphism the obstruction is represented by the cocycle

0: C4(1‘7)=H4(1‘73 K)EA . [D4a S3]—'TC4(B, Y) s
defined by sending [D*, $3]-f,[D*, S3].

Thus 6 actually sits in H*(X;n,(B, Y) which by Poincaré duality is iso-
morphic to n4(B, Y) ® 4Z. This group is isomorphic to H,(B, Y) as (B, Y) is 3-con-
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nected. The image of 6 under these isomorphisms is the image of [X] under
H,(X)- H,(B)-»H,(B, Y). Thus @ vanishes if and only if £, [X]=g,[Y]in H,(B).
This completes the proof.

For m, finite the intersection form is determined up to finite ambiguity by its
rank [14, 1.1]. Since the other obstruction groups occuring in Theorem (1.1) as well
as H3(m, ; ) are finite, it implies that there are only finitely many homotopy types
with prescribed finite n; and Euler characteristic. Furthermore every homotopy
equivalence between closed 4-manifolds is weakly simple {23, Proposition 7.2}, and
since SK;(Z[n,]}) is finite this implies that there are only finitely many simple
homotopy types. By surgery theory [21, 7] the difference between the simple
homotopy type and the homeomorphism type is measured by normal invariants
and surgery obstructions which again can only take finitely many values. Thus we
obtain

Corollary 1.5. There exist only finitely many homeomorphism types of closed oriented
4-manifolds with given Euler characteristic and given finite m, .

2. Some Information About I' (n;)

We have used Whitehead’s functor I'(r,) in the statement of (1.1). This functor is
defined for any abelian group L [25] as the group of symmetric bilinear forms on L*.
This is a subgroup of L ®zL~Homgz(L*, L), the subgroup of symmetric homom-
orphisms f such that f=f*. Recall that

rkel)=rx)erl)®KkezL

and that symmetrization defines a homomorphism s: L @z L—I'(L).

If a group = acts from the left on L by linear maps (i.e. L is a left A=2Z[xn]-
module) this induces an action of 7 on I'(L). If we consider I'(L) as a subgroup of
L ®zL this n-action on I'(L) is given by the diagonal action on L ®zL. In terms of
homomorphisms g € # maps fe Homg(L*, L) to g o f>g*. With this convention all
maps above become A-homomorphisms: I'(L) is a A-submodule of L ®zL and s:
L®gzL—TI'(L)isa A-homomorphism. We denote the augmentation ideal in A by I.

Theorem 2.1. Let ©t be a finite group. If L is either a finitely generated projective
A-module, I or I*, then I' (L) ® 4Z is torsion free.

Proof. By the additivity formula for the I'-functor it is enough to show the result for
L= A or Ior I'*. To show the result for A we actually compute I'(A) as n;-module.
Let 4 = be the subset of all g with g2 +1. On A4 we have a free involution mapping
g—g~'. For a given g e & we define a homomorphism A—I'(4) = A ®zA mapping
1-1®g+9g ®1. If we fix for each orbit x of 4/Z, a representative g, we obtain a
A-homomoprhism

AE = [T A-T(A)SA@z4
A

mapping the component corresponding to x by the map 1-1®g,+g,®1.
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If g>=1 the A-submodule A-(1 —g) is contained in the kernel of the map
A-T'(A), given by 1-1®g+g®1. Thus it induces a A-homomorphism
A/A-(1 —g)—>TI'(A). Finally we have a A-homomorphism A—I'(A) mapping
1-1®1.

Lemma 2.2 The maps above give a A-isomorphism
ADAVE @Y (A/A1 —g):g*1, g*=1} 5 I'(4) .

This implies that I'(A4) ® 4Z is torsion free if, for gen with g>=1, g+ 1, the group
A/A1 —g) ® 4Z is torsion free. But obviously the augmentation map induces an
isomorphism

A/A(1—9) Q4Z-Z .
For L=1 or I* we reduce the proof to the free case by showing
Lemma 2.3. ') @Ax=T'(A)=T'(I*)DA.
This completes the proof of (2.1).
Proof of (2.2). As a Z-module A has basis {g|gen}. Thus I'(4) has Z-basis:
{g®glgentu{g@h+h®glg,hemn,g+h} .

