Cancellation of hyperbolic forms and topological I. %U )
four-manifolds. :

Hambleton, lan; Kreck, Matthias .
NIEDERSACHSISCHE STAATS- UND
pp 21 _ 48 UNIVERSITATSBIBLIOTHEK GOTTINGEN

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



J. reine angew. Math. 443 (1993), 21—47 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1993

Cancellation of hyperbolic forms and
topological four-manifolds

By Ian Hambleton') at Hamilton and Matthias Kreck at Bonn

This is the second in a series of three papers about cancellation problems (referred to as
[I], [11] and [III]). The general questions for this part are:

(i) If M, M', N are quadratic modules with M LN M'L N,is M =~ M"?

(i) If X,Y are topological 4-manifolds with finite fundamental group and
X # (S?x S?) homeomorphic to Y # (S2 x $?), is X homeomorphic to Y ?

In part [1II], the techniques developed here will be used to study smooth structures on
algebraic surfaces with finite fundamental group, extending the results of [15]. We also
obtain classification theorems for four-manifolds (up to homeomorphism) in some special
cases, extending the results of [11] and [13], [14].

We begin by stating some of our algebraic results (proved in § 1). The general stable
range condition for cancellation of hyperbolic forms over orders (e.g. integral group rings
Zr, m afinite group) is free hyperbolic rank = 2 [4], (3.6), p. 238. This is a special case of the
general results on cancellation over noetherian rings due to A. Bak [1], H. Bass [4], and
L.N. Vaserstein [27]. It is also known that this assumption can be weakened to a local rank
condition at all primes (compare [6], Thm. 1).

Let R be a Dedekind domain and F its field of quotients, and recall that a /attice over
an R-order A4 is an A-module which is projective as an R-module. Let 4 and B be orders in
separable algebras over F [9], 71.1, 75.1, and suppose that there is a surjective ring
homomorphism ¢: 4 — B. We obtain an improvement in the stable range, assuming some
local information about the lattices. The problem is to show that certain groups of
elementary automorphisms act transitively on unimodular elements or hyperbolic planes in
quadratic modules, and as in [1] our result gives information about transitivity over 4 from

corresponding information over B. The arguments in § 1 are modelled closely on the ones
given in [4].

') Partially supported by NSERC grant A 4000 and the Max Planck Institut fiir Mathematik.
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In [I] we introduced the following definition: a finitely generated 4-module L has
(A, B)-free rank 2 1 at a prime p € R, if there exists an integer r such that (B" ® L), has free
rank = 1 over 4. Here 4, denotes the localized order 4 ® R,,. In the extreme case B = 0,
this is just the condition that L, has a free direct summand. In the other extreme case 4 = B,
there is no condition on L.

To define the corresponding notion in the unitary case, we assume that
e:(A4, A) - (B, A")is a “unitary surjection’: a surjective map of rings with form parameter
[4], p. 75. We will say that a quadratic module V has (4, B)-hyperbolic rank = 1 at a prime
p € R if there exists an integer r such that (H (B") @ V'), has free hyperbolic rank > 1 over
A,.

The other terms used in the statement below are defined preciselyin § 1 orin [4], pp. 80,
87. Note in particular that a unitary module is a (4, A)-quadratic form on a finitely-generated
projective A-module. A totally isotropic submodule is one on which the quadratic and
hermitian forms are identically zero.

Theorem A. Let V be a (4, A)-quadratic module over a unitary (R, 1) algebra (A, A)
and put (M, [h]) = VL H(A). Suppose that there exists a unitary surjection of orders
£:(4, A) - (B, A") such that V has (A, B)-hyperbolic rank = 1 at all but finitely many primes.
If U, (A) acts transitively on the set of unimodular elements in H (B @ B) of fixed length, then
for any unitary module N, M L N~ M'1 N implies M ~ M'.

An important special case for the geometric applications is B = Z. We check that for
B = Z, the condition on “transitive action” in Theorem A is satisfied (1.21), hence can be
omitted from the statement.

The topology of 4-dimensional manifolds can be studied by stabilizing with connected
sums of §? x S? away from the boundary (compare [29], [8], [17]). The connected sum of X
with r copies of §?2x S? is denoted X # r(S?x S?). To recover information about the
original manifold we must prove a ‘“cancellation theorem.

Theorem B. Let X and Y be closed oriented topological 4-manifolds with finite
fundamental group. Suppose that the connected sum X # r(S?x S?) is homeomorphic to
Y4 r(S?2xS%). If X = X, # (S?x S?), then X is homeomorphic to Y.

This was proved in [14], (1.3)b for closed manifolds with finite cyclic fundamental
group (with certain restrictions on w,). Note that the assumption that X splits off one
S?2x S2 cannot be omitted in general. There are, for example, even simply-connected closed
4-manifolds which are stably homeomorphic but not homeomorphic because they have
non-isometric intersection forms. Examples of distinct but stably homeomorphic manifolds
with the same equivariant intersection form were constructed in [19].

The analogous result where M = M, 4 2(S* x S§*) holds for all compact topological
2 k-manifolds (k = 2) with finite fundamental group, without assumption on the boundary
(compare [11]). This was proved for topological 4-manifolds in [14], (1.3)a. Essentially the
same argument in higher dimensions proves the result for smooth or PL manifolds of
dimension 2k = 6.
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For special fundamental groups we have a result similar to Theorem B about manifolds
with non-empty boundary (see § 3).

Theorem B’. Let M and N be compact oriented topological 4-manifolds with finite
fundamental group, and let A = Z[n,(M)]. Suppose that the interior connected sum
M 3 r(S?x S?) is homeomorphic to N # r(S*x S?) by a homeomorphism inducing the
identity on the boundary. If (1) SU,(A) acts transitively on the set of unimodular elements in
H(A® A) of a fixed length, (i) L (A) = 0, and (ili) M = M % (S* % S?), then the identity
map on the boundary extends to a homeomorphism of M with N.

Again the similar result holds for smooth or PL manifolds in higher dimensions. In the
1-connected case assumptions (i) and (ii) are satisfied (see Lemma 1.21), and the results of
[7], 5.6 show that assumption (iii) can not be dropped or replaced by assuming that the
intersection form of M is isomorphic to that of N.

To obtain the geometric applications, the algebraic results are combined with
topological surgery in dimension four due to M. Freedman [12], and the technique of
C.T.C. Wall [29] and S. Cappell and J. Shaneson [8] for constructing diffeomorphisms of
4-manifolds (see § 2). The same methods in various geometric contexts give further results
which we list below.

Applications. (i) The conditions in Theorem B’ on Z[n, (M)] are restrictive but do
hold for fundamental groups n = g X g, where ¢ has odd order and ¢ is a cyclic 2-group. It

can be applied to classify manifolds with a prescribed boundary and fundamental group of
this form (see § 3):

Corollary 3.6. Let M and N be compact oriented topological 4-manifolds with
n,(M) = ¢ X 0. Suppose that the interior connected sum M # r(S? x S?) is homeomorphic
to N#r(S*xS?) by a homeomorphism inducing the identity on the boundary. If

M = M # (S? x S?), then the identity map on the boundary extends to a homeomorphism of
M with N.

(i) By applying Theorem B’ to the case where the manifold has cyclic fundamental
group and lens space boundary, we obtain information about the existence and uniqueness
of locally flat simple embeddings of 2-spheres in a 1-connected 4-manifold N. These

problems were substantially settled in [207] for homology classes of odd divisibility. For the
notation, see § 4.

Theorem 4.5. Let N be a closed 1-connected topological 4-manifold.

(i) Letx e H,(N; Z) be a homology class of divisibility d + 0. Then x can be represented
by a simple locally flat embedded 2-sphere in N if and only if

KS(N) = (1/8)(¢(N)— x - x)(mod 2)
when x is a characteristic class, and if

b,(N)2 max |o(N)—2j(d—j)(1/d*)x-x]|.
0gj<d
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(i) Any two locally flat simple embeddings of S? in N representing the homology class
x are ambiently isotopic if b,(N)>|c(N)|+ 2 and

b,(N)> max [o(N)—2j(d—j)(1/d*)x"x|.
0sj<d

(iii) Another geometric problem which has been studied recently [10], [33], [34], [5]
is the classification of pseudo-free actions (i.e. semi-free with isolated fixed points) of finite
odd order cyclic groups on 1-connected 4-manifolds. Here we consider actions of arbitrary
cyclic groups assuming that the fixed-point set of the action is non-empty: free actions, or
equivalently 4-manifolds with finite cyclic fundamental group, will be classified in [111].

In Corollary 4.1 we apply Theorem B’ to show that these actions are often determined
by computable invariants:

Corollary 4.1. Let M be a closed, oriented, simply-connected topological 4-manifold.
Let G be a finite cyclic group acting locally linearly and pseudo-freely on M, preserving the
orientation, with M€ non-empty. Let M, denote the complement of a set of disjoint open
G-invariant 4-disks around the fixed points, and assume that M /G = W # (S* x S?), where
OW = 0(M,/G). Then the action (M, G) is classified up to equivariant homeomorphism by the
local fixed-point data, the signature, type, and Euler characteristic of M and the Kirby-
Siebenmann invariant of M,/G.

