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On the discriminants of forms with
Arf invariant one

By Ian Hambleton') at Hamilton and Ib Madsen?) at Aarhus

If A denotes the ring of integers in a dyadic local field E with trivial involution,
then the Arf invariant of a quadratic form (with unimodular symmetric bilinearization)
on a free A-module is determined by its discriminant in E*/E*2. In this case either one
of these invariants together with the rank classifies the form up to isometry [A], [O'M],
§93, [W1], p. 66.

This fact is the basic for understanding the map between surgery obstruction
groups [W2]:

©.1) ¥,: LY (Z,n) — L (@, m)

induced by inclusion of scalars Z, < @,, where Z, n is the group ring of the finite group
n over the 2-adic integers and @, denotes the 2-adic completion of the rational
numbers. The map ¥, is the key to systematic calculations of the surgery obstruction
groups of Zn (compare [W 2], §4.3). In this paper we calculate (0. 1) for 2-hyperele-
mentary groups and express the answer in terms of representation theory. The result is
used in [HM 2] to tabulate L{™(Zn), and correct the calculations of L%(Zn) given in
[BK], [K 1], and [K2].

A 2-hyperelementary group is a semi-direct product = =27/m x 6, where Z/m is the
cyclic group of odd order m, ¢ is a 2-group and the action of ¢ on Z/d is via a homo-
morphism ¢:0 — (Z/d)*. To define hermitian and quadratic forms, the group ring Z=
must also be equipped with an involution. For example, the standard involution
induced by

g—g !, for gen
arises from surgery on oriented manifolds. Our main result is Theorem 1. 16, where the

answer is given for an arbitrary geometric anti-structure (see (1. 5)). This result covers
all the involutions usually encountered in surgery theory.
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The L-theory and the map (0. 1) have a natural direct sum splitting indexed by the
divisors of m [HM 1], § 6, and for d|m the d-component IX(Z,n) (d) is isomorphic to the
L-group LX(Z,® Z[{,]'0) of the twisted group ring. In particular it is enough to
consider the d-component of Z/d x . After reducing modulo the radical, we see that the
domain of ¥,(d) is just a direct sum of Z/2’s, (detected by the Arf invariant if i is even)
one for each factor of @, ® Z[{,]'G with trivial involution on its centre (6=t(0)). The
range of ¥; is the direct sum of L-groups of complete local dyadic fields (the centres of
the involution-invariant irreducible rational representations of m which are faithful on
Z/d). These are determined [W 2] by their discriminants and Hasse invariants.

The irreducible complex characters of Z/dxo which are faithful on Z/d are
induced up from y ® & on Z/d x 6., where y is a linear faithful character on Z/d and ¢ is
an irreducible character of o, =ker¢. This is a 1-1 correspondence on the orbits of the
conjugation action of a/o; [S1]. A character is type 1 if the involution induced on the
centre field of the associated simple algebra is trivial, otherwise type II. The simple
involution-invariant summand of @, ® @[{,]'c containing the induced character
(x ® &)* is further classified by a sub-type (O, Sp, GL or U). These depend also on the
action of ¢/g, and the anti-structure. Our main result shows that the map ¥;(d) is either
injective or zero and that the types of the simple summands of @, n corresponding to
type I linear characters of o, are enough to decide this. The projection of the image of
¥,,.(d) however, is non-trivial also at certain type II linear characters of a,. The precise
result is stated in Theorem 1. 16.

The calculation of (0. 1) is given in [W 2], 4. 3. 2, assuming ¢ abelian (including the
non-oriented involutions), and is implicit in [LM] for the case when o, is abelian.
Compare also [C], § 4, for an overlapping result assuming the standard involution. For
d=1 and any geometric anti-structure the map (0. 1) was computed in [HTW1]. An
incorrect assertion about this map is contained in [K 1], 4.23, 4.24, [K2], 3.5, [BK],
3.4. The simplest counter-example is n=27/3xZ/4 with kert=2Z/2, where we prove
that ker ¥, =~ Z/2 not (Z/2)®. The source of the discrepancy seems to be an error in
[Bak], Cor. 4: for A= —1, the maximal form parameter on

5 d -b
prezan (¢ 0) = (% 7))

does not reduce to the maximal form parameter on M,([F,). This affects the
contribution of the type Sp factors to the calculation.

Acknowledgement. We would like to thank E. Laitinen for very useful conver-
sations, especially on the content of § 3.

§ 1. Recollections and notations

In this paper we follow the definitions and conventions for quadratic forms found
in [W2], § 1. 1. Thus 2(A4, a,, a,) denotes the category of non-singular quadratic forms
on free finitely generated right A-modules, associated to the anti-structure (4, ay, a,),
and ad(x) =ayxag?, ag(ae)=ag'.
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Hermitian bimodules give functors between quadratic categories. We recall this
process, referring to [Fr-McE], [HRT], §5, for alternatives and more details. For a
given anti-structure and left (resp. right) 4-modules N, we define the transposed right
(resp. left) A-module N* by

a-m=magy(a), (resp. m-a=oaqy(a)m).
Then M =~ M* via translation by a,.

A hermitian (B, B, bo)-(4, oy, ag) bimodule is a pair h= (W, h) consisting of an B-A
bimodule W = zW,, and a bimodule isomorphism

h:W — Hom (W, A)
with

(1. 1) ao h(wy, wy) = h(w,, bow, a61)~

Here h(w,, w,)=h(w,) (w,), and ( ) transposes simultaneously the A- and B-structure
(s0 h(wy, wya)=h(wy, wy)a, h(wya, wy)=0,(a) h(wy, w,) and h(bwy, wy)=h(w,, Bo(b)w,)).

If (M, q) € 2(B, By, by) and W is finitely generated A-free we define

(M ®sW, q® h) € 2(A, g, a)
by the formula

(1.2) (g ® h) (my @ wy, my @ wy)=h(wy, g(my, my)w,).
This gives a functor from 2(B, B,, by) to 2(4, oy, ay) and hence a homomorphism
hy : LX(B, Bo, bo) — LX(A4, g, ao).
We make this more explicit in some cases relevant to our calculations:
(i) Let f:(4, oy, ag) — (B, By, by) be a map. Set W= B, with
h(by, by)=Po(b1)b,

(and reverse the roles of 4 and B in (1. 1)). The induced h,, is the usual covariant f,,. Of
particular interest to us is the case B= A/I where I is a 2-sided ideal and A is complete
in the I-adic topology. In this case f, is an isomorphism [W1], § 2.

