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Suppose G is a p-hyperelementary group and R is a commutative ring such that the order of 

G is a unit in R. Suppose J is either one of Quillen’s K-theory functors or one of Wall’s oriented 

L-theory functors. We show that J(RG) can be detected by applying J(R?) to the subquotients 

of G such that all normal abelian subgroups are cyclic. In 3.A.6 we show that such subquotients 

have a quite simple structure. 

We also show how to detect more general L-theory functors, in particular unoriented ones and 

those that arise in the study of codimension one submanifolds. 

Introduction 

Let &” denote the class of p-hyperelementary finite groups. The groups in Ye, 
are semi-direct products, G = C x1 P, where C is a normal cyclic subgroup of order 
prime to p, and P is a p-group. Inside the class Z&J?= U ~8’~ of all hyperelementary 
groups we consider the class of basic groups: 

93 = {GE C%T? 1 all normal abelian subgroups of G are cyclic} 

whose structure is much simpler (see 3.A.6). 
Recall that Swan 1241, Lam [15] and Dress [6] have shown that when a K-theory 

or an L-theory functor is applied to a finite group G, it can be detected by using 
the hyperelementary subgroups of G. This means that the direct sum of the restric- 
tion maps from G to the subgroups of G in YZ induces an injection. In this paper 
we show that many of these functors can be detected by using subquotients of G 
which belong to ,9? (see 1 .A. 12, 1 .B.8 and 1 .C.7). These detection results have other 
applications such as [4] and [13]. 
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Several of the sections in this paper are divided into subsections. A subsection A 

indicates that we are considering the linear case, the case which applies to K-theory. 

A label of B indicates that we are doing a quadratic version which applies to the 

ordinary L-theory as in [6]. The C subsections apply to a more esoteric quadratic 

theory that comes up in L-theory with arbitrary antistructures as in [26]. Those 

readers interested only in the linear theory may safely skip any B or C subsection. 

Those interested only in ordinary L-theory can safely skip any C subsection. 

1. Background and statement of results 

1.A. The linear case 

Let R be a commutative ring. For any R-algebra A, we let A9 denote the category 

of finitely generated projective left A-modules. If A and B are R-algebras, we let 

#‘AA denote the category of B-A-bimodules P such that 

(i) P is finitely generated projective as a left B-module, and 

(ii) rx=xr for all r E R and all XE P. 
Direct sum makes &P.,+Y* into a symmetric monoidal category. In [19, p. 37-391, 

Oliver introduced the following category: 

1.A.l. Definition. R-Morita is the category with objects R-algebras and 

HomR-Morita(Al B) = Ko(E@~,~ ). 

Composition is given by tensor product. We also add a zero object to make R- 
Morita into an additive category. 

If M is an object in BP&A) then the functor 

IVf@,‘i -:*gl+# 

induces a homomorphism 

Mm,-:K,(A)+K,(B) 

where K,, is Quillen K-theory (see [20]). It is easy to check that the functor K, fac- 

tors as follows: 

R-Algebras * Abelian Groups 

R-Morita 

where w(A) =A and I,v(~: A + B) =BBA with bimodule structure bi. 6. a= 
b,. b.f(a). 
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Another of Quillen’s functors, G,(A) = Kn(AJLL), where AA is the category of 

finitely generated, left A-modules, factors through the category where the mor- 

phisms are K,, of the category of bimodules which are finitely generated on the left 

and projective on the right. 

Any Morita equivalence in the classical sense (see [l, Theorem 3.5, p. 651) yields 

an isomorphism in R-Morita, and in this other category. 

For working with finite groups, we find a different category convenient, but 

before describing it we recall the following category theory: 

l.A.2. Ab-categories and the Add construction. A category @? is an Ab-category [17, 
p. 281 if each Horn-set has an abelian group structure on it so that composition is 

bilinear. Associated to an Ab-category 8 we have the free additive category Add(O) 

[17, p. 194, Exercise 6(a)], whose objects are n-tuples, II =O, 1, . . . , of objects of 8 

and whose morphisms are matrices of morphisms in 8. The 0-tuple is defined so as 

to be a O-object. Juxtaposition defines the biproduct. To avoid proliferation of 

names we will often name the Add construction of an Ab-category and then think 

of the Ab-category as the subcategory of I-tuples. 

A functor F: d$-t 33 between two Ab-categories is additive if the associated map 

Hom&(A,, A,) + Hom&F(A,), F(A,)) is a group homomorphism for all objects 

A,, A, E J. The Add construction on 8 is free in the sense that given an additive 

category &! and an additive functor F: i9 -+d, there exists a natural extension to 

an additive functor Add(F) : Add(C) + d. We will often use the remark that if an 

additive functor F is an embedding (the induced map on horn-sets is injective), then 

so is Add(F). 

Next we recall some terminology from the theory of group actions on sets. 

Given two groups, H, and Hz, an Hz-H, biset is a set X on which Hz acts on the 

left, HI acts on the right and h,(xh,) = (hzx)h, for all XEX, hl E HI, h2 E Hz. For 

each point XEX we have two isotropy groups: H2Z(x) = {h E H, 1 hx=x} and 

IHI = {h E H, 1 xh =x}. Given an H,-Hz biset X and an Hz-H, biset Y, recall 

Xx,, Y is defined as Xx Y modulo the relations (x, y) - (xh-‘, hy) for all XEX, 

y E Y and h E Hz. Clearly XX, Y is an H3-H1 biset. Note that h E H3Z(x, y) iff we 

can find h, E Hz such that h. x=x. h;’ and y = h2. y. These equations define a 

group homomorphism 

(l.A.3) HjZ(~, Y)/~,J(x) -+ H2Z(~)/(ZH2(~) n H2Z(~)) 

which is an injection. The coset of an element h E H2Z(y) comes from H3Z(x, y) iff 

x. h is in the same H,-orbit as x. 

l.A.4. Definition. We define a category RG-Morita as the Add construction applied 

to the following Ab-category. The objects are the finite groups H which are isomor- 

phic to some subquotient of G. Define HomRo_Morita(H1,H2) as the following 

Grothendieck construction: 
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Take the collection of isomorphism classes of finite HZ-H, bisets X, for which 

IH21(x)I is a unit in R for all XEX. Disjoint union makes this collection into a 

monoid. Form formal differences and set X equivalent to x’ if RX is isomorphic 

to RX’ as RH,-RH, bimodules. 

Define the composition 

H09w-Mm#fz~ H3) X HOQG-Morita(ffi9 H2) + HOmRmerita(ff~r H3) 

by sending H,XHz x HZYH, to Xx, Y as defined above. Note that (1 .A.3) implies 

that composition is defined. 

Remark. The requirement that X is equivalent to X’ if RX is isomorphic to RX’ as 

RH2-RH, bimodules is perhaps less natural than requiring that X be isomorphic to 

x’ as bisets, but in Section 4 we will want our morphism group to be a subgroup 

of the corresponding morphism group of R-Morita. 

l.A.5. Remark. A generating set for HOIIlRG_Morita(HlrH2) is easily found. An 

Hz-H1 biset is the same thing as a left H2 x HPP set. Such a set is just a disjoint 

union of coset spaces of H2 x HPP, and these are described by conjugacy classes of 

subgroups of H2 x Hpp. For all our serious work IH2 x HP”1 will be a unit in R, so 

the morphism group will be generated by the collection of all these bisets. 

l.A.6. Definition. The functor which sends H to the R-algebra RH and sends an 

Hz-H, biset X to the bimodule RX, is an additive functor into R-Morita, and hence 

extends to a functor from RG-Morita to R-Morita. We call this functor the R-group 
ring functor. 

l.A.7. Remark. Clearly the map is well defined and note that R[Xx,, Y]z 

RX @RHz RY so the map preserves compositions. We need to see that RX is pro- 

jective as a left RH3-module. Since the orders of all the left isotropy subgroups are 

invertible in R, this is a standard averaging trick. 

In the sequel we will write RH both for an object in R-Morita and for an object 

in RG-Morita since the notation displays both the group and the ring. 

l.A.8. Generalized induction and restriction maps. Let H, cH, be finite 

groups. Then H,, considered as a finite H2-H, biset, gives an element in 

Horn RG_Morita(Hly Hz) called a (generalized) induction and written Ind$; H2 con- 

sidered as a finite HI-H2 biset yields a map in HOIllRG_Morita(H2, H,) called a 

(generalized) restriction map and written Res$. 

If H-+ H/N is a quotient map, H/N considered as a finite H/N-H biset yields 

a generalized restriction map, written Res:,, E HOIllRG_Morita(H, H/N); H/N con- 

sidered as a finite H-H/N biset yields a generalized induction map, written 

IndZlV E HOmRc-Morita (H/N, H), provided INI is a unit in R. 
If we have a subquotient H/N with HC K, we can compose the two maps above 
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to get a generalized restriction Res&E HomRo_Morita(K, H/N). If INI E R ‘, we 
have a generalized induction Ind&E Horn Ro_Morita(H/N K). Notice that the 

generalized restriction goes from the group of larger order to the group of smaller 

order and the generalized induction goes the other way. 

l.A.9. Remark. We can now give a different generating set for HomRo_Morita(Hr, HZ) 

than the one we gave in l.A.5. The map f: H2 x HPP --t H2 x H, defined by 

f(h2, h,) = (h2, h;‘) defines a biset bijection between (Hz x Hpp)/S and H, xs HI, 
where S is a subgroup of H2 x H, . Hence a generating set for HomRo.Morita(H1, Hz) 
consists of the bisets associated to a generalized restriction followed by a generalized 

induction H, + S-t Hz. Such a composite is in RG-Morita iff the order of the 

kernel of S -+ H, is a unit in R. 

l.A.10. Definition. A hyperelementary group is basic if all its normal abelian sub- 

groups are cyclic. We classify these groups in 3.A.6. 

l.A.11. Theorem. Let G be up-hyperelementary group, and let R be a commutative 
ring such that lG/ is a unit in R. Then, in RG-Morita, 

(i) (The Linear Detection Theorem) the sum of the generalized restriction maps 

Res : R[G] + @ {R[H/N]: H/N is a basic subquotient of G} 

is a split injection, and 
(ii) (The Linear Generation Theorem) the sum of the generalized induction maps 

Ind : @ {R[H/N]: H/N is a basic subquotient of G) + R[G] 

is a split surjection. 

A more refined version of this result is stated and proved in Theorem 4.A.8. The 

result itself is proved in 4.A.9. 

l.A.12. Applications. With G p-hyperelementary and IGI E R ‘, we suppose 

J: RG-Morita -+ & 

is an additive functor. Then 

Res : J(R [G]) + @ J(R [H/N]) 

is a split injection, and 

Ind : @ J(R [H/N]) -+ J(R [G]) 

is a split surjection in J. For example, set J(R[G]) equal to 

(i) K,,(R[G]), Quillen K-theory for finitely generated projective modules, 

(ii) KV,(R[G]), Karoubi-Villamayor K-theory (see [ 14,29]), 

(iii) K,!,(R[G]>=G,(R[G]), Quillen K-theory for the exact category of finitely 
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generated R [Cl-modules, 

(iv) Nil(R[G]) (see [8]), 

(v) K,,(Z[l/m]G-+ &,G)~K,(ZG-+Z,G), where m= ICI; recall that there is 

an exact sequence 

... ~K,(ZG)~K,(~,G)~K,(ZG~~,G)-t . . . . 

(vi) HH,(R[G]), Hochschild homology, [5, Acknowledgements], 

(vii) HC,(R[G]), cyclic homology, [16, Corollary 1.71. 

l.A.13. Remark. All the functors except (iii) are functors out of R-Morita, and 

hence out of RG-Morita. Even functor (iii) is a functor out of RG-Morita. 

l.A.14. Example. Recall that Wh(G) =K,(ZG)/(kGab). Group homomorphisms 

and transfers associated to group inclusions induce maps of Wh. Composites of 

these maps generate the morphism groups in ZG-Morita. Since K, is a functor 

defined on Z-Morita it is easy to check that Wh is a functor on ZG-Morita. It seems 

unlikely that Wh is a functor on Z-Morita. 

l.A.15. Non-example. In (l.A.11) we cannot drop the assumption that jGI is a unit 

in R. For example, K,(Z[C(2) x C(4)] is not detected by basic subquotients, where 

C(k) denotes the cyclic group of order k. 

In some situations we are interested in computing (rather than just detecting) functors 

out of RG-Morita. Call a 5-term sequence 0 + A 3 B 4 C -+ 0 split exact provided 

that there exists a map f: C-+ B such that Pof= l,, the identity of C; flocr=O, the 

zero map from A to C; and a @f : A @ C -+ B is an isomorphism. 

The following theorem is proved in Section 5: 

l.A.16. Theorem. Let R be a commutative ring and G a p-hyperelementary group 
with ICI a unit in R. Assume that G has a normal subgroup KE C(p) x C(p). Let 

Co,C,,..., CP be the distinct cyclic subgroups of K. Let g(G) denote the center of G. 
(i) If K is central, then the following sequence is split exact in RG-Morita: 

O+RG Proj - R[G/C,] x R[G/C,] x . ..xR[G/C.I+R[G/K])~+O. 

(ii) If K is not central, we may assume that Kfl g”(G) = CO. Let Go denote the 
centralizer of K in G. Then the following sequence is split exact in RG-Morita: 

0 -+ RG - R [G/C,] x R [G,/C,] L RIGO/K] + 0. 
Proj x Res 

The maps /I are defined in Section 5: case (i) in 5.A.l. and case (ii) in 5.A.3. We 

will see that they live in ZG-Morita, and the sequences in Theorem l.A.16 are 

O-sequences in ZG-Morita which become split exact in RG-Morita whenever ICI is 

a unit in R. They are definitely not exact in ZG-Morita by Non-example l.A.15. 
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We begin with a discussion of quadratic form theory over a pair of rings with anti- 

structure. We want to develop a ‘bi’-version of the usual theory so that there will 

be pairings mimicing those in the linear case. The concepts introduced below are just 

‘bi’ analogues of the standard concepts in Wall’s theory of quadratic forms [26,27], 

and the formulae seem to be forced by the desired pairings. It seems best to just pre- 

sent the answers and some checks, with the rest left to the diligent reader. 

Recall that a ring with antistructure, (A, oz, u), is a ring A, an anti-automorphism 

a:A -+A, and a unit UEA such that 

(r2(x) = z4-‘xu for all xEA, a(u)=u-1. 

If (A, CY, U) and (B, /3, o) are rings with antistructure, then an (A, a, u)-(B, P, u)form 
is a pair ( BMA, A) with BMA E &P.J&?~ and A : M @A Mt + B is a B-B bimodule map. 

Here M’ refers to an A-B bimodule structure on M obtained from the B-A bi- 

module structure using (Y and p via the formula 

a*m*b=P(b).m.a(a). 

(We use M’-’ below to denote M with the A-B bimodule structure obtained from 

B-A bimodule structure using a-’ and /3-l.) We will also refer to A as a biform. 
We say that the form is bi-hermitian if the following diagram commutes: 

T 

I I 

T 

i 
M@/,Mt-B 

where T(m, @ m2) = m2 0 u-’ l m, and T(b) = u-‘/l-‘(b). Note that T2 = Id. 

Given a (A, a: u)-(B, /3, II) form (M, A), we define a new form, T(I), on M following 

P61 by 
T(A)(m,, m2) = vplP-‘(l(mz, ml . u)). 

Note that T(T(A)) = 1, T(l) = I. iff A is bihermitian, and T(A) = To ,I 0 T. 
Given any (A, a, u)-(B, p, u) form, (M, ,I) there is a map of B-A bimodules 

ad(l) : M + Horn, (M, B)‘-’ 
defined by 

We say that a form is nonsingular if ad(L) is an isomorphism. 

We define the orthogonal sum of forms as usual: if (M,l) and (N, ,u) are two 

(A, a, u)-(B, p, u) forms, then A I ,u is defined by 
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Note that J. I p is nonsingular iff A and p are. 