A simple calculation shows that all these basis elements are contained in the image
of the homomorphism above. Furthermore the intersection of the image of two
different components in the direct sum is {0}. Thus it is enough to check that the
maps on the components are injective. For the components in A ® A'A/2!jt is again
easy to check that the Z-basis of A is mapped to pairwise different basis elements of
rA).

Finally we have to check thatif g?=1, g+ 1 the map A>T (A), 151 ®g+g®1
has kernel A4 - (1 —g). As mentioned above A - (1 —g) is contained in the kernel. The
kernel consists of all a=Xn,h such that n,(h @ hg +hg ®h)=0. Now

h®hg+hg@h=h'"@h'g+h'gRn
<h'=h or h'=hg

and thus Zn,(h ®hg +hg @ h)=0<>n,,= —n,, for all A.

We are finished if = Xn,h with n,, = —n, for all h implies that « is of the form
a=pB(1 —g). For this we consider Bcr such that xe B=>xg¢ B and BUBg=r.
This exists as g has order 2. Let f:= )Y n,-x then

xeB

B-U=)=3 nox—¥ noxg=Y mh
xeB xeB hern

Proof of (2.3). The map I'(I)>TI'(A) induced by the inclusion I— A is injective

since I A splits (as a Z-module homomorphism). By using the additivity formula

for I' we note that the cokernel K of I'(I)>I'(A) has rank n=|m,| over Z.

Let {g,=1,95,...,9,} denote the elements of m, and consider the Z-basis

{a;=g;—1]2<i<n} for I. As above, a Z-basis for I'(A) is given by the set

I®1, a®a, 1®a+a®1, a;®aj+a;Qa (2=i<j=<n).
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Clearly the cokernel K has Z-basis the images of:
1®1, 1®a+a,®1 (Q<isn
so is generated as a A-module by the image of 1 ®1. Indeed for any gemn, :
g-(1®)=9g®9=1Q(¢g-D+(¢g-1)®1+1®1 (modI'(])

It follows that K=~ A and I'(A)xA® I'(I).
For I'(I*) we apply I' to the dual homomoprhism to obtain

0->L->T'(A*)>T'(I*)—-0 .
Let {g;} € A* be the dual basis to {g;} and set £= Y §;. Then L has Z-basis
i=0

I®f, f®§+4®L, (@sisn) .
Here L is generated as a A-module by one element £ ® §+J ® £ forany g + 1. In fact
if hen,:
h-CRi+§I®E)=SR5i+10Z% ,
where x =hg. Again we see that L~ A and
r(Ay=ri*ea .

As a consequence of Theorem 2.1 the term Tors (I' () ® 4Z) occuring in (1.1) is
unchanged if we stabilize n, by direct sum with a f.g. projective module. We
conclude this section with a description of the stable isomorphism class of n, (X) as a
n;-module for any finite oriented Poincaré complex X with finite =, .

Consider an exact sequence

0-Z,-C,—»Cy{—»Cy—Z—0

with C; finitely generated free A-modules. By Schanuel’s lemma %, depends up to
direct sum with f. g. free modules only on 7, (the notation Q3Z for %, and S3%, for
Z will be used below, see [24]).

Proposition 2.4. (i) Let X be a finite 4-dimensional oriented Poincaré complex. Then
there exists an integer r and an exact sequence

0-2->1(X) @A >ZF -0,

where %, fits into an exact sequence as described above.
(i) 7, (X)) ®2Q=(I RI*) ®zQ @ Q[n,] for some r where I is the augmentation
ideal of Z[mn,(X)].
(iii) There is a natural isomorphism
Exty(Z5, 22) = Hy(my (X), Z)

under which the class of the extension in (i) corresponds to the image of the
tundamental class c,[X], where c: X— K(n,(X), 1) classifies the universal cover.
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Proof. Part (ii) follows from (i). In fact over @ we know IQ [r,] = IQ [r,]* and thus
K and K* are both isomorphic to IQ[rn,] as there is an exact sequence

0-I1Q[m ]*->Q[r]-Q[n; - Q[ ] - Q-0

Furthermore the sequence in (i) splits over @, thus 7,(X) ®z®@Q has stably the
desired form. But over Q cancellation holds so the same is true unstably. For (i) we
consider the chain complex C, of ¥. We have a commutative diagram of exact
sequences

