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Let X* be a smooth, oriented, closed 4-manifold with a smooth action of a finite
group 7, preserving the orientation. If P — X is a SU(2)-bundle with ¢,(P) =k,
then the space «//9 of gauge equivalent classes of connections on P inherits
a m-action. We choose a m-equivariant Riemannian metric on X. Then the Yang-
Mills functional associated to this metric is invariant with respect to the group
action 2//%9, and hence the moduli spaces .# , of self-dual connections or .# _ of
anti-self-dual connections, up to gauge equivalence, also have a n-action.

In the work of Donaldson and Uhlenbeck [7, 13], a perturbation theory for
these moduli spaces was developed, and from this striking results concerning the
difftomorphism structures of 4-manifolds have been obtained [8, 10]. In the
equivariant setting it is known that their perturbation cannot be generalized in
a naive manner: an example (see Example 2.15) communicated to us by Fintushel
shows that in general there is no generic equivariant metric for which the sub-
moduli space .#* of irreducible connections admits a smooth n-manifold structure
of the expected dimension. In constrast Fintushel and Stern prove that the space of
n-invariant connections does have good generic properties [15], and Furuta [16]
investigated a special case of the relationship between the fixed point set .#™ of
# and the set of invariant connections (cf. [19, 14]). This approach was developed
further by Braam and Mati¢ [3]. They showed how further information about
finite group actions on definite 4-manifolds can be obtained from the c;=-—1
moduli space, particularly if the reducible connections fixed under the group action
have neighbourhoods which are cones over linear actions on P2(C). In the case
when 7 is a cyclic 2-group, this assertion was proved by Cho [4, 5].

The failure of the equivariant space of connections to behave well under
perturbations may be seen as a failure of equivariant transversality. In this paper,
Wwe construct an equivariant perturbation (r, .#) of the above moduli space based
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18 I. Hambleton and R. Lee

upon the equivariant general position of Bierstone [2] (see Sect. 1). This notation of
general position is an appropriate replacement for equivariant transversality: maps
in general position form an open and dense subset of the space of equivariant maps,
and the preimages of n-submanifolds have natural Whitney stratifications.

Theorem A. Let (r, #) denote the equivariant moduli space of (anti-) self-dual
connections on P, defined as in (2.10). Let .#* denote the subspace in .M consisting of
irreducible connections. Then .#* has a Whitney stratification with invariant subspa-
ces M¥y, W' S m,as its strata. For a given conjugacy class (n') of subgroups in m, the
corresponding stratum M) is either empty or a disjoint union of submanifolds whose
dimensions are determined by the topological data on (n'; P — X).

In the statement, .#¢,) denotes the subspace of points with isotropy subgroup
conjugate to 7', and “Whitney stratification” means that locally each stratum of
A* is the preimage of certain equivariant minimum Whitney stratification of some
affine variety (see [2, p. 456]). We remark that there is a corresponding version of
this theorem for equivariant moduli spaces of SO(3) connections.

We give two applications of this moduli space (n, .#) to smooth finite group
actions on positive definite 4-manifolds. In this situation, (r, .#) can be compacti-
fied equivariantly by adding a smooth collar (r, X x I'), and we can try to obtain
information about (7, X') by studying the stratified moduli space near the isolated
reducible connections. The following result was first proved by Edmonds and
Ewing [12] using the G-Signature Theorem, number theory and a formidable
computer-assisted calculation (see also [17]).

Theorem B. Let 7 be a cyclic group acting smoothly and semi-freely on the complex

projective plane P*(C) with three isolated fixed points. Then the local tangential

representattons at the fixed points agree with those in some linear action of & on
P?(C), n = PGL4(C).

The main step in the proof is to show that (n, .#) contains a neighbourhood
around the reducible connection which is a cone over some linear action on P2(C).

Theorem C. Let n be a cyclic group of odd order acting smoothly and semi-freely on
a simply-connected, positive definite 4-manifold X. If the fixed point set of (m, X)
contams at most three points, then the action is homeomorphic to a connected sum

(m, #P (C)) of linear actions on P2(C).

The first part of the proof, determining the local tangential representations at
the fixed points, applies more generally if #;(X) has non-trivial representations
into SU(2). We then apply the results of [26, 27]. For the special case of actions on
P?(C) the result follows from Theorem B and [17] or [26].

1 Equivariant general position
Let G be a compact Lie group, let M and N denote two smooth G-manifolds and let

P be a smooth G-submanifold inside N, (G, P) < (G, N). A smooth equivariant
map f: (G, M)— (G, N) is said to be G-transverse to P at a point xe M if either
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f(x)¢ P or it satisfies the usual transversality condition, i.e.
(1.1) df;(TM)x@ (TP)f(x) =(TN)f(x) .

If this equation is satisfied at every point in f~!(P), then f is said to be
G-transverse to P. Clearly this is a natural generalization of transversality to the
equivariant category; however, as shown by the following example, there exist
nontrivial obstructions to G-transversality.

Example 1.2. Let us consider the case when M, N, and P are G-vector spaces
denoted by V,Ux W and Ux0. Let f=(fi, f,) be a smooth equivariant
map f: ¥V — U x W between these G-vector spaces which sends the origin to the
origin, f(0) = 0. From (1.1), it is easy to see the condition for f to be transverse to
the subspace U x 0 is the same as those for the second factor f;: V' — W to be
transverse with respect to the origin. Furthermore, if we are allowed to deform f by
an equivariant homotopy which sends the origin to the origin, then the obstruction
to arrive at a position transversal to U x 0 is that W is a subrepresentation of V.
Hence an irreducible constituent y in W appears also in V and with greater
multiplicity (x, x(V)> = {x, x(W)). In fact, let RO(G) denote the real representa-
tion ring of G. Let RO, (G) denote the positive cone in RO(G) generated by actual
representations of G, i.e.

RO, (G) = {VeRO(G)|{y x(V)> = 0 for every irreducible y} .

Then condition (1.1) can be formulated as requiring the difference element
[¥]— [W] to lie in RO ,(G).

The above example represents, in some sense, the obstruction for G-transversal-
ity over the O-skeleton. Over higher skeletons, there exist a series of obstructions in
deforming an equivariant map to a transversal position with respect to an invariant
subspace. (see [24] for details). From the existence of these obstructions, one aspect
of the problem is clear: in the space C§(M, N) of equivariant maps the subspace
C&(M, N n P) of maps transverse to P is neither open nor dense.

A partial remedy for this is the notion of stratumwise transversality. A
G-manifold M has a natural stratification defined by subspaces of the same orbit
type. Given a conjugacy class (H) of subgroups in G, let M, denote the submani-
fold in M consisting of all the points x whose isotropy subgroup G, belong to (H).
Then M = [ | M y,; and the closure of M (, is the union  [[ M, of all those

.o D) s . (H)S(H) L
submanifolds M -, with bigger isotropy subgroups H' 2 H. A generic equivariant

map f: M — N may send a stratum Mg, into a different stratum N in N. To
clarify the situation, we consider two other invariant subspaces associated to
a subgroup H in G:

(13) M" = {xe M| the isotropy subgroup G, = H}
= the fixed point submanifold of H in M .
My = My,n M = {xe M| the isotropy subgroup G, = H} .