Another notion of sum starts with two (A, a, u)-(B, p, u) forms on M, say p and 

A. Define (M, p + A) by the formula (p + A)(m,, m2) =,~(m,, m,) + A(ml, m2). The set 

of (A, (Y, u)-(B, p, u) forms on A4 is an abelian group, denoted Sesq(A4). The involu- 

tion T acts on Sesq(M). 

As an example, we compute this group for the free B-A bimodule. 

1.B.l. Example. Let R be a commutative ring with involution r + P and suppose A 

and B are R-algebras such that a(~. 1) = P. 1 and /?(r . 1) = T;= 1. If F= B OR A is the 

free B-A bimodule, then the map Q, : Sesq(F) -+ Horn, (A, B) defined by @(A)(a) = 

1(1 @a, 1 0 1) defines a Z/2Z-equivariant isomorphism, where Z/22 acts on 

Hom,(A, B) by defining T(f)(a) = o~‘P~‘(f(u-‘K’(a))) for all ae A. 

Next we define the notion of a metabolic form. Given an (A, a, u)-(B, b, u) form 

(BMA, nj, define a form, denoted Meta( on MO Hom,(M, B)‘-l by 

Meta(~)](%fi), (m2,f2)1 =I(%, m2) +f2(mi) + u-‘P-‘fi(m2. up’). 

A metabolic form is any form that is isometric to Meta@) for some 1. A hyperbolic 
form is just a metabolic form with I = 0. Any metabolic form is nonsingular and 

T(Meta(A))=Meta(T(A)). Hence, the form A is bihermitian iff Meta(1) is. 

Next we define Lagrangians. Given an (A, a, u)-(B, p, u) form (BA4A, 1) we say 

that a bi-summand L CM is a Lagrangian if the form restricted to L is 0 and if the 

inclusion of L into its perpendicular subspace is an isomorphism. Suppose A is non- 

singular, M= P@ L as B-A bimodules and L is a Lagrangian. Then A = Meta@ Ip) 

where the isometry is given by F: P @ L + P @ Hom,(P, B)‘-’ defined by F(p, m) = 

(p, ad(A)(m)) for allp E Pand m EL. In particular, if A is nonsingular, (M, A) _L (M, -1) 

is isomorphic to Meta since the diagonal copy of A4 is a Lagrangian. 

We have the usual equation 

Meta I Meta@ + y) = Meta I Meta( y) 

where A and y are biforms on the same module M. If M*= HomB(M,B)t-‘, the 

isometry is given by F: MO M* @ MO M *+M@M*@M@M* defined by 

F(m, f, n, g) = (m + n, f, n, g -f - ad(A)(m)). In particular, in any Grothendieck-type 

construction, all metabolics on the same module are equivalent. 

Not all metabolics however are isometric, and we explore the relationship. Recall 

that Z/22 acts on Sesq(M) via T. Any bihermitian form, A, on M determines an 

element 

[A] E A”(Z/2Z; Sesq(M)) 

and [a,] = [A21 implies that Meta@,) and Meta are isometric. Indeed, if &= 

A,+o+T(@), the map F:M@HomB(M,B)‘~‘-+M@HomB(M,B)‘~ defined by 

F(m, f) = (m, f - ad(@)(m)) satisfies 
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MeW2)(F(ml, fl), Fh, _hN = MeW4Mml,fl), b-3, .A)). 

The following properties are easily checked: 

(i) 111 +&I = VII + M; 
(ii) A”(Z/2Z; Sesq(M@ N)) zA”(Z/2Z; Sesq(M)) @ ti”(Z/2Z; Sesq(N)); 

(iii) [A1 I&] = ([A,], [A,]) under the decomposition in (ii). 

Given an (A, a, u)-(B, P, u) form ( JUA, A), and a (B, fi, u)-(C, y, o) form ( cNB, ,u), 

define the tensor product biform 

(~On):(NOBM)OA(NOBM)‘~C 

by the formula 

(P 0 A)(% 0 m,, n2 0 m,) =,dn, . wh, m2), n2). 

Note that ~(~O~)=T(~)@T(I); (~1~~2)O~=~10J~/4@~; I(O(A,IA,)= 

PuO1211PuOA 2; if p is bihermitian nonsingular, then p 0 Meta is isometric to 

Meta@ @ A); and if 1 is bihermitian nonsingular, then Meta 0 2 is isomorphic 

to Meta(b 0 J.2). The isometry between Meta 0 I and Meta@ 0 2) is given by 

IdOF:NO,MONOgHom,(M,B)‘~’ +N@,M@ (Hom&N@,M, C))tm’ where 

F is defined by F(n @f)(nl 0 m) = ad(p)(n)@, . f(m)). The map 

G : (Horn&V, C))‘-’ Be M+ (Horn&V@, A4, C))‘-’ 

defined by G(f@ m)(n 0 m,) =f(n . ad@)(m)(m,)) can be used as above to define 

an isometry between ,U @ Meta and Meta(p 0 A). 

From these results it follows that if ,U and A are bihermitian, then so is p @ A, and 

by reducing to the metabolic case it follows that the tensor product of any two bi- 

hermitian nonsingular biforms is nonsingular. 

With these definitions it is straightforward to extend our linear Morita theory to 

the quadratic case. See also [9,10,12]. 

l.B.2. Definition. Let R be a commutative ring with involution -: R + R. Then 

(R,-)-Morita is the category with 
- objects: (R,-)-algebras, i.e. rings with antistructure (A,a,u) where A is an R- 

algebra and 

a(ra) = W(U) for all a EA and all r E R; 

_ maps: if (A, a, U) and (4 fl, o) are (R, -)-algebras, then 

Hom(R, -)-rwitd(~~ a, U), (By h 0)) 

is the Grothendieck group, using orthogonal sum, of all nonsingular, bihermitian 

(A, a, u)-(B, p, o) forms. Composition is given by the tensor product of forms. As 

usual we add a zero object to make (R, -)-Morita into an additive category. The 

identity morphism in HOIIlcR, _)_Morita ((A, a, u), (A, a, u)) is given by the class of the 

biform p : A @At +A defined by ~(a, 0 a2) = a, (~-‘(a~). 
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The final choice of morphisms, non-singular bihermitian biforms, is dictated by 

our desire to have our category act on as many ‘quadratic’ functors as possible. See 

1.B.8 for some examples. 

For use below, we remark that we have quadratic (B,/3, II)-@, cz, u) forms by 

mimicking [26], and that these form a symmetric monoidal category under or- 

thogonal sum, denoted Quad((B, /I, II)-(A, a, u)). 

Define a functor from the category of (R, -)-algebras and antistructure preserving 

R-algebra maps to (R, -)-Morita by sending an R-algebra with antistructure, (A, a, U) 

to itself and sending f : (A, a, u) + (B, p, u) to the form I: B 0 B’+ B defined by 

A(6,O b2) = b, . pe1(b2). The Quillen K-theory of Quad((B, p, u)-(R, -, 1)) is a func- 

tor on the category of (R, -)-algebras and R-algebras maps which factors through 

(R, -)-Morita via this functor. 

The antistructures that we wish to deal with in the finite group case are of a very 

special type. We define a geometric antistructure on G as a 4-tuple (G, w, 0, b), where 

o E Hom(G, k 1), 8 E Aut(G) and b E G satisfy the relations 

(i) 

(ii) 

(iii) 

we(g) = w(g) for all g E G, 

e2(g) = b-‘gb for all g E G, 

e(b)=6 and o(b)=+l. 

The associated anti-automorphism on RG is defined by the formula 

a( C r,g) = C rg0(g)e(g-9. 

An orientation for a geometric antistructure is a unit E E R such that E = Cl. The 

associated antistructure on RG consists of the associated anti-automorphism and 

the unit 

u=E. b. 

The case in which 8 is the identity and b is the identity element in the group, 

denoted e, is the most important case in ordinary surgery theory, but other geo- 

metric antistructures arise in codimension 1 splitting problems (see e.g. [12, p. 55 

and p. 1101). 

Before defining the quadratic analogue of RG-Morita we need to introduce a her- 

mitian structure on finite bisets. Let H, and H2 be finite groups, each with a geo- 

metric antistrUCtUre, (OH,, OH,, bH,) and <eH,, w&, b&). Let aI (reSp. CQ) denote the 

associated anti-homomorphism on RH, (resp. RH,). Fix an orientation E E R and 

let u1 =E + b,, (KSp. u2 = &. bHz). Define a biset fOrmI on a finite H2-H, biset X as 

a pair consisting of a bijection 0, :X4X and a set map wx : X-+ + 1 which satisfy 

(i) 

(ii) 

(iii) 

ox(kxh) = wH,(k)cox(x)coH,(h) for all k E H2, all x E X, and all h E HI, 

&(kXh) =&,(k)&(X)&,(h) for all keH2, all xeX, and all hEHI, 

e;(x) = b,$&H, for all x E X. 
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Associated to each biset form is a bihermitian, nonsingular (RH2,a2, u2)- 

(RH,, a,, ul) form whenever X satisfies the condition that J&(x)\ eRX for all 

x E X. The formula is a bit complicated but the underlying principle is easy. We want 

distinct orbits to be orthogonal so we can reduce to irreducible bisets. On one of 

these we are looking at a composition of a transfer and a projection. If the reader 

writes out the biform associated to each of these, the formula should follow, but 

once again it seems easier for exposition to just produce the formula and check the 

properties. To define it, first define a set map 

A:XxX+RH2 

where we define /1(x1,x2) as follows. Let 4x2) = bHzBx(x2)bHf. 

/1(x,,x2) = 

c 

0 if /(x2) and xi are not in the same H2-orbit, 

s c k otherwise, 
Hz 

where we sum over the set of all k E H2 such that k. I(x,) =x1. Note that this set is 

a coset of H2z(xi). 

We can extend /1 to RXx RX using sesquilinearity, and it is straightforward to 

check that we get a bihermitian (RH2,P,b,,)-(RH,,a,bH,) form 

Note that Ax is independent of the choice of orientation E. Also note that (w, 19,6) 

gives a biset form on G considered as a G-G biset. The associated form on RG is 

the form which gives the identity morphism in (R,-)-Morita. 

To check that A is nonsingular, first choose a set {xi} of one xi from each 

Hz-orbit of X. For each Xj define an RH, module map 6, : RX+ RH, by 

0 if i#j, 

&j(x;) = 
&c k ifi=j. 

~72 ’ 

where we sum over keH2Z(x;). It is easy to see that the set {S,,} is a basis for 

Hom,,,(RX, RH,) as an RH2-module. Since ad(A)(b$xjbH,) = CO(Xj)Sx,, A is non- 

singular. 

The set of biset forms is a monoid under disjoint union and the (RH2,a2,u2)- 

(RH,,a,,u,) form associated to the disjoint union of two biset forms is just the 

orthogonal sum of the (RH2, a2, u2)-(RH,, a,, u,) forms associated to the two biset 

forms. 

Given an HI-H2 biset form (X, ex,o,) and an H2-H, biset form (Y, By,oy), 

define the composite biset form to be the HI-H3 biset form (Z,8z,oz), where 

Z=Xx, Y, &4x, Y)=(@&), My)) and dx, Y)= ~A+ my(r). 
A useful point to check is that the form on the composite of two biset forms is 

equal to the composite of the forms. With notation as in the last paragraph, we need 
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to verify the equation 

Check that 4x2, ~2) = (4x2), Z(Y~)), and recall (l.A.3). If yl is not in the same 

Hz-orbit as 1(y2) then J ,(y,, yz) = 0. But then /(x2, y2) is not in the same Hs-orbit 

as (xi, yr), so both sides of our equation are 0. If I(y2) is in the same Hz-orbit 

as yl, then A,(y,, y2) is a multiple of C k where the sum runs over all keH2 
for which k. l(y2) =yl. Fix one such k, say k^. Then Ax(xr. Ar(y,, y2),x2) is a 

multiple of C _hE1~x(xr f he &,x2) where Z=,,Z(y,). This in turn is a multiple of 

C Ax(x, - h. k,x2) where now we sum over one representative from each coset of 

N21(yI)/(ZH2(~l)n,Z(yl)). This is non-zero iff x1 . k and /(x2) are in the same 

H,-orbit iff (xi, yr) and [(x2, y2) are in the same Hs-orbit, so at least both sides of 

our equation vanish or not together. We leave it to the reader to keep track of multi- 

plicities and complete the proof. 

l.B.3. Definition. Let (0, o, b) be a geometric antistructure and let (R, -) be a com- 

mutative ring with involution. Define a category (RG, 6, w, b)-Morita as the Add 

construction applied to the following category. The objects are finite groups H with 

geometric antistructure (e,, OH, bH) when H is isomorphic to a subquotient K/N 

of G with K a e-invariant subgroup of G; N a d-invariant subgroup of G, normal 

in K, with NC ker o; and b E K. The geometric antistructure on G induces one on 

K/N and we require the isomorphism between H and K/N to take one geometric 

antistructure to the other. 

The morphism group 

is defined by a Grothendieck construction: take the set of isomorphism classes of 

finite biset forms, X, such that 1 &(x)1 E Rx for all x E X. This set is a monoid under 

disjoint union. Form formal differences, and set (X, B,, wx) equal to (Y, By, oy) 

provided (RX, A,) is isomorphic to (R Y, A y) as (RH2, a2, b,)-(RH,, aI, bH1) forms. 

In the case that 0 is the identity and b=e, we denote the above category by 

(RG, o)-Morita. 

l.B.4. Remark. Each orientation E defines a functor, the R-group ring functor, 

from (RG, 8, CD, b)-Morita to (R, -)-Morita. 

l.B.5. Quadratic generalized induction and restriction maps. The generalized induc- 

tion and restriction maps defined in the linear case in (l.A.8) have quadratic 

analogues. If His a e-invariant subgroup of K with b E H, then the 6’ and the w for 

K give us an obvious biset form on K considered as either a K-H biset or an H-K 
biset. Hence we have induction and restriction maps which we denote as before, sup- 

pressing the biset form data in our notation. 
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If N is a normal subgroup of K which is e-invariant and contained in ker o, then 

K/N has an obvious geometric antistructure which also gives K/N a biset form both 

as a K-K/N biset and as a K/N-K biset. Hence we get generalized induction and 

restriction maps in (RG, 0, o, b)-Morita whenever INI E R x. 
In (RG, o)-Morita the only conditions we need are that NC ker w and INI E RX. 

If o is trivial, then we have generalized restriction maps in (RG, w)-Morita whenever 

we have them in RG-Morita. These two categories are not isomorphic since the 

forms need not be isomorphic just because the underlying modules are. 

To obtain a good structure theorem for the ‘basic’ groups, we restrict attention 

in this section to detection and generation theorems for the category (RG, o)-Morita. 

l.B.6. Definition. Suppose that G is a p-hyperelementary group equipped with an 

orientation character (0 : G + { f l}. Then G is o-basic if all abelian subgroups of 

ker o which are normal in G are cyclic. (See (3.B.2) for a classification of these 

groups.) 

l.B.7. Theorem. Let (G, CO) be a hyperelementary group with an orientation char- 
acter, and let R be a commutative ring with involution -, such that IG/ is a unit in 
R. Then, in (RG,o)-Morita, 

(i) (The Quadratic Detection Theorem) thesum of the generalized restriction maps 

Res : R [G] -+ @ {R [H/N]: H/N is an w-basic 
subquotient of G with CO trivial on N} 

is a split injection, and 
(ii) (The Quadratic Generation Theorem) the sum of the generalized induction 

maps 
Ind : @ {R[H/N]: H/N is an co-basic 

subquotient of G with w trivial on N} + R[G] 
is a split surjection. 