CinCod A -0

(V)

Cy— %, 5 H,(X)-0

where K is the cokernel of C3;—C, anf f the induced map. %, fits into an exact
sequence

2.5) 0-%,-C,>Cy»Cy—»Z—-0

and by Poincaré-duality K* fits into a similar exact sequence. Thus we are finished if
H,(X)is anextension of /" by &, . A little diagram chasing shows that the following
sequence is exact

0- gz —>H2(A7)®C2 - A -0
The isomorphism of (iii) is obtained by dimension-shifting in the complete Ext
theory [24, Sect. 2] using the indentifications (k=0):

Ext;*(K, L)~Hom (S*K, L)/PHom (S*K, L)~Hom (K, Q*L)/PHom (K, QL)
Ext% (K, L)~Hom (Q*K, L)/PHom (Q2*K, L) .

In particular the extension of (i) is represented by the boundary map B; — %, under
the identification

Exti (A, Z,)=Hom (Q'X4", &,)/PHom (' A", %)
~Hom (B3, Z;)[PHom (B3, Z,) ,

where Q' >~ B, ~B¥~S*7Z.
Since

Hy(ny, Z)~Ext;%(Z, Z)~Hom (Z, 3Z)/PHom (Z, Q°Z)

on the right-hand side the class ¢, [X] is represented by the homomorphism Z—Q°Z
induced by comparing the chain complex C,, with any projective resolution defining
Q3Z. This element goes to d: By—%, under the isomorphism

Hom (Z, Q°Z)/PHom (Z, Q°Z)~Hom (S*Z, Q3Z)/PHom (S*’Z, Q37Z)
~Hom (B;, %,)/PHom (B3, %) .
Remark 2.5. 1f 7,(X) has cohomology of period 4 we have an exact sequence

(2.6) 0-Z—->A->P,»P,>A->Z—0
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with P; finitely generated projective modules [19]. Proposition (2.4) and
Hy(my ; Z)=0 imply that n, (X) is isomorphic to I ® I* up to stabilization with f.g.
projective modules. Thus we obtain from (2.1): Tors (I'(m,(X)) ® 4Z) =0.

3. Poincaré 4-Complexes Whose Fundamental Group has Cohomology
of Period 4

Theorem 3.1. Let 7, be a finite group of cohomological period 4. Then the homotopy
types of finite oriented connected 4-dimensional Poincaré complexes X whose Spivak
normal fibrations admit a TOP-reduction are in 1—1 correspondence with the
isometry classes of quadratic 2-types

(7 (X), 72 (X), k(X), S(X)] .

This is an immediate consequence of Theorem (1.1) and the Remark (2.5) at the
end of Sect. 2, once we know that we can we can omit the invariant in Z/|r,|- Z.

For a Poincaré¢ complex X we denote the classifying map of the universal cover
by c¢: X-K(n;(X), 1).

Proposition 3.2. Let X be a finite oriented Poincaré 4-complex whose Spivak nor-
mal bundle has a TOP-reduction, n;(X) finite and c,[X]1=0€ Hy(n;(X)). Then
Tors (H,(B(X) ®4Z) 2> Tors (H,(B(X)) [implying that we can omit the invariant in
Z/|my|Z in (1.1)]

Proof. By Rema~rk (1.4) we have to show that the interg_ection form considered as
element of H,(B) maps to a primitive element in Hy(B) ® 4Z.

We will show this now in a very special case. Let A4 be a finite 2-complex with
finite fundamental group. We denote the boundary of a smooth regular neigh-
borhood of an embedding of 4 into R by M(A4). n,(M(4))=n,(A4), m,(M(A))

=7, (A)* @n,(A) as A-modules and S(M (A))=((; é) is a metabolic form. We
abbreviate n,(M(A)) by =,.
We want to show that the image of S(#M(4)) in
I'(n} @) QUZT (13) @UZ DT () ®4Z D7f @47,

is primitive. The component of S(M(A4)) in n¥ ®zn, = Homz(r,, ;) is the identity
map. We will show that the image of Id in n¥ ® 47, is primitive.
We have a commutative diagram

n¥ ®zn, =Homz(n,, Z) @z, = Homgz(n,, ;)

| | l

nik ®ATE2= HOm(TC2,A) ®A1t2 —EF HOmA(nz,ﬂz)

where the horizontal maps are the obvious maps and the left vertical map is
fRa-f®a with f(x): = Y. g-f(g~'(x)) and the right vertical map is

gemy

p—-¢ with d(x)=Y g-¢(g7(x)) .

