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1. INTRODUCTION

If a finite group G acts freely and simplicially on a complex homotopy equiv-
alent to a sphere S”, then G has periodic Tate cohomology: H'"""(G; Z) =
H i(G; Z) for all i > 0. Swan proved in [S2] that this condition was also suf-
ficient. For free topological actions on S” itself, the first additional restriction
is:

Theorem [Mi]. A finite dihedral group does not act freely and topologically on
S”.

Milnor’s argument used the compactness of S” as well as the manifold struc-
ture. In fact, for dihedral groups with periodic cohomology, i.e., of order 2n
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106 IAN HAMBLETON AND E. K. PEDERSEN

where n is odd, we have,
Example. Any finite dihedral group acts freely and smoothly on S*x R3.

The proof follows directly from the existence of a smooth normal invariant
for the Swan complex X associated to the given dihedral group [Ma]. A surgery
problem

fx1:Mx (D, 8 — Xx (D8
is normally cobordant to a homotopy equivalence of pairs by the n- 7-theorem.
The interior of the resulting manifold gives the example.

Another attempt to generalize the problem is to study actions on a sphere
S™* with a standardly embedded invariant subsphere S*=!' . This situation is
related to the last one if we assume that the action is free away from the sk-1 ,
since "% — ¥ ~ " x R¥.

Theorem [AP,HMI1]. If n > 1, a finite dihedral group does not act semifreely

and topologically on ™k with fixed standard subsphere skt

Note that a free action on S" x R* must converge to the trivial action on
“the S¥~! at oo ” in order to be extended to a semifree action on S™**. More
generally we study free actions on S” x RF that converge to a given action on
the S¥7! at .

In this paper we study such actions where the action at infinity is given by
a real linear representation, and relate such actions to a question of Wall [W4,
p. 518]: “it is natural to ask whether any countable group with periodic Farrell
cohomology can act freely and properly on some product S” x R* or whether a
condition such as Milnor’s is necessary. I observe at least that it is not necessary
for each element of order 2 to be in the centre.” Wall then shows that the infinite
dihedral group acts freely and properly discontinuously on S?x R with compact
quotient.

Connolly and Prassidis [CP] showed that any group I" with finite virtual co-
homological dimension and periodic Farrell cohomology acts freely and properly
discontinuously, with non-compact orbit space. A remaining question is: for
actions with compact quotient, can I" contain a finite dihedral subgroup?

Denoting the nontrivial one-dimensional representation by R_, we prove

Theorem 7.11. Let V be a linear representation of the dihedral group of order
2p, D ,, D an odd prime. Then there is a topological action of D, ona Sphere
free off a standard proper subsphere and given by the unit sphere SV on the
subsphere if and only if the representation has at least two R_-factors.

However Milnor’s condition is not necessary in general since

Theorem 8.3. The group D, x,Z k acts freely and properly discontinuously on
S" x R™ for some n, m with compact quotient if and only if n=3(4), m=k,
and o considered as a real representation has at least two R_-factors.

Remark. We prove our nonexistence results by using 7.11 so the nonexistence
results in Theorem 8.3 concern topological actions. On the other hand, the ac-
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tions constructed in Theorem 8.3 are actually smooth. The lowest dimensional
example is a cocompact action on S® x R%.

The authors would like to thank Tom Farrell and Frank Connolly for useful
discussions.

2. TOPOLOGICAL REPRESENTATIONS

In this section G is a finite group. The unit spheres in linear representations
can be thought of as models for smooth group actions. In the homotopy category
the concept “homotopy representation” has been introduced by Tammo tom
Dieck, meaning a group acting on a CW complex, so that the fixed set of each
subgroup is homotopy equivalent to a sphere.

Topological group actions can be extremely wild, but we want to consider
the simplest possible class, which is still sufficiently big to contain interesting
non-PL examples.

Definition 2.1. A topological representation is a group action of G on a sphere
S" such that the fixed set of a subgroup H, (S™)”, is a linear subsphere of
Sn

Example 2.2. tom Dieck and Loffler construct actions of Cp X Cp , Cp the

cyclic group of order p on ¥ where the fixed sets of the two C,’s are

locally flat n-spheres, that are linked with linking number different from 0 [DL].
These are smoothings of homotopy representations, but they are not topological
representations by our definitions.

It is clear that the join of two topological representations is again a topological
representation, so we may form the Grothendieck construction with join as the
sum to get a topological representation group. We do not get a ring even if we
allow actions that are not effective, since there is no obvious analogue of the
tensor product construction for linear representations. In fact Steffen Bentzen
[B] has shown there are finite groups G, and G, of coprime order, so that G,
acts freely on S%*=1 and G, acts freely on ¥~ but such that G, x G, has
no free action on S/~

In this paper we shall study a specific kind of topological representations,
that are free off a given subrepresentation.

We shall call a finitely dominated complex a Swan complex if it has finite
fundamental group and the universal cover is homotopy equivalent to a sphere
[S2].

Proposition 2.3. If (S”+k , G) is a topological representation which is free away
from a representation (Sk_l , G), then (S”+k - Sk_l) /G is a Swan complex,
hence G is a periodic group.

Proof. (S"+k - Sk_l)/ G is finite dimensional and the universal cover is of the
homotopy type of a sphere. It is proved in [E] that (S”+k - Sk_l) /G 1is finitely
dominated.
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Assume G acts on the topological space X and by isometries on the metric
space M .

Definition 2.4. A map p from X to M is called almost equivariant if there
exists k so that d(pgx, gpx) <k.

If the homotopy type of (S"+k - Sk_l)/G is denoted by X, then X is
determined by G and one k-invariant. We may consider the induced action
of G on RF (the open cone of the action on sk-1 ), and we obtain a map
X x GRk - R* /G, which is a bounded Poincaré duality complex in the sense of
[FP2]. We may thus consider the bounded structure set . b(f x GRk -~ R /G),
an element of which is a bounded homotopy equivalence W — X x G R*.
The universal covering of W is an element of yb(S" x R* & Rk) , where
p 1is projection on the second factor, but it follows from [FP2] that this set
only contains one element, so there is a bounded homotopy of W — S" x R
to a homeomorphism. It follows that G acts on S” x R and p is almost
equivariant. Choosing a radial homeomorphism of RF = pF , the open unit
disk, we get S" x D¥ — D* . If we now give (S", x) a metric which is 1 — ||x||
times the standard metric, the metric completion of S” x D" is easily seen to
be S™™ (the join of S" and S*~!). When the metric is changed this way, a
bounded subset near infinity in S” x RF becomes small near S¥~!. The group
action thus extends continuously to S™* = (8" x R¥) U S*™! because p is
almost equivariant. This method was used in [AP] in the case where the action
on S5 is trivial, and the general principle goes back to [AH].