Then an equivariant map f: M — N has the property that it sends My into N¥,
f(My) = N¥. 1t is called stratumwise transverse if for every subgroup H, the
induced mapping M,; — N is transverse to P¥H.
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The above notion of stratumwise transversality provides us some control on the
topology of the preimage f ~*(P) of P. For instance, the dimension of f ~!(P)y can
be computed by the formula:

(1.4) dim f~!(P)y = dim My — dim N¥ + dim P#

whenever f~!(P) is nonempty. Another useful fact is that given a smooth
equivariant mapf: M - N, we can perturb this map by an arbitrarily small
amount (in the C*® topology) to make it stratumwise transverse. In other words, in
the function space C§(M, N), the subspace C& (M, N n { P#}) of stratumwise
transverse maps with respect to { P¥: H = G} is dense. The only drawback is that
this subspace is not necessarily open [2, Example (2.1)] and therefore a further
refinement is needed.

A modification of stratumwise transversality is provided by Bierstone in [2]. To
explain Bierstone’s idea, we consider first the situation of two G-vector spaces
V and W. Let CZ(0O(V), W) denote the space of germs of C®-mappings from
invariant open neighbourhoods of 0 € V' to W. In an obvious manner, this last space
is a module over the ring C§(0) = C*(0O(V); R) of smooth invariant functions. In
[2], it is shown that there exists a finite set of polynomial generators g,(x),.. .,
gx(x) of this module CZ(O(V), W) over C&(0). In other words, every element f in
CZ(O(V), W) can be expressed as a sum

k
f(x)= Z hi(x)- gi(x)
i=1
where h;(x) are smooth invariant functions in C*(0).
Note from the above expression we can also write f as the composite of two
functions

f(x) = U-°graph h(x)k

where U:VxR¥—>R is given by U(x,h)= )Y hgi(x) and graphh(x)=
i=1

i=
(x, hy(x), . . ., he(x)). As the composite of these two functions, the zero set f ~!(0) is
clearly the intersection of the variety defined by U(x, h) = 0 and the graph of h.
Hence, in order for f ~!(0) to have ‘reasonable’ behavior, we have to require that
these two subspaces U(x, h) = 0 and graph h intersect each other in a ‘reasonable’
manner. An affine G-variety such as U(x, h) = 0 has a natural G-stratification
called the equivariant minimum Whitney stratification®.

A manifold in an affine space is said to intersect an affine subvariety transverse-
ly if it is transverse to each stratum. This leads us to the following:

Definition 1.5. Let f: V- W be a smooth equivariant map between two G-vector

spaces V, W. Then f is said to be in general position with respect to 0e W at Oe V if

the graph {(x, hy(x),...,h(x))} in V'xR¥ is transverse to the affine algebraic
k

variety Y, h;*gi(x) = 0.

i=1

In [2], Bierstone proved that (1.5) is well-defined, independent of the choices of
the generators g;(x) and can be extended to cover the situation of general position
maps with respect to a subspace.

! Here, we require not only the strata (¥, &) to be minimum in the sense of Mather (cf. [22]) but it
has to contain the subvarieties { V¥, H < G}, as part of the strata
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Definition 1.6. Let f: V' — U x W be a smooth equivariant map between two
G-vector spaces, V, U x W. Then f is said to be in general position with respect to the
subspace U x0 < U x W at 0 if the projection Pr,o f: V' — W to the complement-
ary subspace is in general position with respect to Oe W at Oe V.

In practice all the local considerations can be reduced to (1.6), because of the
Slice Theorem.

Definition 1.7. Let f:M — N be a smooth equivariant map between two
G-manifolds, and P a G-submanifold of N, and xef ~(P). Then fis in general
position with respect to P at x if for any slice S of the orbit G- x, the G,-equivariant
map df.|S: T,S — Ty N is in general position with respect to Ty, P at 0 T,S.
A smooth equivariant map f: M — N is in general position with respect to a
G-submanifold P of N if it is in general position with respect to P at every point of

fHP).

This completes our definition of equivariant general position.
Now, to apply (1.7), we need the following properties of general position maps:

(1.8) Equivariant general position implies stratumwise transversality. [2,
Proposition (6.4)]. In particular, we can use (1.4) to compute the dimensions of the
preimages f ~!(P)y, H < G.

(1.9) The preimage f ~!(P) has a natural, equivariant, Whitney stratification
[2, Proposition (6.5)]. Hence each stratum is a submanifold in M and it has
a mapping cone bundle structure in its neighbourhood [22].

(1.10) With respect to the C® topology, the subspace C& (M, N; gen. position) of
smooth equivariant maps in general position with respect to P is open and dense in
CG(M, N). [2, Theorems (1.3) and (1.4)].

(1.11) Suppose that ¥, W are real G representations and f: ¥ - W a map in
G-general position with respect to 0e W. Then if T = (df )o, we can assume that the
representations Ker 7" and Coker T have no non-zero irreducible subrepresenta-
tions in common.

Since the proofs of (1.8)—(1.10) can be found in [2], we omit the details. In the
situation of (1.11), if Ker T'and Coker T have an irreducible subrepresentation U in
common, we could perturb f by adding an isomorphism on this subspace to get
a new general position map f’, removing U from both Ker T and Coker 7.

We conclude this section with an example.

Example 1.12. Let C, be a cyclic group, and let ¥ and W be two complex
representation spaces of C,. Implicit in the complex representation is the action of
the circle group S* = {z||z| = 1} which commutes with the action of the cyclic
group C,. In other words, if we let G denote C, x S* then V and W become natural
G-spaces. Our object here is to describe the induced stratification of the zero set
fS7(0) for an equivariant general position map f: ¥ — W.
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Let yx, 0 < k < n—1, denote the irreducible character of C, given by the

formula x,(t) = ¥V ~1" where ¢ is a fixed generator of C,. Associated to such

a character y,, we have a one-dimensional complex representation C(x,) defined by

t*v = x(t)v. Using these representations C(y;) defined by ¢v = y(t)v. Using
n—1

these representations C(x;), we can decompose V into a direct sum ¥V = @ V(x)
k=0

of eigenspaces where each V() is isomorphic to a sum of {y, x(¥)) copies

of C(xx)-

Note that a nonzero element v in V() satisfies the formula t-v = y,(t)v, or
xe(t)"'t-v=1v. It terms of the group action (G, V), this means the isotropy
subgroup G, of v, ve V(y,) — 0is the cyclic group G(y,) generated by (¢, x.(¢) ™ !). In
the same manner, if v is an element in the sum V(y,) @ V(yx), k # k' but away from
the two components, i.e. ve V(x) ® V() — V() — V(x), then the isotropy
subgroup of v is the intersection G(y, xi') = G(xx) N G(xr')-

From these observations, it is easy to work out a complete list of isotropy
subgroups of (G, V): the group G itself, together with all the intersections
G(Xiys -+ -5 M) = G, ) 0 - .. 0 G(xy,) of the subgroups G(yy,). Furthermore the
singular subspaces V% = (0) and Vg = (0). In general when H = G(y,,. - - » Xx.)s
with the property that G(x) > H implies y = x4, for some k;, the spaces V¥ and Vy
are given by

1
Y60 e = @ V(xw) >
i=1

1
VG()(,,‘,H.,)(,‘.) = _@ V(Xk.) - U { V(Xk,) I G(Xk,) ;: G(X’Cl’ LEKIRIK ) X’(l)} o {0} .

Suppose we are given a smooth equivariant map f: V' — W which is in general
position with respect to 0. Then from the above list of isotropy subgroups, the
dimension of f~!(0)y can be computed by the transversality condition on
f: VH - WH.