(i) Suppose i: 4 — B is a map of rings (not necessarily preserving the anti-struc-
tures) with B finitely generated A-free. Suppose Tr: B — A is a right A-module homo-
morphism with

(1.3) oo Tr (b) =Tr (Bo(b)boag ).

Set W = gzB, and consider the trace form

h(by, by)=Tr(Bo(b1)b,).
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This satisfies (1. 1), so if non-singular, induces a map f* from IX(B, B,,b,) to
IX(A, ay, ay), depending on Tr.

A simple special case occurs for a Galois extension of (commutative) rings, €.g. an
unramified extension of a complete local 2-ring, [AG]. Given an involution f, on B
which commutes with the Galois action, let aq = 4|4 and b, = a,. Then the usual trace
satisfies (1. 3), and Tr(f,(b,)b,) is non-singular.

Another special case occurs for group rings B=AG and A= AH, where 4 is a
commutative ring and Hc G is a subgroup. If bye A and B,(A)=A, we can let
oo = Pol4 and a,=by. Then the A-linear map

Tr(g)=g if ge H, Tr(g)=0if g¢ H
satisfies the condition (1. 3) and induces the usual restriction map
i*: Ly (B, Bo, bo) — L (A, oo, ao).

(iii) Let (4, ¢) be a commutative ring with involution ¢, and B= A" G the twisted
group ring of a finite group G over A4, associated with a homomorphism y: G — Aut,(A4)
commuting with the action of ¢. Choose an automorphism 0 of G with 07 inner, say
0%(g)=bgb~* for some b e G, and let w: G — {+1} be a homomorphism. Suppose

(1. 4) wol=w, y.0=y, 0(b)=b wb)=1, y(b)=id.
Then a geometric anti-structure on B is defined by (the A-linear extension of):
(1.5) BAg)=w(g) 0(g™") c(A); b=ub

where ge G, Ae A and ue {+1}.

(iv) Let (B, By, by) be the geometric anti-structure from (iii) and consider the
subring A=A4G,, where G,=ker(y:G — Aut(4)). Note that 0 induces an auto-
morphism of G,, and assume y(b)=1 so that b, € A. Then (4, «,, a,) is an anti-structure
where a, = Bo|A4, a,=b, and the transfer map given in (ii) induces

i*: LI:(B’ BOa bO) - LII(l(A’ ®o> (10).

(v) Let A4/A be a finite Galois extension of commutative rings with Galois
group G, [AG], and ¢ an involution of A commuting with G. Give B=A"G the anti-
structure from (1. 5) with 0 =identity and b,=a, € A. There are two hermitian bi-
modules, both supported on A, namely

W=y, h(4y, ;) =Tr(c(41)42),
V=Wt, ht(il, /12)=C(111)22.

They give inverse isomorphisms (Morita invariance)

hy :LI:(B, Bo, bo) — L‘:(A, g, do),
' 1L (A, ag, ag) — Lf(B’ Bos bo)-

72 Journal fiir Mathematik. Band 395
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Indeed the two compositions, induced from the hermitian bimodules W ®,V =~ ;B and
V ®z W= 4A, with their standard hermitian structure, are the identity.

(vi) For any u e B, scaling a quadratic form (M, q) by u replaces q(m,, m,) by
u - q(my, m,). This defines an isomorphism

Ly (B, Bo, bo) = Li(B, By, by)
where B,(b)=upPo(b)u! and b, =upByu"')b,.
For the rest of the paper, we fix a 2-hyperelementary group:
(1. 6) n=Z7Z/dxao, t:n— (Z/d)*.

Here o is a fixed 2-Sylow subgroup, d is odd, and t is the twisting homomorphism
defined by sgs™' =t(s)g for se o and g e Z/d. We set

o, =ker(tlo), mn,=kert=27/dxo,.

Let (Z=, 0, b, w) define a geometric anti-structure, as in (iii) with 4=2. Since
to0=t, g, is O-invariant but ¢ may not be. However, 6(o) is another 2-Sylow subgroup
of m, so O(c)=x"'ox for some x € Z/d. By scaling the anti-structure (vi) using x, we
have

Assumption 1. 7. The 2-Sylow subgroup ¢ of w is 0-invariant.

Notice that the scaled anti-structure and the original one agree on ¢;, and that
under the assumption 1. 7, the quotient ring Z[Sd]'é inherits a geometric anti-structure
from (Zmn, 0, b, w) in the sense of (iii) with 4 =Z[{,] if b € o,. Furthermore, the auto-
morphism induced by 6 on & =0d/a, is the identity.

We are interested in the map
Q* . LI:(ZAZ T, B, b) - LI:(@Z T, ﬁ; b)’

induced from the inclusion Z, < @,. Both groups are finite 2-groups, and by (i) and (iv),
modules over the 2-local Burnside ring A(n) ® Z,,,, as described in [HM 1], § 6. This
ring decomposes into a product of rings, indexed by the subgroups of Z/d, and ¢,
decomposes accordingly:

ox: [ L5(Z,m, B, b) (m) — [] L¥(@,m, B, b) (m).

m|d m|d
Moreover, for each divisor m of d the inclusion induces an isomorphism
iy : LK (2, [Z/m % 6], B, b) (m) = LK (Z, 7. B. b) (m)

and similarly with @, scalars. Hence, it suffices to calculate the top component, corre-
sponding to m=d.
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Following the notation from [W 2], § 4. 1, let

R(d)=2Z[{] o, R,(d)=27,®;R(d), p prime,

(1. 8) ) )
Sd)=Q@®;Rd), S,(d)=Q,®¢S(d), p prime.

By [W2], §4.1, or [HM1], §7, the natural projections of group rings induce
isomorphisms for p.td

LX(Z,m, B, b) (d) = LX(R,(d), B, d),

(1.9) . N
Ly(@,m, B, b) (d) = LK(S,(d), B, b).

This reduces the study of g, to

By Wedderburn theory, the rings §p(d) and S(d) are products of matrix rings over
division algebras. The decomposition is controlled by the irreducible (complex) represen-
tations of =.

Let irro(n) denote the irreducible Cn-modules and irro(n)(d) the subset of
modules which are faithful when restricted to Z/d. The Z-span of irr- () is the represen-

tation ring R(r). It contains the Z-span R(n) (d) of irr. (n) (d).

Each element y € irro(n) induces a simple summand S(y) of S(d), and its p-adic
completion is a simple summand of § »(d).

Let @/@ be the extension which contains all roots of one, and let Q be its Gal_ois
group. Each Cr-module has the form V ®5C for a (unique up to isomorphism) Q-

module V. Thus Q acts on irrs (%), and

(1. 10) Sy)=Sy' )<=y e .

