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In [1], H. Lenstra determined Go(RG) for G abelian, by expressing it as
a sum of classical objects. In [6], D. L. Webb extended this calculation to
G,(RG) for noetherian rings and for G finite abelian, finite dihedral, or a
quaternionic 2-group. In Theorem 2 we do the same calculation for any
finite p-group.

We do the calculation in two steps. In Sectionl we reduce the
calculation (Theorem 1), and in Section 2 we go from Theorem 1 to the
final answer (Theorem 2). In Section 3 we make a conjecture as to the
correct answer for any finite group. We prove this conjecture for a large
number of groups, including all finite nilpotent groups (Remarks 10
and 11).

We remark that Webb has also proved this result by his methods [7].
We also thank the referee for removing a restriction on the ring R as well
as other useful comments.

1. THE FIRST REDUCTION

Let us fix a prime p throughout this section. Let R be a noetherian ring,
and let R[1/p] denote the localization of R with respect to p. We prove
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THEOREM 1. Let G be a finite p-group and let R be noetherian. Then the
following sequence is split exact

0-G,(RG)—- G,(R[1/p]1G)®G.(R)—> G,(R[1/p]) > 0.
Proof. We begin by considering the localization map
G.(RG)— G,(R[1/p]G).

The key step in the proof consists in showing that the ring map RG — Re
induces an isomorphism on the relative groups in the long exact sequence
associated to the localization map. Here e denotes the trivial group and the
ring map is the one induced by the group homomorphism G — e.

Quillen [2] produces a long exact sequence involving the localization
map whose third term is the K-theory of the category of finitely generated
RG-modules which are p-torsion. This is Theorem 4 of [2], where we use
Swan [5] Corollary 5.12 to identify the quotient category. Let Tor, G
denote the category of finitely generated RG-modules which are p-torsion.

We now apply the usual theory. If M is in Tor, G, let N denote the set of
elements of M fixed by G. Clearly N is an RG-submodule, and it cannot be
zero unless M is. An easy induction argument shows that every object in
Tor, G has a finite filtration whose quotients are RG-modules on which G
acts trivially.

Within the abelian category Tor, G, the full subcategory of G-trivial
modules is an abelian subcategory, so we can apply Quillen’s Theorem 3
[2]. It says that the map induced by the projection from Tor, e to Tor, G
is an isomorphism on K-theory.

The proof of Theorem 1 is now an easy Mayer-Vietoris argument com-
bined with the splitting of RG — Re induced by the inclusion Re — RG.

2. THE ANSWER

The answer is given in terms of the rational representation theory of the
group G. To each irreducible rational representation ¢, we can associate a
division algebra D,: if ¥, denotes the rational vector space for ¢, then
D, =Endgs(V,). It is well known that

QG =X End,,(V,), (1)
¢

where the product runs over the irreducible rational representations of G

(see, e.g., [4, p. 92]).
If G is a p-group, Z[1/p]G is a maximal Z[1/p]-order in QG (see, e.g.,
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[3, (41.1) Theorem, p.379]) and hence is a product of maximal Z[1/p]-
orders in the factors. But each of these is Morita equivalent to a maximal
Z[1/p]l-order in D, (see, e.g, [3, (21.7) Corollary, p. 189]). If ¢ is not
trivial, let 4, denote a maximal Z[1/p]-order in D, (they are all Morita
equivalent). If ¢ is trivial, let 4, denote Z.

It is now easy to compute G,(R[1/p]G) since G, preserves products and
Morita equivalences yield isomorphisms. This computation and Theorem 1
above prove

THEOREM 2. Let R be a noetherian ring and let G be any finite p-group,
p any prime. Then

Gn(RG) = (_B Gn(R®Z A¢)’
where the sum runs over all the irreducible rational representations of G.

Remark 3. If p is a zero divisor in R then Theorem 1 just says that
G,(RG) is isomorphic to G,(R) via the usual map RG — Re. Theorem 2
says the same thing.

Remark 4. Tt is a theorem of Schilling that 4, is rather restricted (see
[3, (41.9) Theorem, p. 383]).