A more explicit version is available (see 4.B.7). The result itself is proved in 4.B.8. 

l.B.8. Applications. We can apply l.B.7 to any additive functor 

J: (RG, w)-Morita -+ d 

whenever ICI E RX. As examples, set J(R[G], a,, 1) equal to: 

(i) E?J(2/2Z; K,(RG)) where the action of Z/22 on K,(RG) is induced by the 

functor 

% : RGS) + RGg) 

where a, applied to the finitely generated, projective left module P, is just the 

module (Hom,,(P, RG))‘, 
(ii) L!)(RG, CO) ( w h ere for j = 2,1,0 these are just Lz, L/ (as in [27]), and L,P), 
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(iii)L~(Z[l/m]G-+&,G,w)~~~(ZG+Z,G,~) where m=lGI, and Y= 

{&Gab, SK,} (recall that we have an exact sequence 

and these are the Li groups studied in [28]), 

(iv) Lf(Z [ 1 /m]G -+ 0, G, w) L L?(ZG -+ 2, G, w) where X0 denotes the torsion 

subgroup of Kc,, and the rest of the notation is the same as in (iii), 

(v) K,(Quad(RG, a,, E)), the Quillen K-theory of the symmetric monoidal 

category of quadratic (RG, au, E)-(R, -, E) forms, where E E Rx is central and E = E, 

(vi) GW(G,R), GU(G, R), or Y(G,R) which are defined in [6]. 

To see that the functors Lz’(RG, CO) factor through (R,-)-Morita, recall the 

definition of these functors in [26]. We see that the L,P(RG,w) are the homology 

groups of a chain complex where the chain groups are sesquilinear forms and the 

boundary maps are of the form 1 + T. Via tensor product, these complexes are acted 

on by bi-hermitian bi-forms, and hence (R,-)-Morita acts on L,P(RG,o). The re- 

maining Ly)(RG, CO) are defined [31,32] in a sufficiently functorial manner that 

(R, -)-Morita continues to act. This factorization is also discussed in [ 1 l] and [lo]. 

Likewise the functors in (iii) and (iv) are functors out of (R, -)-Morita. The func- 

tors in (vi) can be checked by hand to factor through (RG,w)-Morita. 

1. C. The Witt case 

In this section we explain our results for general geometric antistructures. In order 

to obtain a good description of the associated ‘basic’ groups, two changes are needed. 

First of all, we restrict attention to the case of 2-hyperelementary groups. Then we 

only get information in the Witt categories associated to the quadratic Morita 

categories as explained below. 

We begin by defining some new maps. 

1.C.l. Definition. Let (A, a, u) be a ring with antistructure, and let CEA be a unit 

in A. Define a new antistructure on A by scaling by c as follows. The new anti- 

automorphism is a’ and the new unit is u(‘) defined by 

ac(a)=cP1a(a)c for all aEA, ~4~‘) = ua(c-‘)c. 

There is a @,a’, u@))-(A,a, u) biform defining an isomorphism in (R, -)-Morita 

between (A, a, u) and (A, a’, u@)) called the scaling isomorphism given by 

A(a, @ az) =a,a-‘(a2)aP’(c). 

We apply this to the oriented geometric antistructure case. Let (G, 0, o, b, E) be a 

group with geometric antistructure, and let (a, u) denote the associated antistruc- 

ture. Let CE G be an element. Define a new oriented geometric antistructure 

(B’, o, 6’“, E@)) by 
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e’(g) = c-‘8(g)c for all g E G, 

6@) = b@c)c, &@)=o(c). E. 

Notice that the antistructure associated to the scaled oriented geometric antistruc- 

ture is the scale by c of (a, b). 

Given a map from (A, cr’, u@)) to (I?, /3, u), we get a twisted map from (A, a, U) to 

(I$ /3, u) by composing with the scaling isomorphism on A using c. This construction 

yields a twisted restriction map. Given a map from (A, (r, u) to (B, PC, u@)), we get 

a twisted map from (A, a, u) to (B, /3, u) by composing with the scaling isomorphism 

on B using c-l. This construction yields a generalized induction map. 

We have twisted generalized induction and restriction maps from this procedure 

whenever we have subgroups Na H of G and a c E G such that H and N are Bc- 

invariant, b(‘) E H, NC ker o, and INI is a unit in R in the induction case. 

We also need a new category. 

l.C.2. Definition. Define a category (R, -)-Witt as the category with the same ob- 

jects as (R,-)-Morita and with 

Hom(R,_).wiJ(A, a, u), (& P, 0)) = Hom(R,-)-Morita((A9 a, u), (& P, u))/3 

where 3 is the subgroup generated by the metabolic forms in Horncg _)_Morita((A, (Y, u), 
(B, /3, u)). Composition is defined since A 0 Meta = Meta(A @ p) and Meta 0 ,U E 

Meta(,I @ ,u) for nonsingular, bihermitian forms. 

Notice that there is an obvious forgetful functor from (R, -)-Morita to (R, -)-Witt, 

so we have generalized induction and restriction maps. Furthermore, we also have 

twisted induction and restriction maps. 

Our first result is a detection/generation theorem in (R, -)-Morita that uses fewer 

isomorphism classes of groups but twisted maps (compare l.B.7). 

l.C.3. Theorem. Let G be a 2-hyperelementary group with orientation co. Then 

(9 (RG, 0) z @ (R [H/N], Bc, o, b”‘, w(c)) 

is a split injection in (R, -)-Morita, where we sum over subquotients H/N of G such 
that NC ker w and H/N is either basic with 8 trivial or of the form ((index 2 in a 
basic) x C(2)-) with 6’ acting non-trivially on the C(2)-. 

(ii) @ (R [H/N], ec, 0, b(c), W(C)) 2 (ix, W) 

is a split surjection in (R, -)-Morita, where we sum over the same subquotients as 
in (i). 

Remark. A more precise theorem is available at the end of Section 4.C where we 

also explain how to pick the c associated to each subquotient. 
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l.C.4. Definition. A 2-hyperelementary group G with geometric antistructure is 

called Witt-basic provided all abelian normal subgroups of G which are o-invariant 

and contained in ker u are cyclic. These are classified in Theorem 3.C. 1. 

l.C.5. Theorem. Let G be a 2-hyperelementary group with geometric antistructure 
(&co, 6) and orientation E. Assume that ICI eRX. Then 

(i) (The Twisted Detection Theorem) the sum of the twisted restriction maps 

Res : (R[G], 0, CL), b, E) + @ (R [H/N], 0: w: b’, E’) 

is a split injection in (R, -)-Witt, and 
(ii) (The Twisted Generation Theorem) the sum of the twisted induction maps 

Ind: @ (R[H/N],O’,w’,b’,&‘)+(R[G],B,~,b,e) 

is a split surjection in (R, -)-Witt, 

where in both cases we sum over triples (H, N, c) with H/N Witt-basic and for which 
the twisted restriction and induction maps are defined. 

As usual, a more precise version is available, 4.C.4. 

The functors in (1 .B.8)(i), (ii), (iii) and (iv) all factor through (R, -)-Witt. 

l.C.6. Non-example. L,P(Z[C(2) x C(4)]) is not detected by Witt-basic subquo- 

tients, so we need ICI to be a unit in R. 

In Sections 6 and 7 we introduce methods for proving detection theorems for 

functors that do not satisfy the assumption that ICI is a unit in R. The following 

theorems are applications of this method. Other applications have appeared in [ 131. 

l.C.7. Theorem. Suppose G is a finite 2-group. Then the sum of the generalized 
restriction maps is an injection 

Res : L,P(ZG) + ,& L,pCWfN) 

where we sum over all basic subquotients of G. 

l.C.8. Theorem. Suppose G is a finite 2-group with orientation character w. Then 
the sum of the generalized restriction maps is an injection 

Res : L:(ZG, co) + @ L,p(Z W/Nl, 01 
NsHcG 

where we sum over all subquotients for which o is trivial on N, and for which H/N 
is isomorphic to 

(i) an o-basic subquotient, or 
(ii) C(2) x C(4) with o non-trivial, but trivial on all elements of order 2 (we will 

denote this as C(2) x C(4)-), or 
(iii) (t0,t,,g/t~=tf=g2=e, gt,g-‘=t,, gt,g-‘=t,t:, [to,t,]=e), and w(t,)= 

w(g)=l, o(t,)=-1. 

The group in (iii) is just a semidirect product (C(2) x C(4)-) >a C(2) and is also 
the central product over C(2) of 08 and C(4)-. We denote it hereafter by Ml6. 
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2. Representations of finite groups 

The first goal of this section is to define imprimitive induction and identify a 

special case in which it always occurs. Then we study the representation theory of 

basic groups, leading to a definition of the basic representation of a basic group. 

Finally we prove that any irreducible rational representation of a p-hyperelementary 

group G can be induced from some basic subquotient of G. 

Let k be a field of characteristic zero. For any irreducible k-representation 

Q : G + GL( V) of a finite group G we let De = Endkc (V) be the associated division 

ring. 

Suppose eo: H-* GL(W) is a k-representation for a subgroup H, such that 

kG OkH W= V is an irreducible k-representation of G. Then we get an injective 

ring map 

Id,, @__ : De, = EndkH( W) -+ Endkc (V) = De. 

2.1. Lemma. With the notation above, if V IH contains just one copy of W, then 
Idk, @_ is an isomorphism. 

Proof. Let E : kG 0 V 1 H-t V be the evaluation map. Consider the commutative 

diagram 

HomAW, V lH) 2 Hom(kG 0 W, kG @ V lH) E* Hom,o(kG 0 W, V) 

a 

I I 

P 

6 
De, = Hom,H( W W - Hom(kG 0 W, kG 0 W) = De 

where the vertical maps a and p are induced by the inclusion of Win V jH, and y, 

6 are induced by Id,o @__. The hypotheses imply that cr is an isomorphism. By 

Frobenius reciprocity (see [3, lO.S]), the composite E, 0 y is an isomorphism. Since 

kG @ Wz V is irreducible, the composite c.+ofl is also an isomorphism. Thus 6 is 

an isomorphism. 0 

2.2. Definition. Let Q be an irreducible rational representation of a finite group G. 

We say that Q is imprimitive if there exists a subgroup Hand a rational representa- 

tion q of H such that q I’=@ and the map IdpG @_ is an isomorphism. In this 

situation, we say that Q is imprimitively induced from H and that Q is imprimitively 
induced from q. If e is not imprimitive, then it is primitive. 

In Section 1 we defined a generalized induction for an irreducible rational 

representation on a subquotient H/N of G. First we pull back the representation on 

H/N to one on H, and then we induce the representation on H up to G. We say 

that a generalized induction is imprimitive whenever the induction stage is imprimi- 
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tive. Usually we will just say induction even if we mean generalized induction. By 

examining the starting group, the reader can deduce which one is meant. 

The following variant of Clifford’s theorem will be useful to us: 

2.3. ‘Theorem. Let e be an irreducible Q-representation of a finite group G, and let 
N be a normal subgroup. Then 

where the rli are all distinct irreducible Q-representations. The group G acts on the 
vector space Ve , and must permute the N-invariant subspaces 1’ vi transitively. 

Let H be the isotropy subgroup of 1. nl. Then NCH and IG: HI =r. Further- 
more, there is a Q-representation, rjI of H with fi, I,,,=l. nl; and tj, lG =@. This in- 
duction is always imprimitive. 

Proof. All but the last two lines are a statement of the standard Clifford theorem 

(see [3, 11.1, p, 2591). That the induction is imprimitive follows immediately from 

Lemma 2.1. Cl 

Our next result is essentially due to Witt [30]. 

2.4. Theorem. Let G be a finite group which has an abelian, normal subgroup which 
is not cyclic and a faithful, irreducible Q-representation e. Then there is a normal 
elementary abelian p-group A, for some prime p, of rank 2 2. Given any such A 
there is an index p subgroup E of A, such that E is not normal in G and such that 
Q is induced imprimitively from the normalizer of E. 

Proof. For some primep the subgroup of elements of order sp in the promised nor- 

mal abelian subgroup of G which is not cyclic will be elementary abelian of rank 

~2. Fix such a p and note that this subgroup is an elementary abelian subgroup of 

rank 22 which is normal in G. 

Let A denote any noncyclic normal elementary abelian subgroup of G. Recall that 

the irreducible Q-representations of A are determined by their kernels. The possible 

kernels are all of A and any index p subgroup. 

Apply Theorem 2.3 and let @ IA =I. (xl + ... +x,.). Since e is faithful and A is 

normal, the kernel of x1 can not be all of A, and so it is some index p subgroup 

E. The same argument shows that E is not normal in G. Since kernels determine 

representations for A, the H constructed in Theorem 2.3 is just the normalizer of 

E in G. By 2.3 again, the induction is imprimitive. 0 

As we will be working with p-hyperelementary groups, we recall some facts about 

their structure. First, G = CxlP with C cyclic of order prime to p and P a p-group. 

Let I,Y: P+ Aut(C) denote the action map. 
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2.5. Let H be a proper subgroup of G with index a power of p. Then the normalizer 
of H is strictly larger than H. 

2.6. A p-subgroup His normal in G iff HC ker w and H is normal in P. If H is non- 
trivial and normal in G, then it contains a central element of order p. 

2.1. Proposition. Let G be a p-hyperelementary group with an abelian normal sub- 
group which is not cyclic. Then G contains a subgroup KS C(p) x C(p) which is 

normal in G. 
If GO denotes the centralizer of K in G, then 
(i) either G = GO or 

(ii) GO has index p in G and the conjugation action of G/Go on the cyclic sub- 
groups of K fixes one of them and is transitive on the remaining ones. 

Proof. Let E be the subgroup of elements of order up in the normal, non-cyclic 

abelian subgroup of G. By 2.6, E contains a subgroup c,~Cc(p), central in G. 

Apply the same argument to E/C, in G/CO and let K be the inverse image in G of 

this C(p) in G/C,. Note KCE so it is a rank 2 elementary abelian p-group, which 

is normal in G. 

Since K is normal in G, so is GO. Note C centralizes K since both are normal, 

hence the index of GO in G is apth power. Consider the conjugation action of G/Go 

on K. Since K has rank 2, AU(K) z GL(2,F,) and IGL(2, F,)l = (p - l)(p2 -p), so 
G/Go is trivial or C(p). In the first case there is nothing to prove, and the result 

in the second case is a standard result on the action of Aut(K) on the cyclic sub- 

groups of K. 0 

We return to representation theory for p-hyperelementary groups. Theorem 2.4 

and Proposition 2.7 suggest that we should study induction when we have a normal 

C(p) x C(p) subgroup. Let IrrQ(G) denote the set of irreducible rational represen- 

tations of G; if NCH are subgroups of G, let IrrQ(G)NCH= {Q E IrrQ(G) 1 N= 

ker@nH}. 

2.8. Theorem. Let G be a non-basic p-hyperelementary group, and consider any 
normal subgroup KG C(p) x C(p). Let CO, . . . , C, denote the cyclic subgroups and 
arrange notation so that CO is central. Let GO denote the centralizer of K in G. 
Consider any Q E IrrQ(G). 

(i)Zf K is central in G then elK=f.@ and Knkere=ker@=K,C,-,,C,,..., or 
Cp. Hence IrrQ(G) = IrrQ(G)KCKIIIrre(G)c,cKIr... UIrrQ(G)C,cK. 

(ii) Zf K is not central then Kfl ker Q = K, CO, or {e]. Zf Kfl ker Q = {e], then 

and each Kn ker @” is a different Ci where 15 irp. Hence IrrQ(G) E IrrQ(G)KCK u 
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IrrQ(G)cocKUIrrQ(Go)clcK, 
sends e. to e. lG, 

where the embedding of IrrP(G&,cK in IrrQ(G) 

which is always an imprimitive induction. 

Proof. Let GE. denote the irreducible Q-representation of K with kernel E, and 

recall that the choices for E are K, Co, C,, . . . , CP. 

Apply Clifford’s theorem (2.3) to e and K. If K is central, then no two distinct 

representations of K are conjugate, so e IK = 1. QE for some E. Hence K n ker e = E 
and the result follows. 

If K is not central, then the distinct representations which are conjugate are just 

the ones whose kernels are C; for i with 1 I irp. Hence @ IK= 1. 0 where 4 is either 

OK (iff Kn ker e = K); Gc,, (iff K(l ker e = CO); or @ = I?= 1 qb, (iff Kn ker e = {e}). 