Theorem 2.5. There is a 1-1 correspondence between the bounded structure set
yb(f’ X RF ) and conjugacy classes of group actions on S™* Which are the
given action on the standard subsphere S and where the homotopy type of
(S"k —skY/G is x.

Proof. We have shown how to get from an element of Ft ()~( xGRk) to a group
action on S, so assume G acts on S"* = $" +S*7!, free off S*! and by
o on S¥7! Thereisamap p:S"™* =5"+S*! = 0%S*!, where 0 is the
origin of R* and thus 0% S*~! is D , the unit disk. Letting G act on D* by
a, p is equivariant when restricted to %=1 Consider

plx) = I—é—] > & 'p(gx),
geG

where the sum is taking place in RE. Clearly p is equivariant. Also p| ISk'1 =
p]Sk_1 and 5(S"+k - Sk_l) is the interior of D . The distance between p(x)
and p(x) is thus a function that goes to 0 as x approaches S*~'. We now
choose a radial and hence equivariant identification of D¥ with R* and S"** -
S=1 with " x R¥ ((x, ) in S" x R¥ corresponds to the join line from
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xeS"toTve€ Sk_l). Since the distance between p and p goes to 0 as we
approach k! , this may be done so that the distance between p and p in RF
is bounded. Letting X = (S" x Rk) /G, we get the following diagram:

><R L»
1(117)/
X><R

where all the maps are equivariant. We want to show (1, p) is an equivariant
bounded homotopy equivalence. Using [AM]1] it is enough to show it is a
bounded homotopy equivalence, but this follows from p being close to p, the
projection. This shows the map is onto. To see it is monic, we need that radial
reparametrization induces the identity on the structure set [FP2].

3. CONTROLLED ALGEBRA AND TOPOLOGY

Most of the results of this section will appear in [FP2, FP1, R2]. Let M be
a metric space. Assume there is a group G acting on M by eventual Lipschitz
maps [PW]. Recall that an eventual Lipschitz map g : M — M is a map, so
there exists k, / € R, such that d(gx, gy) <k-d(x,y)+/. We want k and
[ to be independent of g.

Remark 3.1. The affine function z — k- z 4+ / may actually be replaced by any
function sending R, monically onto R_ as has been observed by J. Rosenberg
[Ro]. We want this function to be independent of g € G. This is of course
only a problem when G is infinite.

Example 3.2. Let M be a finitely generated group exhibited with the word
metric, and G C M a subgroup. Then the action of G on M by conjugation
is by eventual Lipschitz equivalences. Specifically, if g € G has length / then
d(gxg™', gvg ) =d(gxy~'g",e) <2 +d(x,y)

Example 3.3. Let (V, G) be an orthogonal representation. Then G acts by
isometries on ¥V, hence clearly by eventual Lipschitz maps.

Given M and G as above, and a commutative ring with unit R, we define
a category E?M,G(R) as follows:

Definition 3.4. An object A4 is aleft R(G)-module together withamap f: 4 —
F(M), where F(M) is the set of finite subsets of M , satisfying the following
conditions:
(i) f is G-equivariant.

(i) A, ={ae€ A|f(a) C{x}} is a finitely generated free sub- R-module.

(iii) As an R-module, 4 =D, ., 4

(iv) fla+b)C fla)u f(b).

(v) Foreach ball BC M {x € B|4, # 0} is finite.
A morphism ¢ : A — B is a morphism of RG-modules satisfying the following
condition: there exists k so that the components ¢, : A, — B, (which are
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R-module morphisms) are zero when d(m, n) > k. &), ;(R) is an additive
category in an obvious way.

Remark 3.5. It follows easily from the conditions that f measures exactly
where an element has components, i.e., if x, ... , x, € M are different points
and g, EAX,’ a,#0,then f(a,+---+a,) ={x,...,x,}.

Given an object 4, an R-module homomorphism ¢ : A — R is said to
be locally finite if the set of x € M for which ¢(A4,) # 0 is finite. Define

A" = Hom;f' (A, R), the set of locally finite R-homomorphisms. We want to
make * a functor from &, (R) to itself to make &, (R) a category with
involution. We define ™ : 4" — FM by f*(¢) = {x|#(4,) # 0}, which is
finite by assumption. A" has an obvious right action of G, turning it into a
right RG module given by ¢g(a) = ¢(ga), and [~ is equivariant with respect
to the right action on M given by xg = g'lx. To make * an endofunctor
of &), ;(R) we need to replace the right action by a left action. As is usual in
surgery theory, this may be done in various ways, the standard one being to let g
act on the left by letting g_1 act on the right. However given a homomorphism
w: G — {£1}, we may let g act on the left of A" by letting w(g) - g_l act
on the right. We also obtain the generalization of geometric antistructures as
follows: Given a group automorphism 6, : G — G and an eventual Lipschitz
equivalence 6, : M — M so that 6,,(g-m) = 6,(g) - 0,,(m), satisfying
Hil(m) = bm and Gé(g) = bgb_1 for some b € G, we may then twist the
involution * by composing with the functor sending (4, f) to (Ae, f 6') , where
A% is the same R-module, but g acts on the left by multiplication by 6(g)
and =6, f.

If 6, is an inner automorphism, this is just scaling and induces an isomor-
phism of L-groups. We are thus essentially allowing antistructures of the type
Hambleton, Taylor, and Williams [HTW1] call “geometric” antistructures, with
the further restriction that there has to be a counterpart at the metric space
level.

Remark 3.6. It is tempting to allow an arbitrary additive category & in place
of just the category of f.g. free R-modules in the definition of ?M’ ¢(R). This
is indeed possible, but we do not need it for the purpose of this paper. An easy
check demonstrates

Proposition 3.7. (%, ;(R), %), where % is among the above suggestions, is an
additive category with involution in the sense of Ranicki [R1].

For many purposes we are more interested in the subcategory of ?M’G(R)
for which all objects are free R(G)-modules.

Definition 3.8. The subcategory of ?M,G(R) , where the modules are required
to be free R(G)-modules, is denoted by %), (R).