The center of S(y) is the field @ (y) generated by all character values of 1,

Q (y)=Spang {y(g) | g € n}.

Here, as is common practice, y(g) denotes the value of the character of y at g. If Q, is
the stabilizer of v, then Q/9Q, is the Galois group of @ (v)/@Q.

Actually, we are more interested in the p-local situation. So let Q,=Q be the
(local) Galois group of @p/@p. Concretely, there are identifications

(. 11) Q=72", Q,=<pyxZ,

where (p) = Z*/Z; is the multiplicative subgroup of Z2*/Z, =[] Z, generated by p.

q¥p
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The simple summands of S'p(d) are in one-to-one correspondence with the orbits
irrg (m) (d)/2,. The summand corresponding to y is the completion of S(y) with center

@, (), and

$,(0) =@, ®a S =] S(w)..

lp

The number of factors is the index of 2,/(Q,), in Q/Q,.

The geometric anti-involution f acts on irr () (d) by

Bw) (g)=w(0(g™") w(g).

Note that y ® w is irreducible if y is because w?=1, and that § commutes with the
action of Q, (resp. ©). One compares the two actions by introducing the concept of p-
types (resp. types) as follows:

 has p-type GL (type GL) if B(w)¢Q, v (B(w)¢Q v),
(1. 12)  has p-type U (type U) if Bw=w-y, 0¢(Q,), (@¢Q,),
p has type I if By)=w.

Note that for characters of a 2-group, the 2-type equals the type. For type I one has the
subtypes

w has type O if Y w(g) v(g0(g)b)>0,

(1. 13) .
y has type Sp if ) w(g) p(gb(g)b)<O.

Write irr (n) < irr () for the subset of characters not of type GL.
We are now ready to formulate our main result. First we give the setting:

Let (Z=, B, b) be a geometric anti-structure as in (iii) with 4 =27, where = is the 2-
hyperelementary group from (1. 6), and suppose b € 7.

Let 3 € Z/d* be such that B(T)= T*® for T € Z/d. Assuming there exists
(1. 14) go €0 Wwith t(go)=—-971,

define a scaled anti-structure on @, g, by
(1.15) Bo(a)=g0B(a)gs", bo=g80B(go") bw(go)-

Call ¢ € irro(o,) linear, if it is 1-dimensional, £ : 6, — C*. Its order is the order of
the cyclic subgroup &(a,) of C*.

Let y:Z/d— C* be any faithful linear character of Z/d. For ¢ e irrd(a,),
x® € eirre(n,) and we can consider the induced character Ind(y ® &) of n. Write
S,(d, &) for the summand of S, (d) associated with Ind (xy ® &).
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Theorem 1. 16. If there is no element g, € o satisfying (1. 14), LX(Z,n, B, b) (d)=0.
If g, exists, set m=1i+(1—w(g,)). For each ¢ € irr (a,) the composite

Lll( (ZAZ , B’ b) (d) M LII((§2 (d)a B, b) I LII( (§2 (d’ é)’ ﬂ’ b)

is injective or zero. It is injective, if and only if the character & is:
(@) linear type O (and m=0 or 1 (mod 4)),
(b) linear type Sp (and m=2 or 3 (mod 4)),
(c) linear type U (and m even), order 2' and (b3 ')= —1.
Here types refer to the anti-structure (@, a,, Bo, bo) of (1. 15).

Remarks 1. 17. (i) Note that for a type I linear character £(by)=1(= —1) if and
only if ¢ has type O (type Sp). Since types (and the condition that a linear character ¢
has order 2' and ¢(b3'')=—1) are preserved by scaling the conclusions above are
independent of choice of g,.

(i) If o, has a linear character ¢ of type 1. 16(c), then (by projecting onto the Z/2
quotient of £(g,)) it also has linear characters of type O and Sp. Therefore the map
y;(d) is injective if and only if o, has a linear character of type O (m=0, 1 (mod 4)), or

type Sp (m=2, 3(mod4)). For d=1, the case of a 2-group, we recover the result of
[HTWI1], AL 2. 1.

§ 2. Discriminant calculations

This section evaluates the “discriminant”
2.1 d& . LX(Z,m,, B, b) — A™(K,(@;7y), B)

for 2-elementary groups n;. The range in (2. 1) denotes Tate cohomology of Z/2 with
coefficient in K,(@Q,n,), equipped with the usual involution (B-conjugate, transposition
of matrices). Our calculations will use the character homomorphism description of
K, (@, ,), which we recall below.

One has isomorphisms of 2-modules
J:(@)=(Q, ® @)* =Hom,, (2, @;)
and, following [F], an isomorphism

2.2) K,(@,m) ~Hom,(R(n), J,(Q)) = Homyg, (R(n), @;).

73 Journal fiir Mathematik. Band 395
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This is natural with respect to both the covariant and contravariant structure of
the involved functors. Thus if n’ < n then

K,(@,n) = Homg,(R(n), J,(@Q))

(2 3) i'HAi* lnd‘HRes"

K;(@,7n') = Hom,(R(n'), J,(@))
give two commutative diagrams.

The isomorphism from left to right in (2. 3) can be described as follows. Let
¢ :m— Aut. (V) an irreducible module, and let S,< End. (V) be the image of @=. It is a
simple algebra whose centre is the field @ (g) of character values. The composition

04+ K4 (@2 n) —- K, (@2 ®aS,) S, 1,(@)
(Nrd = reduced norm) is adjoint to (2. 3): for y € K,(@,7), x(0) =04 (%).

We now specialize to n from (1.6) and a geometric anti-structure (Z,m, B, b)
defined by a pair (0, b, w) as in § 1 (iii), satisfying 1.7. We are interested only in the top
component [X(Z,n, B, b) (d), or equivalent by (1. 9), in the groups LX(R,(d), , b).

The automorphism 0 of = restricts to an automorphism of Z/d,
(2. 4) 0(g)=g% for gez/d
for some 3 € (Z/d)*. We will assume from now on
Assumption 2. 5. The unit b is a group element rather than an element in {+ n}.

The change of unit by —1 simply shifts the calculation from L, to L, ., so this
is just a normalization.

Assumption 2. 6. There exists g, € 6 with t(gy)=—9"1.