gemy
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In particular Id e Homz(nz , M) is mapped to |y | - Id in Hom 4(=,, 7,) and so the
component S(M(A))in 7} ® 47, is mapped under fin Hom(n,, 7,) to |my] - 1d. We
will show that cok g=2Z/ Il Z generated by Id. This implies that the component of
S(M(A))in ¥ ® 47, is primitive and thus S(¥ (A4))is primitive in I'(n¥ ®n,) @ 4 Z

To determine cok  we use the exact sequence

0—7o(d)—> Co (D)~ Cy (D)5 Co(A)—Z—0
7'62 C2 C1 /1
We denote the image of d, by R and of d; by I. The commutative diagram

CF @1, — 1} Q47

I= Is

Hom (C;, m;)»Hom 4 (n,, 1) > Exty (R, m,) -0
implies cok f=~Ext}(R, n,) and the class represented by Id goes to
0-mn,—»C;—»R-0 .

Dimension shifting using the exact sequence above implies
ExtY (R, m,) @ Ext} (I, n,) @ Ext}(Z, n,) © Ext%(Z, R) = ExtY(Z, I)
and under these isomorphisms 0—m, - C,— R—0 is mapped to
0->I->A-Z-0

which is a generator of ExtY{(Z,I)=Z/|n,| Z.

This finishes the proof of Proposition 3.2 in the special case B=B(M(A4)). We
want to reduce the general case to this special case. This will be done by showing that
the result for Poincaré complexes follows from that for manifolds and then
deducing the result for manifolds from the special case M(A4).

The statement that the intersection from considered as an element in H,(B)
~['(n,) maps to a primitive element in I'(n,) ® 4Z can be combined with the
formula I'(K® L)=T'(K) ®I'(L) ® K ® L to make several easy observations. First
note that forms Sx and S; on K* and L* respectively give the orthogonal sum
Sx®S, on K*@®L* whose image in this expression for I'(K@® L) is (Sk, S, 0).
Hence if the image of Sk is primitive so is that of Sx @ S, . Furthermore, if S, is a
my-equivariant form on a free A-module L* then its image in I'(L) ® 4Z is divisible
by |r;|. In this situation if the image of Sx @ S, is primitive then the image of Sk is
divisible at most by integers relatively prime to |r,]|.

Now suppose that X is a finite Poincaré 4-complex with a TOP reduction of its
Spivak normal fibre space. Since H, (B(X)) = I' (n,(X))is Z-torsion free and S(X) is
a primitive element, its image in I'(n, (X)) ® 4Z can be divisible only by primes
dividing |m;|. Let M— X be a degree 1 normal map from a manifold M which is
a 2-equivalence and note that S(M)=S(X)® S, where S, is a non-singular
7 -equivariant form on a stably free A-module L*. From the remarks above we see
that Proposition 3.1 for Poincaré¢ complexes follows from the result for manifolds.
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Next let M be a closed oriented 4-manifold with finite 7, and N a closed 1-con-
nected 4-manifold. A similar argument proves that Proposition 3.2 holds for M if
and only if it holds for M # N.

After replacing M by an appropriate connected sum with + CP?’s and perhaps
the Chern manifold CH we can assume that M has trivial signature and Kirby-
Siebenmann obstruction. In this situation the stable homeomorphism (i.e. up to
connected sum with S? x §2°s) type of M is determined by ¢, [M]e€ H,(n, ; Z) [11,
Sect. 3] (compare also the discussion in Sect. 4). This completes the proof.

4. On the Realization of Quadratic 2-Types

We want to know which quadruples [r;,n,, k, S] are the quadratic 2-types of a
closed oriented topological 4-manifold. If this is the case we say that [n, 7, k, S]is
realizable by a topological manifold.

Our first observation is that this is again a stable problem in the following sense.
Wesay Q=[n,,n,,k, S]and Q'=[n, n3, k', S'] are stably isomorphic if and only if
for some r, '

QOHUAN=Q' ®H(A") .