If Kn ker e= {e}, let # denote an irreducible constituent of e IGO. Frobenius 

reciprocity implies that @ lK and Cf=‘=, @o, have a common constituent. Since GO 

has a central C(p) x C(p), apply part (i) to @ to see that Kfl ker @ = C,, . . . , or C,. 

Now apply 2.3 to e restricted to Go. By 2.5, the conjugates of I$ have different 

kernels and so are distinct. Hence e lGO = 1. CxeG,Go @” and an easy degree argu- 

ment shows that I= 1. 0 

Finally, we take up the representation theory of basic groups. As we will see short- 

ly, basic groups are contained in the broader class defined next. 

2.9. Definition. A group G is an F-group if it contains a self-centralizing cyclic sub- 

group A, i.e. A is normal and the map G/A + Aut(A) induced by conjugation is 

injective. 

The first result, observed by Fontaine 17, Lemma 3, p. 1531 is 

2.10. Lemma. Any basic p-hyperelementary group is an F-group. 

Proof. To fix notation, let G = C >a P with C cyclic of order prime to p, and P a p- 
group. Let A be a maximal element of the set of normal cyclic subgroups of G con- 

taining C (ordered by inclusion). Note that G/A is a p-group, and consider the 

kernel of the action map G/A + Aut(A). If it is non-trivial, let E be a cyclic sub- 

group of it. Let BC G denote the inverse image of EC G/A in G. Then B is clearly 

normal; it is abelian since any extension of a cyclic by a C(p) with trivial action is 

abelian, and it is non-cyclic by maximality. This contradicts the fact that G is basic. 

q 

Hence we study representations of F-groups. The key step involves the relation- 

ship between complex representations, rational representations, and Galois groups 

which we quickly review (or see 123, Chapter 123). 

Let v/ be an irreducible representation of G over the complex numbers C. The 

values of the character of w on the elements of G are algebraic integers, and we let 
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Q(w) denote the finite extension field of the rationals Q, generated by these values. 

If r E Gal(Q(w)/Q), then I,V~ will denote the Galois conjugate representation, i.e. 

the representation whose character is just 5 applied to the value of the character for 

I,U. The orthogonality relations for complex characters show that vT is an irreducible 

representation and the I,V’ for different r are distinct. Form the representation 

c rEGa,(B(w),eJ (v~. This has a rational character but may not be the complexifica- 

tion of a rational representation. There does exist a minimal integer, m,,, > 0, called 

the Schur index, so that 

is the complexification of an irreducible Q-representation, and every irreducible Q- 

representation arises in this fashion. Finally, the division algebra D, associated to 

w has center Q(w) and index m,, so dimQ(D,)=mi.dimQ(Q(W)). 

Let A denote a cyclic group of some order. It has &/A I) faithful irreducible com- 

plex representations, all of which are Galois conjugate. Let aeA be a generator, 

and let I&, denote the faithful irreducible complex representation which sends a to 

exp(2ni/lAl). The sum of these is the complexification of a rational representation 

so A has a unique irreducible faithful rational representation, denoted eA. More- 

over, the automorphism group of A, Aut(A), acts simply transitively on the faithful 

irreducible complex representations of A, and there is a unique isomorphism 

Aut(A)+Gal(Q(&,,)/Q) which identifies the two actions on rca). 

We apply these remarks to prove 

2.11. Theorem. Let G be an F-group with A c G a self-centralizing cyclic subgroup. 
There exists a unique faithful irreducible Q-representation ec of G and eG is the 
only irreducible Q-representation of G which is faithful on A. 

Moreover, ec satisfies the equation ec iA = m . @A , where m is the Schur index of 
any irreducible complex constituent of eG. 

Proof. Pick a generator a E A. Let K = <(o) 1 G. By the Mackey irreducibility criterion 

[23, Section 7.4 Corollary], K is irreducible provided all the conjugates of [CO, are 

distinct. But G/A embeds in Aut(A) via the action map, and the action of Aut(A) 

on the irreducible faithful complex representations of A is faithful. Hence K is ir- 

reducible. Moreover, Q(K) is the subfield of Q(l& fixed by G/A considered as a 

subgroup of the Galois group of Q(<(a>) over Q via the above identifications. 

Hence Gal(Q(K)/Q) is naturally identified with Aut(A)/(G/A). 

This means that the Galois average of K has a rational valued character and that 

this representation restricted to A is just the complexification of @A. Let eG denote 

the associated irreducible Q-representation. Frobenius reciprocity shows that 
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and hence ec IA=m.eA. 
Let x be any irreducible Q-representation of G and apply Theorem 2.3 to x IA. 

On A, no two distinct irreducible Q-representations can be conjugate, so x IA = 1. t,u 

for some irreducible Q-representation I,Y of A. If I+V #eA, then x has a non-trivial 

kernel. If I,Y = eA, then x = ec and hence ec is the unique faithful irreducible Q- 

representation of G. 0 

2.12. Definition. Let G be a basic p-hyperelementary group. By Lemma 2.10, 

Theorem 2.11 applies to G. We call the representation eG whose existence and uni- 

queness was proved in Theorem 2.11, the basic representation of G. 

The major result in the representation theory of p-hyperelementary groups that 

we need is 

2.13. Theorem. Let G be a p-hyperelementary group and let e be an irreducible 
rational representation of G. Then there exist subgroups Ne Q He of G such that 
the index of He in G is a p th power; H,/N, is a basic group; and e can be induced 
imprimitively from the basic representation of H,/N, . 

Proof. Since imprimitive generalized induction is transitive, it is easy to see that we 

can induct on the subquotient structure of G, i.e. we can assume the result for all 

proper subquotients of G and we need only show that ,CJ can be pulled back from 

a quotient group of G or else it can be imprimitively induced from a subgroup of 

prime power index. 

If e is not faithful, then it can be induced from a quotient group, so we may as 

well assume that e is faithful. 

If G is not basic, then there is a normal abelian non-cyclic subgroup. But in this 

case Theorem 2.8 shows that there is a subgroup H of index p from which we can 

imprimitively induce. 

If G is basic and e is faithful, then e =ec by 2.11, and 1 is a pth power. 0 

Remark. In Theorem 2.13, H,/N,= {e} iff ,CJ is trivial and He=Ng=G. 

We will need some results later about the sorts of subgroups H of G from which 

an imprimitive induction can take place. 

2.14. Proposition. L,et G be a p-hyperelementary group and let e be an irreducible 
Q-representation. Suppose that H is a subgroup from which e can be imprimitively 
induced. Then there exists a sequence of subgroups H = H,c ... C H, = G with each 
Hi of index p in the next. 

Proof. The result follows from 2.5 if we can show that the index of H in G is apth 

power. 
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Let V, denote the vector space for e, and recall that I/e is a free module over the 

associated division algebra De. From 2.11, it follows that dim, V, =pr. dim, D,. 

Let x be an irreducible Q-representation of H. The last argument shows that 

dimQ VX =pS. dimQ D,. If x is a representation from which e can be induced im- 

primitively, dimQ D, = dimQ De. Since dimQ Ve = /G: HI . dimQ VX, we see that 

IG: HI =prps. 0 

2.15. Proposition. Let G be a p-hyperelementary F-group, and let N be an index 
p subgroup from which eG can be induced imprimitively. Then N contains a 

C(p) x C(p) which is normal in G. 

Proof. For notation, let G = Cxl P, with P a p-group and C cyclic of order prime 

to p. Let A be a self-centralizing cyclic subgroup of G, and let A,=NflA = 

ker(A + G/N). Note that either A ==A, or /A :A01 =p. By Theorem 2.3, e I,,,= 

VI+ “.f’lp, where the ri are distinct and conjugate. By Theorem 2.11, eA 1’ is a 

multiple of e and Frobenius reciprocity forces eA,, IN to contain each of the vi. 

Let L denote the centralizer of A, in N. Since A0 is normal in G, so is L. 
First we show that L #A,. Suppose that A, were self-centralizing in N. Then by 

Theorem 2.11, .Q+, IN would be a multiple of eN and the rli could not be distinct. 

Hence A, is not self-centralizing in N. It follows that A,+A, so /A : A01 =p and 

N/A,-+ G/A is an isomorphism. Hence N/A, injects into Aut(A), so it is ea.sy to 

see that IL : A,1 =p. 
From this it follows that L is abelian, and we conclude by showing that L is not 

cyclic. Notice that L does not centralize A, and so A does not centralize L. Consider 

the action map G/L -+ Aut(L). By projecting to Aut(A,), we see that N/L ---) Am(L) 

is injective. While A does not centralize L, it does centralize A,. This means that 

A/A, injects into Aut(L) but its image goes to 0 in Aut(A,). 

Hence, if L is cyclic, it is self-centralizing in G. The argument above that NnA #A 
did not depend on which self-centralizing cyclic subgroup of G we began with, so 

repeat the argument with L. A contradiction ensues since Nfl L = L, and so L is not 

cyclic. 0 

2.16. Corollary. The basic representation of a p-hyperelementary basic group is 
primitive. 

3. Structure of basic groups, w-basic groups and Witt-basic groups 

The goal of this section is to classify the basic groups and their quadratic relatives. 

We also do some quadratic representation theory that is easier to explain after we 

have the classification in hand. Our first goal is the classification theorem 3.A.6 

below, but we begin with some lemmas. 
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3.A. The linear case 

3.A.l. Proposition. Let T be a finitep-group. If [ T, T] is not cyclic, then [T, T] con- 
tains a subgroup KE C(p) x C(p) such that K is normal in T. 

Proof. There exists CO c [T, T] n g(T) where C,E C(p). Let A be a maximal 

member of the following set of subgroups: 

{BG [T, T] 1 C,,c B, Ba T, B is cyclic}. 

Consider 

0-A-T * T/A’0 

O-A- [T, Tl - [T/A, T/A] - 0. 

Since [i; T] is not cyclic, [T/A, T/A] # {e>. Since T/A is a p-group, we can find 

C, c [T/A, T/A] n y( T/A) 

where Cr G C(p). 
Let BC [T, T] be a subgroup such that 

is exact. Since Cr a T/A, Ba T. Consider the action map T/A + Aut(A). Since 

Aut(A) is abelian, Cr is in the kernel, i.e. Cr acts trivially on A. Hence B is abelian. 

By the maximality of A, B is not cyclic. Hence there exists KE C(p) x C(p) c B. 
Since K is unique in B and Ba T, Ka T, Since BC [T, T], KC [T, T]. 0 

3.A.2. Proposition. Suppose we have a diagram of groups 

[P,P]cAc TcP 

where P is a p-group and A z C(p”) is self-centralizing in T. Assume that T con- 
tains no subgroup KE C(p) x C(p) which is normal in P. 

(i) If p is odd, the group T is cyclic. 
(ii) If p=2, the group T must be isomorphic to one of the following groups: 

C(2’), ilO; Q(2’), ir 3; SD(2’), i2 4; 0(2’), i2 3. 

3.A.3. Remark. The list in 3.A.2(ii) contains one 2-group which is not basic, namely 

D(8). Notice that if 

P=D(16)=(x,yIx*=y*=l, yxy-‘=x-‘), 

then D(8)= (x2, y), A =(x2) is self-centralizing in (x2, y), and [P, P] s (x2>. Thus 

D(8) must be included in the list. 
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The proof of 3.A.2 uses the following two lemmas: 

3.A.4. Lemma. Suppose A is a p-group which is a subgroup of U= (Z/p”Z)“. Let 
(Y=l+p”_’ E U, and assume that (x $ A. If p is odd, then A = (1). If p = 2 and n I 2, 
then A =(l). Zfp=2 and n>2, then A is (I), (-l)zC(2), or (-1+2”-‘)=C(2). 

Proof. Let,U={j3EU]~P=1}. Ifpisodd, then Uiscyclicand,U=(l+p”-‘). 

Ifp=2andn=l, then U=(l). Ifp=2andn=2, then U=(-1). Ifp=2andn>2, 

then U= C(2) x C(2”-2), 

Pu=(l, -1, -1 +pn-l,l +pq 

and Upfl,U=(l +p”-‘>. 0 

3.A.S. Lemma. Suppose fi is a nontrivial element of orderp in (Z/p”Z)’ (note that 
n > 1). This describes an action of Z/pZ on Z/p”Z. Then 

H;(Z/pZ; Z/p”Z)z 
Z/22 if p=2 and j?= -1, 
(1) 

otherwise. 

The group H$(Z/pZ; Z/p”Z) classifies extensions of Z/p”Z by Z/pZ with given 
action. If n > 1, the extension 0 --t Z/2*2--f Q(2”+ ‘) + Z/2Z-t 0 represents the non- 
trivial element in Hj(Z/2Z; Z/2”Z), where j3 = - 1. 

Proof. Consult [2] for the classification of group extensions and for the calculation 

of Hi(Z/pZ; Z/p”Z). If p is odd, the action given by j? fixes no elements, so the 

result is clear. If p= 2 and /I# -1, then compute by hand that the fixed elements 

are all norms. If p= 2 and p= - 1, both the calculation and the claim about the 

extension are straightforward. 0 

Proof of 3.A.2. If p = 2 and n = 1 or 2, the result is clear. Hence, if p = 2, we can 

assume n > 2. 

Claim. There does not exist an element XE T such that xax-’ =al+p”-’ for all 
aeA. 

Proof of Claim. Suppose x exists an let A = (A,x). Then 3.A.5 implies that A = 

A >aZ/pZ. If u is a generator of A, then 

K= (up”-’ ,x>={crEA ~ar=l}=c(p)xc(p). 

Since [P,P] CA, A is normal in P. Since K is characteristic in A, we get that K is 

normal in P and x does not exist. 0 

To finish the proof of 3.A.2 note 

(i) p odd: Lemma 3.A.4 implies A = T. 
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(ii) p = 2: Lemma 3.A.4 implies that if A # T, then either T/A = (-- 1 + 2”-‘1 or 

T/A=(-1). Lemma 3.A.5 then implies that if T/A=(-1+2”-‘), then Tz 
SD(2”“) and if T/A=(-l), then TsD(2”-+‘) or Q(2”+‘). 0 

We can now classify the basic p-hyperelementary groups. 

3.A.6. Theorem (Classification of basic p-hyperelementary groups). Suppose G = 
C >a P is a p-hyperelementary group, where P is a p-group, C cyclic, with p prime 
to ICI. Let y/:P --f Aut(C) be the map induced by conjugation. 

(i) If p is odd, then the group G is basic if and only if ker t,~ is cyclic. 
(ii) If p = 2, the group G is basic if and only if ker w is 

(a) (cyclic) 

C(2’)=(x )x2’E-e), i>O; 

(b) (quaternionic) 

Q(~‘)=(x, y Ix~'-~=,, y2=x2'~2,y~y-1~x~~1), i>3; 

(c) (semidihedral) 

sD(2’)~(x, ylx2'-'=y2=e, yxy-'~x~~~~~~), i>4; 

(d) (dihedral) 

D(2’) = (x, y 1 x2’_ ’ =y2=e, yxy-‘=x-l), i24; 
or 
(e) D(8)=(x,yjx4=y2=e, yxy-‘=x-l) 

and the map 

P + Out@(B)) = C(2) 

induced by conjugation is onto. 

The special case of 3.A.5 where G is a p-group is due to Roquette [22]. 

Proof. Let T= ker w. 

(3) If G is basic, then T contains no subgroup KS C(p) x C(p) such that Ka P. 
Since Aut(C) is abelian, [P, P] c ker(y/). Thus 3.1 implies [P, P] is contained in a 

maximal normal cyclic subgroup A of T. Then A is self-centralizing in T. Apply 

3.A.2. Notice that if TED(B) and P+ Out@(B)), is not onto, then Tcontains a sub- 

group isomorphic to C(2)xC(2) which is normal in P. 
(t) If G is not basic, then 2.7 implies that G contains a normal subgroup isomor- 

phic to C(p) x C(p). This implies that Tcontains a subgroup Kr C(p) x C(p) which 

is normal in P. It is easily verified that this is impossible for each of the groups listed 

in 3.A.6. 0 
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3.A.l. Theorem. If a 2-hyperelementary group G is an index 2 subgroup of a basic 
group, then ker t,u is C(2’), ir0; Q(2’), ir3; D(2’), ir3; and SD(2’), ir4. Inpar- 
titular, any such group is an F-group. 