In fact, LX(R,(d), B,b)+0 if and only if 2.6 is satisfied. To see this, for
t(0)=~ 6 = o/o, we have the isomorphism:

LX(R,(d), B, b) = LX(F, ® Z[(,]'6, B, B)

from § 1, (i), and the involution B on the centre [F, ® Z[{;]° corresponds to —3 in the
Galois group (Z/d)*/t(s). If 2. 6 is not satisfied, then B is non-trivial on the centre, so all
the summands on the right-hand side have type U or GL. These anti-structures have
vanishing LX ([(W2], § 1. 2). If 2. 6 is satisfied, then we check in 2.9 below that the right-
hand side is isomorphic to

Ly (F ® Z[L,]% 1, 1) = g5(d) - (Z/2),

a direct sum of g5(d)=|(Z/d)* : t(6) - {2)| copies of Z/2.
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We now scale the anti-structure (§1, (vi)) by g, € o to eliminate the action on
Zldsn:

L‘,‘,,(Rz(d), B, b) = LIfn(Rz(d), Bo» bow(go))
2.7 Bo(8)=80B()g0", bo=2g0B(g0) " bw(go).

In this formula we have arranged that b, is still a group element, and f,(c)=o. Notice
also that if g € Z/d, then f(g)=0(g™") implies B,(g) = g. Since B2(g)=bogby " =t(by) (g),
we see that t(by)=1. Since d is odd, and B,(b,) = by, it follows that b, € 6, < Z/d x a,.

We will use the inclusions

i(’)( : (722 ® Z[{4) 00, Bo, bo) — (Zz ® Z [0y, Bo. bo)s

(2.8 K. 5
it :(Z, ® Z[Ld oy, Pos bo) — (Ry(d), Bo, bo)

where o, = {(by) S g, is the cyclic group generated by b,. The composite inclusion i o i%

will be denoted iX.
Lemma 2.9. IX(R,(d), Bo, bo) = LX(Z, ® Z[L,]° 1, 1).

Proof. Suppose first that the orientation character w(g)=1. Then B,(g)=0,(g™")
where 0,( )=g,0( )go' and t o 0, =t. Therefore there is a projection

(Rz (@), Bo, bo) — (RZ(d)s Bo, Bo)
with R,(d)=2,® Z[(,]'6, 0,=id on &, and b,=1. Since R,(d) and R,(d) have the
same simple quotient (upon dividing out the radical) the surjection induces isomorphism
on [X
From Morita invariance (§ 1, (v)):

ty - L5 (R, (d), Bo, bo)= LX(Z, ® Z[L]°, 1, 1).

This proves our claim when w(g)=1.

In general,
LX(R,(d), Bos bo) = L5 (R, (d), w - Bo, bo)
for any homomorphism w: ¢ — {4 1), again by reducing modulo the radical.

Let g,(d) denote the number of dyadic primes in @ ({,) and g5(d) the number of
dyadic primes in @ ((,)°. Specifically,

g:2(d)=12/d* :<2)|, g5(d)=|Z/d":{2) 1 (o)|

and Z, ® Z[{,] is g, (d) copies of Z,[{,]-

Proposition 2. 10.  The inclusion i¥ in (2. 8) induces a split surjection

if : Lgn(ZAz ® Z [ ao, Bo» bo) — Lgn(ﬁz(d)a Bo» bo)-
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In fact, i¥ is naturally identified with the projection

Z/2[Z|d*/<2)] — Z/2[Z}d*/<2) - 5].

Proof. By 2.9 it is equivalent to study
L2, @710, 1, 1) — 5,2, @ ZIL], 1, ).

Indeed, using § 1, (i), (ii) and (v), one has a commutative diagram

LY(Ry(d), Bo, b)) ———2——  L(R,(d), Bo, bo)
L5(Z,®Z[L], 1,1) L Lh(Z,® Z[L1° 1, 1),

and pu, o q, is the isomorphism constructed in the proof of 2.9. The simple summands
of the rings in question are Z,[{,] and Z,[{,]°"¢?, so it is enough to conclude that

J* :Lgn(ZZ [{ad, 1,1)— LI§,,(22 [1°°*, 1,1)
is an isomorphism. This is the case if for each pair of finite fields E, < E of char=2,
j* : Lg,,(E, 1’ 1) I Lgn(EO’ 19 1)

is bijective. Both groups have order 2 and the non-trivial element is represented by a
quadratic plane (E @ E, Q) with Arf invariant 1, i.e.

1 1
Q=<0 5)9 Trﬁz(6)=1

Suppose |E: E,|=2. Then j*(E @ E, Q) is represented by (E @ E, Q,) with Qo =Trf o 0,
of dim4 over E,. Let {e,, f;} be the (symplectic) basis for (E @ E, Q). Let w=3/5, where
0o =TrE (6). Then Trf (w)=1 and {e,, fiw ", e, w, f} is a symplectic basis for Q,. It
has non-vanishing Arf invariant. Indeed,

Trﬁg(Qo(eu e)) Qo(fiv ™\ fi W_1)+ Qole w, e, w) Qo(fnf1))=Trﬁf Trgo(é)

is non-zero.

We can now calculate the discriminant
(2. 11) d§n : Lgn(Zz Ty, Bos> bo) — A (Homnz (R(mo) (d), @;), Bo),

where n,=Z/d x 6, and R(ny) (d)=Z [irrc(n,) (d)] are the characters which act faith-
fully on Z/d. Recall that g, = {(b,), the cyclic subgroup of =, generated by the element
by € o, from (2. 7), and B,(by) = by .
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Choose faithful characters ¢:0, — C* and y:Z/d— C*. The set irrg(m) (d) is
given by y’ ® &, with (j, i) € Z/d* x Z/|o,|. The 2-local Galois group 2, acts with orbits

irrc(mo) (d)/Q, = {X! ® &' | j € Z/d*/<2), 2' € g,/03 }.
Let R(m,) (d) be the Z-span of irr.(n,) (d). By (2. 2)
K, (@, 7o) (d)=Homy, (R(m,) (d), @5).
Concretely, it is the direct product of the groups
Q' ® &) =@ (L0 3) 2 eay/os

where (, is a primitive |oy|'th root of 1. There are |(Z/d)*:{2)>|(k+1) factors in

Fix a 2-local integer 6 in Z,[{,] whose reduction to the residue field has non-zero
trace in [F,. Define a Galois homomorphism

Aot R(mo) (d) — @;
by

(@ EF)=1—(=1)" 6 {1+ (= 1)" &3 (bo)}*/E5' (bo), for r=j in Z/d*/{(2)
(2.12)
L ®EY) =1, for r#j in Z/d*/{2), with i=1,2,..., k.

The involution on
Kl(@z o) (d) = H @2 (Xj ® é%i *

induced from S, fixes ¥/ and maps £2' to its complex conjugate. We are interested in the
Tate cohomology class

AEn(Xj ® é(z)l) € HO(@Z(XI® ééi)x’ ﬂO)

Lemma2.13. For i=1,2,...,k—2 the element A}, (3’ ® %) is non-trivial. For
i=k—1 (resp. i=Kk) it is non-trivial if and only if n is odd (resp. n is even).