For any A-module H(V)is the hyperbolic form on V @ V'*, and we use the following
notation. Given a quadruple [r, , 7, k, S]and a quadratic form (V, 1) we abbreviate
[n, 7, @V, ik, S®AIby [ny, 72, k, S]D(V, ). Here i, k is the image of k under the
inclusion of coefficients n,—»n, P V.

Lemma 4.1. Let n, be a finite group. Then [n,, 5, k, S] is realizable by a topological
manifold if and only if there is a representative of the stable isomorphism class which is
realizable.

Proof. (“=") If [ry,m,,k, S] is realizable by X, [r,,n, ® A%,i k,SD® H(A?)] is
realizable by X # S2 x S2.

(“<=") Let us first suppose [n;,n, ® A%, ik, S@® H(A*)] is realizable by a
topological manifold M. According to Freedman [7] topological surgery is possible
to kill the hyperbolic summand. More precisely M can be decomposed as
M’ 4 S? x §? such that 1,(M)=n,® A2, S(M)=S® H and k(M) =i (k).

This Lemma suggests that the realization problem could be solved by studying
the stable homeomorphism classification. This in turn can be reduced to a bordism
problem.

Let E->BTOP be a fibration and denote the bordism group of closed
topological 4-manifolds together with a lift of the normal bundle over E by Q,(F). If
this lift is a 2-equivalence (which always can be achieved within the bordism class),
the bordism class determines the stable homeomorphism type. For then one can do
surgery and handle-subtraction on the bordism to obtain a stable s-cobordism [11,

Sect. 2]. Assigning to such a 2-equivalence the quadratic 2-type of M one obtains a
map

Q,(E)—(stable isomorphism classes of [r,,,,k, S]}

and the realization problem is solved by determining the image of this map.
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Before we carry this out in the case where ; has cohomology of period 4 we
introduce some notation. The exact sequence (2.6) represents a generator of
H*(n, ; Z)~ H3(n, ; I*) denoted by y. Let [P]=[P,] —[P;] € Ko (Z [n,]) be the Euler
characteristic of this exact sequence. The image of y under the map induced by the
first factor inclusion I*SI*@I®P* @ P @ A*" for any r will be denoted i ().
Using these we define the quadratic 2-type

Q(ﬂ1)=[ﬂ1,1*®I@P*®P, l*(?)’H(I®P)]

where H(I @ P) is the hyperbolic form on the A-module /@ P.

Similarly we define a quadratic 2-type Q'(n,) with the same &, n,, and k and a
certain metabolic form S on I @ P which differs from H(I @ P) only in its restriction
to I. A Z-base for I is given by {g—1:geG} and S on I is defined by:

2 if g=h

Sto—1.h 1)‘{1 if g+h
We will prove later that Q(n;) and Q'(n,) are isometric if and only if all Sylow
subgroups of m; are cyclic (in [15,4.8] the latter condition was shown to be
sufficient). In addition we note that the stable isometry classes of these quadratic
2-types do not depend on the choice of the exact sequence (2.6).

We denote the orthogonal direct sum of our special quadratic 2-type with ¢
copies of (+) the positive definite Fg form tensored over A by

O(m,£)=Q(m) D [4%, A’ ® (L Ey)]

This has signature 8 |r,|¢ for any integer /. A similar definition gives Q'(n,,?).
Finally for realization of odd intersection forms we need

Q"(n,¢)=0(n) (A4, (1) B, (=) ® £ (4, (1)) .

Theorem 4.2. Let n; be a finite group having periodic cohomology of period 4. Then
() If S is odd, a quadratic 2-type [n,,m,,k,S] can be realized by a closed
topological 4-manifold if and only if it is stably isometric to Q"(ny,¢) where
¢ =(sign S)/|my|.
(ii) IfSiseven, [n,,n,,k, S]isrealizable by a closed topological spin 4-manifold if
and only if it is stably isometric to Q(ny,¢) or Q'(ny, () where ¢ =(sign S)/8 - |my|.