The ““local fixed-point data” is the equivalence class of pairs consisting of the oriented
tangential G-representations at the fixed points together with, when M is spin and |G| is
even, a preferred set of spin structures on the lens spaces bounding M, /G. If M is spin and
|G| is even, then M,/G has two spin structures whose restrictions to 0(M,/G) give the
preferred set.

The “type” of M is the parity, even or odd, of its intersection form. We also remark that
KS(M,/G) = KS(M,) = KS(M) when G has odd order, since connected sum with the
Chern manifold changes the Z/2-valued Kirby-Siebenmann invariant.

Acknowledgement. Some of the results of § 1 were contained in our preprint “On the
cancellation of hyperbolic forms over orders in semi-simple algebras”, Max Planck Institut
(1990).

§ 1. Cancellation of hyperbolic forms

We adopt the notation and conventions of Bass in [4], pp. 61-90, 214, 233 for
(4, A)-quadratic modules (M, [4]) over a unitary (R, A)-algebra (4, 4). For our geometric
applications it is convenient to introduce also (4, 4)-Quadratic modules. By this we mean
triples (M, (—, —),[q]), where [q]: M — A/A is a (4, A)-quadratic form (see [4],
pp. 80—81) and <{x, y)> = q(x + y) — q¢(x) — q(») (mod A) is the associated hermitian form.
There is a functor from the category of (4, A)-quadratic modules to the category of
(A, A)-Quadratic modules, induced by setting [¢q](x) = [h#(x, x)]. This functor is an
equivalence of categories when M is a projective 4-module [2], § 13. However the second
notion is the one usually encountered in geometric applications as a quadratic refinement of
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the intersection form on the kernel of w,. The quantity [¢](x) = [A(x, x)], is referred to as
the length of x.

A unitary module is a non-singular (4, A)-quadratic form on a finitely generated
projective A-module. Since R is a Dedekind domain, X = max(R,) has dimension d =1,
where R, S R is the subring generated by all norms ¢7(¢ € R). Note that A1 = 1. The form
parameter A is ample at m € X if given a, b € A[m], the semisimple quotient of 4, , there
exists r € A[m] such that

1.1) A[m](a+rb) = A[mJa+ A[m]b.

In[4], § 2, p. 218 ff there is a discussion of this condition. If R = Zand 4 = {a — Aa|a € A4},
the minimal form parameter, then A4 is not ample at any prime when 4 =1 and 4 is not
ample at 2 if A = —1. In the present paper, all our geometric applications involve the
minimal form parameter. Let A, = R, be the ideal such that A4 is ample at all
m¢ V(A,) = {peX|A, < p}, and d, the dimension ([4], III) of the closed set V() in X.
Note that d, < 1 for all 4, and d, < 0 when 4 is ample at all but finitely many primes.

If (M, [A]) is any (4, A)-quadratic module over 4 [4], p. 80, then a transvection [4],
p. 91 is a unitary automorphism o, , ,: M — M given by

(1.2) Ouav(X) =x+ulv,x) —vilu,x) —ulalu,x),
where u, ve M and a € A4 satisfy the conditions
1.3) h(u,u)ed, <u,v) =0, h(v,v)=a(modA).

Note that {x, y> = h(x, y) + Ah(y, x) is the associated hermitian form. Transvections for
(4, A)-Quadratic modules are defined using the quadratic form [¢] in these formulas instead
of h. For any submodule L = M,

L'={xeM|{x,y»)=0 forall yeL}.

If M =M’'1 M" is an orthogonal direct sum, with L' = M’ a totally isotropic submodule
(i.e. A(x,y) = 0 (mod A) for all x, ye L’), and L” =< M", then we define

(1.4) EUM,L;L")={o,, Juel and velL".

u,a,v

We will need the relation (see [4], p. 92): if a: (M, [k]) — (M',[K']) is an isometry, then

(15) aoa 1= o'a,m.a,av

u,a,v © a
where 6 € U(M, [k]) and o' UM', [K']).
The hyperbolic rank of a (4, A)-Quadratic module (M, [A]) is = 1 if

(M, [h]) = HA) LM, [K]),
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where H (P) denotes the hyperbolic form on P@® P [4], p. 82 and elements are denoted by
pairs x = (p, q) with p € P, q € P. Here we are using the notation P for the dual module P*
regarded as a right 4-module in the usual way. In our applications P will contain at least one
distinguished A-free direct summand. We will write P =p, A® P,, Ij =¢qgoA® P, and
denote the element

(p,9) = (poa+p1,q0b+4q,).

In [T], § 1 we introduced various subgroups of elementary automorphisms of L @® P,
including E(P), E, (L, P), E, (P,, L® P,) and their O-analogues, where O is a two-sided
ideal in A. These are defined by products of certain elementary automorphisms. For the
O-analogues we assume that the elementary automorphisms are = id(mod D).

Groups of transvections were used in [4], pp. 142-143 to describe two important
subgroups of U (H (P)), namely H (E(P)) and EU ((H (P)). For the O version of the first, we
take H(E(P;D)). For the second, define

EU(H(P); Q) =<0,,,€c EU(H(P))|u,ve P, P,O, or P).

u,a,v

An automorphism t € GL(L @ P) is realized by a transvection ¢ = ¢ if

c(LOP)S LDP
and o(x) =t(x) forall xe L& P < VL H(P).

The main result of this section is a unitary analogue of the transitivity result in [1], § 1.
Before stating it, we need two lemmas.

Lemma 1.6. Let V be a (A, A)-Quadratic module which has (A, B)-hyperbolic rank = 1
at a prime p € R,, for which A, is maximal. Then

(1) V contains a totally isotropic submodule L which has (A, B)-locally free rank = 1 at
all but finitely many primes, and H(L@gF) S V @y F;

(i) if P A" and f: P > L is an A-homomorphism, let Tt =1+ fe E, (P, L) where
f is extended by zero on L. Then there are elements q;€ P, v,e L(1 < i <r) such that
0=[16,.0,,€ EUH(P),P; V) and 6(x) = t(x) for all xe LOP < VLH(P).

Proof. (i) Since 4, is maximal, we canwrite 4, = B’ x C’and work over the C’ factor
V' of ¥,. Then V" has free hyperbolic rank = 1 and for L, we choose a maximal rank totally
isotropic C'-free direct summand with H(L,) € ¥,. Let L= L,nV and compare it to a
direct sum of copies of the 4-lattice C:=ker{e: 4 — B}. Since C, = C’ we may choose a
direct sum N = C" with the same R-rank as L and so N, = L,. Therefore N and L are full
lattices on the same F-vector space (F is the quotient field of R), and hence agree at all but
finitely many primes. If we further avoid all the primes where 4 is not maximal, then L has
(A, B)-free rank = 1 at the remaining primes.

(ii) Let {g,,...,q,} be a basis for P. Then there exist v,,...,v,€ L such that
f(x) ==Y v,{g;, x> forall xe P. O
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Corollary 1.7. Let (M, [h]) = VL H(P), where P is a free A-module, and L = V' is a
totally isotropic submodule. Every element of E, (P, L; Q) can be realized by a product of
transvections in EU (H (P), P; VD).

Proof. This follows directly from the definitions and Lemma 1.6. O

Lemma 1.8 (A. Bak [4], (3.11), p. 241). Suppose that (C, A) is a semisimple unitary
algebra over (R, 1). Assume either that (i) P has free rank = 2, or (ii) A is ample in C
and P=C. Write xe H(P) as x = (pya+py,qob+q,). Then there is an element
ce H(E(P))- EU(H(P)) such that o(x) = (poa +p},qob +4q;) and O(x) = Aa. In
case (i), 0 € EU(H (P,), Q; H(P,)) where Q = P, or P,, and in case (ii) 0 € EU (H (P,)).

Definition 1.9. Let (N, [#]) be a (4, 4)-Quadratic module. An element xe N is
[A]-unimodular if there exists y € N such that (x, y) =1.

If (N, [h]) is non-singular then an element is [A]-unimodular if and only if it is
unimodular.

Definition 1.10. Let & denote a simple involution invariant factor of 4 [m], for some
prime m € max(R,). A form parameter A is called ample at (m, &) if the projection of 4 to &
isample. If 4 is ample at (m, &) for all factors of C[m] in a splitting A [m] = B[m] x C[m]
of semisimple rings, then we say that A is (4, B)-ample at m.

The following is our main result in the quadratic case.

Theorem 1.11. Let V be a (A, A)-Quadratic module and put (M, [h]) =V L H(P)
where P =p, A® p, A is A-free of rank 2. At all but finitely many primes m € max(R,),
assume that V has (A, B)-hyperbolic rank = 1. For any two-sided ideal O in A and any be A,
the subgroup of

G,(D) =EU(H(P), Q; V'), H(E(P; D)) - EU(H (P); D))

fixing €,(po + qob), where Q = PO or P, acts transitively on the set of [h]-unimodular
elements xe M of a fixed length [b]le A/O such that x =p,+ q,b(mod D) and
8* (.X) = 8*(p0 + qOb)

The first part of the proof will be stated separately:

Lemma 1.12. Assume either that V has (A, B)-hyperbolic rank =1 or that A is
(A, B)-ample at all but finitely many primes. Let x = (v; p, q) € M be a [h]-unimodular element
with x = po + qob (mod O) and ¢, (x) = &, (po + qob). Then, after applying an element from
G, (D) we may assume that p is unimodular.