It is easy to see that * induces a functor on %,, ,(R), so that &, ;(R) is
a subcategory with involution.
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Example 3.9. If G acts trivially on M and G is finite, then %M,G(R) is
naturally equivalent to %,,(RG), where RG is the category of free finitely
generated based RG-modules.

Example 3.1C. If G is finitely generated and |G| denotes the metric space with
the same underlying set as G, and the word metric, then gj(” c(R) is naturally
equivalent to ?;I(RG) (as categories with involution). Notice it does not matter
which generating set we choose for G since two different generating sets will give
eventual Lipschitz equivalent metrics. In case G is finite, this means ngl ¢(R)
is equivalent to ‘E;’;t’ ¢(R) , which is equivalent to i;’;t(RG) .

Using the algebraic L-theory of additive categories with involution, we imme-
diately have defined functors LK(% 6(R)), where K issome * invariant sub-
group of K,(%,, g(R)), i =0,1. Here K,(%,, 4(R)) = K,(%,, ;(R))/{1}
and KO(%M, (R )) (Ko(By (R Nt )/KO(%M’G(R)) , where " denotes idem-
potent completion.

Let N be a submetric space of the metric space M . In the equivariant case,
we suppose that N is an invariant subspace.

Definition 3.11. The category %A;TVG(R) of germs away from N has the same
objects as %M,G(R) , and morphisms are germs of morphisms away from N,
i.e., two morphisms are identified if there exists k so that they only differ in a
k-neighborhood of N.

Consider the metric space M x R, where G acts trivially on the R-factor.
Inside we have the metric space M UN x [0, oo). It follows immediately from
the methods of [PW] (see also [AM2] for a more formalized description) that
the natural functor

>N
%MUNX[O,OO),G(R) - %M,G(R)

induces an isomorphism on K-theory, and it follows from the proofs of [R2]
that it induces an isomorphism in L-theory (Eilenberg swindle is allowed in
L-theory). Hence from [PW] we get a long exact sequence

K, (B 6(R) — K,(By 6(R) — K,_|(By 6(R)--- .

Here it should be noted that we are using the nonconnective deloopings of [PW]
to define K-theory in negative dimensions. The following is essentially proved
by Ranicki [R2]

Theorem 3.12. There is a 4-periodic long exact sequence
h h
~L,(By, 6 (R) — L,(€ 4. 6)(R)
K
— L% 6(R) — La_[(Zy (R

where K = Im(fl(%M’G)(R)) —K (@”LNG)( )

The formulation in [R2] uses %,

. >N
MUNX[0, 00) instead of &, .
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We saw in Example 3.9 that trivial group action corresponds to RG coef-
ficients. This is part of a more general phenomenon motivating the following
definition.

Definition 3.13. Suppose G is acting on the metric space M with invariant
subspace N. We say that the set of subgroups {H } of G is the effective
fundamental group for (M, G) away from N if the following is satisfied: For
every k > 0 the set {x € M|diam(H_ - x) < k} is not contained in a bounded
neighborhood of N .

Example 3.14. Let (V, G) be a representation. Then the effective fundamental
group away from O is the set of isotropy subgroups of the representation.

On the geometric side we need the following result from [FP2]. A map
X — M from a space to a metric space is eventually continuous if there exist a
covering {U,} of X sothat diam(pU,) is uniformly bounded, and the inverse
image of a bounded set is precompact. When the metric space is a cone, an
eventually continuous map may always be replaced by a continuous map which
is only a bounded distance away.

Theorem 3.15. Let X be a free G- CW complex together with a G-equivariant
eventually continuous map X — M such that X — M is boundedly simply
connected, and X satisfies Poincaré duality with respect to some homomorphism
w: G — Z/2 in the category &, ;(Z), dim(X) > 5. Let W — X be a
degree-one normal map. Then W is normally cobordant to a bounded homotopy
equivalence if and only if an invariant in L, (%), ;(Z)) vanishes.

The concept boundedly simply connected is defined in [FP2, 2.7]. As in
standard surgery theory, normal invariants correspond to lifts of the Spivak
normal fibre space X — BF to BTOP. If we fix a lift (defining a basepoint)
then [FP2]:

Theorem 3.16. There is a long exact sequence of surgery

h b X/G
= LBy 2 — |
M/G

— [X/G, F/TOP] — L!(%,, ;(Z)).
Tensor product defines a pairing

€l61,6(R) x 8y 6(R) — Bgpr,6(R)

whenever R is a commutative ring with unit. When |G| is finite, this means
we may replace %Gl’G(R) by g;t(RG) and ﬁGlxM’G(R) by %, ¢(R), so for
finite G we have a pairing

% ,(RG) x Z,; :(R) — %, (R).
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Using the fact that (4 ® B)" = 4" ® B" for finitely generated R-modules, it
follows that this commutes with the pairings, so it follows from [R1] that there
is a pairing
k
L (RG)®L (?M’G(R)) — Ln+k("€M’G(R))
geometrically corresponding to the twisted product.

4. MACKEY PROPERTIES

Let M be a metric space, G a finite group acting on M by eventual Lipschitz
maps, and R a commutative ring with unit. Consider the category %M,G(R) .
Given two subgroups G, C G, C G we have G, and G, acting on M by
restriction, restriction functors %M’GZ(R) — %M, G, (R), and induction functors
By ¢,(R) — 178 Gz(R) . The restriction functor is obtained just by restriction of
the group action, and the induction functor sends an object 4 to RG,® RG, A.
The required map from RG,® RG, A to the finite subsets of M is extended from
the map of A to the finite subsets of M by equivariance, i.e., by f(g®a) =
g - f(a). Clearly restriction and induction are functors. We need

Lemma 4.1. Restriction and induction are functors of categories with involution.

Proof. The involution is given by 4" = Homl'f'(A , R) turned into a left RG-
module as in §3, and it does not matter whether we restrict before or after
applying Hom'". Also

Homl.f.(RG2 ®RG, A, R) = Hom(RG,, Homl.f,(A, R)
£
= RG, ®Rg, Hom' (4, R).

Given two functors between additive categories with involution, we may form
a new functor, the direct sum of the two functors. It is easy to see that

Lemma 4.2. A functor between additive categories with involution induces a map
of L-groups. The sum of two functors induces the sum of the two maps.

Proof. The proof follows directly from the definitions since L-groups are de-
fined as a bordism theory, where direct sum is turned into addition [R1].