Proof. According to the discussion above we have to study the quadratic 2-types of
representative elements in Q,(E) for the various fibrations E. In our situation we
have to consider only two cases. In case (i) the corresponding bordism group is
QTOP(K(m,, 1)), the bordism group of singular oriented topological manifolds. In
case (ii) it is Q7°PSP™(K(m,, 1)), the bordism group of singular topological Spin
manifolds. As we can arbitrarily vary the signature and Kirby-Siebenmann
obstruction by connected sum with an appropriate 1-connected manifold it is
enough to determine the quadratic 2-types of elements in these bordism groups for
which these invariants vanish. In the first case this leaves us with the 0-element. Let
M(A) be the manifold introduced in Sect. 3. To obtain a manifold with odd

intersection form on 7, we add to it CP2 # CP2, and we are finished in this case if the
quadratic 2-type of M(A4) is Q(x,;). This will be shown below.
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In the second case the bordism group is more complicated. Consider the E, term
of the Atiyah-Hirzebruch spectral sequence for Qf°PSPIN(K(n,, 1)).

Eg'4=Z ’ E22’2=H2(n1’22) H E23’1=H3(7I1,Z) s

and the other groups on the line corresponding to Q, are trivial. The bordism group
splits into the summand Z generated by the Eg manifold and the rest. The image of
the normal cobordism classes [N, G/TOP] in Q, factors through the image of
H,(n;, Z,) by comparison of E, terms. Since for this fundamental group the surgery
obstructions of closed 4-manifold problems are detected by the signature [9], it
follows that all elements in the image of H,(r;, Z,) (if not killed by differentials) are
represented by 2-equivalences homotopy equivalent to N. Thus the corresponding
bordism classes give no additional quadratic 2-types.

Next we consider the classes corresponding to Hi(rn; ; Z) =Z, (if this group is
not killed by a differential). Consider a closed singular Spin 3-manifold V- K(n, 1)
representing the non-trivial element in H;(n, ; Z,). The corresponding element in Q,
is represented by V' x S!, where S! is equipped with the non-trivial Spin structure.
We will show that after replacing this in its bordism class by a 2-equivalence its
quadratic 2-type is Q '(mr;). Again for the 0-element in the bordism group we can take
M(A) as representative.

In the remainder of the proof, we determine (by an indirect argument) the
quadratic 2-types of M(A4) and the manifold resulting from ¥ x S'. Consider the
following construction. Let Y be a (finitely-dominated) 3-dimensional Poincaré
complex with TOP normal bundle and n,(Y)=mn,. Let X be the 4-dimensional
Poincaré complex

X=(Y-D¥xIu(Y—-D3¥xI ,

the double of (Y —D?) xI. From the construction it follows that S(X)=H().
Furthermore X has a top-reduction of its Spivak normal bundle.

Notice that X could equally be described as the result of surgery on an S* in
Y'x S* to make =, correct. As Y x S! is finite this implies that X is finite. In this
description we should consider Y x S§* with its zero-bordant spin structure and do
the surgery preserving it.

The k-invariant of X is the image of the k-invariant ye H*(n,,I*) of Y—D?3
under the map induced by the inclusion

imy(Y—D3)=I*>n,(X)=IDI*

mapping I* onto {0} x I*. This follows from the commutative diagram using
YO = y.

0—m,(Y —D3—H,(Y - D3, Y- C,—Co—Z—0

| [

0—m(X) — H,X X) —C—C—Z—0.

Thus the quadratic 2-type of Xis [y, I ®I*, i, k, H(I)] where k is the k-invariant
of Y—D3. Since Y has a Top normal bundle there exists a degree 1 normal map
J:V—Y, ¥ a3-manifold. By the same construction as above we get from this map a
4-dimensional degree 1 normal map g: W—X. The surgery obstruction of this
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normal map is H(P) where [P]= o (y) is the finiteness obstruction. By construction
W is zero bordant in Q°""™(K(r, , 1)) and thus stably homeomorphic to M (4). By
surgery we can replace g by a 2-equivalence 4 : N— X. The quadratic 2-type of N is
Q(m,) since by Poincaré duality the quadratic form on N splits into the quadratic
form on X and the surgery obstruction H(P).

Notice that if in the construction of X from Y x S* and similarly W from ¥ x §!
we preserve the spin structure which is non-trivial on S*, we are in the situation
described above. Its quadratic 2-type is Q'(r;) by the calculation in [15, Sect. 4].
This finishes the proof of our realization result.