Proposition 1.13. Let f: V — W be a smooth equivariant map as above. Then f~*(0)
contains the origin as the only fixed point, f ~*(0)° = 0. In a neighbourhood near this
] 1

fixed point, ' (O, -y, is the empty set if Y o x(V)D < 3. Lo X(W)),
i i=1

i=1 i

1
and is a submanifold of dimension 2{ Y Lt XV = s 1( W)>}, otherwise.
i=1

Suppose the actions (G, V) and (G, W) are effective, i.e. the principal orbit
type is the free orbit. Then f~!(0), (=the free orbits in f~!(0)) is either empty

or is of dimension 2(dim V — dim W). Suppose in addition we have
1

Y Ltk X(V)> = o x(W)) 2 dim ¥ — dim W for a sequence of characters
i=1

Xkys - - - » Xx,- Then the dimension of f~ 1(O)Gm|,, ...u,) 18 as big as the dimension of
the free stratum f ~!(0),. From the property of Whitney stratification, this means
that f ~'(0)g(, .. ..., is disjoint from f ~*(0),. In the application to moduli spaces,
we will have to deal with this phenomenon, where some of the strata are disjoint
from the free stratum.
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2 Equivariant moduli spaces

Let X be a smooth, (simply) connected, oriented, closed 4-manifold, and let (7, X)
denote the smooth action of a compact Lie (or finite) group 7 on X. Throughout
the following discussion, we will restrict our attention to the case when the group
action preserves the orientation. According to a result of Palais (unpublished?), the
manifold X carries a real analytic structure invariant under the group action.
Compatible both with this analytic structure and the group action, we can easily
choose a real analytic Riemannian metric on X. In other words, an element of
n operates on X by an orientation preserving, real analytic, isometry g: X — X,
gET.

For definiteness, let us fix a real analytic, principal SU(2)-bundle P on X, and
a real analytic connection A4, on this bundle. Let &/ denote the affine space of C *-
connections on P, o#® = Ay, + C®(X; A'TX ® Ad P), where Ad P is the adjoint
bundle of P, and let &/ denote the completion of o/ ® with respect to the metric.

( Y |Vf§{,(a—a’)|2>1/2.

isl-1

d(AO +a,A0 +a')=f
X

A gauge transformation of P is a principal SU(2)-bundle automorphism h: P — P
which covers the identity map over the base space X. Let ¢® denote the group of
C>-gauge transformations of P and let ¢ denote the completion of ¥~ with respect
to the metric

1/2
d(h, i) = J (Z V4, (h — h')|2> .
x\ist

For I = 3, the affine space o/ has a natural Hilbert manifold structure, 4 a
Hilbert Lie group, and ¢ operates smoothly on o/ [13, p. 53]. The quotient space
&/ /% under this last group action has the structure of a Banach “V-manifold”.
Points in «//% are in one-to-one correspondence with gauge equivalence classes
of (square integrable) connections; the irreducible connections form a smooth
Banach manifold «/*/% but around reducible connections .»//% has singularities
modeled after the quotient of a Banach space modulo a circle group action [13,
Theorem 3.1].

Let 4(n) denote the group of SU(2)-bundle automorphisms b: P — P of
P which cover an isometry g: X — X given by the action of some element ge 7. It is
not difficult to see that 4(n) is a group extension with % as its normal subgroup and
7 as its factor group. Furthermore this extended gauge group %(m) operates on
&/ and hence gives rise to an action of 7 on the quotient .o7/%. (cf. [3, Sect. 1]).

Remark 2.1. The action of %(n) on ./ has only compact isotropy subgroups. In the
case when D is irreducible the isotropy subgroup %(n)p is an extension of the centre
{£1} in SU(2) and a compact subgroup 7, < 7. In the case when D is reducible
%(n)p is an extension of 7, by U(1). In both cases 7, is the isotropy subgroup of the
induced action (r, &//%) at the point D, and we denote by 7, the group extension.
The singularities of (¥(n), o) can be interpreted in terms of 7'-bundle structures

2 We are indebted to R. Palais for pointing out to us (February 1990), that the assertion we need
can easily be derived from the argument given in [23]
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on P. Given an irreducible singular point D, the compact group 7%, makes
P a 7@ principal SU(2)-bundle compatible with the action (zp, X) on the base.
Conversely, given a subgroup n' = n and a n'-bundle on P, then there exists
a connection D with a lifting of #" into a subgroup in 7.

Let 4 . (P) denote the moduli space of (anti-) self-dual connections on P, i.e.
the subspace in //% consisting of classes of connections A whose curvature F,
satisfies the (anti-) self dual equation F, = 4 *F . Since the Riemann metric is real
analytic, this last equation is an elliptic PDE with real analytic coefficients. From
the regularity theorem of PDE, it follows that a solution of this equation can be
realized by a real analytic connection on P, not just a distribution in some Hilbert
space. Furthermore the solution space .# .(P) admits the structure of a real
analytic set, and therefore by the well-known result of Lojasiewicz [20] it can be
triangulated. In general, not much more can be said about .# .(P) except its
dimension (the dimension of its top cell) is no bigger than 8c,(P)—
3(1 — by(X) + b3 (X)). To achieve this ‘formal’ dimension and to remove all the
singularities in #%(P)= 4 .(P)— {reducibles}, Donaldson [7] developed
a method, in the setting without group action (n = (e)), to perturb the equation
F,= + % F,. In the presence of a nontrivial group action (r, X), © + (e), the
equation F, = + % F, is m-equivariant and so its solution space .# . (P) has an
induced group action. To perturb this equivariant moduli space, we have to
perturb the equation F, = + % F, in a manner compatible with respect to the
group action. Our task is to explain how to generalize Donaldson’s procedure to
cover this situation.

Let Q?(Ad P)® = C*(X; A>TX ® Ad P) denote the space of smooth, su(2)-
valued, 2-forms on X. Once again we form its completion Q%(Ad P) with respect to
the Sobolev norm

1/2

IIF—F’II=j< > IV‘,?O(F—F’)I2> .

isi-2
X

Let Q%(AdP) denote the (+1)-eigenspace in Q?(AdP) under the Hodge
x-operation. Note Q% (Ad P) is precisely the space where the (anti)-self-dual com-
ponent 3(F, F *F,) of a curvature 2-form F, takes its value. This leads us to
consider the Hilbert bundle Pr;: o/ xQ%(AdP)— &/ over «. The formula
o+ (A) = (A, Fy F xF,) gives us a smooth section of this bundle. The extended
gauge group %(n) acts on Q% (Ad P) in a natural manner. By taking the diagonal
action on .o/ x Q% (Ad P) the projection

2.2) Pri: o/ xQ%(AdP) - o

becomes a ¥(m)-equivariant, Hilbert bundle over ./, and o; becomes an
equivariant section. Finally if we consider the intersection o3 '(0) of o3 (=) with
the zero section o/ x 0 and factor out the action of the gauge group %, we recover
our equivariant moduli space (%, # . (P)) = (n, 63 1(0)/%).