Consider the category A(G) defined as follows. The objects are the sub-
groups of G, and Hom(H,, H,) is the Grothendieck construction applied to
the collection of finite “free bisets” (i.e., finite sets Z with free left H,-action
and free right H,-action), where the addition is disjoint union. The balanced
product

(H,ZHZ) X H, (H2 YHI)
is a free biset and can be easily shown to induce a composition Hom(H, , H,) x
Hom(H,, H,) — Hom(H,, H,), which is bilinear. The set H asan H-H biset
is the identity element for Hom(H, H).
There is a functor Gr(G) — A(G) from the category of subgroups of G

(morphisms are Maps(H,, H,) = {g € G|ngg_l C H,}). It is the identity
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on the objects and sends g € Maps(H,, H,) to the equivalence class of H,
considered as a left H, set in the obvious manner, and hyh, = hy,gh g~ ! for
all hy € H, andall h, € H,. Asnoted in [HTW?2, 4.1], th1s is a Mackey functor
and any functor out of A(G) to an additive category yields a Mackey functor
by composition. It follows that

Theorem 4.3. Given a finite group G and a metric space M as above, then
%M’_(R) is a Mackey functor, and hence Ln(%M’_(R)) is a Mackey functor.

Remark. We suppress the upper index in the L-groups in the above statement.
The point is that the upper index has to be a subgroup of a K-theoretic group
which is in itself a Mackey functor, e.g., the whole group or the trivial subgroup,
but also naturally defined image groups will work.

Proof. Assume given an H,- H, biset Z . Then sending 4 to RZ® RH, A and

extending the reference map by equivariance defines a functor from % ’ 2( )
to %X) H, (R) . The result now follows as described above from [HTWZ].

By tensoring L,(%,, _(R)) with 22 , we obtain a “2-local Mackey functor”
on Gr(G). Let &, G) denote the set of proper subgroups of G with odd
index.

The following result was proved in [HM1, 6.13].

Theorem 4.4. If G = C, x P is a 2-hyperelementary group (d is odd and P is a
2-group) then any 2-local Mackey functor # has a natural splitting
M =P{#(G)1):1|d}

induced by idempotents in the 2-local Burnside ring. The summand #(G)(d)
associated to the divisor | = d is the kernel of the restriction maps

#(G) — @A (H)HC G, H € 6,,4(G)}.
The sum of the induction maps
@{% (H)|H € G,,4(G)} —» #(G)
has image @{#4 (G)(I)|l #d, l|d}.
We refer to the component .#(G)(d) as the “top component” of .Z(G).
Let (K, L) be a G-CW pair equivariantly embedded in a representation
sphere S”. Then there is an induced action on the metric space
OK)=0U{t-xeR"™|xek,1€10,c0)}

Theorem 4.5. Let G = C, x P be a 2-hyperelementary group acting on M =
O(K) with invariant N = O(L). Suppose that the effective fundamental group
Jor (M, G) away from O(L) is {H,}, where each H, C H for some H €
Oo4a(G). Then

~

L&y ¢(R)®Z,=L,(%, ;(2)®Z,
in the top component.
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Proof. The proof is by induction on cells, so assume K is obtained from L
by attaching exactly one equivariant k-cell D* x G/H. Our assumption is
H C H', where H' is a proper odd index subgroup. In view of Theorem 3.12
it is enough to prove that Ln(%A;fV ¢(R)) ® 22 is trivial on the top component.

But O(M) - O(N) = (O(D*) - O(S*™")) x G/H , s0 %,;";(R) is induced from

k—1 ~
%;(g,(j)gx H? JHH (R). It follows from Theorem 4.4 that K*(‘EA;?’G(R)) ® Z, and

Ln(E;”A;fVG(R)) ® Z, are trivial on the top component.

Remark 4.6. An important special case of Theorem 4.5 is when L is empty, so
O(L) = (0), a point.

5. INFINITE GROUP ACTIONS AND TOPOLOGICAL REPRESENTATIONS

In this section we establish a connection between proper discontinuous free,
cocompact actions of G =D x_Z k ona sphere crossed with euclidean space,
S" xR™, and topological representations of the finite group D . The group D is
assumed to be a periodic group; our example of main interest is D, the dihedral
group of order 2p, p a prime. We start by making a couple of observations:

Lemma 5.1. The sphere dimension n has to be equivalent to 3 mod 4.

Proof. This is the same as in Proposition 2.3.

Lemma 5.2. The euclidean space factor must have dimension k, ie, k=m.

Proof. Choose Z¥cD X, zk , a normal cofinal subgroup. By passing to a
subgroup of index 2 if necessary, we may assume that Z k acts orientably. Now

(S" x R™)/Z* is an orientable manifold of dimension n + m, and there is a
fibration

S"x R" — (8" x R™)/z* — T*,
so a homological consideration shows k = m.

By abuse of notation we shall use o to denote the real representation induced
by the integral representation o.. We now prove the following

Theorem 5.3. Suppose that D x , Z k acts freely, cocompactly, and properly dis-
continuously on S" x R Then there is a topological representation of D on
S™K  which is given by the representation o on a standardly embedded skt
and away from this sk may be equivariantly identified with the restriction of
Dx, Z* to D acting on S" x R*, hence is free off S*7".

Proof. Consider as in Lemma 5.2 the manifold M = (S” x R* )/ Z k , and the
map M — T". Up to homotopy this is a spherical fibration. We replace this
spherical fibration by a block fibration # — T*, so 3 is compact. We have
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a homotopy commutative diagram
M — M

L

T Tk
and M — M is a homotopy equivalence. The universal cover of M is a block
fibration over R¥ , 80 it is block (and hence boundedly) equivalent to the trivial
block fibration S" x R¥ — R .

We thus have a bounded homotopy equivalence f: M — S"xR* with respect
to the projection on RF. Itis easy to see this map is almost Z k-equivariant
with respect to the standard action of the second factor of S” x R . Using the
bounded surgery theory [FP2], it is easy to see that there is only one element
in the bounded structure set of S" x R¥ — RF. (Crossing with R induces
isomorphism on simply connected L-groups, and at normal space level.) Hence
there is a bounded homotopy of f to a homeomorphism /. On M, we have
the free action of Dx_Z k and we want to consider the conjugate action by 4
on S" x R¥. First we notice this action restricted to Z* makes the projection
p to R* almost equivariant. To see this consider

d(phzh™'x, zpx) < a’(ph(zh_lx), pf(zh_lx)) +dpfzh'x, zZpXx).