Remark 4.3. If ny has a quaternion 2-Sylow subgroup then Q () is not even stably
isometric to Q’(n). In fact the differential

dz : E25,0__)E§,1 ;H;;(ﬂ:l . Z/2)EZ/2

is just the dual of S¢* on Hs(n,, Z), so this Z/2 survives to give a non-trivial element
in

QFOPSPIN(K(ny,1))=m4(K(my, 1) A M TOPSPIN) .

Since BTOP is equal to BG through dimension 2, this element maps non-trivially
into my(K(my, 1) A MG {4)), where MG {4) is the Thom spectrum over the 3-con-
nected cover of BG. Therefore N’ is not homotopy equivalent to N and hence has a
distinct quadratic 2-type. If n; has only cyclic 2-Sylow subgroups this differential is
non-trivial killing the corresponding element.

Notice that Theorem (4.2) very much restricts both the possible 7, and the
possible intersection forms on 7, for these manifolds. In the extreme case when the
manifold is a rational homology sphere, it gives some information about the
possible fundamental groups. Not every finite group arises : for example, an abelian
fundamental group for a rational homology 4-sphere must have rank <3.

Corollary 4.4. Let nty be a finite group with periodic cohomology of period 4. Then
there exists a closed topological 4-manifold M with fundamental group m, which is a
rational homology sphere.

Proof. Consider a closed topological 4-manifold M realizing the quadratic 2-type
O(m)=[n, I®I*DPDP*, i (k), HIDP)] .

By the Roiter Replacement Lemma [17], I @ P=J @ A" for some ideal J of A locally
isomorphic to I. Therefore

O(my)=[ny, J®T* DAY, iy (k'), HJ) ®H(AN)]

and the summand H(A") may be surgered away to obtain £* with n,(Z)=J @ J*.
Since J is locally isomorphic to 7, the closed topological manifold X is a rational
homology sphere.

If =, has a presentation with an equal number of generators and relations, for
example the finite subgroups of SU(2), such examples can be constructed smoothly.

The above result may be of interest in comparing smooth and topological
realization of the ordinary intersection forms on H,(M, Z)/Tors for 4-manifolds.
Donaldson [3] has shown that for arbitrary r, , a definite form which can be realized
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smoothly is a standard form. For a given &, it is not clear that definite forms are even
realized topologically. We note that when a group =, is the fundamental group of a
topological rational homology 4-sphere then (exactly as in the simply connected
case) every unimodular symmetric bilinear form over Z is the intersection form on
H,(M,Z)/Tors for some topological 4-manifold M with the given =;.

Remark 4.5. It should be noted that for even forms. Theorem (4.2) does not consider
realization by arbitrary non-spin manifolds. To give a complete result further
computation of the bordism groups is required. The following example shows the
relation between the k-invariant and the second Stiefel Whitney class in a special
case.

Let N and M be the sphere bundles of # @& and 31 over RP? respectively, where
nis the canonical line bundle and ¢is the trivial bundle. The universal cover is in both
cases S2 x S? with hyperbolic intersection formonn, =Z _ @ Z _ . If we fix the basis
of m, given by S? x (*) and (*) x S? where (*)=(0,0,1) € S? then from the formula

(x,)=(=x,0(0) e=n@& or =3y

for the covering transformations of N and M, we see that RP? is embedded by the
quotient of the equivariant map

x=(x,(¥) or (x,x) .

It follows that the k-invariants of N and M in
H3(ny, m) =22, DL,

are given by k(N)=(1,0) and k(M) =(1,1) using the basis above for n,. Therefore
the quadratic 2-types of N and M are

[1291— @Z—a (1,0)’ H(Z*)] and [2231-' @Z-—a (1’1)1 H(Z—)]

respectively, These quadruples are not (stably) isomorphic. In fact let weZ ®Z
reduce mod 2 to the k-invariant, then S(w, w) mod 4 is independent of the choice of
w but has value 0 for N and 2 for M.

Note that since w, (N) =0 and w, (M) %0 they are not homotopy equivalent, so
that the k-invariant must be included in the quadratic 2-type to obtain a homotopy
classification. In particular, the homotopy type is not determined by [r,,7,,S]
for n, =7,.