Now, to genaralize Donaldson’s procedure, we have to perturb the %(n)-
equivariant section ¢ so that it is in equivariant general position with respect to the
zero section. Unfortunately in the previous section, the notion of equivariant
general position is defined only for equivariant maps between finite dimensional
G-spaces, and only for compact finite dimensional Lie group G. It remains,
therefore, to generalize these notions so as to cover the present situation of sections
of infinite dimensional bundles with actions of infinite dimensional groups.
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Firstly, as indicated in (1.6), the definition for an equivariant section, such as
o594 — of x Q% (Ad P), in general position with respect to the O-section is the
same as the requirement that its projection (locally) onto the fiber direction is in
general position with respect to 0. In the present setting, this means the composite

[ Pra
(2.3) Pryeos: o — oA xQ%3(AdP)— Q3 (AdP)

is in equivariant general position with respect to 0€ Q% (Ad P).

Secondly, as indicated in (1.7), there is the general principle: an equivariant map
is in general position if and only if the restriction to every slice in the domain is in
general position with regard to the action by the istropy subgroup of the slice. In
the present setting, a slice xp to the orbit 4. D in &/ is given by the formula:

xp={A€Q'(AdP)|D*4 = 0}
and the restriction (Pr,c o] yp) of Pr,° ¢ to this slice by
2.4) wop— Q2(AdP), w(A)=F,F %F,

(see [13,(4.6)]). Moreover, by (2.1), isotropy subgroup %(=)p is always compact.
Hence our problem of determining general position for the %(=m)-map
Pryoo5: o - Q% (AdP) is reduced to one of studying an equivariant map
@ xp = 2% (Ad P) with respect to the compact Lie group 4(n)p.

Thirdly, both y, and Q% (Ad P) are Hillbert spaces and the map u in (2.4) is an
equivariant Fredholm map. We claim, in such a setting the definition of equivariant
general position can be reduced to a related map on some finite dimensional vector
spaces.

Let G be a compact Lie group acting on two Hilbert spaces H, and H, by
isometries. Let ¥: H, — H, be an equivariant Fredholm map with ¥(0) = 0, and
let T=(d¥)y: H, » H, denote its differential at the origin. Then, because ¥ is
Fredholm, the two G-vector spaces Ker T and Coker T are finite dimensional and
there is an induced equivariant map

proj.

~ b 4
Y:KerT< H, > H, Coker T

between them.

Definition 2.5. A G-Fredholm map ¥: H, — H,, ¥(0) = 0 between two G-Hilbert
spaces is said to be in equivariant general position with respect to 0 € H, if and only if
th.e associated finite dimensional map ¥: Ker T'— Coker T is in general position
with respect to 0e Coker 7.

To justify the above definition, we have to verify the following.

Proposition 2.6. In the space Fredg(Hi,H,) of G-Fredholm maps, those in
equivariant general position with respect to 0€ H, form an open and dense subspace.

To prove (2.6), we need the following Lemma (for the proof, see [13,
Lemma 4.77).
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Lemma 2.7. Let WY:H,—>H, be a G-Fredholm map with ¥(0)=0 and let

= (d¥'), be its differential at the origin. Then there exist orthogonal decomposition
of G-Hilbert spaces H, = KerT® H{, H, = Im T ®H; and an equivariant map
&:H, > H,, ®(0) =0, (dP)o = 0 such that ¥ is locally equivalent to T + @ via an
equivariant self-diffeomorphism a of the manifold H, ie. ¥ = (T + ®)ca where
a:Hl ;Hl, ot(O) =0

Note that the subspace H 5 in (2.7) is canonically isomorphic to Coker T, and so
by (2.7) we have another equivariant map between Ker T and Coker T by forming
the composite

proj

A ¥ .
(2.8) ®:KerT s Hy > Hj » Coker T .

Since Pea™ ! = (T + @), we have @ |ker T = ¥oo'|ker T, and using this last
relation we can rewrite @ as

proj.

A a~ 1t b4
o:KerT—— a"'(KerT)s H, H, Coker T .

Comparing this expresswn with the definition of ¥, it is clear that the two maps
& and ¥ are defined in a similar way: in the case of ¥ we form the restriction of
proj ¥ to Ker T and in the case of & the restriction to «~* (Ker T). In other words
the difference between @ and ¥ lies in the choice of two different normal slices
Ker T and o~ ! (Ker T) to H{ in H,. Thus, from the Equivariant Tubular Neigh-
bourhood Theorem, there exist equivariant diffeomorphisms : Ker T — Ker T and
y: Coker T — Coker T' such that ¥ = yo®of5. Since the property of being in
equivariant general position is unchanged under equivariant diffeomorphisms [2,
Propositions (5.2) and (5.3)], we have the following reformulation of general
position for G-Fredholm maps:

Lemma 29. Let ¥ be a G-Fredholm map ¥:H,—H,, ¥(0)=0, and let
&:KerT— Coker T be defined as in (2.8). Then ¥ is in equivariant general position if
and only if @ is in equivariant general position.

We are now in a position to prove (2.6). Given a G-Fredholm map ¥: H, - H,,
= (T + ®)°a, we can deform the finite dimensional map &: Ker T — Coker T

deﬁned in (2.8) so that & becomes a map &, in G-general position with respect to
0eCoker T and is still within a small s-dlstance Using an equivariant bump
function of H, concentrated at neighbourhood of Ker T" we can extend &, to
a smooth G-map &,:H; - CokerT defined over H,. Then the formula
Y, =(T+ &,)oa gives a G-Fredholm map which is in G-general position with
respect to Oe H,, by (2.9), and is within e-distance away from V.

Next suppose we are given a G-Fredholm map ¥: H, — H, which is already in
G-general position with respect to 0e H,. Suppose we perturb ¥ to another
G-Fredholm map ¥, with e-distance away. Note that their differentials T = (d¥),
and T, = (d¥,), are close to each other, and Ker T, = Ker T. For ¢ sufficiently
small, since the G-index is constant Ker T'— Coker T = Ker T, — Coker T, as vir-
tual G-representations. However by (1.11), Ker T and Coker T have no irreducible
G-representations in common. It follows that these two linear maps T and T, have
the same corank. In fact, we may assume that there exists an equivariant linear
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isomorphism L: H, — H, which is within e-distance to the identity and L T, = T.
This last equation gives rise to a commutative diagram of G-maps:

e,
Ker7, ———— CokerT,
(LIKerT,) | L5 | Lmodulo T,(H,)

KerT CokerT

Here the vertical arrows are isomorphisms induced by L and the bottom horizontal

map (Lo ¥,) is the finite dimensional map associated to Lo ¥, as in (2.5). For

¢ sufficiently small, (Lo ¥,) is within a small distance of ¥, and therefore by the

openness property of general position maps, (Lo ¥,) is in general position. This

proves that ¥, and hence ¥, are in general position. The proof of (2.6) is complete.
Now combining (2.3}42.5) we can define our equivariant moduli space.