The first term is bounded since f is boundedly homotopic to /4. The second
term is a bounded distance from d(zp f hlx, zpx),since f and p are almost
equivariant with respect to the standard action on the second factor. Since z
is an isometry of R¥ , this is equal to d(pf hlx, px) which is bounded since
S is boundedly homotopic to #. We now consider this conjugate action on
S" x R , and we want to show the projection to R* is almost equivariant
with respect to the (D x_ Z k)-action obtained by letting D act on R” by the
representation. Choose U C S” x R¥ , compact so that Uzezk z-U=S"xR".
Replacing U by UgeDg - U we may assume U to be D-invariant. Note that
since D is finite and U is compact, |J gep & - P(U) must have finite diameter.

Consider x € S" x R* and g € D. By the choice of U, thereis ¥ € U and
ze€Z sothat x =z-u. Now

d(pgx, gpx) =d(pgzu, gpzu)
<d(pgzu, gzg 'pgu)+d(gzg 'pgu, gzpu) +d(gzpu, gpzu).

The first term is d(pgzu, gzg_lpgu) = d(p(gzg_l)gu, gzg_lpgu), and
this is already shown to be bounded since gzg_1 € Z*. The second term
is d(gzg 'pgu, gzpu) = d(gzg 'pgu, gz~ 'gpu) = d(pgu, gpu) since
gzg_1 € Z* acts as isometry on Rk, but gpu and pgu both belong to
U &p(U), which has finite diameter. Finally, the third term is d(gzpu, gpzu)=
d(zpu, pzu) since g acts by isometry, and this term is bounded since z € Z* .
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k
n+ Sn+k _

We are now ready to construct the action of D on S§" " . Identifying
S*1 with S" x R¥ using the join lines, one sees that a homeomorphism
bounded in the R*-factor will be small in S"** when we approach sk1 , hence
defining the action on Sk by the representation on skt Using the above-
mentioned identification with S” x R* away from sk-1 produces a continuous
action on S™**.

6. THE TRANSFER

Given a linear representation V' of a finite group G and exhibiting V' with
a bounded equivariant triangulation, tensoring with the cellular chains of V
defines a natural transformation from % (RG) =&, (R) to the category of
chain complexes in %, (R), and hence from

K,(Z,(RG)) — K,(%, 4(R)),

preserving the involution when dim(7 ) is even and sending the involution to
minus the involution when dim(V") is odd. Using [R1], we get, similarly, maps
from

L(ZG) = L,(%,

- 6(R) — L

n+d1m(V)(gV,G(R))
and these maps fit into Ranicki-Rothenberg exact sequences as follows:

!

A%z,, K(RG) — A" (Zl K,(RG))

(6.1) LQ‘&%G) — Ly imy %%V 6(R))
L‘;(ﬁw) — L g %%V &(R))

ﬁ‘(zz,il?o(RG» — H‘*‘”‘“‘”(% Ky(RG))

These transfers correspond geometrically to the twisted product with V.
Consider the following diagram:

L2(ZG) L L& 6(2)
Lé’(iG) —  Lyamn & 6(Z))
(6.2) 1?0(22,}?0(226)) — B"™Y(Z,,K\(%, Z,)
Lg(%z(;) — Ly (% +(Z,)
Lg(;“zG) — Ly 6(Z))
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where the horizontal maps are the transfers induced by V', the lower ver-
tical maps are pieces of Ranicki-Rothenberg exact sequences, and the map
L5(ZG) — LY(Z,G) is induced by Z — Z, and the fact that K,(ZG) -
K,(Z,G) is trivial for G a finite group [S1]. LY(%, 4(Z)) - LQ‘(%V,G(Zz))
is defined when Ky(%), ;(Z)) — Ky(%y 4(Z,)) is trivial, which is the case
when G is the dihedral group. It is our aim to study the map labelled ¢ in di-
agram (6.2) on elements in L§ (ZG), mapping nontrivially to L;’ (ZZG) , Where
the nontriviality is detected by an element in HO(Z2 , 1?0(22 G)), using the fact
that L}(Z,G) — LY(Z,G) is onto.

Let O be the O-dimensional representation of G. The category %,G(R) is
the same as Ef?pt(RG) and we have the following:

Theorem 6.3. On K-theory the transfer induced by the representation V is given
by

Ky(RG) = Ky(%, 4(R)) — K\(%, 4(R)),

where the arrow is induced by the inclusion of 0 in V.

Proof. Given a projective RG-module P, represented by a projection p : F —
F', we want to consider the induced projection F @ C,(V) —» F® C,(V), where
C,(V) are the cellular chains of a bounded triangulation of ¥ . The short exact
sequence of chain complexes 0 — C,(0) — C (V) — C,(V,0) — 0, where
C,(0) = R, shows it is enough to prove that p: F ® C,(V,0 - FeoC,V,0)
is the trivial element in I?O(%V, ¢(R). Let V° =Upcq V¥ | We then have

[F@Cy(V,0);p]=[F@Cy(V, V'); pl+[F® C,(V’, 0); p],

but on F ® C,(V, V*) the G-action is free, so we may use Eilenberg swindle
to prove the element is 0. Working down inductively on orbit types modulo
lower strata, we obtain that [F ® C#(VS , 0), p] is trivial, so we are done.

7. THE OBSTRUCTION

We want to study the transfer of §6 on an element ¢ € Lg’(ZD) given by a
surgery problem M — X, where X is a Swan complex for the dihedral group.
Note that X is finite, so ¢ actually comes from Lg'(ZD); X 1is even simple
measured in Wh(Qn), so ¢ comes from Lg(ZD) [W2, Proposition 7.1]. By
abuse of notation we shall denote the element by ¢ in all cases. The nontriv-
iality of o is an L-theoretic explanation of the fact, due to Milnor [Mi], that
the dihedral group does not act freely on a sphere. This L-theoretic description
is due to J. Davis [D], who gave an interpretation of R. Lee’s semicharacter-
istic [L]. Here, we will need the fact [HMI1, 7.15, 7.18] that o lies in the top
component of Lg' (ZD), and that its image is nontrivial in the top component

of LX(Z,D).
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We also need information about K((%;, ;(R)) for R=Z,, G = D the dihe-
dral group of order 2p, p an odd prime, or rather about the map IZ’O(RG) —
ko(%V,G(R)) induced by including O in V. In general this may be studied
using a spectral sequence [Q2] but we confine ourselves to the dihedral group
case, where the system of subgroups is very simple.