Proof. We will do the case n odd, and leave the similar argument for n even to
the reader. If i=k—1 the character field is fixed by f,, and 4},(x’' ® £3“")=1—45 is a
non-square if @,(¢,)", [S2], XIV, Prop. 9. If i=k—v with v2, B, acts non-trivially on
the character field E = @, (,, {,») with fixed field Eq = @, ((y, (v + {3+'). The element

AL, (1 ® &) =1=(=1)" [(A+(=1)"{)/(52]0

is not a norm from E [S2], XV. N
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The discriminant
dgn : Lgn(Zz ® Z {4100, Bo, bo) B HO(HomQZ(R(no) (d), @;)a ﬂo)

maps the |Z/d*:{2)| copies of Z/2 into the |Z/d*:{2)| cohomology classes A5,
calculated in 2. 13. Indeed, the Arf invariant plane has quadratic form Q = ((1) ;) with
bilinearization Q + (—1)"b, Q" and discriminant 1 —(—1)" [(1 + (= 1)"b4)?*/by 6.

We can now study the map in (2. 1) for m=2n via the diagram

L5,(R,(d), Bo, bo) ~ —— H(Homy, (R(n) (@), @5), Bo)

(2 14) i ]Aﬁo(kes,)
L5,(Z, ® Z[L4 00, Bos bo) — ﬁO(HomQZ(R(nO) @), @), Bo).

The lower horizontal map was calculated above and the if was calculated in 2. 10. Thus
we have left to study the right-hand vertical map. This will be done in two steps using
the intermediate group

ToST &7

The representations of 2-type GL (1. 12) do not contribute to the Tate cohomo-
logy groups in (2. 14). Write

irrg (n) (d) S irrc (m) (d)

for the complementary subset of 2-type U and type I characters (with respect to the
scaled anti-involution B,), and R°(n) (d) for its Z-span. Then

A*(Homy, (R(n) (d), @;), Bo) = A* (Homyg, (R°(m) (d), @), Bo)-
Note for =, that

irrg (m,) (d)={x' ® £ | j € (Z/d)*, & € irrg (o4)}.

We collect a few standard facts about subfields of @,. The reader is referred to
[S2], V, XIII, for proofs. Let L =@, be a subfield and B, any Galois involution on L. If
Bo+1, HO(L*, Bo)=2Z/2; otherwise H(L",B,)=L‘/L*% 1In the case of trivial B,
however, we are mostly interested in the order 2 subgroup

UFe/URet c LX/L*%, e=e(L/Q,)

the total ramification index. This subgroup is generated by 1—44 where 6 € U, .is a unit
whose residue class has non-zero trace in [F, (U} is the subgroup of integral elements x
with valuation v, (x —1) = ).
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Let K< L. Then B, induces an involution of K which can be trivial or not.
Consider the norm N: L — K and the inclusion I : K — L. For their induced maps

N*:HO(LY, o) — HO(K™, Bo), I,: H(K*, Bo) — H°(L¥, Bo)
we have
(C1) If BolK#1, N*is bijective and, if [L: K] is even, I, =0 ([S2], XIII, § 4).
(C2) If BylK=1but fy+1, N*=0.
(C3) N:UZ¢U*' — Uge/UZe* ! is zero if and only if L/K is ramified.

(C4) I:U@eJUE*Y — UZeJUE**! is bijective if and only if L/K is totally ramified.

We can give a calculation of the discriminant map for the group =, in terms of
certain character sums. By (2. 14) with = replaced by =,, this amounts to calculating

ﬁO (RCS:‘) : H*(Homf)z (RO(”O) (d)’ @2)()’ BO) B ﬁ* (Homﬂz (Ro(nl) (d)’ @Zx)’ ﬁO)
We shall need a certain function
wiirrg (o) x oy — Z.

For s € gy, let & be a faithful character of {s), so that &(s)=e>"/!*l. Then

Is|

2. 15 uE 9)=Y, (Resgty (&), &> | @2(8): @, (8) 7

r=1

Here we interpret the inverse index |@,(¢7): @,(&)|"* to be zero whenever @, (&) is not
contained in @, (&) (i.e. when the conductor f;>|s"]).

The formula (2. 15) defines an integer, because if we write

k .
Resii, (&)= 2 mdl, k=log,lsl,

v=0 va(j)=k-v

then each subsum with fixed v is invariant under (£,);, and hence by the Galois group
I, of @y(()/@2(L) " @y(&). For vy(j)=k—v write j=j 27", j'€(Z/2")". The
function m;=m;. only depends on j in (Z/2*)/I',. Hence Y. m;is divisible by |I|.
This implies integrality in (2. 15). va(iy=k-v

Recall from (1. 12) that ¢ € irr2 (a,) has type I if B,(£) =¢. Otherwise we say ¢ has
type II (=2-type U).
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Proposition 2. 16. Let ¢ € irr (,). For each r € (Z/d)*/{2),
A, Res (1 @ O)#0 i A°(Q: (X' ® &), Bo)

if only if j=r and one of the following two conditions is satisfied:

(I) ¢& has type 1 and
|bol

(@) for n even, |by|~? Z E(bi)=1 (mod?2),

Ibol

(b) for nodd, |bo|™" Y (—1) &(bo)=1 (mod 2);
i=1
(I) & has type 11 and p(&, by) =1 (mod 2).

Proof. The condition r =j comes from definition (2. 12). We have

Res@=Y Y m0)Eh.

v=0 va(j)=k-—v

We saw above that the vth sum is invariant under I',, the Galois group of

Q,((2)/@Q, (&) N @, (¢,v). Thus
A )=45® Y mwé&)= [J] N[N ®EH)Ime

v2(j)=k—v Jje(Z/2%)*|Iy

where N : @, (La, {2v) = @3(Las &) N @, (L4 {5v) is the norm.

In case (I), B, acts trivially on @,((s, &) N @, (L4, {5v) s0 A5,(v)=1 for v=2 by
(C2). Hence in case (b)

Ay (Respi (" ® Q) = A3 (' ® &3 )"V =(1—49)"®

in U2/U? with L =@Q,(,). But

1bol

m(1) = (Resg} (&), &8> =1bol ™" Y, (1) &(b)),
i=1

and we can use (C4) to complete the proof in case (I) (b). Case (a) is similar but easier.
From (2. 13) the answer is non-trivial if and only if Resg!(£) contains an odd multiple of
the trivial character.