Remark. Note that the only non-basic groups on this list are a few cases in which 

ker V/E D(8). 

Proof. If G is an index 2 subgroup of a 2-hyperelernentary group G, then either 

ker I+V= ker t,Q, or else ker w has index 2 in ker I+?. The only case requiring comment 

is the ker I+Y index 2 in ker @ case. It is easy to list the index 2 subgroups of the cyclic, 

quaternionic, dihedral and semidihedral groups and to see that the only trouble 

could come from an index 2 subgroup of a group G of type (e) above. But as G is 

normal in G’, ker I+Y C D(8) must be invariant under the map P + 0ut(D(8)) and so 

ker I,Y = C(4). 

The cyclic, quaternionic, dihedral and semidihedral groups each have a self- 

centralizing cyclic normal subgroup D. Let A c G be the subgroup generated by the 

normal cyclic of order prime to 2, C, and a normal cyclic subgroup of order 2’, D. 
It is easy to check that A is self-centralizing cyclic. 0 

3.B. The quadratic case 

Before beginning the classification theorem we introduce a construction we will 

need. 

3.B.l. Lemma. Let G be a group with a normal subgroup KS C(2) x C(2) and a 
homomorphism o : G + { + I} such that cc) is non-trivial on K. Then G = G’ >a C(2) 
where G+=kera. 

Let (z) = Kfl G+. Then there is a homomorphism, E : G’ --t 21 such that a E 
Aut(G’), the automorphism used to define the semi-direct product, is of the form 

a(h) = 
h if e(h)= 1, 

z.h if e(h)=-1, 

for all heGt. The element z is central. The centralizer of K in G is ker E x C(2); 

ker E is normal in G. 

Proof. It is clear that G = Gt xl C(2) where the homomorphism a is given by con- 

jugation by an element y E K with yfz or e. Note that a(h)h-’ is in K and in G+. 

Since Kfl G+ = (z), a(h) = h or zh. Define E : G+ + { ?I l} by setting e(h) = - 1 iff 

a(h) = zh. Since (z) is normal, z is central so it is not hard to check that F is a homo- 

morphism. 

The remaining results are clear. 0 

Notation. For any pair (G, w), let Gt = ker(o: G -+ { -tl}) and let ker I,U+ = 

G’ fl ker v/ where I,V can be any homomorphism defined on G. 
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Recall that (G, w) is o-basic provided that no non-cyclic abelian subgroup of Gf 

is normal in G. 

3.B.2. Theorem (Classification of o-basic p-hyperelementary groups). 

(i) If p is odd, a p-hyperelementary group is o-basic if and only if it is basic. 
(ii) A 2-hyperelementary group (G, o) is a-basic if and only if either 

(a) G is basic; or 
(b) G is not basic, but G = Gf x1 C(2)- as in 3.B. 1. Furthermore Gf is non- 
trivial and basic. 

Proof. It is clear from the definitions that basic groups are w-basic, so we classify 

the a-basic groups (G, w) that are not basic. Definition 1 .B.6 and Proposition 2.7 

imply that G contains a normal subgroup Kg C(p) x C(p) which is not contained 

in G+. This means that p = 2 and w IK is split onto, so we are done with part (i) and 

in the case p = 2 we may apply Lemma 3.B. 1. Write GE G’ >a C(2) with a central 

ZE G+ and automorphism a~Aut(G+) with cr(h) = h or zh. Furthermore, G+ is 

non-empty. We are done if we can show that G+ is basic, which we do by con- 

tradiction. Let LcG+ be a C(2)x C(2) which is normal in G+. We derive a con- 

tradiction by using L to construct a C(2) x C(2) in G+ which is normal in G. From 

2.6, L contains a central (in G+) element x of order 2. If x=z, then L is the desired 

subgroup. If xfz, then (z,x> is the desired subgroup. 0 

The next result is an o-analogue of 2.11. Let w : G--f { +l} be an orientation 

character. We can also view w as a Q-representation of G via the inclusion 

{ +l} -+GL,(Q). For any Q-representation e of G, we let ew denote e 0 w. 

3.B.3. Definition. A Q-representation @ is w-invariant if @ = e”. It is w-irreducible 
if it is w-invariant and it cannot be expressed as a sum of nontrivial w-invariant Q- 

representations. We say that an w-irreducible Q-representation is of type (I) if it is 

irreducible as a Q-representation and type (II) otherwise (in which case @ = @ + @“). 

Given a subgroup H of G and o-irreducible Q-representations q of H and e of 

G with q I’zQ, we say that the induction is w-imprimitive if either 

(i) q and e both have type (I) and the induction is imprimitive, or 

(ii) q = x + x w and the induction x 1’ is imprimitive (in which case so is the induc- 

tion xw 1’). 

We say that an w-invariant Q-representation e is w-primitive if it is faithful and 

cannot be induced w-imprimitively from a proper subgroup. 

3.B.4. Proposition. Let G be a group, w : G + C(2) a homomorphism, and KCG 
a normal C(2) x C(2) with w IK surjective. Write G= Hx C(2) with H= ker w. Fur- 
ther assume that H is an F-group. If G has a faithful irreducible Q-representation, 
it is unique. If there is not a faithful irreducible representation, then GE H x C(2) 
and G has precisely two irreducible Q-representations which are faithful when 
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restricted to H. These are the only irreducible Q-representations of G which are 
faithful when restricted to A, a self-centralizing cyclic in H. 

Proof. Note that Lemma 3.B. 1 applies so that the automorphism (Y of H giving the 

semi-direct product is rather special. Let z denote the element in H which is central 

in G and gives the automorphism a as a(h) = h or zh for all h E H. First we show 

that G does not have an irreducible faithful Q-representation iff G= Hx C(2). Con- 

sider ,oH I’, which is faithful, and let x be an irreducible constituent of it. By 

Frobenius reciprocity x IH has @H as a constituent, so Hn ker x = (E}, and hence H 
and ker x commute. If ker x # {e}, then G = H x C(2) (where the C(2) is ker x). Con- 

versely, if ker x = {e}, then x is a faithful irreducible Q-representation of G. 

Next consider the uniqueness assertions. Let I,V be an irreducible Q-representation 

of G, and assume that I+Y is faithful when restricted to A, where A is any self- 

centralizing subgroup of H. Let @ be an irreducible constitutent of I+V IH. Begin 

with the case G= Hx C(2), and apply 2.3. Since the conjugation action is trivial in 

this case, I+V IH= 1. @ and so 4 IA is faithful. By 2.11, @ =@H, and we are done with 

the product case since @H has exactly two extensions to Hx C(2). 

To do the other case, notice that, since A is self-centralizing, z E A, and hence A 
is normal in G. Let @ be an irreducible constituent of I,U IH. Because A is a normal 

cyclic group, all the conjugates of @ have the same kernel when restricted to A, and 

so @ must be faithful when restricted to A. Theorem 2.11 implies that @=@H. A 

similar argument applies to any conjugate of @, so from 2.3 it follows that 

t,u IH= 1. @H. We are done if we can show that @H 1’ is irreducible or is twice an ir- 

reducible. 

Let x denote an irreducible constituent of @H 1’. If @H 1’ is Q-irreducible, then 

x = xw. If @H 1’ is reducible, then @H I G is x + x w, and we are done if we can show 

that x =xw. If ker x # {e}, we saw above that GZ HX C(2) and G could not have 

a faithful irreducible representation. Hence we can assume that x is faithful. 

Let B be the kernel of the action map G + Aut(A). Note that A C B with cokernel 

at most a C(2), so B is abelian. If B is cyclic, then B is self-centralizing and G is 

an F-group. By 2.11, x =xw since both are faithful irreducible Q-representations 

of G. 

If B is not cyclic, there is a KG C(2) x C(2) in B which is normal in G. Since 

ker x = {e}, K cannot be central in G, so let GO denote the centralizer of K in G. 

Note that GO = HO x C(2), and observe that AC HO, so H,, is an F-group with 

faithful irreducible representation @Ho. Let I,U be an extension of this representa- 

tion to G,. The argument in the product case shows that the only two irreducible 

representations of GO which are faithful on A, are I+V and I,v~. 

Now apply 2.8. Since x is faithful, x IGo= @ + @“, where XE G- GO; @” denotes 

the conjugation of @ by X; and @#@“. Both 0 and 0” must be faithful on A, since 

their sum is. Hence @ is one of I+V or I,V~ and @” is the other. So @“=@“. 0 

3.B.S. Definition. Each o-basic group has an w-irreducible Q-representation, called 
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the co-basic representation, and written eo. It is the unique faithful o-irreducible 

Q-representation of G. It is of type (II) iff G = ker o x C(2)). 

Remark. The necessary existence and uniqueness results have already been verified. 

If G is basic, the needed result follows from 2.10 and 2.11. For the groups in 

3.A.6(ii)(b), Proposition 3.B.4 applies by 2.10. 

3.B.6. Remark. There is no danger in writing @o, since if G is an o-basic F-group, 

the ec defined in 2.11 is clearly also the m-basic representation. 

3.B.7. Remark. We leave it to the reader to show that @o is o-primitive. 

The following result implies the analogue of 2.13, namely that o-irreducible 

representations can be induced up nicely from w-basic subquotients. 

3.B.8. Theorem. Let G be a p-hyperelementary group equipped with an orientation 
character o : G -+ { +- 11. Let Q be o-irreducible. Then there are subgroups N a H oj 
G with NC ker o such that H/N is o-basic and Q is o-imprimitively induced from 
Q~,~. The index of H in G is a p th power. 

Proof. We induct by assuming the result for all proper subquotients of G. 

Since e is o-invariant, ker e C ker CL). If ker # {e}, e can be pulled back from an 

w-irreducible Q-representation of G/(ker e), so by our inductive hypothesis we are 

done. 

The case where ker e = {e} proceeds as follows. If G is o-basic, then e = eo by 

3.B.4 and we are done again. If G is not o-basic, then select a K in G+ which is 

normal in G. Let x be an irreducible Q-constituent of e. Since e is faithful and K 
is in G+, it follows easily from 2.8 that K cannot be central. Theorem 2.8(ii) further 

implies that x Ido = I,U + I,#, where XE G - Go, Go is the centralizer of K in G, and 

wz$; indeed Knker W#Kn ker wX. Since K is in G’, Kfl ker W=Knker t,uw, 

so v/Xzt+Yw. If x =e, the type (I) case, then e =ew, so t,~“‘= v/ and we can 

o-imprimitively induce e from Go. If e fx, the type (II) case, then ww # I,V so again 

we can w-imprimitively induce e from G,. 0 

3.C. The Witt case 

Recall (l.C.4) that a Witt-basic group is a 2-hyperelementary group in which all 

abelian normal subgroups that are e-invariant are cyclic. In particular, a 2-hyper- 

elementary group with geometric antistructure is Witt-basic iff it has no normal 8- 

invariant C(2) x C(2)‘s in ker IX. Hence the next result classifies the Witt-basic 

2-hyperelementary groups. 

3.C.l. Theorem (Classification of Witt-basic 2-hyperelementary groups). Let 
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(G, 0, o, b) be u 2-hyperelementary group with geometric antistructure. 
(i) There are no normal O-invariant C(2) x C(2)‘s in G iff either 

(a) G is basic, or 
(b) G is not basic, but ker gD(8), and 8 acts on D(8) as a non-trivial outer 
automorphism. 

(ii) There are normal B-invariant C(2) x C(2) in G but none of them are contained 
in ker(o) iff G= Gi >aC(2)- as in 3.B.l and G’ has no normal B-invariant 
C(2) x C(2)‘s. 

Proof. Define a new group G = (G,x 1 xgx-’ =0(g) for gEG, x2=bP1). Note that 

GC d is of index 2. Let c5 : G + { kl} be the homomorphism with ker L3 = G. 

We begin by producing the G which do not have an e-invariant normal C(2) x C(2). 

Clearly these are the groups G for which (6, c3) is c&basic. By the classification of 

o-basics, G is an index 2 subgroup of a 2-hyperelementary basic group, which are 

listed in 3.A.7. Hence G is basic, or ker v/~D(8). If ker 1,~=0(8), then G still has 

no O-invariant normal C(2) x C(2)‘s if G is basic, or if 6, acts as a non-trivial outer 

automorphism on D(8). These are the groups satisfying (i) above. 

Now suppose that there are B-invariant C(2) x C(2)‘s in G, none of which are 

in G’. Pick a O-invariant C(2) x C(2) and apply Lemma 3.B.l. Note that the 

corresponding z satisfies e(z) =z. We need to see why G’ has no O-invariant 

C(2) x C(2)‘s. We proceed by contradiction, so suppose that E is a C(2) x C(2), O- 

invariant and normal in G’. By 2.6 there are central (in G+) elements of order 2 

in E. We can easily find a central x E E with e(x) =x. If x = z we are done. If not, 

the group (x, z) is a central O-invariant C(2) x C(2) in G’ which is normal in G, so 

we are done in either case. To do the converse, return for a moment to the groups 

with no e-invariant normal C(2) x C(2)‘s. From the classification of basics (3.A.6) 

we see that these groups have a unique element z of order 2 in their centers, which 

must then satisfy e(z) = z. Hence if G = G+ XI C(2)) with the automorphism a built 

as in 3.1 with G+ having no a-invariant normal C(2) x C(2)‘s, then there is a 8- 

invariant normal C(2) x C(2) in G. 0 

3.C.2. Definition. A Q-representation e is a group homomorphism G : + GL( V,), 

so we can define es by precomposing this homomorphism with 8. Define ea= 

(es)“. A Q-representation is called a-invariant provided ea =e. 

3.C.3. Theorem. Each Witt-basic group has an irreducible Q-representation which 
is faithful and which is a-invariant. This representation is unique unless G= 
G’ x C(2)) in which case there are precisely two. 

Remark. We write ec for the representation when it is unique, and call it the Witt- 
busic representation. We write e& and ~6 for the two representations when there 

are two. We call them the Witt-basic representations. Note (@A)“=& and 

vice-versa. 
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Proof. If G is an index 2 subgroup of a basic group, then it is an F-group by 3.A.7. 

Hence Witt-basic groups satisfying 3 .C. 1 (i) have a unique faithful by 2.11. For case 

(ii), note that Proposition 3.B.4 applies. 0 

3.C.4. Theorem. Let e be an irreducible Q-representation of a 2-hyperelementary 
group G, with a geometric antistructure (9, co, 6). Suppose that e is a-invariant. 
Then, there exist subgroups Ne a He of G with N, c ker cc), and an element ce E G 
such that He and Ne are @-invariant. The scale by ce of the given antistructure on 
G restricts to an antistructure on He/Ne and a twisted induction and a twisted 
restriction are defined. Furthermore, He/N, with its geometric antistructure is a 
Witt-basic group. 

If e=ew, then H,/N, has a unique Witt-basic representation which induces up 
imprimitively to give e. 

If LQ+ew, then He/N, has two Witt-basic representations. One of them induces 
up imprimitively to give e and the other induces up imprimitively to give ew. 

Proof. We say that an induction from x on H to e on G is Witt-imprimitive iff 

ew = e, there is a c E G such that the geometric antistructure on G, when twisted by 

c, restricts to a geometric antistructure on H, and xa = x. 

As usual, we can assume the result for proper subquotients of G. Fix an a- 

invariant irreducible Q-representation e of G. 