Proposition 7.1. Let D be the dihedral group of order 2p, p an odd prime.
Then the transfer I?O(RD) - I?o(%v, p(R)) is the trivial map if V has a trivial
summand. If V' has no trivial summand but a nontrivial one-dimensional (flip)
summand R_ then the map is onto and the kernel is the image of I?O(RCP). If
V' has no one-dimensional summands, it is an isomorphism.

Proof. By Theorem 6.3 the transfer is the same as the map induced by inclusion
of 0 in V . To prove the last part first consider 0 C V° C V', where V* is the
singular set of the action. Applying K-theory to

&2 p(R) — € %(R) — &1 (R)

and using that %3’ ,(R) = &4 ¢, (RC,), then K,(&7’ (R)) is unreduced
homology 4, _,(S v /N(C,); AlgKRC,) with coefficients in the algebraic K-
theory spectrum of RC, . Since IZ'I.(RCZ) =0 when i <1 we get I?i(%,;?D(R))
= 0 for i < 2. The point is that we essentially have the fundamental group
C, , the cyclic group of order 2. Similarly on %,f "; (R), the action of D on V
away from V'’ is free, so we are essentially simply connected, and so from the
exact sequence we get that I?O(RD) — ko(%v, p(R)) is an isomorphism.

In case V' has a trivial summand, the map factors through K’O(%R(RD)) =
K_,(RD) and this map is trivial because of an Eilenberg swindle argument. If
there are flip factors in the representation or equivalently VS # 0 we need to
filter 0C VS C V¥ C V. But K, (%,fc?, D)= IZ’O(ZCP) by an argument similar
to above, and using that K_, (RC,) =0 it is easy to see the map is induced by
inclusion, Cp CD.

Theorem 7.2. Let D be the dihedral group of order 2p, p an odd prime, and .
let V' be a representation of D containing no one-dimensional factors. Then the
transfer

L’;(ZD) - L§+dim(V)(<gV,D(Z))

is nontrivial on o .

Proof. 1t follows from Proposition 7.1 that the transfer is an isomorphism on
K,. The result will follow if the element in #°**"")(z,, K\(%, ,(Z,0)) is
not in the image from Lﬁim(V)(%V’ D(Zz)) . Consider the diagram (6.2). This is
a diagram of Mackey functors. Tensoring the diagram with 22 preserves ex-
actness since 22 is flat, so we may use Theorem 4.5, or rather Remark 4.6. The
projective in question is in the top component. We may of course arrange the
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dimension of V' to be divisible by 4 (otherwise compose with two-dimensional
transfer). There is a diagram of exact sequences.

— LYZ,D) — 5%, p(Z,) — L5& (Z,) —

T 1)
— Ly(Z,D) — L%, p(Zy)) — Ly(&%Z)) —

This is because IZ',.(%;,OD(Zz)) = 0 for i < 1, and thus the decorations are
as indicated in the diagram. The map Lg(%,f ’OD(fz)) — Lt (%; ,OD(Z})) is thus
clearly an isomorphism , but this is not quite enough. However the effective
fundamental group is trivial and cyclic of order 2, so on the top component these
groups are trivial by Theorem 4.5. This means that on the top component every
third group in the sequence is trivial and the fact that Lg (Z,D) — Lf)’ (Z,D) is
onto thus implies the result.

Lemma 7.3. The groups L(ZC, — ZD) and L{(%, ,(Z)) are equal under

the map that glues on a product with [0, co) to the boundary, and under this
identification the R_-transfer corresponds to the classical transfer [W1, Chapter
12].

Proof. Comparing the long exact sequences
— LH(zc,) — LY(zZD) — Lj(zC,—-ZD) —

[ !
— L% (2) — LNZD) — L& ,2) -

gives the result by using the 5-lemma and the fact that the twisted product
restricted to the cyclic subgroup is the untwisted product, which is an isomor-
phism.

Theorem 7.4. The transfer L(ZD) — L§(Z C, — ZD) is nontrivial on 7 .

Proof. The transfer sits in an exact sequence
LNj(ZC,— ZD") — L5(ZD) — L{(ZC, — ZD")
which by [H, Theorem 3] can be naturally identified with
L5(ZC,,a,1) — L5(ZD,a, 1) — L}(ZC,— ZD, a, 1),

where a(g) = 'w(g)tgt_l after fixing t € D-C,, all g € D. It is known
that the image of ¢ is contained in the top component, and is nontrivial in

Ly(Z,D) = L{(Z,D, a, 1) , so we proceed by looking at L;(Z,C,, a, 1) 2%
Lg'(ZZD , &, 1) on the top component. But this map is zero since the restriction
LY(Z,D, a, 1) 2% LY(Z,C,, @, 1) isan injection by [HM2, 2.17] and Res-Ind
is multiplication by 2 (so induces the zero map). Hence the transfer is nontrivial
2-adically on o .

Theorem 7.5. Let D be the dihedral group of order 2p, p an odd prime, and
let V' be a representation of D containing exactly one one-dimensional factor
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R _ and no other one-dimensional (trivial) summands. Then the transfer
Lg(ZD) - §+dim(V)((gV,D(Z))

is nontrivial on o .
Proof. Let V = V; x R_. As usual assume V, has dimension divisible by 4.
Consider the diagram
—  LizD) — L%, ,(2) — Lg’(%,,:?D(Z)) —
! ! 1
R
— L% p(2) — L{(%, ,(2) — L% 5(2) —
where the horizontal maps are induced by the inclusion 0 C Vo and R_ C
VoxR_ =V . The vertical maps are the R_-transfers. Note that by Theorem 4.5
both L5(%, ’OD(Z )) and L5(%;; ’OD(Z )) are zero in the top component. Therefore
the diagram reduces the final R_-transfer to Lemma 7.3 .

It turns out to be quite easy to treat the trivial summands of the representation
since K_,(ZD) is trivial. We have

Theorem 7.6. Let D be the dihedral group of order 2p, p an odd prime, and
let V' be a representation of D containing exactly one factor R_. Then the
transfer

LI;(Z D) — L13)+dim(V

(& 5(2))

is nontrivial on o .