Definition 2.10. Let o, be an equivariant section of .o/ x Q% (Ad P) — </ in general
position with respect to the zero section. Then its quotient space o3 *(0)/% together
with the induced n-action is called an equivariant moduli space (r, # + ) of (anti-) self
dual connections on P.

Proof of Theorem A. To begin we will show that the general position moduli space
(in the sense of Definition 2.10) can be constructed. Suppose we are given an
equivariant section o3 of o/ x Q% (Ad P) — ., not necessarily in general position.
Then we can cover a neighbourhood of ¢3'(0) in .« by a locally-finite %(n)-
equivariant open covering %. By (2.6) and a ‘partition of unity’ argument, we can
perturb (03), on one open set of # after another so that within a prescribed
distance ¢, o+ becomes (o 5 ), which is in general position with respect to the zero
section. Thus we obtain the equivariant moduli space (n, (5 ), 1 (0)/%).

It remains to establish the properties of (m, .#) listed in Theorem A. In the
above construction of (o3 ), let us concentrate on an open set in % centered at an
(anti)-self-dual connection D. As discussed in (2.5), to form (o 7 ), we have to perturb
the % (n)p-Fredholm map u: yp — 2% (Ad P) into a general position which in turn
means to perturb the map ji: Ker(du)o — Coker(du)y. According to [13, (4.8)], the
kernel and cokernel of (du), can be identified respectively with the first and second
cohomology of the elliptic complex:

(211)  Q%(AdP): {0 > Q°(Ad P) —— Q' (Ad P) =2 Q% (Ad P) >0} .

Note there is an action of %(r), on (2.11) and so an induced action on cohomology.
Under the above identification, these actions (%(n)p, H*(D)) and (%4(n)p, H*(D))
(C;iI)IC)ide with the corresponding actions (¥(n)p,, Ker(du)o) and (4(n)p, Coker
H)o)-

After the perturbation, the zero set (o5 ), ! (0) near D has the same structure as
1: 1 (0) x % where p, is a general position map from Ker(du), to Coker (du),. For an
irreducible connection D the isotropy subgroup %, is isomorphic to {+1}, and so
after factoring out the gauge group action the local structure on the moduli space
M* near [D] is the same as the local structure on us 1(0). Thus .#* has an

equivariant Whitney stratification by {.#%,} in the same manner as the finite
dimensional situation
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From the above discussion, the dimension of .#* near [ D] is the same as the
dimension of the corresponding subspace p; !(0), in . !(0) with the same orbit
type. From (1.4), this last dimension is given by:

dim .#* = dim H(D), — dim H3(D)" .

Note that H!(D), is the open subspace in H!(D)" consisting of the free orbits of
the induced Weyl group action (N(=')/n’, H*(D)™). Hence H * (D), is either empty
or of the same dimension as H'(D)". Thus, without loss of generality, we may
replace dim H!(D), by dim H*(D)"™ in the above formula; also because H°(D) = 0
for irreducible connections we may subtract by the term dim H°(D)":

dim 4% = dim H'(D)* — dim H3(D)* — dim H(DY*
= index of the fixed point subcomplex Q% (Ad P)":
{0 > Q°(Ad P)" - Q!(Ad P — Q% (Ad P -0} .

The above index is a topological invariant depending only on the n’-bundle
structure on P. Since the stratum ./ §, is a translate of .} under the action of =,
ie.
ME= M7 x  n/N(T'),
N(n') /=’
and its dimension can be computed directly from dim .#%*. This completes the
proof of Theorem A.

Remark 2.12. In the case when n = (e), the above construction coincides with that
obtained by Donaldson in [7]. For a nontrivial group =, this equivariant moduli
space has not been investigated before; although its fixed point set .#™ coincides
with the moduli space of instantons on the orbifold X/z. This last object has been
studied quite extensively by Fintushel-Stern, Lawson, and Furuta [15, 16, 19]. In
the case when X is a homotopy 4-sphere, Furuta investigated the equivariant
moduli space of X and its fixed point set. In view of Theorem A, some of his results
can be recovered from our more general framework.

Remark 2.13. The argument in the above proof can be extended to study the
structure of .# near a reducible connection [ D]. Let us fix attention on the self-dual
case. From the definition of a reducible connection, the associated 2-plane bundle
of P can be written as the sum £ @ .#~! of two line bundles ¥ and ¥~ 1.
Accordingly, Ad P is the sum (R x X) @® #®? of the trivial one dimensional real
bundle R x X and the square #®? of Z. In turn this leads to a decomposition of the
elliptic complex (2.11) into the sum of ordinary self-dual deRham complex
{0-Q°- Q' > Q% -0} and the complex

{0 Q°(¥®) - Q' (¥®) - Q2 (¥®) -0},
and also a decomposition in cohomology [13, p. 82]:
HD) = H3x(X), H'(D)x~ H'(D; %) @ H}r(X), and
H*(D)= H*(D; #®°) @ Hr(X) .

Recall that in the case of a reducible connection D the isotropy subgroup %, is
isomorphic to the circle group U(1). This circle group operates on both y, and
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Q2(Ad P), and the map u: xp— Q2 (Ad P) is equivariant with respect to this
action. The fixed point subspace (yp)*> admits an interpretation as the directions
tangent to the subspace .%/ .4 of reducible connections. Therefore to investigate the
structure along the reducible connections in ., it is necessary to understand the
restriction of u to the fixed point subspaces

1l (xp)*: (xp)* — (Q2 (Ad P))*> .

Note u|(xp)® is a Fredholm map equivariant with respect to the induced np-
actions. Following (2.5) we therefore have to study the associated finite dimensional
map from H'(D)— H?(D).

The circle group %, acts trivially on the deRham cohomology groups H 5x(X)
and P_ Hgz(X), but by complex multiplication on H'(D; #®?) and H?2(D; £®?).
Hence

H'(D)” = Hir(X),  H*(D)” = P_Hpp(X),

and the problem can be further reduced to study a mp-general position map
Hpe(X) - le)R(X)-

In the case when D lies in a free orbit in (r, o//%), then n, = (e) and our
treatment is the same as in the situation without group actions. If
dim H 5g(X) < dim P_H 3x(X), then the reducible connections in .# +(P) can all
be perturbed away. If dim H jg(X) = dim Hg(X), then, reducible connections
form a submanifold .#™® in .# of dimension dim H j(X) — dim P_H2g(X), and
the group acts freely on this submanifold.

In general, the reducible connections form an equivariant substratified space

Mieag. = M — M*

in /4. For a subgroup n’  mp, the dimension of n'-fixed point set 4%y is
determined by the formula

dim Hbg(X)™ — dim P_H3g(X)".
The following special case is important for our applications.

Proposition 2.14. Assume that Hpg(X) = P_H3g(X) =0, then the perturbed
moduli space M , (P ),eq. consists of isolated points and the neighbourhood of such
a point D has a cone structure obtained by factoring the zero set of a 4(m)p-general
position map by the circle group %p-action. In addition, the dimension of the various
Tp-Strata can be determined by the index of various sub-complexes in

{0 Q£ - Q1(£9?) - Q2 (£ >0} .

