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Cancellation, elliptic surfaces and the
topology of certain four-manifolds

By Ian Hambleton') at Hamilton and Matthias Kreck at Bonn

This is the third in a series of three papers about cancellation problems (referred to as
[11, [IT] and [III]). In this part we use the techniques and results developed in the preceding
papers to give some further applications to the topology of four-manifolds. The main results
concern smooth structures on elliptic surfaces with finite fundamental group, and the
topological classification of four-manifolds with special fundamental groups.

One motivation for studying the classification of four-manifolds up to homeo-
morphism is to get information about smooth structures. S. K. Donaldson has proved [5]
that simply-connected compact algebraic surfaces are often indecomposable as a smooth
connected sum. It is however possible for such a surface to be homeomorphic to a connected
sum of smooth 4-manifolds (by M. Freedman’s results [7] in the simply-connected case),
and thus the same underlying topological manifold can have distinct smooth structures (see
[10], §1 for a survey of such results).

More generally, we conjectured in [10] that an algebraic surface with any finite funda-
mental group has at least two smooth structures, which remain distinct after blow-up
(topologically just connected sum with CP?). We showed that for each non-trivial finite
group G, there exists a constant ¢(G) such that the conjecture holds for all algebraic surfaces
X with 7, (X) = G, Euler characteristic e(X) = ¢(G) and ¢(X) = 0.

We can now verify the conjecture for many non-simply connected elliptic surfaces. In
the statement, p, denotes the geometric genus.

Theorem A. Let X be an elliptic surface with finite fundamental group. If p,> 0 then
X has at least two smooth structures which remain distinct under blow-ups. If p, = 0 then
X # CP? has at least two smooth structures which remain distinct under further blow-ups.

1) Partially supported by NSERC grant A4000 and the Max Planck Institut fiir Mathematik.
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The full conjecture for elliptic surfaces with cyclic fundamental group p, = 0 follows
from [9], Cor.S. Note that in this case, there are homeomorphic surfaces which are not
diffeomorphic. In contrast, two elliptic surfaces with non-cyclic fundamental group which
are homeomorphic are also diffeomorphic [15]. To prove Theorem A, we construct a
smooth manifold M which is homeomorphic to X and whose universal covering decomposes
as a connected sum of manifolds with indefinite intersection forms. By the result of
Donaldson [5] mentioned above, M and X are not diffeomorphic.

In §2 we discuss metabolic forms over group rings Z=n. This theory is used in §3 to
prove that topological 4-manifolds with odd order fundamental group, and large Euler
characteristic are classified up to homeomorphism by explicit invariants. The precise state-
ment includes a lower bound for the Euler characteristic in terms of an integer d(r)
depending on the group.

For any finite group =, let d(n) denote the minimal Z-rank for the abelian group
Q37 ®,, Z. Here we minimize over all representatives of 237, obtained from a free reso-
lution of length three [1], (0.1) of Z over the ring Zzn. Let Out(rn) denote the outer auto-
morphism group of n, and b, (M) the second Betti number of a manifold M.

Theorem B. Let M be a closed oriented manifold of dimension four, and let n,(M) ==
be a finite group of odd order. When w,(M) = 0 (resp. w, (M) * 0), assume that

b, (M) —|a(M)|>2d(n),

(resp. >2d(n) +2). Then M is classified up to homeomorphism by the signature, Euler
characteristic, type, Kirby-Siebenmann invariant, and fundamental class in H,(n, Z)/Out (n).

The type is the type (even or odd) of the intersection form on M.

In § 4, we obtain a classification theorem for manifolds with cyclic fundamental groups
generalizing [8], Thm. B, [9], Thm. 3:

Theorem C. Let M be a closed, oriented 4-manifold with finite cyclic fundamental
group. Then M is classified up to homeomorphism by the fundamental group, the intersection
form on H,(M, Z)/Tors, the w,-type, and the Kirby-Siebenmann invariant. Moreover, any
isometry of the intersection form can be realized by a homeomorphism.