S. Proof of Theorem B

In the situation of Theorem A we can get a homeomorphism classification from a
homotopy classification by surgery techniques [7, 21]. It follows easily that a closed
oriented 4-manifold with =, finite cyclic of odd order is determined up to
homeomorphism by its quadratic 2-type and the Kirby-Siebenmann invariant. One
needs to know that in this case L§(Zn,)=0, SK,(Zn,)=0, and that the self
¢quivalences (inducing the identity on homology) act transitively on the normal
Invariants [21, p. 237].
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To prove Theorem B, we will show that the quadratic 2-type of M is determined
by the intersection form B, on H,(M, Z)/Tors, and then this surgery argument
finishes the proof.

For a cyclic group = of odd order n let I" denote the usual maximal order in Qn
containing A =Zn. Consider the fibre square

A—T

.1) | |
[14,~11F,

where the products are taken over the primes dividing n. Now I'~I, @I’y with
Iy=7Z and I'; a direct sum of rings Z[{,] for all din, d+1. Let (L,h) be a non-
singular A-lattice and (I'L, ) its extension to a non-degenerate I'-lattice. We denote
the induced I'-lattices by (L;, ;) so that

(FL’ h)g(LO’ hO) @(Ll 9h1) .

Two A-lattices are stably isometric if they become isometric after orthogonal direct
sum with a hyperbolic form on a free module.

Theorem 5.2. Let ©t be an odd order cyclic group and (L, h), (L', h") be non-singular
A=1Zr lattices. If
(i) (L,h) and (L', h’) are stably isometric,
(i) (Lo, ho) =(Lo, ho),
(iii) (L,h) is the orthogonal sum of H(I) and a projective A-lattice, then
(L,h)=(L",h").

Proof. First one can show that cancellation holds over I'. The results of Jacobowitz
[10] show that cancellation of hyperbolic planesis possible locally, so that our forms
may be assumed to lie in the same unitary genus. Then Shimura [18; 5.24] classifies
the forms within a unitary genus. To obtain cancellation over I' from this
information is an easy generalization of the argument in [16, pp. 162-163], and [8,
Sect. 3].

Over /L, for p|n we may assume that our forms have quadratic refinements and
apply the method of [22, Theorem 2] to reduce to IF,n. For this we use (iii) to
conclude that End(L ®Z,)—>End (L®TF,) is surjective (in Wall’s result the
modules are projective so this is automatic, but here the point is that /*~7is a
principal ideal in A). It follows tha the image of

(5.3) [T Aut((L,h) ®Z,)~]1 Aut(I'L,h) ®Z,)
pin pin
misses only the factors corresponding to characters y : 1 —>Q({,,) with m having the

same prime divisors as n.
From (5.1) the set of A-lattices which are isometric over I' and A is bijective to

Aut (L, h) ®Z)\Aut (I'L, k) @ Z)/Aut ('L, h)

where as above the completion is over primes dividing n. By the Strong
Approximation Theorem [18, 5.12], applied to SU(L,, ;) and the remark just made
on the map (5.3), this set has only one element [condition (iii) implies that U(L,, k1)
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contains enough reflections; at each representation the I'-extension of H(J) is scale
equivalent to a hyperbolic plane]. Therefore (L, )= (L', h’).
To apply (5.2) to our situation we take

(L, h)=H(I) ®((H,(M, Z)/Tors, By) ® A)

and (L', h')=(n,(M), S). These are stably isometric by Theorem B and conditions
(i) and (iit) follow by construction. Therefore an automorphism of H,(M; Z)
which induces an isometry of B, gives an isometry of (L, h).

It remains to consider the k-invariant in H3(n,,I@®I*)=Z/n ®Z/n. If this
group is equipped with the hyperbolic form Theorem (4.2) shows that the possible
k-invariants are primitive elements k =(k, k,) with k;k,=0 (modn). The auto-
morphisms of H(I) act transitively on this set: use the fact that

I*=Z[g)/(1+g+g*+...+g""Y), g generatesm ,

to (i) lift units from I'*—I*/(g —1) = Z/n and (ii) find elements x; € I'* with reduction
k; such that x;x, =0, and x,y, +x,y; =1, y,y, =0 for some y;eI* (such elements
can easily be found with cyclotomic polynomials). Finally, an automorphism of
H,(M;Z) is induced by an isometry of (L, k). After composing with a suitable
automorphism of H(I) we may assume that the k-invariant is preserved. This proves
part (ii) of Theorem B.
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