Proof. (i) Letg =[] {m|m e &} where ¥ is a finite set in X containing all the primes
at which A4 is not maximal, or ¥ does not have (4, B)-hyperbolic rank = 1 (resp. 4 is not
(4, B)-ample). Then 4 [g] = B[g] x C and we may achieve “O(x) = Aa over A[g]” using
1.8 and the fact that P is free of rank 2. Note that nothing needs to be done over B or over
any simple factor of A[g] in which the ideal O has zero reduction. This step uses
EU(H (P,), Q; H(P,)) where Q = P, or P,, and EU(H(P,), Py; VD).
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At all primes not in &, we may assume (by Lemma 1.6) that ' contains a non-zero
totally isotropic submodule L which has (A4, B)-free rank = 1 (resp. 4 is (4, B)-ample).

(i) Write x = (poa+ py» gob + q,), where (p;,q,)e H(P,) L V. Let t < R, be an
ideal, maximal such that At £ Aaq, and put X' = V(), X, = V({t +U,), d; = dim X,. Let
n: A — A" = A/Atbe the natural projection and note that dim X’ = 0 and dim X/, < 0. Asin
[4], p. 244 we see that m¢ X' for all me ¥, hence t + 0 and A’ is semilocal. We have
O(py, 4, + qob) + Aa= A and so O(np,, n(q, + qob)) + n(Aa) = A'. Over B'= B/ Bt we
do nothing. Over the complementary factor C’ of A’, apply [4], (2.5.2), p. 225 to find an
element u € 7 P, O such that u projects to zero over B’ and

O(np;, —ub)+ O(nq,) +n(da)=A’".

(Note that this already holds over B’ by assumption. Choose z € P, © such that nz = v and
£, (2) = 0. Since t and g are relatively prime, we can choose ze (P, D) - g.

Note that g, , ,€ EU(H(P), D) by [4], (3.10.2), p. 142. Then

0(x) = x + po<z, x) —2{Po, x) = (v;p; — zb + po(a+<z,4,)), q) -
Therefore
O(p,—z2b)+0(q)+A(@a+<z,q,))+ At =A.

But At € Aaand 4A(a + {z, q,)) € O(q,) + Aa, so after these changes, we may assume that
(1.13) O(p)+0(q)+A4a=A4.

(iii) If V' =xnV has hyperbolic rank =1 over C’ we can choose an isometry
a:nV = H(C') LW’ andextend it to anisometry of # V' L H (n P) by the identity on H (% P).
We now apply case (i) of 1.8 to the element a(n(p,,q,))€ H(C') L H(nP;) over the
semisimple ring C’, where 4' = B’ x C". This uses an element ¢'e EU(H (n P,), nQ; H(C"))
where Q = P,O or P,. By (1.5), a ‘od'cae EU(H(nP,),nQ;nV). Then there exists a
lift ¢ of a0 6’0 to U(M, [h]) which lies in EU (H (P,), Q; VD). If n A is ample, case (ii)
of 1.8 applies, and this uses an element of EU (H (n P,); O). After moving x = (v; p, q) by ¢
we get

A=0(p,)+At+Aa< O(p,)+ Aa=0(p).

Finally note that after this change p is unimodular and e (x) = ¢, (p, + gob), where
b=hp(x,x)y mod4. O

The proof of Theorem 1.11. (i) By Lemma 1.12 we have p unimodular. Since
h(p,p) =0, we can split H(P) = H(pA) LH(pA)*. If H(pA) = pA®pA, where pe P
then o, ; ,,€ EU(H(P), P, VO) and

Op.a, 10 (X) = X + p {Av, x) — AP, x) — pAd{p, x>
©;p,q).

]
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(i) We now have an element x = (p, g) € H (P) with p unimodular and 4da+ g4 = 4,
where p = poa + p;. Recall that V' contains a non-zero totally isotropic submodule L which
has (4, B)-free rank = 1 at all but finitely many primes. Furthermore, V' contains H (L') by
construction (L' = mL). We claim that after applying a suitable transformation in G, (D), we
can assume that x = (v; py, q), with v € L and a possibly different q.

By [I], 1.6, there exists an element 1€ E, (P, L; D) fixing ¢,(p,) such that after
applying 7, x = (v; p, q) with z = pya + v unimodular and 4a+ O(v) + At = 4. By 1.7,
7 can be realized by a transvection in G, (D). Now notice that ze P,@® L is actually
[A]-unimodular and A (z, z) = 0 (mod A). First, z is [A']-unimodular in V' L H (P) since it
lies in the non-singular subspace H(L') L H(P;). Therefore (VL H(P,),z)+ At = A.
However, {H(P,), z) = Aa and At < Aa, hence (VL H(P,),z) = A.

We now refer to [I], 1.8 for a sequence of elementary automorphisms moving
poa+p,+v to p,. To realise 7, € E,(zA4, P;; O) by an isometry, we find a unitary
submodule H(z4) € V1 H(P,)and then work inside H(zA4) L H(P,). Letz € H(zA)denote
a complementary basis element. By [4], (3.10.4), p. 143,

H(t,l,49p,) =0 < EU(H(zA),z4; P,D) < EU(H(P); D) - EU(H(P,), P,O; VD).
The remaining automorphisms can be realized by Corollary 1.7.

After this we have x = (v, p,, ¢) and we finish by repeating step (i) above, which does

not alter the P-component. The result is x = (0; p,, ¢)- The proof is completed by applying
the following Lemma. O

Lemma 1.14. Let x = (py, q) € H(P) with &,(x) = ¢,(po + qgob) and x = py+ g b
(mod O). Then there is an element o€ EU(H(P), D), fixing ¢,(po + qob) such that
0(xX) = po + qob. If x is hyperbolic, then we can obtain a(x) = p,.

Proof. Write q=q,b—q,€q9,A® P,. The transvection o,

belongs to
EU(H (P); D) by [4], (3.10.1), p. 142, and

1,0,90

0x =x—q,{q0, %) — 4o A{qy, X .
Note that {g,,x) = 0 since x has no component in P, and <{q,, x> = {qo, Po> = 1, SO

60X =Xx+q, =(py,qob). We are now finished if x was only unimodular. If x was a

hyperbolic element, then h(ox, 6x) = h(p,, 4ob) = b (mod 4), and so b e A, since x and
o (x) are isotropic.

In the hyperbolic plane p, 4 + g, 4, the element

X, (—b)= (é _Ib> € EU(H (P,))

transforms p, + g, b into p, (the notation X, is from [4], p.130). O

3 Journal fiir Mathematik. Band 443
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In the following definition we suppose that (M, [h]) = VL H(P)is a (4, A)-Quadratic
module where P =p,A@®p, A. We recall the following notation from [I]: if N is a
submodule of M and G < GL(M), then G(N) = {ge G|g(N) = N}.

Definition 1.15. Let N < (M, [h]) be a (4, 4)-Quadratic submodule, containing
H(P,), and O =Ann(M/N). Let No=NnH(P). A subgroup G, U(M) is
(N, H(P,), ¢)-transitive if

(1) Gy (N) acts transitively on the images in Ny/N,n M D of the elements pya + g, b
of a fixed length which are unimodular (mod D);

(i) for each [b]e A/4, the subgroup of G,(N) fixing p,+ gob (mod D) acts
transitively on the images in &, (M) of the [#]-unimodular elements x e N n H (P) of fixed
length [5] such that x = p, + qob (mod O).

Example 1.16. If N=M so that O=4 and V=0, then G,< U(H(P)) is
(N, H(P,), ¢)-transitive if G, acts transitively on the images in H (¢, (P)) of the [A]-uni-
modular elements of fixed length.

The unitary transitivity conditions are related to the linear transitivity conditions given
in [I], Definition 1.9. In the following statement we let o, € U(H (P,)) be the flip
automorphism o, (p,) = 44, 95(4,) = Po- The metabolic form on an 4-module L @ L with
isotropic summand 0@® L is denoted Met(L). We say that G, < U(Met(L)L H(P))
is a lifting of Gyc GL(L® P) if for each 1€ G, there exists a 7€ G, such that
T(v, p; 0) = (t(v, p);?) whenever ve L and pe P. If M = H(L@® P) then any subgroup
G, = GL(L @ P) has the lifting G, = H (G,).

Lemma 1.17. Let N M = Met(L) L H(P) be a (A, A)-Quadratic submodule of finite
index containing H (P,), and let N, = Nn(L® P). If G, =« GL(L @ P) preserves N, and is
(N4, pos 8) transitive, and there exists a lifting G, = U (M) of G, which preserves N, then the
group <G0, 04, G,> is (N, H(P,), ¢) (ii)-transitive (resp. -transitive if A/O local or A is
(A4, B)-ample).

Proof. If x = pya’ + q,b’e N H(P) has length [b] and is unimodular (mod D),
then a’ or b’ is a unit (mod D), and after interchanging p,, g, or Lemma 1.8 we can assume a’
is a unit (mod O). By using a suitable element of G,, we can then get x = p, + ¢, b (mod O)
when projected into H (P). This part holds for 4/0 local or 4 (A4, B)-ample (mod D).