Proof. Under these assumptions, before any perturbation the set of reducible
connections in ., (P) consists of isolated points. Now in the construction of
M +(P), we chose a transverse slice to the %-orbit through such a point [D] and
perturbed the section to a np-general position map. By the openness property of
general position maps, we continued this perturbation to the nearby slice without
further change on a neighbourhood of [D]. Since H°(D, #®? = 0, we can compute

the dimensions of the strata in these neighbourhoods of .# ., .(P) as in the previous
paragraph. [
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We conclude this section with an example of Fintushel which explains the
failure of equivariant transversality in studying moduli space problems.

Example 2.15. Let X be a K3-surface obtained by taking the branched 2-fold
covering of a degree 6 curve in P%(C). In other words, there is a Z/2-action (Z/2, X)
whose quotient space is P2?(C). Let P be the SU(2)-bundle over P*(C) with Chern
number ¢,(P) = 1, and let P be the pull back of P over X. It is easy to see that the
Chern number ¢,(P) = 2, b; (X) = 19 and 8c¢,(P) — 3(1 + b; (X)) = —44. Since
this last number is the formal dimension of the moduli space .# , (P) of self dual
connections on X, the negative sign of 8¢,(P) — 3(1 + b5 (X)) means that this
moduli space (in the setting without group action) is generically empty. On the
other hand, the moduli space .# , (P) of self dual connections on P is of dimension
5 = 8¢,(P) — 3(1 + b5 (P?(C))), and pulling back the self dual connections on P to
P creates a 5-parameter family of self dual connections on P.

From our viewpoint, this phenomenon can be explained as follows. First of all,
the equivariant moduli space (Z/2, .#) is non-empty and is of dimension 5. Let D be
a self dual irreducible connection on P obtained from pulling back a irreducible self
dual connection on P. The above calculations indicates that the Z/2-vector spaces
H*'(D), H*(D) satisfy the inequality:

@) dim H'(D) — dim H2(D) = —44 < 0
(i) dim HY(D)?? — dim H3X(D)*?=5>0.

The criterion for equivariant transversality fails because (Z/2; H?(D)) cannot be
a sub-representation space of (Z/2; H'(D)). On the other hand, a Z/2-general
position map (Z/2; H'(D)) — (Z/2; H*(D)) exists and its zero set is contained in
H*(D)*”. Thus, in this case, the equivariant moduli space (Z/2, .# ) is of dimension
5 with trivial Z/2-action.

3 Equivariant collar neighbourhoods

From now on, we will restrict ourselves to the setting: X is a simply connected,
positive definite 4-manifold and = is a finite group acting on X. In addition, we will
concentrate on the equivariant moduli space (7, .#) of self-dual connections on an
SU(2)-bundle P whose Chern number c¢,(P) = 1.

In the setting without group action, the compactification of this moduli space
was studied by Donaldson [7] and Uhlenbeck [13]. The subspace .# ,(P)—
{reducibles} is a 5-dimensional manifold with an end diffeomorphic to X x [0, 1)
and . (P) can be compactified by adding a collar X x I to this end. The object of
this section is to prove the following:

Proposition 3.1. There exists an equivariant moduli space (n, M ), as deﬁned in (2.10),
such that # has a smooth equivariant end diffeomorphic to the product (n, X) x [0, 1).
In particular, it can be compactified by adding an equivariant collar (n, X) x I.

In general, the neighbourhood by neighbourhood perturbation given in the
proof of Theorem A may destroy the nice collar structure at the end. Instead,
following the procedure in [13] we will start with a single neighbourhood A, of
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the end and then continue the perturbation to general position in the compact
complement .# — A",,. More precisely, before any perturbation has taken place,
the “honest” moduli space a3'(0)/% has a collar. Recall the proof of the Collar
Theorem on p. 157 and p. 162-187 of [13]. There exists a subspace ¥% of
concentrated connections in o3 1(0)/%,

€% = {D: for some u < u, and ye X, the inequalities

le ,(w(D)) — Il <& and [ w(D) < 9n2 hold}
X

where w(D) = — tr Fp A *Fp. For the definition of e} , see [13, 8.27].

Over this subspace, there exist smooth maps x: €4 — X, A: €€ — (0, o) defined
by sending D to its “center x(D)” and to its “radius A(D)”. Then for connection
D with sufficiently small radius A(D) < ry, the homology H?(D) =0, and so
Ny = A71(0, o) is smooth. The map (x, 4): A",, = X x (0, r) is a diffeomorphism,
and via this diffeomorphism X x (0, ro) becomes a collar of .#. Moreover, the
complement .# — A, is compact.

From [13, p. 154], the center x(D) and the radius A(D) are given by the unique
solution of a system of nonlinear equations,

R(A, x, o(D), metric) = 4n? ,

R
a—- (4, x, (D), metric) =0 .
Ox

It is straightforward to check that this system of equations is invariant under the
group action, and therefore from the uniqueness of solutions, (x(D), A(D)) is
invariant under the group action. In other words, (x,A): A o (0,10) is
equivariant with respect to the product action (m, X x (0, ry)) (c.f. [3,(1.8); 16,
Sect. 1]).

Since H*(D) = 0 for De ./,,, the section o_: .o - .o x Q2 (Ad P) is already
equivariantly transverse to the zero section. Therefore in the construction of the
equivariant moduli space (r, .# ), we can keep this part of the section fixed and so it
inherits an equivariant collar neighbourhood. This proves (3.1).

The structure on the equivariant collar neighbourhood also provides us with
information about the interior of the moduli space. Let 7’ be an isotropy subgroup
of n, and let X, be the nonempty submanifold of X fixed by ’. Then, by (3.1), A, is
also nonempty and has collar neighbourhood isomorphic to X, x(0,r,). An
immediate application of Whitney stratification is the following;

Corollary 3.2. The singular subspace M¥ in M* contains manifold components
whose intersection with the collar neighbourhood A", equals X .. x (0, r).

_ Letxbea point X, and let (', N,) denote the normal slice representation of the
1sotropy subgroup 7’ at x. Then (n’, N,) is also the slice representation along
a connected component of X, x (0, ro) in A",,. In fact, a slightly stronger version of
(3.2) states that inside .#* there exists a 5-dimensional manifold component
# such that a connected component of J, has normal slice representation
(7', N,) and its intersection with A4~ .. equals X, x (0, ro).
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Corollary 3.3. Suppose (n, X) has an isolated fixed point x whose isotropy repres-
entation (m, N, ) is not isomorphic to (n, N,) at another fixed point, ye X", y =% x, via
an orientation reversing isomorphism. Then there exists an arc in M consisting of
fixed points which starts out at x x(0,ro) in N,, and ends at a reducible connection
of M.

This implies the result of [16], that a finite group can not operate smoothly on
S* with one fixed point.

Remark 3.4. A similar modification of the discussion in [11, 4.4] shows that the
moduli spaces (n, .#,) for any c,(P) = k have an equivariant compactification.
Following [11, 4.4.1] we define “ideal connections” ([ A], (x;, . . . x;)) by requiring
in addition that [ A] lie in our general position moduli space (r, .#,). There is an
obvious action of = on I.#,, and we form the corresponding space .#, as the
closure of .#, in the space (r, I.#,) of ideal connections.