Remark 5. If R is Dedekind, then
Gn(R®Z A¢) = Kn(R®Z A¢)

via the Cartan map. For example, K,(R® ; 4,) could be the class group of
integers in an algebraic number field if n =0 or it could be K,(Z) for any n.
The literature contains many more such calculations.

Remark 6. Webb [6] remarks that his results actually hold for the
defining K-theory spectra. This is easy to see for our results also.

Remark 7. The Lenstra—Webb Theorem for G,(RG) with G abelian
can be derived from Theorem 2. Write G = H@® P where P is the p-Sylow
subgroup of G. Then G, (RG)= @G, (R[H]®z4,) where the sum runs
over the irreducible rational representations of P. Furthermore,
G R[H]®z 4,)=G,((R®z 4,)[H]) so we can induct on the order of G.

Remark 8. The above discussion can be generalized. Let P be a p-group
which is normal in G. The same argument that proved Theorem 1 will
produce a Mayer—Vietoris sequence

.+ > G(R[G/P]) - G,(R[1/p][G/P])® G,(RG) > G,(R[1/p]1G) - -
One can write Z[1/p1G=17[1/p][G/P]x A where the ring map back
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from Z[1/p]1[G/P] to Z[1/p]G sends each geG/P to 1/|P| Y cr-1pn P
(where n: G — G/P denotes the projection). From this splitting and the
Mayer—Vietoris sequence, we get that

G,(RG)=G,(R[G/P])®G,(R®z A).

If one can identify A in a useful way, one may proceed further. See
Remark 10 below for an example of this.

3. THE CONJECTURE

The decomposition (1) is valid for any finite group. One might conjec-
ture that, if R is noetherian,

G, (RG) is isomorphic to @ G, (R®; 4,),

where the product runs over the irreducible rational representations of G
and where 4, is a maximal Z[1/w,]-order in D,. The conjectured value for
w, is g/kx, where g is the order of G, k is the order of the kernel of the
representation ¢, and x is the degree of any of the irreducible complex
constituents of the complexification of ¢.

It is not difficult to see that this conjecture is consistent with the results
of this note, and with those of Lenstra [1] and Webb [6].

Remark 9. One useful fact about w, is the following theorem of
Jacobinski ([3, (41.3) Theorem, p. 380]). Both Z[1/w,]G and
Z[1/w,1®, 4, where .# is a maximal Z-order in QG containing ZG, are
subrings of QG. Their projections into the factor End, (V) of QG are
equal. More generally, fix r, and suppose that for ¢,, .., ¢, it happens that
each w,, divides r. Then the projections of Z[1/r]G and Z[1/r]1®, M into

‘- End, (V) are equal.

i=1

Remark 10. Return to the situation described in Remark 8. The
quotient group G/P acts on the irreducible complex representations of P.
Suppose that the isotropy group for each non-trivial irreducible complex
representation is a p-group. Then Clifford’s Theorem (see, e.g., [4, p. 61])
shows that w, is a power of p for each irreducible rational representation
that does not factor through G/P. By Remark 9 we may identify the A
occurring in Remark 8 with a piece of the maximal Z[1/p]-order of QG.
Hence the conjecture holds for QG if it holds for Q[ G/P]. Concrete exam-
ples of this are the alternating and symmetric groups on four letters, and
certain meta-cyclic groups. Indeed, let G have a normal cyclic subgroup P
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of order p” and suppose that the composite G/P - Aut(P)— Aut(Z/pZ)
has p-torsion kernel. Then the conjecture holds for G if it holds for G/P.

Remark 11. Finally, the idea in Remark 7 is fairly general. If G, and G,
are two groups for which the conjecture holds, and if the orders of these
two groups are relatively prime, then the conjecture holds for G, @ G,. In
particular, the conjecture holds for all finite nilpotent groups.

Given any irreducible rational representation ¢ of G, @ G, there exist
unique irreducible rational representations ¢, of G, such that ¢ is a
constituent of ¢, ® ¢,. The hypothesis that the orders of G, and G, are
relatively prime ensure that there exists an integer r such that

ré=go®¢,.

This hypothesis further guarantees that A, and 4, ®; 4, are Morita
equivalent since they are each Z[1/w,]-maximal orders in Morita
equivalent simple algebras.
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