First we do the case in which ew =e. If ker e # {e}, it is easy to see that ker e is 

a B-invariant subgroup of G+, and so we can pull e back from the quotient 

G/(ker e), which has a geometric antistructure so that the map G -+ G/(ker .o) is a 

map of groups with geometric antistructure. Suppose ker e = ie}, and that G is not 

Witt-basic. Then by 2.8 we can induce e imprimitively from an index 2 subgroup, 

the centralizer, GO of some KG C(2) x C(2). Since K is O-invariant, b E Go and GO 

is B-invariant. Let y be one of the two irreducible Q-representations of G, which 

induce up to give e. If I,v’= I+V, then an ordinary induction is Witt-imprimitive. If 

I,VO # w, then I+V~ = I,/ for some x E G. If we scale by x we now get a Witt-imprimitive 

induction. Notice that K is @-invariant, so b@‘EG,,. Since K is in G’, ww and v/ 

have the same kernels when restricted to K. Since ew = @, it is not hard to check 

that I#” = I,V. 

Now we do the caseew#e. Let x=e+ew. Suppose that the e-invariant K in Gf 

were central. Then Krl ker e # {e] by 2.8, and Kfl ker e = Kn ker ew since KC G+. 

Hence x has a kernel. If we assume that ker x# {e}, then this subgroup is a normal, 

O-invariant subgroup of G+ so we can pass to a quotient as above. Hence, we may 

as well assume that ker x = {e} and that K is not central in G. Let GO be the cen- 

tralizer of K in G. Just as in the last paragraph, we can induce e Witt-imprimitively 

from a representation y/ on GO. It follows that ew is induced from I+V~ using exactly 

the same twist. 0 
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4. The detection and generation theorems 

We review the usual idempotent decomposition of QG. The simple factors of QG 

are in one to one correspondence with the irreducible rational representations of G, 

and the central simple idempotent associated to a e E IrrQ(G) is given by the formula 

where ae is the complex dimension of an irreducible constituent of the complex- 

ification of e, and tr(Q(g-‘)) is just the character of e applied to g-l (see [33, p. 

4, Proposition 1.11). 

Notice that, if ICI eRX, then e,E RG, and 

RG= @ e,RG. 
e E IrrQ(G) 

In R-Morita we also get a decomposition. Let [e,] represent the RG-RG bi- 

module e,RG in R-Morita, so 

[e,l E HomR-Morita(RGI RG). 

We have the usual idempotent equations: 

(0 
0 

[eQ1’[eV1= [e,] L if erw, 
ifQ=w; 

(ii) 1 
KG=pcl?Q(G) [ee1’ 

There are two standard maps in R-Morita: the diagonal map d : A + @A and the 

fold, or sum map .Z: @A-+A. 
We can rephrase (ii) as 

(iii) The following diagram commutes: 

‘RG ! 0 [e,l 

RG- ORG. 

4.A. The linear case 

The first goal is to prove that the maps [e,] which are defined to be in R-Morita 

have natural lifts to RG-Morita, Theorem 4.A.5. After some initial technical discus- 

sion, we prove a key commutativity result, Proposition 4.A.4. The promised strong 

forms of the linear detection and generation theorems then follow fairly easily. 
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4.A.l. Lemma. Zf /Gl eRX, then the R-group ring functor RG-Morita --f R-Morita 

is injective. 

Proof. Injective means that HomRG_Morita(Hi, Hz) -+ HOmR_Morita(RH,, RH2) is injec- 

tive. By Bass [l, Proposition 1.3, p. 3461, RX and RX’ are equal in 

HO%-bbrita (RH,, RH,) iff there is an RH,-RH, bimodule, C, which is projective as 

an RH,-module, such that RX @ C= RX’ (33 C as RH2-RH, bimodules. 

Since R[H,] 0 RIH,loP is a free bimodule, we can find a bimodule surjection 

f: (R[H,] 0 RIH,]oP)“+ C for some finite n. Since IH,I. lHzi is a unit in R, C is 

projective as a bimodule since it is projective as an R-module and we can average 

any R module splitting off to a bimodule splitting. Hence we can assume that the 

C above is free. But the free bimodule is just our functor applied to the Hz-H1 
biset H2 @ HI, and so X and x’ were already equivalent in RG-Morita. Cl 

We introduce some terminology to enable us to deal efficiently with all our 

various notions of irreducibility. 

4.A.2. Definition. A Q-representation e of a finite group G is called unital if, when- 

ever we write e = C I,v;, cl/; s wj unless i = j. A collection of unital Q-representations 

{ ei} is called complete iff every irreducible Q-representation of G occurs in exactly 

one of the ei. 

4.A.3. Extensions of notation and terminology. If e = C I,V~ is unital, then define 

ep = C e,,,, ERG; [e,] = C [e,,] and a representing bimodule is @ e,,RG = ee RGc 
RG. We say that e is imprimitively induced from x on HC G, provided x = C Gi 

and each vi is induced imprimitively from @i. (Note that x I’=@.) Extend the 

notion of imprimitive induction to subquotients as we did in the irreducible case. 

Notice that an w-irreducible representation is unital, and an a-imprimitive induc- 

tion is imprimitive. 

The proofs of the next two lemmas have the same form. We leave it to the reader 

to check that the defined map really is a bimodule map as claimed. Moreover, since 

0 Z,l,ml R preserves isomorphisms, it suffices to prove the result for R = Z[l/m] 

where m = IGI. First we show that the defined map is onto; then we show that the 

domain of the map is torsion-free; and then we show that the two ranks are the 

same. 

4.A.4. Lemma. Let Na H be groups, and lef e be a unital Q-representation of H 
that is pulled back from a Q-representation p on H/N. Then the map of R [H/N]- 
R [H/N] himodules 

f: R[H/N] @ e,RH @ R[H!N] -+ e,R[H/N] 
RH RH 
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defined by f(fi, 0e,hZO~~)=~,e~rr(h2)h3 for all h,,h;eH/N and all h2EH (n 
denotes the projection x : H -+ H/N) is an isomorphism whenever JHl E R ‘. 

Proof. Clearly the map is onto. Since e,RH is a summand of RH as an RH-RH bi- 

module, the domain of our map is a summand of R [H/N] OnHRH ORHR [H/N] = 
R[H/N] and so is torsion-free. 

Define o : R [H/N] -+ RH by 

where the sum runs over the elements in H in the coset of/i. The map CI is a ring map 

which splits the projection and which takes e,RH isomorphically onto e,R[H/N]. 
But it is easy to see that the map e,RH+R[H/N] ORHe,RHORHRIH/N] which 

takes ee s h to 10 e, . h @ 1 induces a surjection, so R [H/N] ORHe, RHO,, R[H/N] 
and e,R[H/N] have the same rank. 0 

4.A.5. Lemma. Let H be a normalsubgroup of G and let @ be a unital Q-representa- 
tion of G which is induced imprimitively from 4 on H. Then the natural RG-RG 
bimodule map 

i: RG @ e,RH 0 RG-t e,RG 
RH RH 

defined by i(g, @ e, h 0 gz) = ee. g, . e, h . g2 is an isomorphism whenever 1 H 1 E R ‘. 

Proof. From 2.3 we have the idempotent equation 

r 
- 

e, = L evx, 
j=l 

where {Xj E G} are a set of coset representatives for G/H and r = 1 G/H 1. Note that 

e,x,=Xje,Xj -I, so 

C i(Xj@e,@Xj'g)=e,*g 
j=l 

for all g E G, and our map is onto. 

Next note RGz @ XiRHg @ RHxj, SO 

RG @ e,RH @ RGz @ XiRH @ e,RH @ RHXj as R modules 
RH RH kj RH RH 

This shows that RG@ RHe,RH@RHRG is torsion-free, and that its rank is 

r2. rankR e,RH. Imprimitive induction implies rank, ee RG = r2. rank, e, RH. I? 

4.A.6. Proposition. Let Na H with Hc G where G is p-hyperelementary: suppose 
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that e is a unital Q-representation of G that is induced imprimitively from w on 
H/N. Suppose IHI E RX. Then, in R-Morita, the following diagram commutes: 

RG 
k,l 

’ RG 

le,l 
I 

R [H/N] - R [H/N]. 

Proof. Begin by assuming that e is Q-irreducible. We can factor the restriction and 

induction maps as maps from H/N to Hand then from H to G. Since the induction 

is imprimitive, we can further factor the inclusion HC G into a sequence of normal 

inclusions by 2.14. 

Hence it suffices to prove that the diagram commutes for two special cases: namely 

a quotient group, G/N of G and a normal subgroup, H of G. The way that we tell 

that our diagrams commute in R-Morita is to write down the bimodules representing 

the two different sequences of compositions and see that the two resulting bimodules 

are isomorphic. For the quotient group case, this is just Lemma 4.A.4 and for the 

normal subgroup case it is just Lemma 4.A.5. 

Since the diagram commutes for irreducible e it is easy to extend to the case of 

a sum of different irreducibles. 0 

4.A.l. Theorem. Let G be a p-hyperelementary group, and let e be a unital Q- 
representation of it. Let IG 1 E R ‘. Then there is a unique map in RG-Morita which 
hits [e,] in R-Morita. We will denote this map in RG-Morita also by [e,]. 

Proof. Since 1 G 1 E R ‘, the R-group ring functor embeds RG-Morita into R-Morita 

by Lemma 4.A. 1, so the uniqueness result is clear. To prove existence, it suffices 

to do the irreducible case. We can assume that the result holds for all groups which 

are proper subquotients of G. If e has a kernel, then from Proposition 4.A.4 it 

follows that the composite RG + R [G/N] [e,l R[G/N] + RG is just [e,]. Since 

the first and last maps in the composite are naturally in RG-Morita, so is [e,]. A 

similar argument holds if e can be imprimitively induced from a proper subgroup 

using Lemma 4.A.5. 

In the case where e is faithful and cannot be induced imprimitively from a proper 

subgroup, then G is basic and @ =ec by Theorem 2.13. The [e,] for all the repre- 

sentations of G except eo can be assumed to be in RG-Morita, and lRG comes from 

the G-G biset G and so is in RG-Morita. Since the sum of all the [e,]‘s is l,, in 

R-Morita we can define [e,] in RG-Morita so that the sum of all the [e,]‘s is lo in 

RG-Morita. 0 

4.A.8. Linear detection and generation theorem. Let G be a p-hyperelementary 
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group, and assume that ICI is a unit in R. Suppose given a complete set of unital 
representations of G, say { ei}. Suppose further that we are given subquotients 
{H;/Ni} with Q-representations Wi andsuppose that each ei is imprimitively induced 
from Wi. Then, in RG-Morita, the following composite is the identity: 

Proof. The result follows easily in R-Morita from the idempotent equation (equation 

(iii) in the introduction to Section 4) and Proposition 4.A.6. It then holds in RG- 
Morita by Lemma 4.A.l and Theorem 4.A.7. q 

4.A.9. Proof of Theorem l.A.11. By 2.13, for each irreducible Q-representation e 

we can find subquotients H,/N, which are basic groups and so that e is induced 

imprimitively from the basic representation. Apply 4.A.8 to this collection. 0 

The last result in this section translates some of the idempotent results from above 

into RG-Morita. 

4.A.10. Theorem. Proposition 4.A.6 holds in RG-Morita. Moreover, suppose given 
subgroups NaH of G; e E IrrQ(G) and a unital representation rl on H/N. The 
composition 

le,l Res 
RG- RG- R[H/N] 

k, 1 
- R [H/N] 

is trivial in RG-Morita if@ is not a constituent of Ind$/,(rl). 

Proof. The maps in Proposition 4.A.6 are in RG-Morita by 4.A.7 and the diagram 

commutes in RG-Morita by 4.A.l and 4.A.6. 

For the last result we may assume that q is irreducible and that we are working 

in R-Morita. Let @ on H be the pullback of the representation V. A representing bi- 

module for our map is e,R[H/N] @,,e,RG. By 4.A.4, e,RH@,,e,RG surjects 

onto it, so we prove e@ RHO,,e, RG = 0. 
It follows from the construction of the idempotent decompositions that the 

composite e$RHC RHC RG + e,RG is the O-map under our hypotheses, so, in the 

ring RG, e,. e, = 0. But e,RH@,, e e RG is an RH-RG bimodule summand of 

RH @,,e,RG = e,RG and the image is generated by e, @ ee = e@ 0 eg. ee = 0. 0 

4.B. The quadratic case 

The goals and the strategy are the same as for the linear case. 

4.B.l. Lemma. If IGI eRX, then the R-group ring functor (RG, m)-Morita + (R, -)- 
Morita is injective. If in addition 2 is a unit in R, then the R-group ring functor 
(RG, f3, o, b)-Morita -+ (R, -)-Morita is injective. 
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Proof. As in the linear case, it is no trouble to prove that if (RX,ax) is equivalent 

to (R Y, A y) in (R, -)-Morita, then there is a metabolic form on a free bimodule, say 

(C, A), so that (RX, 12,) I (C, 12) is isomorphic to (RY, A,) I (C, A). The problem is 

that the metabolic form on the free bimodule may not come from a biset form. 

One biset form on the rank 1 free Hz-H, biset, X==H,xH, is defined by 

and 

The only other one just takes w to be minus the o above. The orthogonal sum of 

these two forms is a metabolic form, denoted Meta&,,,). We can define another 

biset form on XnX as follows: 8x,,&1,x2) = (0,(x,), 0,(x,)) and oxUx(x1,x2) = 

wx(xl). ox(x2), where Bx and wx are the ones constructed above. In the associated 

form on RX@ RX, each copy of RX is a Lagrangian, so this form is hyperbolic. 

If /Cl is odd, and the antistructures are standard, use 1.B.l to compute that 

@(2/2Z; Hom,(RH,, RH2))%Z/2Z and that [&J is the generator. It follows 

easily from the formulae (i), (ii) and (iii) below 1.B.l that any metabolic on a free 

bimodule is equivalent to one coming from a free biset form. 

If 2 is a unit in R, then all metabolics are hyperbolic and we are done again. 0 

4.B.2. Definition. We can associate to each group G with oriented geometric anti- 

structure the biset form on G which is the identity in our category. The associated 

form is defined by 

4g,, g2) = 4g2). g, . e-‘k2). 

We can restrict this form to any of the e,RG. If Q is a-invariant, then we get a 

nonsingular bihermitian form on e,RG. If Q #ea, then we get a nonsingular biher- 

mitian form on eefea RH which is easily seen be hyperbolic. 

The proofs of the next two lemmas consist of verifying that an explicit map 

preserves an explicit form. They are omitted. 

4.B.3. Lemma. Let Na H be groups, and let e be a unital o-irreducible Q-representa- 
tion of H that is pulled back from a Q-representation @ on H/N. Suppose that 
NC ker o and that N is B-invariant. Then the map of R[H/N]-R[H/N] bimodules 
f defined in Lemma 4.A.4. is an isometry whenever lHI ER’. 

4.B.4. Lemma. Let H be a B-invariant, normal subgroup of G with b E H, G p- 
hyperelementary and let e be a unital a-invariant Q-representation of G which is in- 
duced imprimitively from n on H with n a-invariant. The RG-RG bimodule map 
i defined in Lemma 4.A.5 is an isometry whenever IHI E RX. 

4.B.5. Proposition. Let NuH with HcG where G is p-hyperelementary. Let 
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(9, o, b) be a geometric antistructure and suppose that H and N are d-invariant and 
Ncker o. Suppose that e is an a-invariant unital Q-representation of G that is in- 
duced imprimitively from w on H/N. Suppose b E H, so there is an induced geo- 
metric antistructure on H/N and suppose that v/ is a-invariant. Suppose 1HI E R ‘. 
Then, in (R, -)-Morita, the following diagram commutes: 

RG 
k,l 

’ RG 

H/N Ind, 

R [If/N] 
ie,l 

I 
- R [H/N]. 