If xe Nn H (P) is [A]-unimodular of length [5] and x = p, + g, (mod D), we apply
Lemma 1.12 with B =0 and then an element of G,, by [I], Definition 1.9(ii), to get
g, (X) =¢,(po+qob). O

Lemma 1.18. Let N< (M, [h]) = VL H(P) be a (4, A)-Quadratic submodule, con-
taining H(P,), and © = Ann(M/N). Let N= H(P)) LN and N" = NnV.

(1) Suppose that N has finite index in M and that there exists a subgroup G, < U (M)
satisfying the condition in Definition 1.15(i). If x € N is an [h]-unimodular element with length
[b], then there exist elements o,€ EU(H(P,), P,; N'), 0,€ EU(H(P,), Py; N'), and
0, € Go(N) such that the resulting x' = 0,0, 0,(x) has x' = p, + q,b (mod D).
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(i) Suppose that there exists a subgroup G, < U(M) satisfying the condition in
Definition 1.15(ii). If x € N is an [h]-unimodular element with length [6] and x = py + q, b
(mod D), then there exist elements 0, € G, (N) and

o,€ EU(H(P),PO; N'D), a,e EU(H(P),P;N"D)
such that x' = 0,0,05(x) has e, (x") = €, (py+ qob) and x' = py + q4b (mod D).

Proof. (1) Write (p, q) = (poa+p,, q,b + q,) as above. We begin by working over
N/NAMD to arrange for pya+ gyb (modO) to be unimodular. By assumption,
N = H(p,A)LN’,and N’ is a quadratic submodule of finite index in V'L H(p, A). There
exists some y € N such that {x,y)> =1 and so {N',v) + O(pya) + O(q,b) = A. Choose
we N’ so that (v, w) + Aa+ Ab contains 1; put ¢ = {v, w). From [I], 1.3, there is a
z € P, such that O(p, + zc) + O(q,) = A. Now apply the transvection ¢, = o, , ,, to x, and
then the H (Py)-component p,a + q,b of x will be unimodular (mod D). This isometry lies in
EU(H(P,), Py; N').

Now there exists 0, € G,(N), so that after applying 0,, x = (v; py, g) (mod D). By
repeating step (i) of the proof of Theorem 1.11, we find an element 6, € EU (H (P,), Py; N')
to get x = p, + g, b (mod O).

(i) We now assume that x = p, + q,6 (mod D) and try to obtain the condition on
g, (x). Since P is free of rank 2, it follows as above that we may assume (p, g) is uni-
modular. More precisely, there exists some ye N such that {(x,y)=1 and so
Vov)+0(p)+0(q) =A. Let weV be the V-component of y. Since x = p,+ qob
(mod O), we may assume that the we V'O. Now (v, w) + O(p) + O(gq) contains 1, and
we let ¢={v,w). From [I], 1.1 with a=0(g), there is a ze PO such that

O(p +zc)+ O(q) = A. Now apply the transvection g; = g, , ,, to x. This isometry lies in
EU(H(P), PO; VD).

Since the subgroup of G,(N) fixing p, + g, b (mod D) acts transitively on the set of
unimodular elements of fixed length in H (¢, (P)), we may assume after applying 0, € G, (N)
that e, (x) = ¢, (v; py, gob), where b = hp(x,x) mod A. Finally, apply again step (i)
of the proof of Theorem 1.11, we find an element g, € EU(H (P), P, N"D) to get
£, (x) = e,(po, qob). O

Theorem 1.19. Let V be a (A, A)-Quadratic module which has (A, B)-hyperbolic rank
2 1 at all but finitely many primes, and let N = (M, [h]) = V L H(P) be a (1, A)-Quadratic
submodule of finite index, containing H(P,), and O = Ann(M/N). Suppose there exists a
subgroup Gy = U(M) which is (N, H (P,), ¢)-transitive.

Then the subgroup G(N) of
G = (G, EU(H(P), Q; V), H(E(P)) - EU(H (P)))

stabilizing N acts transitively on the set of [h]-unimodular elements of a fixed length in N, and
the set of hyperbolic pairs and hyperbolic planes in N. Here Q = PQ or Q = P.
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Proof. The same reduction used in [4], (3.5), p. 237 shows that it is enough to prove
that G acts transitively on the set of [#]-unimodular elements of a fixed length in N. One can
check that G contains all transvections o with ve (py)t = VO H(P,)® p, A (see [4],

po,a,v

(3.11), p. 143 and [4], (5.6), p. 98). Now we apply Lemma 1.18 and Theorem 1.11. The
isometries used all preserve N. O

The special case when © = 4 and N = M will be used later.
Theorem 1.20. Let V be a (A, A)-Quadratic module which has (A, B)-hyperbolic rank
= 1 at all but finitely many primes, and put (M, [h]) = VL H(P). Suppose there exists a
subgroup Gy = U(M) such that e, (G,) acts transitively on the set of unimodular elements in
H (&,(P)) of fixed length ¢, ([h](x)). Then
G =<G,, EU(H(P), Q; V), H(E(P))- EU(H(P)))>

where Q = P or P, acts transitively on the set of [h]-unimodular elements of a fixed length, and
the set of hyperbolic pairs and hyperbolic planes in M.

Proof of Theorem A. The argument is the same as for [4], (3.6), p.238 using
our 1.20.

We conclude this section with a few useful remarks.
Lemma 1.21. Let P=p,Z®p, Z. For any ideal ¢ S Z, the group
H(SL,(Z;q))  EU(H(P;q))

acts transitively on unimodular elements x € H (P) of fixed length [b], with x = p, + q,b
(mod q).

Proof. Let x = (pya,p,c;qgod, q,¢) be a unimodular element in H(P) with a =1
(mod q), d = b (mod q) and ¢, e = 0 (mod q). We may assume that ¢ = 0 after applying an

element of H(SL,(Z; q)), so there exists an integer r = 0 (mod q) such that ¢ + rd is a unit
(mod q). Then

0 —ir
X+<r 0 >(x)=(p°“’p1(c+rd);qoc,0)

so that O(pya) + O(p,(c + rd)) = Z. We may therefore assume in the beginning that for
x=(poa,p,¢;qod,q.€), a and ¢ are relatively prime. Using a suitable element of

0 A
H(SL,(Z;q)) (see [1], 1.15) we get x = (p,, 0; g, b, g, ¢) and after applying X _ <_ 0e>
the result is (py, 0; g, b, 0), where [b] is the length of x. O €

Remark 1.22. For any surjection of orders ¢: 4 — Z, the subgroup
G, = H(E,(4)) - EU(H(A® A)) < U,(A)

has the property that ¢, (G,) = H(GL,(Z))- EU(H(Z ® 2)).
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Lemma 1.23. Let V be a (A, A)-Quadratic module and set (M, [h]) = VL H(P) with
P = A. Let 6, € U(H(P)) be the isometry interchanging the standard basis elements py, q,.
If (A, A) is a local unitary ring, then

G = CEU(H(P), Q; V), H(GL(P))- EU(H(P)).1 La,)

acts transitively on the set of [h]-unimodular elements of a fixed length in M, and the set of
hyperbolic pairs and hyperbolic planes in M.

Proof. Again it is enough to prove transitivity on the set of [#]-unimodular elements
of a fixed length. Let x = (v; pya, q,b) be an [h]-unimodular element. Then after applying a
suitable transvection from EU(H(P), Q; V) we may assume that (p,a, q,b) € H(P) is
unimodular. Then since 4 is local, we may apply g, if necessary to assume that a is a unit.
Now, after using an element of H (G L (P)) we get x = (v; po, o b) and we finish by using step
(i) of the proof of Theorem 1.11. O

Remark 1.24. For A = — 1 and any form parameter A, U (H (Z)) acts transitively on
unimodular elements of fixed length in H(Z).

§ 2. The proof of Theorem B

In this section we apply the algebraic cancellation theorems to prove our main
geometric cancellation result for four-manifolds.

Proposition 2.1. Let X be a closed oriented topological 4-manifold with finite
Sfundamental group, and let A = Z[n,(X)]. There is an A-submodule V of m,(X) which
supports a (A, A)-Quadratic refinement of the intersection form on X for A =1 and any form
parameter A. In addition, V has (A, Z)-hyperbolic rank = 1 at all but finitely many primes.

Proof. We take the submodule
V=ker({w,, —>:m,(X) - Z/2)

on which the intersection form Sy has a quadratic refinement g : V' — A4/{v — v} defined as
in [31], Chap. 5.

Next we check that V has (4, Z)-hyperbolic rank = 1 atall odd primes not dividing the
order of 7, (X). Since X is a closed manifold, the components of the multi-signature of Sy
are all equal. On the other hand, from [13], 2.4 we know that 7, (X),,, is isomorphic to the
localization of I @ I* @ 4%, where I denotes the augmentation ideal of A4. It follows that the
components of S, are indefinite at all non-trivial characters of 7, (X). Since Sy is unimodular

when restricted to V,, for p as above, we conclude that ¥, has hyperbolic rank = 1 at each
non-trivial character. 0O

We need the following result of Cappell-Shaneson. In the statement a standard basis
for the summand H,(S2x §2, Z) of H,(X # (S?x S?), Z) is denoted {p,, 4o}
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Theorem 2.2 ([8], 1.5). Let X be a compact, connected smooth (topological) manifold
of dimension four, and suppose X = X, % (S? x S?) for some manifold X,. Let ® € H,(X; A)
with w,(H (w)) = 0 and let ac A = Z[n,(X)] be any element such that u(w) = a(mod A).
Then there is a base point preserving diffeomorphism (homeomorphism) ¢ of X # (S* x S?)
with itself which preserves local orientations and induces the identity on (X # (S%x S?)),
so that ¢, (po) = Po> P4 (40) = 4o + @ — poa, and ¢, (&) = & — (&~ w)p, for £ € H,(X; A).