Theorem 3.5 [11, 4.4.3]. The space My is compact, n-invariant subspace of 1.4\.
The action (w, M) converges to the action (n, # ).

A local model for the ends of .#, is given in [9, Sect. 4(b)]. It again follows that
in our construction of (m, .#,), we may assume that our section is in general
position on a m-invariant neighbourhood ¥~ of #, N I.#,, and that .4, — ¥ is
compact.

4 Group actions on P?(C)

We first investigate further the structure near a reducible connection D in ./,
and then give the proof of Theorem B. Recall in (2.13), the associated 2-plane
bundle of P can be written as the sum £ @® %! of two line bundles. To
simplify our discussion, we assume

4.1) & is an equivariant U (1)-bundle with respect to the group action (np, X).

This is not always the case; however, we will show in Sect. 6 that the assumption
holds when 7 is a cyclic group or when X is a simply connected, positive definite
4-manifold when 7, is a cyclic group or when X is A simply-connected, positive
definite 4-manifold (for example, the connected sum # P?(C) of complex projective
planes, n > 1), with = acting trivially on H?(X, Z). At any rate, under (4.1), the
isotropy subgroup %(m), becomes the product mpx %p, and the actions of
%(n)p on H'(D) and H?(D) give rise to complex representations of 7, on
V =HY(D; #®%) and W = H?(D; ¥®?).

As in (2.13), an equivariant neighbourhood of D can be obtained by first taking
a %(m)p-general position map f: V — W, forming the zero set f ~1(0), and then
factoring out the action of circle group %,. In the situation when =, is a cyclic
group, the geometry of a general position map f: V' — W between two representa-
tion spaces has been studied in (1.13). This is precisely what we need in the
following.



Perturbation of equivariant moduli spaces 33

The proof of Theorem B. Suppose first that the fixed point set consists of a 2-sphere
and an isolated point. An application of the G-Signature Theorem as in [17] shows
that the rotational numbers agree with those in some linear action on P2(C).

We can therefore assume that we have an odd cyclic group, and a semi-free
action (n, P?(C)) on P?(C) with isolated fixed points {p;, p,, p3}. Let (ay, by),
(a2, b>), (as, b3) denote the rotation numbers of the isotropy representations 7 at
the tangent spaces p;, p,, p3. If two of these pairs were the same via an orientation
reversing diffeomorphism, ie., (a;, b;)) = (—b;, a;) or (—aj, b;) or (b, —a;) or
(aj, —bj), then a straightforward calculation, using the Equivariant Signature
Theorem, shows that the three rotation numbers (ay, b, ), (a,, b,), (a3, bs) coincide
with those from a linear action (see [17, Sect. 2; 25]). Otherwise, by (3.3), there exist
three arcs yy, y,, 3 of fixed points in .4, starting from p, x I, p, x I, p; x I on the
equivariant collar neighbourhood P?(C)x [0, 1] and terminating at some reduc-
ible connections. Since, up to gauge equivalence, there exists a unique reducible
connection [D], all these three arcs y; must converge to this point [D] in ..

Associated to these arcs of fixed points we have three families {D;},i = 1,2, 3 of
irreducible connections in .o/ with isotropy subgroups %(n),, isomorphic to an
extension of # by +1. From (2.1), it is difficult to see that the three isotropy
subgroups %(n)p, , although isomorphic to each other represent distinct subgroups
in 9(n). This follows, by a similar argument as before, since we can rule out the
possibilities that two of sets of rotation numbers become the same i.e.
(a,-, b,) = (aj, bj), or (bj, aj), (—aj, "'b]), or (—bj, _aj)

Since the three arcs y; converge to D, the three corresponding isotropy sub-
groups %(n)p, must appear as subgroups in %(n)p. In view of (1.13), this means
there exist three distinct irreducible characters yy,, %k, Xk, Such that mp( Xk;) CO-
incides with %(n),, as subgroups of %(m),. In addition, the difference
dim ¥ (y,) — dim W(y,,) in the dimensions of the corresponding eigenspaces in
V and W equals 1, the same as the dimension of the arcs.

Let V" and W’ denote respectively the orthogonal complements of these
eigenspaces in V and W, ie.:

3 3
V=@ V)®V, W=@Wn)ow,

i=1 i=1

In other words, V' and W’ consist of all the irreducible components in ¥ and
W different from C(y,), i = 1,2, 3. To prove Theorem B, it is enough to show that
V'~ W' as my-representations. For then

[V1—=[W]1=[Clu)] + [C(xx,)] + [C(:)]1€RO L F()p)

and so there is no obstruction to equivariant transversality (see Example 1.2).
Applying the method of Donaldson [13, Theorem 4.11], it follows that a neigh-
bourhood of [ D] is equivariantly isomorphic to a cone on P 2(C). The n-action on
P3(C)is linear, and since the rotation numbers (a;, b;), i = 1, 2, 3, can be translated
along the three arcs in .# to the rotation numbers around the fixed point of
(m, P2(C)), it follows that they can be identified with the linear model (n, P 2(C)).

Suppose if possible that V' # W’, and because dim V' = dim W”, there would
bf: at least one irreducible representation C( x) which appears with greater multipli-
city in V7 than in W’. By stratumwise transversality, each of these excess eigen-
spaces in ¥’ would give rise to stratum which contains D in the closure but is
disjoint from the arcs Vi.
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Let .4 denote one of the lowest strata obtained from the above construction.
Let 7’ denote the associated isotropy subgroup of .#” and let .#" denote the closure.
Then the link k(D) of D in 4 forms a closed submanifold. In fact, by further
perturbation if necessary, we may assume that lk(D) is a complex projective space
Pi(C), i =0 [15].

Away from the neighbourhood of D, the subspace .#" may have other singular-
ities. As in (2.1), we can think of .# as a submoduli space in .# consisting of
connections compatible with a #’-SU(2) bundle structure on P. The singularities in
A are due to connections with a bigger isotropy subgroup n” > #’. By forgetting
the extra symmetries in 7"/, we can perturb .#° — cone(D) using only n'-equivariant
maps. This new perturbation has the effect of removing the singularities from
N — cone(D) and so the result is a compact manifold with P(C) as its boundary.

In (2.11), the dimension of ./ is computed by the index of the fixed point
subelliptic complex 2* (Ad P)™ in the self-dual complex Q* (Ad P). In fact, given
a connection [ 4] in .4/, we can interpret this index as vector space which in turn
can be identified with the tangent space of 4" at [A]. Moreover, as we vary the
connections, the corresponding index vector spaces form an index vector bundle
which can be identified with the tangent bundle of .4#". Its determinant line bundle is
just the orientation line bundle of 4". From [13, Sect. 5], the determinant line
bundle of the self-dual complex Q%*(Ad P) is orientable. On the other hand,
Q*(AdP)=Q*(AdP)" @[Q*(AdP)"]* and the complementary bundle can
be written as a sum of n'-eigenbundles with non-trivial eigenvalues. It follows that
this complementary index bundle [Q2* (Ad P)*]* has a complex structure and
therefore is orientable. As a result, 4" is orientable and since the orientation of
a determinant line bundle is invariant under perturbation, the above smooth
perturbation of 4 — cone(D) is also orientable.