Proof. The proof is much the same as in the linear case (Proposition 4.A.6). Of 

course we use Lemmas 4.B.3 and 4.B.4 instead of their linear versions. By Proposi- 

tion 2.14 we can find a sequence of subgroups between H and G, each normal in 

the next, but we need to have them e-invariant as well. If H, is d-invariant and nor- 

mal in H,, then consider the group generated by Hz and B(H,). This group is cer- 

tainly e-invariant, and Hl is still normal in it. Finish as in the linear case. 0 

4.B.6. Theorem. Let G be a p-hyperelementary group with a geometric antistruc- 
ture, for which 0 is the identity. Let e be an w-invariant unital Q-representation of 
it. Let IGI E RX. In (RG,o)-Morita there is a unique map which hits [e,] in (R, -)- 
Morita. We will denote this map in (RG,o)-Morita also by [e,]. 

Proof. By Lemma 4.B. 1, the R-group ring functor is an embedding, so the unique- 

ness result is clear. As in the linear case (Theorem 4.A.7) we can reduce to the case 

in which Q is o-irreducible. We can further assume that the result holds for all 

groups which are proper subquotients of G. If Q has a kernel, or can be induced 

imprimitively from a proper subgroup, use Proposition 4.B.5 and finish as in the 

linear case. 

In the case where Q is faithful and cannot be induced imprimitively from a proper 

subgroup, then G is w-basic and @=@o by Definition 3.B.5. The [e,] for all the 

representations of G except @o can be assumed to be in (RG,a)-Morita, and l,, 

comes from the G-G biset form G and so is in (RG,a)-Morita. Since the sum of 

all the [e,]‘s in 1RG in (R, -)-Morita we can define [e,] in (RG, o)-Morita so that the 

sum of all the [e,]‘s is 1, in (RG,o)-Morita. 0 

4.B.7. Quadratic detection and generation theorem. Let G be a p-hyperelementary 
group, and assume that /GI is a unit in R. Suppose given a geometric antistructure 
in which 8 is the identity. Let { ei} be a complete collection of o-invariant unital 
Q-representations. Let {N; a Hi } be a collection of subquotients of G with Ni c ker o 

for all i. Assume that ei is induced imprimitively from an w-invariant unital repre- 
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sentation vi. Then, in (RG, o)-Morita, the following composite is the identity: 

0 le,,l 
RGZ @ R[H;/N;] - @R[Hi/N;]zRG. 

Proof. The corresponding result in (R, -)-Morita follows easily from the idempotent 

equation (equation (iii) in the introduction to Section 4) and Proposition 4.B.5. By 

Theorem 4.B.6 and Lemma 4.B. 1 the result also holds in (RG, 0, cc), b)-Morita. 0 

4.B.8. Proof of Theorem l.B.7. By Theorem 3.B.8 each o-irreducible Q-representa- 

tion can be induced from the w-basic Q-representation on an o-basic subquotient 

by an imprimitive induction. Apply Theorem 4.B.7. q 

4.C. The Witt case 

Our first goal is the proof of the detection/generation theorem, l.C.5, but we 

begin with some definitions and lemmas. 

4.C.l. Definition. We call a ring with antistructure, (A, a, u), hyperbolic provided 

A =A, xA, as rings, and c&l1 xO)=OXA,. 

4.C.2. Lemma. If (A, a, u) is a hyperbolic ring with antistructure and (B, p, u) is any 
ring with antistructure, then any B-A or A-B nonsingular, bihermitian biform is 
hyperbolic. 

Proof. Let A : M@BA4’ -+ A be an A-B nonsingular, bihermitian biform. Define 

M, = (1,O)M and M2 = (0,l)M. Note M= Mi @ M2 since M, nM2 = (0). This is 

because (1,0) acts as the identity on M, , and as 0 on M2. 

Next note that h lM, is trivial. Indeed, A(m,, H?i) = J.((l, 0). ml, (1,O). rRl) = 
A((l,O) . m,, m, l (0,l)) = (1, O)A(ml, fi,)(O, 1) = 0. A similar argument shows that 

A lVf2 is trivial. 

Contemplation of the isomorphism ad(A) shows that A is hyperbolic with respect 

to M, and M2. 

A similar argument works for the B-A case. 0 

4.C.3. Lemma. Let G be a 2-hyperelementary group with oriented geometric anti- 
structure (0, w, 6, E). Suppose that 1 G 1 E R ‘. Let I,V be a unital Q-representation of 
G such that va = IV. Assume that every irreducible Q-representation e of G which 
satisfies ea = e is a constituent of v. Then, in (R, -)-Witt, 

Proof. Given the hypotheses, it is easy to find a unital representation x, such that 

I+V+X +xa is unital and contains every irreducible Q-representation of G. Then 
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RG = e,RG x eX RG x eXORG. The ring e,RG x eXaRG is hyperbolic in the induced 

antistructure, so the result follows from Lemma 4.C.2. q 

We have our usual theorem. 

4.C.4. Theorem. Let G be a 2-hyperelementary group with oriented geometric anti- 
structure (~9, o, b, E). Suppose that IG 1 E R ‘. Let vi be a collection of unital Q- 
representations of G such that vs = Wi. Suppose there are subgroups NiaHi of G 
with Q-representations pi such that vi/i is induced imprimitively from @is Suppose 
that Nit ker o. Suppose that for each i there is a ci E G such that Hi and Ni are 
0” = B,-invariant and pi is ai-invariant. Suppose bi = b@‘) E Hi. Finally, suppose 
that each irreducible Q-representation e of G which is a-invariant occurs in exactly 
one vi* 

Then, in (R, -)-Witt, the following composite is the identity: 

Res 
(RG, &co, 6, E) - O(R[Hi/Nil,ei,o,bi,Ei) 

x k,, I Ind 
----tO(R[Hi/Nil,~i,~,bi,Ei) --+(RG,&wb,E) 

where a subscript i indicates that we have changed the antistructure by scaling by 
ci before restricting to the subquotient. 

Proof. The proof by now should be clear. 0 

4.C.5. Proof of l.C.5. The proof of l.c.5 follows from 3.C.4 and 4.C.4. 0 

We conclude this section with a proof of 1 .C.3, as well as a remark about 4.C.4. 

Notice that both the w-basics and the Witt-basics come in three types: 

(i) basic groups, 

(ii) basic groups x C(2)-, 
(iii) the rest. 

Any type (iii) group G has a unique faithful Q-representation eG which can be 

induced imprimitively from a representation x on an index 2 subgroup of the form 

Hx C(2)-, where His an index 2-subgroup of a basic group. The reason that G is 

still on our list is that x’#x. There is an element CE G however, so that if we scale 

by c, x is aC-invariant. 

To prove l.C.3, we first apply the (RG,o)-Morita theorem, l.B.7, and then use 

the above observation to eliminate type (iii) groups at the expense of introducing 

twisted maps. 

Notice that in 4.C.4 we could also eliminate the type (iii) groups. A further 

simplification occurs in (R,-)-Witt. Notice that some of the type (ii) groups are 

hyperbolic and hence can also be eliminated. This occurs whenever the 0 associated 

to the group acts trivially on the central C(2) x C(2). 
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5. Some split exact sequences in Morita categories 

In this section we want to prove that the 5-term sequences in l.A. 16 are split 

exact. We will do this by showing that they are contractible. Given a sequence in 

an additive category 

it is a O-sequence if /3oc~= 0. It is contractible provided there exist maps f: C+ B 
and g : B + A such that 

(5.0) (i) gof= 0, (ii) Pof= lc, (iii) goa= lA, (iv) aog+f o/3= 1,. 

It is an easy exercise to check that contractible implies split exact (and even 

vice-versa). 

5.A. The linear case 

We are going to prove Theorem 1 .A. 16. The proof divides into two cases depen- 

ding on whether the K is central or not. We begin with the central case. 

In our 5-term sequence for this case, A = RG, B= a:=‘=, R[G/C,] and C= 

(R[G/K])P. The map a : RG-+ of=‘=, R[G/C,] is just the product of the individual 

projections G + G/C,. We define the map /3. 

5.A.l. Definition. Define /3 : @f=‘=, R[G/Ci] -+ (R[G/K])P as follows: for 1 I ilp, 

PI R,G,C,, is just the projection: to define /3 IRIG,Co, we define its negative to be the 

composite RIG/CO] + R[G/K] + (R[G/K])P, where the first map is the projection 

and the second map is the diagonal. 

Notice that p is defined in ZG-Morita and that ,L3oa=O even in ZG-Morita. 

Next we define f : (R [G/K])P --+ t ; o 0~~ R[G/C,] by describing its projection to 

each factor R[G/Ci]. The projection to R[G/C,] is the O-map, and for 1 <i<p the 

projection to R [G/C,] is the composite (R [G/K])p -+ R [G/K] + R [G/C,] where the 

first map is projection onto the ith factor and the second map is generalized induc- 

tion associated to the projection. (Note that this map is only defined if p is a unit 

in R.) 
The definition of g : @f=‘=, R [G/C,] --t RG is next. We define it as the sum of 

maps gj : R[G/Ci] -+ RG: g, is the generalized induction map; for 1~ icp, gi is the 

composite R[G/Ci] 5 R[G/C,] --f RG where the second map is the generalized in- 

duction associated to the projection and where e is lRLGjC,, minus the composite 

R [G/C,] + R [G/K] -+ R [G/C;] of the projection and the corresponding generalized 

induction. Notice that all the gi are defined whenever p is a unit in R, and equation 

5.0(i) holds. 

5.A.2. Lemma. Let G be a finite group and N a normal subgroup. Then the follow- 
ing diagram commutes in RG-Morita whenever INI E RX: 
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R [G/N] 
lRIG/A’l 

- R [G/N] 

“‘j’ ‘RG 
RG 

, ‘In’ 
RG. 

Proof. The proof is sufficiently similar to the proof of Lemma 4.A.4 that it is omit- 

ted. 0 

Using the definitions of the maps and the lemma, it is easy to check that equations 

5.O(ii) and (iv) hold whenever p is a unit in R. 

Finally, we assume that ICI is a unit in R. It is not hard to check that goa= 1, 

using 2.8(i) and 4.A.6. 

We turn now to the case in which K is not central in G. Our 5-term sequence for 

this case has A = R[G], B= RIG/Co] @ R[G,/C,] and C= RIGO/K]. The map 

a : A -+ B is the sum of the projection map RG + R[G/C,] and the generalized 

restriction RG + R [G,/C,]. We define 8. 

5.A.3. Definition. Define a map p : R [G/C,] @ R [G,/C,] + R [Go/K] as the sum of 

two maps: R [G,/C,] -+ R [Go/K] is the projection and the map R [G/C,] -+ R [G,/K] 

is the negative of the composite RIG/CO] % R[G,/C,,] % R [Go/K]. 

Notice that B is defined in ZG-Morita. 

5.A.4. Lemma. Let H be a subgroup of G, and let NCH be normal in G. Then, 

in ZG-Morita, the following diagram commutes: 

RG 
Res 

rRH 

R [;,N] 
Res 

J 

- R [H/N]. 

Proof. The proof consists of showing that the projection map, R [H/N] ORHRG + 

R WM @[H/N] R[G/N], is an isomorphism. It is left to the reader. 0 

Using Lemma 5.A.4 it is easy to see that boa= 0 in ZG-Morita as we claim. 

Next we define the map f: R[G,/K] -+ R[G/CJ 0 R[G,/C,] as the sum of two 

maps. The map from R[G,/K] --t R[G,/C,] is just the projection, and the other 

map is the O-map. The map g : R [G/Co] @ R [Go/C,] -+ RG is the sum of two maps. 

The map R[G/C,] + RG is the induction associated to the projection, and the map 
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R[G,/C,] + RG is the following composite: R[G,/C,] -5 R[G,/C,] 4 R[G,] -% RG 
where e is lRIGo,C,l minus the composite R [G,/C,] = R [Go/K] 4 R [G,/C,] 
where q and 4 are the inductions associated to the obvious projections. Notice that 

to define f and g it is only necessary to invert p. With just p inverted, it is easy to 

check that (5.0)(i), (ii) and (iv) hold. 

Finally, by inverting IG 1, we can use 2.8 and Proposition 4.A.6 to check (5.O)(iii). 

5.B. The quadratic case 

5.B.l. Theorem. Let G be a 2-hyperelementary group with oriented geometric anti- 
structure (9, o, 6, E). Let KE C(2) x C(2) be a e-invariant normal subgroup of G such 
that KC ker w. Let C,, C,, C, denote the cyclic subgroups of K. 

(ia) If K is central and 9 acts as the identity on it, then the following sequence 
is split exact in (RG, 8, or, b)-Morita 

O+(RG,t3,~,b,e) 3 (R[G/Q, 6& Q, 6,~) @ (R[G/C,], 8, Q, b, E) @ 

(R[G/CJ, e, Q, b, E) L (R[G/K], &o, b, E)~ + 0. 

(ib) If K is central and 8 does not act as the identity on it, let C, denote the sub- 
group fixed by 0. Then 

(RG, e, 0, b, E) + (R]G/C~], 0, Q, 5, E) 

ia an equivalence in (R, -)-Witt. 

(iia) If K is not central, we may assume that Kfl y(G) = C,. Let G, denote the 
centralizer of K in G. Assume that b’ acts trivially on K. Then the following sequence 
is split exact in (RG, 0, o, b)-Morita: 

0 + (RG, e, 0, b, E) = (R[G/C,], 8, cir,, 6,~) @ (R[G,/C,], 0, Q, 6,&E) 

2 (R [Go/K], 0, @b, E) -+ 0. 

(iib) Assume that K is not central and that 0 acts non-trivially on K. Then C,= 
Kfl y(G) is e-invariant, and there is a CE G such that conjugation by c permutes 
C, and C,. The following sequence is split exact in (R,-)-Morita: 

0 + (RG, e, 0, b, E) 

= (R[G/C,,], 8, Q, 6, E) @ (R[G,,/C,], 8’, c&b”‘, o(c). E) 

L (R [Go/K], 0, Q, b, E) + 0 

where a bar over a symbol indicates that it is the natural restriction of the correspon- 
ding symbol on G to the subquotient. 
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The maps /3 are described below. As in 1 .A. 16, all the displayed maps are defined 

in (ZG, 0, w, b)-Morita and the sequences are O-sequences. They just may not be exact 

until ICI is inverted as Non-example 1 .C.6 shows. 

Proof. The proof here divides into four cases. Recall that the R-group ring functor 

defines a functor from RG-Morita to R-Morita, so we have the linear diagrams in 

R-Morita as well. Also recall that all our groups are 2-hyperelementary. 

Case (ia). In this case each Ci is B-invariant, so each of the maps that we wrote 

down in the linear case (i) is also naturally a map in (RG, 0, o, b)-Morita, and the 

proof is similar to the linear case: prove the quadratic version of Lemma 5.A.2 

whenever N is a e-invariant subgroup in ker o and then finish exactly as we did for 

the linear case. 

Case (ib). This is the case that forces us to move out of (RG,w)-Morita. It is 

possible to define twisted biforms and work in an ‘RG-Witt’ category, but it does 

not seem worth the effort. 

The point is that the all the representations in IrrQ(G),,,K are taken to repre- 

sentations in IrrQ(G)C2CK, so in (R,-)-Witt they can be ignored. By 2.8, the pro- 

jection map G-t G/C, induces an isomorphism on the remaining factors. 

Case (iia). Once again, all the maps we wrote down in the linear case (ii) are 

naturally maps in (RG, 0, co, b)-Morita and so the proof goes just as before. 

Case (iib). To explain the problem here note that the map RG -+ RIG,/CI] is not 

a quadratic map because C, is not d-invariant. However, Ci is not normal either, 

so we can find c E G such that conjugation by c interchanges C, and C,, and hence 

8’ leaves C1 fixed, and indeed, 8’ acts as the identity on K. Hence we can apply 

Case (iia) to the oriented geometric antistructure (e’, o, b@‘, a(‘)) where a(‘) = o(c). E. 