In order to prove Theorem B, we need to realize transvections by homeomorphisms of
X # r(S?x.S?). For the rest of this section we fix the notation

Kn,(X) = ker({w,, =) :m,(X) = Z/2)

for the submodule of the intersection form on H, (X; 4) on which a quadratic refinement is
defined. We denote by H (P,), where P, = p, A, the summand of H, (X # (S? x S?); A) given
by H,(S?* x S?; A). Asfurther copies of S% x S 2 are added to X by connected sum, we denote
all these hyperbolic factors of the intersection form by H (P). Note that Theorem 2.2 allows
us to realize the transvections o, ,, by self-homeomorphisms of X # (S 2x S?) for any
ve Kn,(X,) with <v, p,> = 0, in the case when X = X, # (S? x S§?). Cappell and Shaneson
use this to realize many isometries (see [8], Thm. A 2), but the conclusions given are not in

the exact form we need.

Corollary 2.3. Suppose that Kn,(X) =V, LV, with V, non-singular under the
intersection form Sy. Then for any transvection a, , , on Kn,(X)L1 H(P,) with pe V, L P,
and ve Kn,(X), the stabilized isometry o, , ,® 1d, 252, can be realized by a self-homeo-
morphism of X # 3(S*x S?).

,a,v

Proof. First we consider a unimodular isotropic element pe V, L P,. Since
V, L H(P,) is non-singular, p is automatically a hyperbolic element and thus by Freedman
[12] we can resplit X # (S2xS?) = X' # (S*x S?) such that p is represented by S2 X *.
Thus ¢, , ,® Idg2, 52 can be realized by a self-homeomorphism on

p.a,v
(X' 4 (S?xS5%) # (5% S?)
for all ve K, (X) with (v, p) = 0.

Next we consider the transvection o, ,, , for an arbitrary p € ¥, L P,, but assume that
ve Kn,(X) is isotropic. Then we write p =) p, with p,e ¥V, L Py unimodular and

(v, p;> = 0. This uses the fact that 4 = Z[n,(X)] and P, = A. We obtain:

0p.0,0 = 0v,0,-p = 00,0, -Ypi = H Opi,0,0*

Thus o

0.0 ® Idg2 52 18 realizable by a self-homeomorphism on

(X # (S2x8%) # (52 x 57,

since o

2.0.0 3 Idg2 52 is realizable.
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Finally we realize an arbitrary transvection o, , , # Id, 2« 52), of the form required, by
a homeomorphism on (X # (S2x S?)) 4 (S2 x S2). We use the fact that v can be expressed
as v =Y v; with v;€ Km,(X) L H,(S?x §? A) isotropic and <v;, p) = 0. Thus

O-p.O,U (‘B IdZ(S2 x §2) = 1_[ Gp,O,vi @ Id52 xS2
which by the considerations above is realizable. O

Corollary 24. Let X, be a topological 4-manifold, V = Kn,(X,) and consider an
element o € EU(H(P), Q; V), for Q = P, P, as an isometry of the intersection form of
X, # 2(S?x S?). Then stabilized isometry ¢ @ 1d,s: 52, can be realized by a self-homeo-
morphism of X, # 4(S*x S?).

Proof. By definition (1.4) the group EU (H (P), Q; V') is generated by transvections
Op.a With pe P or P and ve V fulfilling the conditions of a transvection. It is enough to
consider the case p e P. Now Corollary 2.3 applies with the splitting K7n,(X) = VL H(A)
with H (A) the first summand of H (P). This shows that for each o € EU(H (P), Q; V), the

isometry ¢ @ Id, 524 52 can be realized by a self-homeomorphism on
(Xo #2(S2xS8?) #2(5S?x8?). 0O

Proof of Theorem B. By induction it is enough to consider the case r =1. Let
f:X#(5?*%x8%) — Y # (S?x5?) beahomeomorphism. We will apply Theorem 1.20 and
Corollary 2.3 to show that there is a self-homeomorphism g of X # 3(S? x §?) such that
(f # Id) - ginduces the identity on the hyperbolic form corresponding to the connected sum
#3(S?xS?)in H,(X # 3(S?x S?); A). Then it follows that X and Y are s-cobordant [17],
Thm. 3.1. By Freedman [12] X and Y are homeomorphic.

To begin, we apply Theorem 1.20 together with Lemma 1.21 to
VO HP)S Hy(X, # 2(S**x S?); 4) = H,(X # (S?x S?); 4),
where P = A@ A4 and V = Kn,(X,). This gives an isometry
¢eG=<EU(H(P),Q; V), H(E(P))- EU(H(P))>,
where Q = P or P, such that f, - ¢ identifies the hyperbolic submodules
H(A) = H,(S*x 8% A)

specified by the connected sum decomposition of X 4 (S?x S?) and Y # (S2x S?). We
finish the proof by showing that for each ¢ € G, ¢ @ Id can be realized by a self-homeo-
morphism on X, # 4(S? x S?). Note that by definition G < Aut(H, (X, # 2(S? x S?); 4)).

The elements of EU (H (P), Q; V) are handled by Corollary 2.4. In addition, we have
to realize an arbitrary element in H (E(P))- EU (H (P)), stabilized by the identity, by a

self-homeomorphism of (X, # 4(S2 x $2)). This follows again from Corollary 2.3 and the

considerations above since this group is generated by transvections 0p.0.x With pe P, or P,
[4], p.142-143. 0o
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§ 3. Applications to manifolds with boundary

In this section we prove Theorem B’, and Corollary 3.6. The other geometric
applications, Corollary 4.1 and Theorem 4.5, are postponed to § 4. We begin with

Lemma 3.1. Let M be a closed 4-manifold, and A = Zn,(M,). If L (A) = 0 then,
for every element o of SU, (A), there is a self-homeomorphism of M, # (r + 2)(S* x S?) for
some r 2 0 inducing 1 Lo L1 on (H,(M,), Sy,) LH(A@ A) L H(A").

Proof. Since L5(A) = 0, for any element o of SU,(A), there exists an integer r = 0
such that ¢ L 1isin the subgroup RLU,, , ,, defined in [8], p. 526. But by [8], Thm. A.2 any
elementof RLU,, . ,, is realizable by a self homeomorphism of M, # (r +2)(S 2 x §2) which
induces the identity on n,(M,) and on H,(M,).

The proof of Theorem B'. The proof follows the steps of the proof of Theorem B to
obtain geometric cancellation of the r (S? x S2) factors. The necessary algebraic cancellation
is provided by the special case of Theorem 1.20 with 4 = B, using our assumption on U, (4).
The realization of unitary automorphisms by self-homeomorphisms follows from 3.1
and 24. O

Now we will verify the assumptions of Theorem B’ for special fundamental groups.
Lemma 3.2. Let P be a free A-module of rank two, and
N=H(p,A)®p,O®P, < H(P),

where O is an involution-invariant two-sided ideal in A. Suppose that the form parameter A
is (A, B)-ample at m, for all but finitely many primes, and that there is a subgroup
G, < SU(H (P)) satisfying condition 1.15(ii). In addition, let T = GL(P) such that the
subgroup of T, fixing p, (mod O) and ¢, (p,), acts transitively on unimodular elements x € P
with x = p, (mod D) and ¢, (x) = &,(p,).

Then the subgroup G(N) of
G = (Gy, H(I')- EU(H (P); D))

acts transitively on the set of unimodular elements in x € H (P) of fixed length [b], such that
X = po+ gob (mod D).

Proof. Let x = (p, q) € H(P) be a unimodular element with x = p, + g, b (mod O),
and apply first Lemma 1.18 (ii) and then Lemma 1.12. After this we may assume that p is
unimodular, and then use an element of H(I") to get x = (p,, q). We complete the proof by
using Lemma 1.14. 0O

Remark 3.3. Note that when 4 =1 and § is a field with trivial involution, then A is
not ample at (m, &) for any odd prime. Our assumption above is therefore very special. It
does however apply to finite group rings 4 = Z[¢ X o] and B = Z[Z/2], where ¢ has odd
order and ¢ is a cyclic 2-group, since L% (A4) = 0 [32].
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Lemma 3.4. Let B= Z[Z/2] and P be a free B-module of rank two. Let O < B an
involution-invariant ideal and N = H (poB) ® p, O ® P, = H(P). Then for the group

Gy = (H(SL,(B; D)) - EU(H (P); D)),

and for each [b] € B/ A, the subgroup of G,(N) fixing p, + qob (mod D) acts transitively on the
[h]-unimodular elements x € N of fixed length [b] such that x = p, + q,b (mod D).

Proof. The group ring B of the cyclic group of order two is the pull-back:

Z[7Z/2] = Z

-l l

7z  — 7/2.