Proof. The only remaining question is when V contains trivial summands.
Write V' = U x W, where W is trivial. The W transfer is simply crossing
with W and algebraically this is the map that changes the upper index in the
bounded surgery group. But K_ (ZD) trivial implies K_l(%,,’ p(Z)) trivial so
the Ranicki-Rothenberg exact sequence gives the result.

We have in the other direction
Theorem 7.7. The transfer associated with R from L;’(ZD) — Lf(%Rz (Z))
is trivial on o .
Proof. In Lemma 7.3 above we identified the R_-transfer with the classical

transfer. Using the fact that ¢ comes from L'3(Z D) we finish the proof by the
following lemma and a diagram chase using the fact that LQ(Z C)=0.

Lemma 7.8. Let D = D,, and C = C,. Then the transfer

Ly(ZD™) — L\(ZC — ZD)
is zero.
Proof. From Wall’s calculations (see [W3, 5.3]), the composite L(')(ZD_) —
Ly(Z,D™) — L§(Z,D™) = g,(Z/2) is an isomorphism, where g, is the num-
ber of primes in Z[ip + Cp_ 1] dividing 2, and we work in the top component
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throughout. The transfer above sits in the following commutative diagram:
LNy(ZC—2ZD) — Ly(ZD") — L|(ZC— ZD)

! |
(7.9) LNy(Z,C — Z,D) — Ly(Z,D”) — L|(Z,C — Z,D)

! |
LNS(Z,C — Z,D) — L§(Z,D7)
By [H, Theorem 3] the top horizontal sequence may be naturally identified
with L)(ZC, a, 1) = Ly(ZD, a, 1) = Ly(ZC — ZD, a, 1), where a(g) =
tg't™! for g € D, after choosing ¢ € D — C. There is a similar identification
for the other two rows. But

L¥2,c,a, 1) — LY(2Z,D,a,1)
is surjective [HM2, 2.10] and in the left-hand vertical sequence
(7.10) L(Z,C,a,1)=g{x1}®§(Z/2),

where g, = # primes dividing 2 in Z [Cp] (see [W3, 4.3] where we are in case
III, ). The map

LYZ,C,a,1) — LX(Z,C,a, 1) 2 §,(Z/2)
is just projection on the second factor. Now the map
Ly(ZC,a, 1) — Ly(Z,C,a, 1)
is calculated in [W3, 4.5.2] : the image is
ker{y, : L(Z,C, a, 1) — L(ZC — Z,C, a, 1)} 2 §,(Z/2),

the second factor in (7.10). Therefore Ly,(ZC, e, 1) —» Ly(ZD, a, 1) is sur-
jective, hence the transfer is zero.

Combining the above we get our main theorems.

Theorem 7.11. Let V be a linear representation of the dihedral group of order
2p, p an odd prime. Then there is an action of D on a sphere free off a
standard proper subsphere and given by S(V') on the subsphere if and only if the
representation has at least two R_-factors.

Proof. We have the following diagram of surgery exact sequences where the
vertical arrows are transfers associated to V' :

— F(X) —  [X,F/TOP] — L4(zD)
!
Xx,V !
— ,S”b ( VjD ) — [X Xp V, F/TOP] — Lg+dim(V)(gV’D(Z))

The map [X, F/TOP] — [X x, V', F/TOP] is an isomorphism since X —
X x, V is a homotopy equivalence. It follows from Theorem 2.5 that the
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XxpV
existence of a group action implies the structure set ¥ b( I ) is nonempty,
V/D
but this contradicts the nontriviality of the L-theory transfer on ¢ of Theorem

7.6. On the other hand when as in Theorem 7.7 the surgery obstruction is zero,
then Theorem 2.5 tells us the action does exist.

From Theorem 5.3 we get

Theorem 7.12. If Dx _Z k acts freely, cocompactly, and properly discontinuously
on S" x R™ for some n, m, then o considered as a real representation has at
least two R_-factors.

8. AcTIONs ON S”" x R™

In this section we give examples to show that Theorem 7.12 gives the best
possible condition for actions of D,x,Z k. We begin by constructing a minimal
example.

Consider X a (4/ + 3)-dimensional Swan complex for the dihedral group D
of order 2p, p an odd prime, and a surgery problem M — X in the smooth
category. We may assume X is a finite complex, which may even be taken to be
simple measured in Wh(QD). Consider T? with D acting through the cyclic
group of order 2 by conjugation on two S’ factors. We then have

Theorem 8.1. For any [ > 0, the surgery obstruction of M x D T2 - X433« D T?
is trivial.

It immediately follows that

Theorem 8.2. The twisted product D x  Z 2 where the twisting is by —1 on the

two factors, acts freely, smoothly, and properly discontinuously on §4*3 « R?
with compact quotient.

Proof. Let N be asolution to the surgery problem which exists by Theorem 8.1.
The universal cover of N is homeomorphic to S¥*3 x R? and has an action of
Dx_ Z 2 as claimed. This produces a smooth action on X" x R¥, where X" is
a homotopy sphere. To produce a smooth action on S” x R¥ , it is enough by
3.16 to prove that the covering map from L, (D x Zk) to L, (%%«(Z)) is onto.
However, since the covering map L (ZD) — L,(Z) is onto, and crossing with
R* induces an isomorphism from L(Z) to L, (% (Z)), we are done.

Proof of Theorem 8.1. Consider D acting on T2 by conjugation on both fac-
tors. It is easy to see that T2 /D= T? /C, is a 2-sphere. The action of C, has
exactly four fixed points and is free off these four fixed points. We may give
T? an equivariant handlebody structure by one C,-free O-handle H,, three
C,-free 1-handles H,, H,, H,', and four 2-handles with the action fixing the
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center of the handle. We shall consider
M x D T> — X x D T2
!
T?/D
trying to solve the surgery problem in a blocked way over T2 /D = $%. One
of the 1-handles, say H,, has the property that g : T2 - T2 /D restricted to
H,UH, is a trivial double cover. Then M x,, (HyUH,) — X x,, (H,UH,) is
M x ((HyUH,)/D) — X x ((HyUH,)/D), where M — X is the double cover of
M — X . But we know this surgery problem has a solution by the existence of
lens spaces, so let W be a normal bordism from M to a homotopy equivalence.
Now consider the surgery problem over one of the 2-handles H,. We already
have a solution on part of the boundary, so what remains gives an obstruction
in L'S(ZCP — ZD). This is the obstruction of M X, I’ - X X, I* with
W x I — X x I glued on to part of the boundary. But this is the same element
as the one we obtain by first applying the transfer — x (-1) I to get an element
in L;(Z C,- ZD7), then gluing on W to the boundary to get an element of
L;(ZD_) , and then making another twisted product with /. By Lemma 7.8
this latter transfer is 0. In the lowest possible dimension # = 3, we need the
results of Freedman to carry out the surgery. We solve the problem over the
other 2-handles similarly, and we are left with a problem over the remaining
1-handles relative to their boundary. But the group L'S(Z C,) = 0 [W4]. This
argument always shows the surgery obstruction is zero, even though one of the
steps can only be done topologically when n = 3.
We conclude by the following

Theorem 8.3. The group D, x,Z k acts freely and properly discontinuously on
S™ x R" for some n, m with compact quotient if and only if n = 3(4), m =k,
and o considered as a real representation has at least two R_-factors.