Since 

Proj 
~24 04 b, E) - 

Proj 
(R [G/C,], 0, w, 6, E) - (R [G/K], 0, ti, 6, E) 

twist 

! 

twist 

I 

twist 

ProJ 
I 

(RG, O’, w, b”‘, cd’)) - (R [G/C,,], e’, cii, 6”‘, ccc)) ProJ (R[G/K], I?, Q, 6”‘, ccc)) 

commutes, we easily derive the required results. Cl 

6. On the computation of the restriction map 

We want to define a partial ordering on the set of irreducible Q-representations 

of a p-hyperelementary group. We say that @<e if ker QC ker @ and one of the 

following holds: 
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0) deg x0 < de xey where x denotes an irreducible complex constituent of the 

subscript, or 

(ii) deg x@ = deg xe and Q(x@) is properly contained in Q(x,). 

The following result is useful for computing some generalized restriction maps: 

6.1. Theorem. Suppose that Q E IrrQ(G) is such that there is a subquotient S of G, 
which has an q E IrrQ(S) such that Q is induced imprimitively from rl. Let C#J E IrrQ(G) 

and 5 E IrrQ(S) be arbitrary elements. Suppose the composite RG% RGReS‘ 
RS[e,‘- RS is non-trivial, We have the following two results: 

(i) Ifr=q, then @=e. 
(ii) If T<q, then O<@. 

Proof. Begin by assuming that T = rf. There is a basic subquotient F of S so that T 

is imprimitively induced from eF. But then F is also a subquotient of G and @ is 

induced imprimitively from eF. Part (i) now follows from 4.A.10. It also follows 

from 4.A.10 that RG%RG-%RS -%RS is trivial UnkSS T 1' COntainS c#~ as 

a constituent. 
We now assume that r<q. Part (ii) will be shown to follow from the result that 

T 1' contains 0 as a constituent. To fix notation, let HC G be the subgroup mapping 

onto S. Since we know the kernel of an induced representation in terms of the kernel 

of the original representation, we see that ker @= ker q ICC ker T 1'. But, if T 1' 

contains @ as a constituent, ker T /‘C ker @, and we have a first part of what we 

must prove. 

Let xT be an irreducible constituent of T, and similarly we have x0, x,, and xc. 

If X~ 1’ is reducible, then clearly @<e (indeed deg xe = deg x,, 1’ = IG : Hldeg xII 2 

IG: Hldeg xr=degxs 1’ and degxr IG>degxO). Hence we need only consider the 

case for which xr 1’ = xe. If degxr<degx,, then again @<e. 

Hence we may as well assume that x7 1’ = Q, and deg xr = deg x,, . The first equa- 

tion implies that Q(x,) 2 Q(x@). Since deg x7= deg x,,, we must have Q(x,) is 

properly contained in Q(x,). Since Q(x,) =Q(xc), once again @<e. q 

This result can be applied in several places to prove absolute detection theorems. 

We begin by proving a general detection theorem and then discussing several situa- 

tions. First we introduce some notation. 

Given two unital representations @J and e of G, we say @<e provided each ir- 

reducible rational constituent of @ is less than each irreducible rational constituent 

of @. 

Let F, be a additive functor defined on (Z[l/m]G, o)-Morita into an abelian 

category d. Let F2 be a functor defined on the category (ZG, o)-Morita into d. (F2 
need not be additive.) Consider F, also to be defined on (ZG,o)-Morita, and let 

a : F, -+ F2 be a natural transformation. Let NaHbe subgroups of G with NC ker o. 
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Fix an o-invariant unital representation rl of H/N. We say the triple (H,N, a) is 

a-good iff 

le,l 
keracF,(Z[l/m][H/iV],o)- ~,(Z[l/~lwMo) 

is injective, where 7 is the maximal unital representation with r<q. (Note that 7 is 

w-invariant.) 

6.2. Image detection theorem. With notation as above, fix a p-hyperelementary 
group G, and let m = IG 1. Let K denote a normal subgroup of G with KC ker o, and 
let 71: G+ G/K be the projection. Let 9 be a complete (Definition 4.A.2) set of 
unital representations of G, each of which is co-invariant. Suppose there is one 
representation, @k E 9, which contains precisely the irreducible Q-representations 
of G whose kernels contain K. For every other e E 9 suppose given a subquotient 
N, Q He and a unital representation n = ne such that e is imprimitively induced 
from n. Finally, suppose that for each @ f @k, the triple (He, N,, n,) is a-good. 

Consider the commutative square 

FI (G a) 
4 

-F,(G/K,o)O @ F,(H,/N,,o) 
I 27 

a 

I I 

FAG, 0) 
4 

-FAG/K, o) 0 @ F,(HJNe, co). 
Y 

Finally, assume 
(i) rt : ker (F,(G, o) --t F,(G, co)) -, ker(F,(G/K, o) -+ F,(G/K, co)) is onto. 

Then d2 1 Im a is one to one. 

Addendum. We may replace 8 in the above sum by the subset 8’ where (He, N,) 
is in 9”’ iff F,([e,]) does not induce the O-map on F,(Z[l/m]H,/N,). 

Proof. We may as well assume we are working in a subcategory of the category of 

abelian groups. Let XE ker(d2)nIm a, and select YE F,(G) with a(y) =x. The 

assumption on the map rr between the kernels means that one can select y such that 

it maps to 0 in F,(G/K). We will show that this y is 0 which proves the theorem. 

Let Q be the set of a-irreducible representations of G. We can use the quadratic 

detection theorem l.B.7(i) to write 

where yQ=FI([eO])(y), and y=O iff each y@=O. The proof that y=O is by contra- 

diction. Choose a @E Q such that ye #O and if rl/ E 52 with I,U < 0, then ye = 0. This 

we can clearly do. 
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Let e ~9’ be the unique representation which has $J as a constitutent, and 

note efeK. Let Y, be the image of y in F,(R[H,/N,],o). From 4.A.8, 

~~(Ind~~;,,)(~,(Ie,l)(Y,)) = @O~Q where the sum runs over the constituents of e. 

In particular, F,([e,])(Y,)#O. 

Hence e E 8’ and therefore (H,, N,, r;l) is &good. Since Ye E ker a, this means 

Ft([e,])(Y,)#O. But Y,=F,(Res$,J(y) by definition, so there exists a WE 52 

such that Ft([e,])(F1(Res$Q,NQ)(y,)) # 0. Hence yV # 0 and from Proposition 4.A. 10 

and 6.1 we see that I+V< @. This is a contradiction. 0 

We give two examples based on the two functors F,(G)z LP(ZG --f &G, co)= 

LK(Z[$]G-+ C&G) (see [12, 1.1) and F2(G)=LP(ZG, co) for finite 2-groups. If w is 

trivial, we take Kg G and let 8 be a set of basic subquotients, one for each represen- 

tation which is not trivial. It follows easily from [12, p. 115, Example l] that all 

basic 2-groups are a-good for the corresponding basic representation, except for the 

trivial group. Since {e} never occurs as a quotient group for the elements in 9, all 

the H,,/N,,‘s in 9 are a-good. Since Lp(&G) + Lp(&[G/K]) is an isomorphism, (i) 

is clearly satisfied, and the map 

LP(ZG) -% Lp(Z) @ @ Lp(Z[H/NJ) 
Y 

is a monomorphism. 

If w is not trivial, take KE [G, G]. By [12, p. 115, Example 21, all a-basic groups 

which are not basic except C(4)) are a-good. If C(4)) appears in a set of w-basic 

subquotients where the corresponding His a proper subgroup of G, we can induce 

the corresponding representation from a subquotient of order 16. This group of 

order 16 has a C(4)) subquotient for which the faithful irreducible Q-representation 

on C(4) induces up imprimitively. The only group of order 16 with this property is 

the group M,, of l.C.8. It is also not hard to check that LP(ZG’ab’,~) is detected 

by C(2) x C(4)- quotients so we see that LP(ZG, co) is detected by o-basic subquo- 

tients which are not C(4)) plus one C(2) x C(4)) quotient for each ‘C(4)) quotient 

representation’ and one subquotient A4t6 for each remaining ‘C(4)) representation’. 

Finally, we correct the proof of [ 13, Theorem 5.41, which is wrong for the case 

i = 2. Here again we take K to be [G, G], and note that [13, Theorem 4.5 and Lemma 

5.21 imply that the collection 8’ above consists of dihedral subquotients, which are 

a-good. Theorem 6.2 supplies the necessary result to reduce to a routine diagram 

chase. 

7. Another approach to detection theorems 

The idea in this section is to prove detection theorems in situations in which the 

order of G is not a unit in R. Let W be a functor out of (RG,o)-Morita into an 

abelian category. In general, one wants to produce a list of 2-hyperelementary 
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groups, G, such that, if G is not on the list, then the sum of the generalized restric- 

tion maps 

W(RG, w) -+ @ W(R [H/N], o) 

is injective, where the product runs over all proper subquotients of G. 

In this generality it is difficult to make further progress. One way to proceed is 

to assume that our functor fits into a long exact sequence 

. . . -r,+1 - w,-A$ Y,- wn_,+ ,.. . 

If G is not w-basic, then we can apply W,, X, and Yy: to either the O-sequence in 

S.B.l(ia) or the one in S.B.l(iia). We get a commutative diagram like that in the next 

lemma with A,,, = W, , B,,. =X, and C,,, = Y,, . The vertical maps (c/~ in 7.1 will 

be sums of maps w,, :X,, + Y, above. 

7.1. Long snake lemma. Supposegiven a commutative diagram in an abelian category 

where the vertical columns are long exact sequences, each B and each C row is exact 
and each A row is a O-sequence (for all n E Z). Then there is a connecting homo- 
morphism 6, : A3,, -+ A,,,_ 1 such that 

fn gn 4 fn-I . . . 
-Al,n-A2,n-A3,n-Al,n-, -A2,np1 

-=+A3,n_l - . . . 
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is a long exact sequence. 

If B3,n+ C,,. is injective or B,,. -+ C,,, is trivial, then 6, is trivial. 

Proof. A diagram chase. 0 

Remark. Notice that when 6, + 1 is trivial, we detect W,(RG,o) by proper sub- 

quotients. 

7.2. Example. Take W,(ZG, w) = L,P(ZG, o), X,(ZG, o) = L,P(zzG, o) and 

YJZG, o) = Lf(ZG + zzG, co). Let G be a 2-group. The C row is exact by Applica- 

tion l.B.8(iv) and Theorem S.B.l(ia) or (iia). 

Davis and Milgram [4] applied these techniques to the following example: 

7.3. Example. Take W,,(ZG, o) =L,h(QG, o), X,(ZG, o) = Lf’h(QG, o) and 

Y,(ZG, o) = Lf_ ,(QG, cu). Let G be a 2-group. This W, is a functor out of (ZG, o)- 

Morita because the modules defining the maps have the required freeness [ll, Pro- 

position 5.61. The C row is exact by Theorem 5.B. l(ia) or (iia) plus the fact that the 

round L-theory is a functor out of (QG,o)-Morita. 

The functors used in both of these examples have an additional feature. We say 

that a functor F satisfies Condition 7.4 provided 

7.4. Condition. Any projection map G -+ G/N where NC ker o induces an isomor- 

phism F(RG, o) -+ F(R [G/N], 0). 

7.5. Lemma. If a functor F satisfies Condition 7.4, then the sequence obtained by 
applying F to the O-sequence in S.B.l(ia) or (iia) is exact. 

Proof. Easy. 0 

7.6. Remark. In both Example 7.2 and 7.3, the X functor satisfies Condition 7.4. 

For Example 7.2, see [12,12]. For Example 7.3, see [ll, Proposition 3.21. 

7.7. Proof of Theorem l.C.7. Consider Example 7.2 with o trivial. By [12, Example 

1, p. 1151, the map v/,, is trivial (n f: 0 (mod 4)) or is injective (n = 0 (mod 4)). Then 

by Lemma 7.1, 6,+i is trivial. q 

For other applications we produce a refinement of this technique. 

7.8. Theorem. Let G be a finite 2-group and let ... -+ W,, +X,, -+ Y,,+ ... be a long 
exact sequence of functors out of (ZG, -)-Morita. Suppose that Y applied to the se- 
quence in S.B.l(ia) or (iia) is exact, and suppose that X satisfies Condition 7.4. 
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Finally, suppose that the map vn + 1 is injective if cc) factors through C(4)- and is 
0 otherwise. Then 6, + , is trivial unless G is o-basic, G z C(2) x C(4)-, or M,6. 

Proof. We can begin by assuming that G is not o-basic. The proof divides into two 

cases, as in Section 5. Begin with the case in which G has a central KG C(2) x C(2) 

contained in G’. 

The goal here is to prove that either 6,,+i is trivial or G = C(2) x C(4)-. If c~o,~ 

factors through C(4)-, then Lemma 6.1 implies 6, + 1 is trivial. If G is abelian of 

rank 23, then it is possible to choose a central K so that ~o,~ factors through 

C(4)). So hereafter assume we/K does not factor through C(4)) and that, if G is 

abelian it is of rank 2. 

If at least two of the CC)~/~, do not factor through C(4)-, then a diagram chase 

shows that 6, + 1 is trivial. (It is helpful to recall the definition of the map p from 

Section 5 .A. 1.) 
We henceforth assume that WC/K does not factor through C(4)- and that at least 

two of the wo/c, do. If G is non-abelian, then let C,CKfl [G, G]. Choose C, so 

that WC/C, does factor through C(4)). Since COC [G, G], WC/K also factors through 

C(4)-, which is a contradiction. 

If G is abelian, it is of rank 2 and hence of the form C(2j) x C(2’)). Note that 

is2 since WC/K does not factor through C(4)). Next note that iz 2 and j = 1 since 

otherwise at most one of the WC/C, factors through C(4)-. 

The remaining case is the one in which we have a normal K, but no central one. 

If WG,,/K factors through C(4)-, then Lemma 6.1 implies 6, + 1 is trivial, so hence- 

forth assume that WG~/K does not factor through C(4)). If wGo,c, does not factor 

through C(4)-, then another diagram chase shows that a,,+, is trivial, so we now 

assume woo/C, does factor through C(4)). 

Note that gz(GO)=K, since if yz(GO) were larger, there would be an E% 
C(2) x C(2) c yl(GO) which would be central in G. If E were not in G+, then GO 

would be Gof x C(2)- which is impossible. 

We wish to argue that G,, must be abelian. Note first that yz(G)n Gz = CO since 

there are no central C(2) x C(2)‘s in G+. It follows that [G,, GO] tl gz(G) = CO. But 

this is not possible since then WG~/K would factor through C(4)). 

Now we know that GO is a rank 2 abelian. We know that cc)oO/C, does factor 

through C(4)). The conjugation action of G on GO gives an isomorphism between 

GO/C, and Go/C2 which preserves the w ‘s. As in the central case, it now follows 

that GO= C(2) x C(4)). 

Now G is an extension of C(2) x C(4)- by a C(2). Consider the subgroup G+ 

which is easily seen to be a non-abelian group of order 8 with a normal C(2) x C(2), 

hence it is D(8). It is easy to show that the extension for G is semi-direct and we 

can choose an element g E G+ of order 2 giving the splitting. 

Finally, we determine the action map: a(h) = g. h. g-’ for all h E C(2) x C(4)). 

Let to and tl be generators for C(2) x C(4)) with w(t,) = - 1 so t, has order 4 and 

we choose to to have order 2 and be in ker w. Note a(tf) = tf, so a(t,-J = toe tf, since 
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the action is nontrivial on the C(2) x C(2)cC(2) x C(4)). Clearly a(f,)=t:’ or 

t,. t?‘. This second possibility cannot occur since (r has order 2 on C(2) x C(4)-. If 

a(tJ = t;‘, then we an replace t, with t,. t, on which a acts trivially. 0 

7.9. Proof of l.C.8. The I,u,,+ 1 maps for the functors in Example 7.2 are described 

in [12, Example 2, p. 1151. If n+ 1~0 (mod 4), then Lemma 7.1 proves the result. 

If n + 1 =O (mod 4), then Theorem 7.8 finishes the proof. 0 

Remark. The Davis-Milgram example, Example 7.3, also follows from Lemma 7.1 

and Theorem 7.8. 
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