If x e H(B® B)is aunimodular element, we first apply 1.21 to ¢, (x), and obtain the relation
£, (x) =&, (py + gob). This implies ¢ _ (x) = ¢_(p, + qob) (mod 2), and uses an element of
H(SL,(Z;q.))  EU(H(P;q,)), where q, = ¢, (q). To lift this element to G,, notice that
q, = q_ (mod2), so we can lift into H(SL,(Z;q_))- EU(H(P; q_)) over the Z_ corner.
We now apply 1.21 again, this time to ¢_(x), with the ideal 2q_ and get an element
o_e H(SL,(Z;2q_))- EU(H(P;2q_)) such that ¢_(¢e_(x)) =¢_(p,+ qob). This ele-
ment can be lifted over the Z, corner to give an element of G,. O

Corollary 3.5. Let A = Z[g X a], where g has odd order and o is a cyclic 2-group. Then
SU, (A) acts transitively on unimodular elements in H(A® A) of fixed length.

Proof. We apply Lemma 3.2 and Lemma 3.4 with © = A or B = Z[Z/2] respective-
ly. For the group I" needed in Lemma 3.2 we can take GL,(A) since A satisfies the Eichler
condition, and H(GL,(A4)) = SU,(A). The group G, = (H(SL,(A4)) - EU(H (P))) satis-
fies condition 1.15 by Lemma 3.4. O

Corollary 3.6. Let M and N be compact oriented topological 4-manifolds with
n, (M) = g X 6. Suppose that the interior connected sum M 4 r (S? % S?) is homeomorphic to
N #r(S*xS?) by a homeomorphism inducing the identity on the boundary. If

M = M, 4% (S x S?2), then the identity map on the boundary extends to a homeomorphism of
M with N.

We finish this section by considering a very special case of the question (see [6]): under
what conditions does a quadratic or hermitian form contain a hyperbolic direct summand
H (P), for P projective? For any 4-module L, let rank , (L) = k if k is the largest integer such
that L, contains a direct summand A¥,), for all primes p € R. It is convenient to define the
“essential rank”™ of a hermitian (resp. quadratic) form U by ess-rank, (U) = rank (U,) if
Uy is a hermitian (resp. quadratic) submodule of minimum rank such that U = U, L H (P)
for some finitely-generated projective P. Thus the quantity rank,(U) — ess-rank(U) is
twice the (projective) hyperbolic rank of U. If 4 = ZG for some finite group G, then L
denotes the submodule fixed by G. If L has a hermitian (resp. quadratic) module then L€ is a
hermitian (resp. quadratic) submodule with values in 4% =~ Z.
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Theorem 3.7. Let (L, [h,]) be a non-singular hermitian form over A = ZG where
G = Z/d is a finite cyclic group, and the involution on A maps g — g~ for all g € G. Suppose
that L, is a finitely-generated free A-module with ess-rank, (L, [h,]) =b>0 for all
rational primes p. If d & 2, 3, assume that b = 3. Given a splitting

(Ly, [ D =W, [K]) LH(Z"),

there exists a hermitian submodule (L, [h]) such that (L,,[h,]) = (L,[h]) LH(A") and
(L, [h])? = (N, [K]).

Proof. We first construct the form L and then prove it is stably isomorphic to L,. In
applying the results concerning “transitivity on unimodular elements” we can mostly work
inside the quadratic submodule of L,, since transvections extend to the whole module. The
argument is divided into various steps. Note that L, is free over 4 of rank b + 2r withr > 0,
and we assumed that b = 3 unless d = 2, 3 (the case d = 1 is vacuous).

If I' denotes an involution-invariant maximal order containing 4 in @G, then
r= C—BI}, i|d, where I'; = Z[{;]. Under our assumptions in 4.51), the induced hermitian
modules I;L, are all indefinite and have rank = 3.

(i) We first consider the problem of splitting off H(I'") from I'L,. For each factor of
the maximal order we will show that I; L, = J; L H(I;") for some hermitian module of rank
b. Then we let J = (P{J;:i|d}.

When i =1 we use the given splitting of LY = N1 H(Z"). If i is divisible by an odd
prime, then [; L, admits a quadratic refinement since the trace map is onto. By [30],
Thm. 11, there exist quadratic modules J; over I so that J; L H (I;"") = I'; L,, and each J; has
the minimum rank consistent with the multi-signature, and the requirement that J; L H (I;)
has rank = 3 over I;. We add hyperbolics to some of the J; as necessary to assume that they
all have the same rank b.

If i = 2, the fact that b > 0 allows us to write I, L, = J, L H(Z"). Finally, if i = 2* for
some integer k = 2 then the required splitting follows from

Lemma 3.8. For i =224, ess-rank(I;L,) < b.

(i1) Next we consider the problem of splitting off H (/T;,) from Zp ® L,.If pis odd, this
form has a quadratic refinement and hence we can reduce modulo the radical, where the
problem is trivial. If p = 2, we may suppose that d is a power of 2 (otherwise a quadratic
refinement exists again), and hence that 4, is a local ring. Then any hermitian form splits into
an orthogonal direct sum of one and two-dimensional forms. Now we claim that ess-rank
(Z,® L,) £ b. This follows by induction from the pull-back diagram

2,[Z/2] — Z,(Z/2*7Y)
! !

2,(p) —— FR[Z/271]
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and the fact that ess-rank (I} L,) < b. To lift a splitting over 4, given one over the corners of
this pull-back square, we must lift enough automorphisms ¢ of U= U, L H(P) over
F,[Z]2*~*]toact transitively on hyperbolic pairs in U. This problem can be studied over the
quadratlc submodule of U by the methods of § 1. By Lemma 1.8 or Lemma 1.23, we need
only lift certain transvections and H (F,[Z/ Zk=17%), together with the “flip” isometry of a
hyperbolic plane which interchanges the standard basis elements. In these cases, the lifting
can be done over Z,(Z/2*™ ).

It follows that Z, ® L, splits off the requlred number of hyperbolic summands. Let L
denote an orthogonal complement Z ®L, = L 1lH (A ).

(iii) We consider the completions J; = [] Z,®J; over the product [} of the p-adic
completions at all primes p|d. These are unimodular forms over the rings of integers in local
fields, and we will apply the classification theory of such forms (see [25]). If p is odd, then the
forms are determined by the rank and determinant. It follows that the forms are standard, i.e.
either hyperbolic or isometricto {a) L ... L {1)[16],7.1,8.2,[22],92:1.If p = 2, the forms
Z,®J,i=1,2areagain standard of the same type [22],93: 15,93 :18.If p = 2 and i is not
a 2-power, then the trace map Z[{;] —» Z[{; + {; '] is onto and so the global form I;L,
admits a quadratic refinement. It follows that the forms are determined by the rank.

We are left with the forms Z, ® J; over ramified rings of integers with non-trivial
involution. For these, unimodular forms are classified by the rank, determinant, and the
norm ideal n (J,): the ideal in Z,[{,] generated by the values {u, u) for all elements u € J,
[16], 10.4. It is easy to see that either the form represents a unit, or the form admits a
quadratic refinement. In the first case, the norm ideal is the whole ring and the form is
{ay Ll ... L<{1>. In the second case, we can write a = {u,u) in terms of the basis
(1,)/=1,0% {711 £ a<2%72),if i = 2% Then o = & implies that the coefficient of |/ — 1 is
zero, and those of (%, { ™ are equal. Hence a is a non-unit implies that the coefficient of 1 is
even and so « is a trace. When a quadratic refinement exists, the rank is even and we may
reduce modulo the radical to see that ess-rank(Z, ® J;) < 2.

(iv) One consequence of the local classification given in step (iii) is the fact that
cancellation of hyperbolics is possible over each factor of I'. Another is that when the rank
b = 3, then J; splits off a hyperbolic plane H (I}).

Now we claim that for each p|d, the forms Z ® J and L are isometric. Indeed, by
construction they are stably isometric to F L, and cancellatlon of hyperbolics is possible
over f It follows that Z ®J = L at primes dlvxdmg d. Let L over A be the pull-back of the
forms L over 4 and J over I'. Then I L =J,foralliand Z ®L= L for each prime p|d.

(v) The finalstep is to show that L L H(A4") = L,. For thisit is enough to show that for
any isometry o of J L H (P), P = I'", which is the identity in the I, component, there exists a
liftable isometry ¢ € U(J L H(P)) such that o« = L1 for some B e U(J). Here liftable
means that o is the product of isometries which come from the forms over I' or A. This proves
that L 1 H(A4") = L,. It follows that L is a stably-free A-module and hence (by cancellation
of modules) L is a free 4-module.
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To establish this, we remark again that by Lemma 1.8 or Lemma 1.23, ¢ can be assumed
to be a suitable product of transvections and isometries of the hyperbolic plane. In particular
o has determinant + 1, and elements with determinant — 1 are only needed when b =1 or 2
since J; ® Zp splits off a hyperbolic plane whenever its rank » = 3. Under our assumptions,
b < 2 only occurs if d = 2, 3. A second remark is that an isometry is liftable if it is congruent
modulo some power of d to a liftable isometry. Indeed, since d°I" < A4 for some integer s, a
matrix for an isometry of the form (1 + d°%) with respect to a free basis of J L. H (P) can be
chosen with entries in A4, giving an isometry (1 4+ d*7) of L.