In case (II), A%(v)=1 by (C1) unless @,(;, {,v)> Q, (Cd, £). When this is the case,
then, again by (C1),

N[A,(r ® &)1 +0
in A°(@,(C4 &, Bo)=2/2. Thus A5(v)=Y m;(v), je(Z/2")/I, with

= G(Q,((21)/@,(2)).
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Equivalently
A () =Y m) 1@, () @O, jeZ/2)

when f; <2" and zero otherwise. Sum over v to complete the proof. W
We now consider (2. 1) with m odd. In analogy with 2. 10 we have

Proposition 2. 17.  The inclusion i¥ induces a split injection
()% : 15,41 (R2(d), Bo, bo) — L5,41(Z> ® Z [, 04, Bos bo)
which can be identified with the natural injection
Map (Z/d"/<2) 6, Z/2) — Map(Z/d"/<2), Z]2).

Proof. The proof is similar to that of 2. 10 and reduces to showing that, for an
extension F < E of finite fields of characteristic 2,

i*:Lgn-H(F’ 1’ 1)_" L§n+1(E’ ]9 1)

is non-trivial (both groups are equal to Z/2). But this is clear as the non-trivial element

0 1 .
is represented by the automorphism 7 = <+ ) 0> of the hyperbolic plane. W
Consider the diagram

(2. 18)
LY, +1(R2(d), Bo, bo) —L Hl(HomQZ(R(n) (d), @5), Bo)

li: At(Ind})

L5,+1(Z, ® Z[{4] o1, Bos bo) —&— A (Homyg, (R(r) (d), @5), Bo)

E]’io* Al (Res))

L5, 1(Z, ® Z[{4] 00, Bos bo) — ﬁ‘(Hosz(R(no) ), @3), Bo)-

Here we need only the lower square, but the upper square is used in §4. The Galois
homomorphisms in (2. 12) are replaced by

) ) (=)L EL(bo) if i=2¥ or 2! and r=j in (Z/d)*/{2),
(2.19) 'z..+1(x’®€6)={1 o
otherwise.
Lemma 2. 20. The map
d§n+1 : L§n+1(22 ® Z L4190, Bos bo) - Hl(Homnz(R(no) (d), @;), ﬁo)

maps the |Z/d* : (2| copies of Z/2 into the homomorphisms in (2.19). W
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Theorem 2. 21. Let & € irrd (0,) (d) and r € (Z/d)*/{2). Then
A1 (Resp (X ® £) #0
if and only if r=j and one of the following holds:
(@) nisodd, & has type 1 and

{bol
|bol ™! Z, (—=1)"&(bp) =1 (mod 2).

i=1
(b) nis even, & has type 1 and

1bol

|bo| ! Z E(bi)=1 (mod 2).

1

Proof. The proof is similar to, but easier than that of 2. 16. One uses the diagram
(2. 18) along with 2. 17 and (2. 19). The condition for n odd is simply that some odd
multiple of the character £2°"' extends to an irreducible character of o,. I

§ 3. Final results for 2-elementary groups
We now finish the calculation of
Y, L’fn(ZAz 7y, Bos bo) — Llr(n(@l 7y, Bos bo)

where n, =Z/d x o, (i.e. for 2-elementary groups) using a more detailed study of the
character theory for finite 2-groups. We show that the results of § 2 can be improved, so
that non-linear characters can be neglected and handle the cases where the range of ¥,
is not detected by the discriminant.

Recall that B, has the form B,(g)=w(g) 0o(g~") with B,(g) =g for g e Z/d, and
that b, € of =ker(w: g, — {£1}).

If f:(4, g, ag) — (B, By, bo) is @ map of rings with anti-structure, we have the
transfer map I* (§1, (ii)). In addition, for any ve B* with vAv ™ '=4, there is a
generalized transfer, defined by the composite

I¥ : IX (B, Bo, bo) —=2=22", [X (B, 5, by) —L—— IX (4, o, ab).

The first ingredient is

Lemma 3. 1. Let 0,< 0, be a proper subgroup such that By(c,)=0, and b, € 0,.

Then for any v € o, such that vo,v™ ' = a,, the generalized transfer map

LIfn(ZAz ® Z[{4)04, Bos bo) - Llfn(ZAz ® Z[{4) 0, Bo, bg)

is zero.
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Proof. From §1 (i) and (ii), it is easy to see that the following diagram commutes:

L’,‘,,(Z}@Z[{d}al,ﬁg, b'(’,) L L’fn(ZAz ®Z[Cd]0'2,,33,b3)
KZ,®z0t]1,1) —Lunl 0 1X(2, 027, 1,1)

where the vertical maps are induced by the inclusion and reduction modulo a radical
ideal respectively. W

The second ingredient is a special case of the Detection Theorem of [HTW 2], S. 6.
For detecting maps into H*(K,(@mn)), this involves a variant of the Witt-Roquette
character theory and some attention to the geometric anti-structure. For the benefit of
the reader, we will give a proof adapted to our special case and just refer to [HTW 2]
for a group-theoretic result (3. 4).

Definition 3. 2. If G is a finite 2-group and 0 is an automorphism of G, then G is
called O-basic if G contains no normal -invariant Z/2 x Z/2 subgroups K.

If 6 is an inner automorphism, then G is 0-basic if and only if G is basic in the
classical sense. By Roquette’s Theorem [Ro], the basic groups are

(3. 3) G=27/2% Q2*(k=3), D2*(k=4), or SD2*(k=4).
Theorem 3.4 ([HTW2], 5.4). If G is a 0-basic 2-group and 0 has even order in

Out (G), then G is basic or G = D8 and 0 represents the non-trivial element in Out (D 8).

We now return to the evaluation of the Arf-classes
(3.5) A, € H™(Homyg, (R(n,) (d), @), Bo)

for the 2-elementary group m; =Z/dxo,, explicating the character formulas (2. 16),
(g. 21). To shorten the notation, we will use A, (x’ ® &) instead of the more precise
Ar, (Resz! (' ® &)) from § 2.

Here is the key result:

Proposition 3. 6. Let Z/d x G be a 2-elementary group with geometric anti-structure
(0, w, b) such that B(g)=g for g€ Z/dl B(G)= G and b € G. Suppose that G is not 0-basic
and that ¢ € irr (G) is faithful. Then A},(x’ ® &)=0 for all r, j € (Z/d)*/{2).