Associated to the complex structure on the complementary index bundle, we
have a complex determinant line bundle defined on .#". Once again we can extend
this line bundle to the smooth perturbation of 4" — cone(D). Restricted to the
boundary of this line last manifold, this line bundle coincides with the Hopf bundle
H of PY(C). However, a straightforward calculation shows this is impossible
because the pair (P{(C), H) represents a non-zero element in the bordism group
Q,;(BU(1)). Thus in conclusion, the supposition on dim V'(y) > dim W'(y) leads
to a contradiction. The proof of Theorem B is complete.

Remark 4.2. The argument in the last few paragraphs is similar to the one in [15,
p. 358] where they use SO(3) instead of SU(2) as the structural group.

5 The proof of Theorem C

Next we consider smooth, semi-free, cyclic group actions (7, X) on a positive
definite, simply-connected 4-manifold as in Theorem C. For the moment we only
assume that the Euler characteristic y(X ) < 3 and |n| is arbitrary. Our object is to
compare (n, X) with the following linear models:

(5.1) We begin with the action (n, P2(C)) given by t-[z,:2,:23] = [{"z,:{?z,:{"25]
where { is a root of unity. Then on the free part of the action we perform
equxvarlant connected sum with m coples of (n, m x P2(C)), where the action is
given by cyclic permutation, to get (7, # P2 (C)), n=m|n| + 1.
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(5.2) We begin with the linear action (m, S*) given by t-(zy, z,) = ({"' 2y, {"?z,),
[21]2 + |z5]* = 1. Then we perform the same equivariant connected sum operation
as in (5.1) to get (n, # P2(C)), n = m|x|.

Note that the action (m, 7 % P?*(C)) is free and so, after taking connected sum,
the resulting manifolds (z, # P2(C)) in either (5.1) or (5.2) have the same fixed point
data as (n, P%(C)) or (n, S*). In particular, the action is semi-free with the following
possible fixed point sets:

(5.3) a disjoint union of a 2-sphere and an isolated point, or
(5.4) two isolated points, or
(5.5) three isolated points.

By P.A. Smith theory, it is not difficult to show that each component of the fixed
point set X ™ is simply-connected. Then our Euler characteristic assumption
%(X™) < 3 implies that the fixed point set of (r, x) is described by one of (5.3)-(5.5).
Moreover when |n| is odd, the representation (n, H*(X, Z)) = Z° @ (Zn)" where
s=y(X") —2.

In case (5.3), we can apply the G-Signature Theorem to conclude that the action
(m, X') has the same fixed-point data as in (5.1) with r; = r; for some i + j. In case
(5.4), there are no reducible connections in . fixed under the action 7 because in
the representation (n, H?(X, Z)) there are no elements e H2(X, Z)" with a? = 1.
Therefore, by (3.2) there are two arcs in .#" coming from the collar neighbourhood
X x 1. By compactness, these two arcs are connected in the interior of .#" and
hence the rotational numbers at the two fixed points in X are of the form (a, b) and
(a, — b). This agrees with the linear model (5.2).

It remains to discuss case (5.5). We now assume that 7 has odd order. Then .#™
contains exactly one reducible connection [ D], because (r, H (X, Z)) has (up to
sign) only one element a € H?(X, Z)" with o> = 1. In this case, there are three arcs
in A" coming from the collar neighbourhood X xI. If two of the arcs are
connected in .#" away from the reducible connection [ D], then we conclude that
their rotational numbers form a cancelling pair as before. From the G-Signature
Theorem it follows again that the local fixed point data for (m, X') is the same as in
the suitable linear model (5.1). On the other hand, if all three arcs are connected to
[D] we are in a similar situation to that handled in the proof of Theorem B. Any
extra fixed-point strata of .# in a neighbourhood of [ D] would, by compactness,
not intersect either the collar X x I or any other reducible connections. Similar
arguments to those already given in Sect. 4 show that we get equivariant transver-
sality around [ D], and hence the local fixed point data for (%, X) is the same as in
a linear model (5.1).

For each of the possibilities (5.3)—(5.5) we have now constructed a linear model
(m, X') with the same local fixed point data as (n, X). By construction, these linear
models also have the same equivariant intersection form as (rr, X ). Since both are
smooth actions, the Kirby-Siebenmann invariants are trivial. According to [26,
Sect. 3] the equivariant homotopy type of our action is determined by the local
fixed point data, the equivariant intersection form and a k-invariant. In [27,3.7]
the latter invariant was replaced by an element in a double coset
Oh(v)\os,(l)/O(i). A direct computation shows that in our case, this double coset
consists of a single element. Therefore the actions are equivariantly homeomorphic
to each other by [27, Theorem A]. This completes the proof of Theorem C.
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6 Existence of an equivariant line bundle

To complete our discussion, we will show that the condition (4.1) is often satisfied
for group actions on definite four-manifolds.

Theorem 6.1. Let X* be a four-manifold homeomorphic to # P2(C). If m is a finite
group acting on X inducing the identity on homology and n > 1, then for every class
o in H%(X, Z) there exists a n-U (1) equivariant bundle ¥ on X with ¢,(¥) = a.

Proof. We recall the classification of equivariant line bundles over a space X with
n-action (the following convenient formulation is given in [21]):

[X,BU(1)]" ~ [X x,Er, BU(1)].

The right-hand side is just the Borel cohomology group H2(X;Z) and the
left-hand side is the set of isomorphism classes of @ — U(1) bundles over X
(compare [6]).

In view of this classification, to prove (6.1), it is enough to show that the natural
map

HYX;Z)-> H*(X;Z)

is surjective. As is well-known, H2(X; Z) can be computed by a spectral sequence
whose E,-terms E4/ = H'(m; H/(X,Z)). In particular, by assumption,
H*(X;Z)= Hn, H*(X;Z)) and so H?(X;Z) appears as the EJ >-term. We
must prove that this term E 2 survives to E .

Since X is simply connected, H'(X;Z)=H?*(X;Z)=0 and so
E5' =E43 =0, E5? = H(n,Z) ® H*(X, Z). Let «; denote the canonical gener-
ators in H?*(X;Z) with (a; Ua;,[X]) =25;. Then E9?* can be written as
Z(1®u))PZ(1® ay)... ®Z(1 ®a,). Since d,(1 ® o;) =0, the only obstruc-
tions for these terms (1 @ «;) to survive to E, are the differentials d;(1 ® a;).
Denote y; = d3(1 ® «;). Then, for i =+ j,

0=d;[1 ® o]
=[d(1 @) (1®a)+(1®a) ds(1 ®a;)]
=7®a;+7y;®0;.

Since the two factors y; ® «;, v; ® «; represent linearly independent elements of
H?*(n; Z) ® H?*(m; Z), we have y; = y; = 0. This proves (6.1).
For a cyclic group m, we have H3(n, Z) = 0 and so the above argument also gives

Theorem 6.2. Let (n, X) denote a cyclic group action on a simply connected
4-manifold X. Then every element in H°(n, H*(X; Z)) can be realized as the first
Chern class ¢1(%) of a n-U(1) equivariant bundle ¥ on X.
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