Write ¢ = (P o;, where o, is the component of o over [;. To lift the component of a,,

we need to lift the transvections given in Lemma 1.8, together with those of the form
0 1 0 .

<1 0) or <g - 1), ae Zp" when b = 1, 2. Suppose first that b = 3. The transvections can

be lifted over I, modulo some high power of d. We then compose « with an isometry over 4,

and may assume that g; is the identity fori = 1, 2. Now if 6 = 1, 2 and d = 2 the completion

at p = 2 is the only prime to consider. For p = 2, we use the global flip over J, L H(Z) and

are left with an element of the form y = with ae Z;. However, the units

a 0

0at?
(1, a) e I, ® [, can be lifted (modulo squares) to units in Z, [Z/2]. Thus we again get g, is the
identity for i = 1, 2 and we are done if d = 2. Ford = 3 and b = 1, 2 the argument is similar:

we lift units (1, @) e I, @ [. To complete the case d = 3 we need only lift transvections.

To lift the components of ¢ over I, where i+ 1,2, we use [26], 5.12: the group
SU(J; L H(I"))is densein SU(J, L H(I}")). Since each g, is now a product of transvections
(which have determinant 1), this can be done using isometries over I' and 4. O

The proof of Lemma 3.8. Under our assumptions, U =1I;L, rank (b+ 2r) over
R = Z[{,x], with b = 3. The ring R has non-trivial involution since k = 2. Let S = Q@[]
and R=Z7ZQ®R,S = Z® S. Here Z denotes the product of all the p-adic completions of the
integers. We will prove the Lemma by using the pull-back square [32]:

R — S

! !

R — §.

Then U is the pull-back of forms U over R and Ug over S via an isometry
2:(U®S) =~ (U;® Z). From the local classification, ess-rank (U/) < b. Since a form over
the global field S represents zero if and only if it represents zero at all places [25], 10.1.1,
6.6.5, we conclude that ess-rank (Ug) < b as well. Fix some splittings U = U, 1L H(R") and
Us = U L H(S™) consider the induced hyperbolic summands over S.

By Lemma 1.8 or Lemma 1.23 we can find a product ¢ of transvections and isometries
of the hyperbolic plane H(S) such that coa = L1 preserves a hyperbolic summand
H (87). It remains to check that the pull-back of 0 and U using o o « is still isomorphic to our
original quadratic module U.

For the transvections in ¢ this is clear (compare [6]). Notice however that since
b=3, we can further split U, = U”L H(R), and similarly over S. Now consider
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Us®2=0"®SLH(S)LH(S) and two attaching maps y L1165 and y L 511, where
se U(H(S)). Over the R corner we have U= U”LH(R)LH(R). The isometry that
switches the last two hyperbolic planes in Uy ® Z lifts over R and so the pull-backs using
these two attaching maps are isometric. It follows that ess-rank(U) < b. O

Remark 3.9. With only minor modifications, the argument just given would prove
the analogous statement to Theorem 3.7 for forms on many non-free modules. For example
if L, = Z'@® P with P free, the same conclusion holds. The only additional facts needed are
in [22], 102.9, 102.10, to show that the genus equals the class for the form I L. This remark
implies that [3], Thm. 1.3 is a consequence of Corollary 4.1, proved in the next section.

§ 4. Group actions on four-manifolds

We now give some direct applications of cancellation methods to group actions on
topological 4-manifolds.

Corollary 4.1. Let M be a closed, orientied, simply-connected topological 4-manifold.
Let G be a finite cyclic group acting locally linearly and pseudo-freely on M, preserving the
orientation, with M ¢ non-empty. Let M, denote the complement of a set of disjoint open
G-invariant 4-disks around the fixed points, and assume that M |G = W # (S* x S?), where
OW = 0(M,/G). Then the action (M, G) is classified up to equivariant homeomorphism by the
local fixed-point data, the signature, type, and Euler characteristic of M and the Kir-
by-Siebenmann invariant of M, /G.

The definition of ““local fixed-point data’” was given in the Introduction.

The proof of Corollary 4.1. Let G = Z, be a finite cyclic group action acting
semi-freely and locally linearly on a 1-connected 4-manifold M. We also assume that the
action is orientation-preserving and has a non-empty fixed point set consisting of isolated
fixed points. Then we can consider the free action of G on M, = M — | ] U;, where the U, are
small open G-invariant neighbourhoods of the fixed points. Let us define X = (M — U U)/G
and 0; X = 0U,/G. If G acts on another 4-manifold M’ with the same fixed point data, then
we choose a homeomorphism of d X to 0X". The actions are equivalent if one can extend this
to a homeomorphism from X to X"

We note that since the action is not free, M is spin if and only if X is spin. To see this,
note that M spin implies that w, (X)) comes from H?(G, Z/2), which maps isomorphically
onto H?*(9; X, Z/2). But 9, X is spin. The converse is clear.

If nis even and M is spin, choose a spin structure on X and consider its restriction to
0; X. Since there are precisely two spin structures on X, the spin structure on dX is unique
up to a simultaneous change on ;X for each i. We call the equivalence class of spin-
structures on 0X the spin fixed point data. We say that the local fixed point data in two
different actions are equivalent if there is a homeomorphism of dX to X’ preserving the spin

fixed point data. If nis odd, there is a unique spin structure on X and 0.X, so we do not need to
remember it.
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Now suppose that M and M’ have the same signature, type, Euler characteristic and
equivalent local fixed point data. Then X and X’ also have the same signature and Euler
characteristic. Since X is spin if and only if M is spin, the w,-types of X and X’ are the same. If
in addition they have the same KS-invariant, then it follows from a result of [17] that the
actions are stably G-homeomorphic. More precisely, it is shown in [17], Thm. 2.1 that a
homeomorphism between dX and 0X' (which preserves the spin structure if X and X" are
spin), extends to a homeomorphism between X # r(S2 x S2)and X' # r(S? x S2) for some
integer r, provided that the two manifolds are bordant (relative to the boundary) over the
normal 1-type. Here the connected sum is away from the boundary. But the Atiyah-Hirze-
bruch spectral sequence implies that the respective bordism group are detected by the
signature and KS invariant. Now since we assume in the statement of Corollary 4.1 that
X =W4# S?x 82, we are done by Theorem B'. O

We finish with another application, this time to the existence and uniqueness of
locally-flat topological embeddings of 2-spheres in simply-connected 4-manifolds. To
prepare for this we need the following sharpening of Theorem B’ (in a special situation).
Let X, and X, be compact oriented 4-manifolds with same boundary Y. If Y is non-empty,
we will assume that =n,(Y) — m,(X;) is surjective for i=1,2. We call a map
o: 7, (X,) = m,(X,) compatible if it commutes with map induced by the inclusions from
Y to X,. Similarly amap : H*(X,) » H?(X,) is called compatible if it commutes with the
restrictions to H2(Y) and if the induced map p* : H*(X,, Y)/Tors - H?(X,, Y)/Torsisan
isometry (here and in the following all homologies are with coefficients in Z). The “w,-type”
of a manifold X with cyclic fundamental group is (1) if w,(X) # 0, (II) if w,(X) = 0, and
(IT0) if w,(X) # 0 but w,(X) = 0.

Proposition 4.2. Let X, and X, be compact oriented 4-manifolds with same w,-type,
K S-invariant, same boundary Y and same fundamental group G = Z|/d. Suppose that Y is
empty or n,(Y) — m,(X,) is surjective. Then for any pair of compatible isomorphisms « and
there is a stable homeomorphism from X, # r(S? x S?) to X, # r (S*x S?) rel. Y inducing o
and @ id.

Proof. Abbreviate H,(X,)/Tors by H. Consider the following three fibrations B(I),
B(I1) and B(III) over B Top, which are the normal 1-types of X; with w,-type (I), (II) and
(I11) respectively. The total space is in all cases K(G, 1) x K(H, 2) x B TopSpin. The map to
B Top is given by a vector bundle E, x E, X y, where in case (I): E| is trivial and E, a complex
line bundle with w, (E,) = w,(X,) e Hom (H, Z/2);in case (II): E, and E, are trivial; and in
case (III): E, is a complex line bundle with u*(w, (E,)) = w,(X,) and E, is trivial. Here u, is
a classifying map of the universal covering of X,. Let g, be a map from X, to K(H, 2)
inducing Id on H,/Tors. Then u, X g, : X, - K(G, 1) X K(H, 2) is a 2-equivalence and the
difference of the tangent bundle of X, with the pullback of £, x E, admits a spin-structure.
Choose a spin-structure to get a lift v, : X; - B of the normal Gauss map which is a
2-equivalence, i.e. a normal 1-smoothing [17], §1.

Since « is compatible we can choose u, : X, = K(G, 1) such that (u,), o = (u,),.
Consider g, as an element of H*(X,; H) and let g, : X, » K(H, 2) represent f(g,). As
before u, and g, define a normal 1-smoothing v, of X, in B. Since « and f are compatible we
haveu,|Y ~u,|Yand g,| Y ~ g,| Y. Finally choose the spin-structures so that they agree on
Y (which is possible since if Y is not empty, H'(X;; Z/2) - H'(Y; Z/2)is surjective). Thus
our normal 1-smoothings agree on Y.
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Lemma 4.3. For B = B(1), B(II) or B(IIl) the map given by the signature, the KS
invariant and the fundamental class injects Q,(B) into Z® Z|2® H,(K(H, 2), 7).