Proof. 1t is enough to do the case r=j=1. Since G is not 0-basic, it contains a 0-
invariant normal subgroup K =~Z7/2xZ/2. Let K,, K, and K, denote the distinct Z/2
subgroups of K. Since ¢ is faithful, K is normal but non-central, and intersects the
centre of G, say in K,. Let g€ G be an element with gK,g"'=K,, and G, be the
centralizer of K in G. Let V be the representation space of &. Since ¢ is irreducible
VKo =0 so Res¥ (V)=VX @ VX2, interchanged by g. Then Resg*(V)=V* @ VX2 and

V =1Indg (VX1 = Ind§, (V*2),

without change of centre or Schur index.
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The automorphism 0 preserves K, and hence 0(K,)=K; or 0(K,)=K,. In both
cases 02 is the identity on K so b € G,, and 0(G,)= G,. Then (f, b) restricts to an anti-
structure on G,. If the character ¢; of VX! is not B-invariant, we scale by v (=e or g)
and find that &, is f'-invariant. Then since

(@, (x® &), B)=(Q:(x ® &), B),

the summand given by ¢ of A™(K, (@, G), B) is mapped isomorphically under Ind* to
the summand given by &, of A™(K,(Q, G,), B°).

Consider the following commutative diagram:

LX(Z,® Z[L]G, B, b) —I X2, ®Z[{]1G,, B bY)

dK 4K

m m

A"™(Hom (R(Z/dr>< G) (d), @), B) fodt A"™(Hom (R(Z/d % G,) (d), @3), B’

e(S) e(S1)x

A"(@,(x® &), B) — A™@Q,(x ® &), B,

where e(£) denotes the evaluation map of a character homomorphism on the character
x ® & Since G, is a proper subgroup of G, I*=0 by (3. 1) and hence Ind* A" = {0}.
However,

(Ind* 4,) (x ® &) =4, (' ® &)

and the result follows. W

It follows from 3. 4 that irreducible representations of 0-basic groups (with 6% =1)
have degrees 1 or 2.

Lemma 3.7. Suppose n, =Z7/d x o, as in 3. 5). If o, is a O-basic group and & is a
faithful irreducible character of degree two, then A, (x" ® £)=0.

Proof. If o, has a faithful irreducible character ¢ of degree 2, then o; is non-
cyclic. Let 0,0, be a cyclic subgroup of index 2. Then b, € 0,. Indeed, suppose if
possible that b, ¢ o,. Then conjugation with b is a non-trivial automorphism of ¢, and
it has a square root 0, € Aut(s,). One checks for ¢, =Q2* D2* and SD2* that this
cannot happen.

The restriction of & to o, =<by) is the sum &, + &y of a faithful linear character
and a Galois conjugate. We can now use (2. 16) or (2. 21). Both character sums u(&, b,)
and |bo| ™t Y (—1)" &(b)) are zero (mod2), so regardless of the type of ¢ (w.r.t. B,) the
Arf-class vanishes. W
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Now we can eliminate the non-linear characters.
Proposition 3.8. For ¢ € irrl (0,), A, (x" ® &) =0 unless & is a linear character.

Proof. If ¢ is faithful then we are done by (3. 6) or 3. 7. If ¢ is non-faithful but
w(ker £) =1, then the projection map

Z/d x 6, — Z/d x (0, /ker &)
induces a map of rings with anti-structure. Since the summand corresponding to ¢ in

K, (@, (m,)) is mapped isomorphically by this projection, we are reduced to the previous
case.

Finally, if w(ker &)+ 1 then let o] =kerw and note that ¢* = Res(¢) is irreducible
on g{. Now we finish by considering the commutative diagram

Llr(n(ZAZ ®Z[Cd] Ufa BO’ bO) E L‘rfn(ZAZ ® Z[Cd] gy, ﬁo’ bO)

i %

A™(Hom (R(n}) (d), @;), Bo) A™(Hom (R(my) (d), @3), Bo),

where the map I, is an isomorphism by reduction (§ 1, (1)). W

We would also like to express the answer for the linear characters in terms of the
sub-types O, U or Sp introduced earlier. This will allow us to state the main result 1. 16
in an invariant way.

Given a linear character ¢:g, — C*. We say ¢ has order 2' if &(ay) is cyclic of
order 2. Choose g, € o, such that £(g,) generates &(o;). Then ¢ has type I when

é(eo(gx_l))= w(gy) £(gy)-
Theorem 3.9. Let & € irrl (o,). For each r € (Z/d)",
3 (Resy (1 ® ) +0 e H(Q, (" ® £), Bo)

if and only if j=r, and the character & is linear and has: type 1 and £(by) =(—1)"; or type
U of order 2! and (b3 )= —1.

Proof. If A%,(x’ ® &)# 0 then j=r (cf. Section 2) and ¢ is linear by 3. 8. Suppose

¢ has order 2' and choose v so that Res;!(J) is Galois conjugate to &7 with the
notation of 2. 13. Note that v </ since £(b,)* =1.

If £ has type I then
bol ™! Y. (— 1) (bh) = (Resg: (&), &8 "> =1

precisely when v =1, i.e. when £(by) = —1.
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If ¢ has type U then

1 if v=1,
0 otherwise,

(< bo)={

and case v =1 is equivalent to (b3 ')= — 1. Apply 2. 16 to complete the proof.

The odd Arf-classes
fign-#l € Hl (Hom.{)z (R(nl) (d), @;)’ ﬂO)
can be calculated in a similar fashion, using 2. 21 instead of 2. 16. We leave for the

reader to prove

Proposition 3. 10. Let ¢ € irrl(o,). Then /f’l,,H(ResZ(‘,(xj@f)):t:O if and only if
j=r, &is linear of type I and E(by)=(—1)". W

Remark 3. 11. Note as in 1. 17 that our conclusions 3.9 and 3. 10 are indepen-
dent of the choice of scaling elements in 1. 7 and 2. 6. W

We conclude by observing that for 2-elementary groups the map
¥,(d): L’:(ﬁz (@), Bo, bo) — Lf(gz(d), Bo» bo)

is detected by the discriminant. This is clear for n odd (even in the 2-hyperelementary
case) since

dy: L’,f(S';,_(d), Bo> bo) — Hl(Kl (§2(d)), Bo)

is injective. But d¥,, is not injective in general.

Let ¢eirrd(o,). The irreducible representation @ =y" ® ¢ gives a direct, fB,-
invariant simple summand S,(®) of §,(d) and d¥ decomposes into the corresponding
sum of dX(®).

If (S,(®P), Bo, b) has type O and S,(®) has trivial Schur index (i.e. type OK) then
dX(yp) has kernel Z/2, detected by the Hasse-invariant, cf. [W 1]. In all other cases d& (®)
is injective. Similar for dX (i) where the kernel Z/2 appears for type SpK.

Lemma 3. 12. For @ of type OK, ¥,(d) and df(®) > ¥, (d) have isomorphic images.