Corollary D. An algebraic surface with non-trivial cyclic fundamental group has at
least two distinct smooth structures which are stable under blow-ups.

Acknowledgement. We wish to thank P. Teichner for a number of useful conversa-
tions, and in particular for pointing out several errors in a preliminary version of this paper.
§ 1. Applications to elliptic surfaces

In this section we will prove Theorem A. To begin, let us recall the construction of

elliptic surfaces given in [15]. Since we are interested only in surfaces with finite funda-
mental group, we consider those which admit a fibration over the 2-sphere, with generic fibre
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a 2-torus. Let p: ¥, — S? denote the simply-connected minimal elliptic surface with
geometric genus g (i.e. e(¥,) = 12(g + 1)) and no multiple fibres. Let B> = S be a small
2-disk which contains no singular locus of ¥, and let V;° = p~1(S%?—int B?). Then
V,=(T*xD*) UV’ and any other elliptic surface with the same geometric genus is
obtained from this by performing log transforms in the 72 x D? part, to create multiple
fibres. In order to have finite fundamental group, there must be <3 multiple fibres. From
this description, the fundamental group

Ty Ximy,ma,m) = {91,92-95197 = 45> = 45° = 419295 = 1}

for 3 multiple fibres and multiplicities (m,,m,,m;), [15], Prop.2. The possible finite
fundamental groups are the finite subgroups of SO (3): cyclic Z/m, dihedral D,,, 4,, S,
and 4, corresponding to the multiplicities (mp, mq) with g.c.d. (p,q) =1,(2,2,m), (2,3,3),
(2,3,4) and (2,3,5).

Proposition 1.1. If X is a minimal elliptic surface with finite fundamental group, then
w, (X) is non-trivial if 6 (X') = 8 (mod 16) or 6 (X') = 0 (mod 16) and one of the multiple fibres
has even multiplicity. If m, (X) is non-cyclic, then w,(X) = 0, where X is the universal cover-
ing, and w,(X") % 0 for every intermediate covering X' — X with even order fundamental
group.

Proof. This follows from [1], Chap.V, 12.3. O

This information determines the normal 1-type of elliptic surfaces [11] with non-
cyclic fundamental group (see [9] for the cyclic case). If w,(X) # 0 the normal 1-type
is B=K(n,1)xBSO —2— BO. If w,(¥)=0 let we H*(K(n,1),Z/2) such that
c*(w) = w,(X), where c¢:X - K(rn,1) classifies the universal covering. This class w

determines the normal 1-type and is itself determined by its restriction to the 2-Sylow
subgroup of .

From Proposition 1.1 we know that the restriction of w is non-zero for each non-
trivial subgroup of even order in 7. This implies that for n = Z/2x Z/2, w = x* + xy + y?
and for n = D,,, w = y* + z. Here we write H*(Z/2x Z[2,Z[2) = Z|2[x, y] and

H*(Dy,, Z|2) = Z|2[x, y, 2]/ (x* + xy)

where z is the second Stiefel-Whitney class of the vector bundle given by the standard
representation

D, = (s,b|s¥ = b2 = (bs)2 =1 > 0(2).

In the case when = is a 2-group, there exists an oriented vector bundle E over K (w, 1) with
w,(E) = w, and the normal 1-type is the fibration B = B(E) = K(n,1) x BSpin — BO.
The map to BO is the classifying map of the bundle E x y, where y is the universal bundle
over BSpin.

We need the following information about €, (B).
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Lemma 1.2. The map Q,(B) = Hy(n, Z), induced by projection on the first factor,
is injective.