Before we prove this Lemma we finish the proof of Proposition 4.2. Since the signature
and the fundamental class are determined by the intersection form and f* is an isometry,
X,,v, and X,, v, are B-bordant rel. boundary. Thus there is a stable homeomorphism rel.
boundary from X, to X, commuting with the maps to K(H,2) [17], Thm.2.1. O

The proof of Lemma 4.3. We apply the Atiyah-Hirzebruch spectral sequence with
E2-term H,(M(E, X E,); Q]°"""). The d,-differential from H,(M(E,xE,);Q,) to
H,_,(M(E, X E,); Q,) is the dual of Sq* + w,(E, x E,) and from H,(M(E, x E,); Q,) to
H,_,(M(E, x E,); Q) is the composition of the reduction from Z = Q, to Z/2 and the dual
of S¢* + w,(E, X E,). A simple calculation shows that the E®-term has Z = Q°P?i" on the
spot (0, 4), a subgroup of H,(K(H, 2)) on the spot (4, 0) and, in case of type (I) or (III) Z/2
on the spot (2, 2). Thus the proof is finished if one has in case (I) or (III) a manifold with
a normal B-structure, signature 0 and KS non-zero. Such manifolds are given by the
difference of the closed Eg manifold and the Enriques surface in case (III) or CP? 3 9CP?in
case (I). O

Corollary 4.4. Suppose that X, and X, satisfy the assumptions of Proposition 4.2, and
addition assume that X, = X| # S*x S2. Then any pair of compatible isomorphisms o and B
can be realized by a homeomorphism between X, and X, rel. boundary.

Proof. Note that H = ¢, (n,(X;)). Then the statement follows by cancellation as in
the proof of Theorem B from Theorem 1.20 and Corollary 2.4. 0O

The method of cancellation can be used effectively to study the existence and
classification of locally flat 2-spheres representing a given homology class x € H,(N; Z),
where N is a closed 1-connected topological 4-manifold. Then x = dy with y primitive and d
is called the divisibility of x. Such embeddings are called simple if the fundamental group of
the complement is abelian (and hence isomorphic to G = Z/d). Denote y - y by m, and let
b,(N) and ¢(N) denote the rank and signature of the intersection form on H, (N, Z).

Following the original idea of V. Rochlin [24] (compare [20]), these embedding
problems will be studied via an associated semi-free cyclic group action: if f: §? — Nisan
embedding representing a homology class of divisibility d, then there is a d-fold branched
cyclic covering (M, G) over N, branched along f(S?).

Theorem 4.5. Let N be a closed 1-connected topological 4-manifold.

1) Let x € H,(N; Z) be a homology class of divisibility d + 0. Then x can be represented
by a simple locally flat embedded 2-sphere in N if and only if

KS(N) = (1/8)(¢(N) — x - x)(mod 2)
when x is a characteristic class, and if

by(N)z max [a(N)—2j(d—j)(1/d*)x-x|.
osj<d
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ii) Any two locally flat simple embeddings of S? in N representing the homology class x
are ambiently isotopic if b,(N)>|o(N)| + 2 and

by(N)> max |o(N)—2j(d—j)(1/d*)x-x|.

If d is odd this result was given in [20], except that in part ii) the assumption
b,(N)>|o(N)|+2 needed in our proof is replaced by the weaker assumption that
b,(N)*2ifd>1.

Proof. We assume d > 1, and leave the necessary changes for the case d =1 to the
reader.

i) We will use the connection mentioned above between simple locally flat 2-spheres
and semi-free locally linear actions of G = Z/d with fixed point set S? on 1-connected
topological 4-manifolds. The correspondence is given by the ramified covering along S2 and
in the other direction by the embedding of the fixed point set S into the orbit space. Since
1-connected 4-manifolds are classified by the intersection form and the KS-invariant it is
enough to construct for x € H, (N) alocally linear G-action on a 1-connected manifold M as
above with corresponding K S-invariant such that the following pointed hermitian forms are
isomorphic: (H,(M/G), [M°]) = (H,(N), x). To concentrate attention on the differences
between our approach and that in [20], we refer the reader to that source for background,
motivation and some facts about the geometric set-up.

Itiseasy to construct a G-action on a manifold M with the right K S-invariant such that
for some r the pointed hermitian modules are isomorphic:

(H,(M/G), [M€]) = (H,(N)® H(Z"), x®0)

[20], Thm. 2.1. Now H, (M) is a stably free A-module [20], Theorem 3.4, thus we assume
that it is free. Suppose that there is a hermitian 4 = ZG-module L and a class « € L such
that (L L H(A4"),a®0) = (H,(M), [M]). Then one can cancel the H (4") geometrically to
realize (H,(N), x). This was carried out for free G-actions in [13] and the same proof works
here (compare [20], Prop. 4.1).

Lemma 4.6. There is a hermitian module L such that L1 H(A")~ H,(M) and
LS =~ H,(N).

It follows that there is a primitive class z’e L¢ such that z’ has same norm as
z=[M%]e H,(M)®. Then z’®0 and z are primitive elements of the same length.

Lemma 4.7. There exists an isometry g on L, | H(A?) such that ¢(z' @ 0) = z.

Thus the pointed hermitian forms L L H (4" ">, z'®0) and (Hy(M)LH(A4%),z80)
are isomorphic finishing the proof of i).

ii) By our assumptions we have b,(N) —|o(N)| = 4. Thus N = N' # S?x S? for
some manifold N'. Choose a class zin H, (N') of the same type, divisibility and norm as x. By
[28] the group of isometries acts transitively on elements of same type, divisibility and norm
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and thus we can assume that x = z@ 0. Now the uniqueness statement is a consequence of
part i), Proposition 4.2 and the fact that homeomorphisms acting trivially on homology are
isotopic to the identity ([18], Thm.1 and [23]).

By part i), we know that there is a simple embedding f; : S* — N’ representing z. Let
f,: 8% > N be any simple embedding representing x = z@0. Let X; = N —v;, where v,
denotes a small tubular neighborhood of £;(S?) in N, and the boundaries 0X, = 6X,. We
first check that the w,-type is the same for X, and X,. Let x = dy where y is a primitive class
with y - y = m, and assume that d is even. Then X is spin if and only if X, is spin, since the
map H2(N, Z/2) - H*(X;, Z/2)is an injection. If X, is non-spin, then its normal 1-type is
the same as X, # CP? # CP? and so the intersection form on H,(X,, Z) is odd. But
H,(X,,Z) ={ve Hy(N)|v-x =0}, and so the intersection form on X, is also odd.
Therefore both have the same w,-type. In the final case, X, is non-spin, but X, is spin, so
w,(X,) is the pull-back of some class w, € H*(n,(X,), Z/2). But then {w,,v) = 0 and X,
has an even intersection form, similarly for X,.

The existence of a compatible isomorphism f follows from the fact that we have an
isomorphism between (part of) the cohomology exact sequence of the pair (X;, 0X,):

Hz(XhaXi) - HZ(Xi) - H3(6Xi)

l ! l

weH,(Nlo-x=0] — H,(N)x) —— H,WN)Kx, {ve Hy(N)|v-x=0}).

Let B be the map induced by the identity on H,(N). By Corollary 4.4. there is an ambient
homeomorphism from (N, £, (§?)) to (N, £, (S)) inducing the identity on H,. O

The proof of Lemma 4.6. We will use the fact that the quantity
g;=(a(N)—2j(d—j)(1/d*)x - x)
is just the formula derived by Rochlin [24] for the signature of the eigenspace of L, ® C
on which G operates as exp(27ij/d) (compare [20]). It follows from the inequality

b,(N) =z max|g;| thatb, (N) = 3 unlessd = 1, 2 or 3. The signature of I}, L, is the sum of the
o; over all j such that k = d/(d, j). When i = 1, we use the given splitting

(H,(M|G), [M€]) = (H,(N)®H(Z"), x®0).
The result now follows from Theorem 3.7. O

Proof of Lemma 4.7. The argument uses the same basic strategy as the proof of
Theorem 3.7 but is much easier. We use the pull-back square

A — Z

! !

* —— Z/d
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and consider first the images of the elements z, z’@® 0 in I L, (i.e. under the augmentation
map projection 4 — Z). Itisenough to find an isometry g, with g, (2z'@® 0) = 2z, so we may
consider the problem of transitivity of the unitary group on such elements in the quadratic
submodule. By stabilizing the form by H (P), P = Z 3, we can find a product of transvections

e, e<EU(H(P), Q; L,), EU(H(P)), H(E(P)))

which has the required property over I; L,. The images of z, z’ @ 0 are zero in /* and hence it
is enough to lift the reduction of ¢, (mod d) over I'*. Since the map I* — Z/d is surjective,
this element can be lifted to a product of transvections in L, L H(4?). ©

The arguments in the proof of part ii) of Theorem 4.5 also give a statement analogous
to [20], 2.5:

Theorem 4.8. Let N be a closed 1-connected topological 4-manifold, such that
N = N, # (S % S?). Any two locally flat, simple, embeddings S* <, N, representing the same
integral homology class, are isotopic in N.
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