Proof. Suppose we have an action of D x_Z ¥ on S" x R™. By Lemma 5.1,
n = 3(4),and by Lemma 5.2, kK = m. By Theorem 7.12, a considered as a real
representation must have at least two R_-factors. Conversely let L = (Z k , @)
be an integral representation whose associated real representation contains two
R_-factors. Then there is a projection L®Q — Q_&Q_, and the image of L&Z
must be Z_ & Z_. Hence we have a D-invariant exact sequence 0 — L, —
L—-Z &©Z_ - 0, where L, = (Zk”2, ;) is an integral subrepresentation
of L. From this we construct a D-equivariant bundle T2 178 5 12 ,
where the actions are given by o, o, and —1 respectively. But then we have
a bundle X X, T - X x (-1) T? and by Theorem 8.1 there is a manifold
homotopy equivalent to X x -1) T? , S0 by pullback to the total space, we obtain

a manifold homotopy equivalent to X X, T* . We finish the proof the same
way as in Theorem 8.2.



[AH]
[AM1]
[AM2]
[AP]
[B]
[CP]
[D]
[DL]
[E]

[FP1]
[FP2]
[H]

[HM1]

[HM2]

BOUNDED SURGERY AND DIHEDRAL GROUP ACTIONS ON SPHERES 125

REFERENCES

D. R. Anderson and W.-C. Hsiang, The functors K_; and pseudoisotopies of polyhedra,
Ann. of Math. (2) 105 (1977), 201-233.

D. R. Anderson and H. J. Munkholm, Boundedly controlled topology, foundations of alge-
braic topology and simple homotopy theory, Lecture Notes in Math., vol. 1323, Springer,
1988.

—, Geometric modules and algebraic K-homology theory, K-Theory 3 (1990), 561-602.

D. R. Anderson and E. K. Pedersen, Semifree topological actions of finite groups on spheres,
Math. Ann. 265 (1983), 23-44.

S. Bentzen, The non-existence of tensorproducts for free group actions on spheres, Algebraic
Topology (Aarhus 1982), Lecture Notes in Math., vol. 1051, Springer, pp. 8-24.

F. Connolly and S. Prassidis, Groups which act freely on R™ x st , Topology 28 (1989),
133-148.

J. Davis, The surgery semicharacteristic, Proc. London Math. Soc. (3) 47 (1983), 411-428.

T. tom Dieck and P. Loffler, Verschlingung von Fixpunktmengen in Darstellungsformen.
I, Algebraic Topology (Gottingen 1984), Lecture Notes in Math., vol. 1172, Springer, pp.
167-187.

A. Edmonds, Equivariant regular neighborhoods, Transformation Groups, London Math.
Soc. Lecture Notes, vol. 26, Cambridge Univ. Press, Cambridge, 1977, pp. 51-69.

S. Ferry and E. K. Pedersen, Controlled algebraic K-theory (to appear).
—, Epsilon surgery theory, Math. Gottingensis 17 (1990).

I. Hambleton, Projective surgery obstructions on closed manifolds, Algebraic K-theory (Ober-
wolfach 1980), Lecture Notes in Math., vol. 967, Springer, pp. 101-131.

I. Hambleton and I. Madsen, Actions of finite groups on R™* with fixed set R , Canad.
J. Math. 38 (1986), 781-860.

—, On the discriminants of forms of Arf invariant one, J. Reine Angew Math. 395 (1989),
142-166.

[HTW1] 1. Hambleton, L. Taylor, and B. Williams, Detection theorems in K-theory and L-theory,

J. Pure Appl. Algebra 63 (1990), 247-299.

[HTW2] ___, Induction theory, preprint, MSRI, 1990.

[L] R. Lee, Semicharacteristic classes, Topology 12 (1973), 183-199.

[M] I. Madsen, Smooth spherical space forms, Geometric Applications of Homotopy Theory
(Evanston, 1977), Lecture Notes in Math., vol. 657, Springer, 1978, pp. 303-352.

[M] J. Milnor, Groups which act on S without fixed points, Amer. J. Math. 79 (1957), 623-630."

[PW] E. K. Pedersen and C. Weibel, K-theory homology of spaces, Algebraic Topology (Proceed-
ings Arcata Topology 1986), Lecture Notes in Math., vol. 1370, Springer, pp. 346-361.

[Q1]  F. Quinn, Ends of maps. 1, Ann. of Math. (2) 110 (1979), 275-331.

[Q2] ., Ends of maps. 11, Invent. Math. 68 (1982), 353-424.

[R1]  A. A. Ranicki, Additive L-theory, K-Theory 3 (1989), 163-195.

[R2] _, Lower K- and L-theory, Math. Gottingensis 25 (1990).

[Ro] J. Rosenberg, K and KK: Topology and operator algebras, preprint, 1989.

[S1]  R. G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960),
267291.

[S2] ., Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-291.

(Wi1]

C. T. C. Wall, Surgery on compact manifolds, Academic Press, 1971.



126 IAN HAMBLETON AND E. K. PEDERSEN

[W2] C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974),

593-632.
[W3] ., Classification of hermitian forms. V1, Group rings Ann. of Math. (2) 103 (1976), 1-80.
[W4] __, Periodic projective resolutions, Proc. London Math. Soc. (3) 39 (1979), 509-553.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MCMASTER UNIVERSITY, HAMILTON, ON-
TARIO L8S 4K1, CANADA

DEPARTMENT OF MATHEMATICAL SCIENCES, STATE UNIVERSITY OF NEW YORK AT BINGHAM-
TON, BINGHAMTON, NEW YORK 13901