Proof. Kolster [K 1], 4. 11, has shown that in type OK there is a f,-invariant
maximal order #,(®) < S,(®P). Hence the question reduces to the study of

IX(Ay, 1, 1) —————— IX(E,, 1, 1)
ak ak
AyA32 ———  Ej/E3?,

where E, is a 2-local field with integers A,. The left hand vertical map is an iso-
morphism, [W2], and the lower map is an injection. [l
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Lemma 3. 12 and its counterpart for type SpK representation give

Corollary 3. 13. The maps

¥,.(d): L’,‘,,(Rz(d), Bos bo) — Lfn(ﬁz(d), Bos bo)a
dyo¥,(d): Llr(n(RZ(d)’ Bos bo) — HM(K1(§2(d)), Bo)

have the same kernels.

§ 4. The 2-hyperelementary case
In this section we state and prove our main theorem 1. 16 which calculates the map
4.1 ¥, (d): Ly (Z,m, B, b) (d) — L5,(@Q;m, B, b) (d)

for a 2-hyperelementary group n=2/d xo. It turns out ¥, is injective for = if and only
if it is injective for the 2-elementary subgroup =,. By 2. 10 and 3. 13 it is equivalent to
show that the discriminant at a character Ind(y ® &) for = is non-trivial if and only if
the discriminant at y ® & for n; is non-trivial.

Before considering the passage from 7, to =, we recall a few general facts about
the relationship between representations of = and of mn,. Suppose more generally that
A< G and let p € irrg(A). The group G/A acts on y by conjugation (p?(a)=y(gag™!)).
We also have the Galois action of 2, on . To relate them, define

G,(p)={g € G/A| = w,y for some v, € Q,].

Note that g — w, defines a homomorphism of G,(y) into Q,/(R2,),,, the Galois group of
Q:(v)/Q;.

Lemma 4. 2. If the induced character w* =1Ind$ (v) is irreducible, then
Q,(¥*) = Q, ()> V.
Proof. Since p*(@)=Y. v*(a), @,(v*) S Tr(Q,(y) = Q,(y)*¥. If
o € Gal(@Q, (v)/@,(y*))
then (wy)* = p* so Res, (wy)*)=Res, (p*), i.e. ) (0yp)* =) y?. Since y* is irreducible,
{w?| ge G/A} is a set of distinct irreducible characters (calculate {(w?)*, yp*)!), and w

acts on it by a permutation. Hence w-y=y" for some he G, so he G,(yp) and
o=w,eGCGy). N

Next recall from [S1], § 9, that
Indy :irre(ny) (d) — irrg () (d)

is surjective, and induces a bijection from the set of orbits under the free action of a/a,
on irrg (m,) (d).
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Given y* € irre(n) (d), Resy, w*=) y’ with g € a/o,; each y? is irreducible and
induces up to y*. It can happen that y* € irrd (n) (d) but y ¢ irrd (n,) (d). However,

 eirrg (my) (d) < p? € irrg (ny) (d),

and y has type I or 11 if and only if the same is true for each y?.
Lemma 4. 3. The extension @,(y)/@Q,(p*) is unramified.

Proof. Since Q,= (2> xZ5, G,(y) maps into the subgroup <2) = Z/d* under the
characteristic map t: o/o; — Z/d*. Thus the Galois group for the residue field extension
is isomorphic to G,(y). W

Lemma 4.4. Let y €irrd (n,) (d) and let w*=1Ind} (). Then y has type 1 if and
only if p* has type 1.

Proof. Suppose B, (p*)=y*. Restrict to 7, to get
BoLw)=2v% gea/o,
and hence B, (y) =y" for some h € /. Since B, acts trivially on Z/d,
Bo (ReSE}a (w)) = Reszl ().

But /0, =(Z/d)* and Resz,(y) is faithful, so Bo(p)=1y. The other implication is ob-
vious. W

Theorem 4. 5. The “discriminant” from (2. 1)
dX : L%,(R,(d), Bo, bo) — H™(Homg, (R(n) (d), @3), Bo)
is either injective or zero. It is injective for m=0 or 1 (mod4). For m=2 or 3 (mod4) it is

injective if and only if there exists & € irr2 (a,) (d) which satisfies one of the conditions in
3.9 or 3. 10.

Proof. Consider the diagram

L%, (R,(d), Bo> bo) 4 A°(Homg,(R(r) (d), @); Bo)

i Ho(Res,)

L5,(Z, ® Z[{] oy, ﬂo; bo) = HO(HomQZ (R(m,) (@), Q5); Bo)
‘ 1

ion AORes,)

Lgn(ZZ ® Z L4100, Bo» bo) = ﬁo(Homnz (R(my) (), Q7); Bo)-
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We know the left-hand vertical maps by 2.10: io« is bijective and i« is split surjective.
The |(Z/d)*:<{2)| copies of Z/2 in LX,(Z,® Z[{,]0,. By, b,) map into the homo-
morphisms
(Resz)y (A%,): R(my) (d) —@Q;

where the A5, are the basic Arf homomorphisms from (2. 12).

We first do the case n odd. The cohomology class A, was given in 2. 16. Let
¢eirrd (o) (d), p =" ® ¢ and p* =Ind}! (). Then

AL (*) = 433 v) (g € 0/0y)
=A5(Zzw'w§) (g € (0/0))/G, (), ® € G, (v))
g @

=[] N3(45 w?),

where N;: @, (w?) — @, (p*) is the norm. Since w7=y7® &7 and rg+r in (d/0,)/<2),
A% (w9) =1 except if g=1. This gives

A5 (p*) = N (A5 (p)) € H(@,(w*), Bo).

If ¢ has type I then A%(p)e UZ¢/UZ°*" is non-trivial with L=@,(yp). By 4.3, 4.4 and
(C3), A3(yp*)+0. If ¢ has type II, then y* has type I by 4.4 and using (C1),
A% (p*)#£0. In all other cases A% (p*)=0.

For n even the situation is simpler. In (2.12), AL(x’ ® 1)=1—44, so
Ap(Indg, ( ® D) =146 € @, (L)

Its cohomology class is non-trivial.

The argument for m odd is similar but easier. We use (2. 18) as the main diagram
and note that H'(Ind¥) is injective by 4. 4. But i¥ is also injective by 2. 17, and so d is
injective if and only if d, is injective. This completes the proof. W

We have now proved our main result, Theorem 1. 16. Indeed, it was remarked
after 2. 6 that IX(Z,n, B, b) (d) =0 unless the element g, exists satisfying (1. 15). The rest
of the theorem is contained in 3.9, 3. 10 and 4. 5.
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