Proof. 1t is enough to prove this for = a 2-group, when we may take B = B(F)
as described above. Consider the Atiyah-Hirzebruch spectral sequence with E,-term
H,(M(E xy),Q%"). After applying the Thom isomorphism, the first differential
H,(n, Q") - H, (n, Q™) is dual to H'(n, Z/2) — H*(n,Z/2). Thus E}, = ker w.
Similarly, E; , is isomorphic to the homology of the complex

HO(n,Z) —— H%(n,Z)2) —2E+¥

H3(n,Z]2).

One can easily check for n = Z/2", n =Z/2x Z/2 or n = D,,, that E} , = E; , =0. To
see this we use the identification of w e H?(r, Z/2) given above and carry out the indicated
calculation. O

The method of proof of Theorem A for a particular elliptic surface X is as follows.
We construct a smooth 4-manifold M (i) which is stably homeomorphic to X, and (ii)
such that the universal covering admits a smooth decomposition as a connected sum
M = N, # N,, such that neither N, nor N, has a negative definite intersection form. By a
result of S. K. Donaldson [5] X is not diffeomorphic to M. On the other hand, if one of our
cancellation theorems applies, we can conclude that X homeomorphic to M.

From now on we assume that 7, (X)) is non-cyclic unless stated otherwise. Suppose
that X is a minimal elliptic surface with p, = g. Then e(X) = 12(g + 1) and

g(X)=—-8(g+1).
If p,(X) = g = 2, a suitable model for X is
1.3) M=E,_ ,#% K (5*x5?%

where /S is the K 3 surface, and E, _, denotes an elliptic surface with the same fundamental
group m,(X) and e(E,_,) =12(g—1).

To prove that M and X = [F, are B-bordant we need the following lemma. Let n (resp.
0) denote the non-trivial (resp. trivial) spin structure on the circle S*.

Lemma 14. Let V, be a 1-connected elliptic surface without multiple fibres and
p, = 8. Then V,° is a 1-connected spin manifold and the induced spin structure on T> = 0V,°
is n3 if g is even, and 0 X n? if g is odd.

Proof. The fact that ¥,° is 1-connected follows from [15]. For g odd ¥} is spin
implying that ¥,° is also spin. For g even, V;° is contained in the universal covering of any
elliptic surface with that geometric genus. For appropriate choice of log transforms (see
Proposition 1.1) the universal covering can be spin.

Next consider the induced spin structure on T3 = 61;0. If g even, o(¥) = 8 (mod 16)
and so the Rochlin invariant of 9¥,° is non-trivial. This implies that the spin structure is
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n3. If g is odd, the spin structure on T must extend over D% x T? and so has the form
0 x o X B. Now introduce a multiple fibre with multiplicity two by performing a log transform
on V. The resulting elliptic surface £ is non-spin by 1.1. Since the glueing map for the
multiple fibre is

0 10

-1 2 0

0 0 1

(see [15], p. 637), if a were trivial the result of the log transform would be spin. However,
the diffecomorphism type of F is independent of the parametrization chosen for the torus
T? and so B is non-trivial also. O

We also need another description of F,. Start with S/#, where # = SU(2) is a finite
subgroup, and hence acts freely on S3. Every finite subgroup n of SO(3) arises as the
quotient of such a group # by a central subgroup of order two.

Since S3/# admits a Seifert fibering over S2, with <3 multiple fibres of multiplicity
(my,my,ms), we can decompose ¥ = §3/#x S' = (T?x D?)u,Y,, where Y, has a T2
fibration over D? containing all the singular fibres of the product fibering

(S3/7% = SH)x (S > #).
The fundamental group 7 has the presentation [13], Chap. 6,

£ ={q1,92. 95, h1qj"h =1,4,9,95 = 1"},

where b = —1 if = is non-cyclic and ¢; =1, b = 0 if = is cyclic. The S* x D? neighbour-
hood of the fibre 4 is glued by a homeomorphism f of T2 depending on b. By comparing
this description with that of the elliptic surfaces above, we get

Lemma 1.5. Let X be a minimal elliptic surface with finite fundamental group © and
geometric genus p, = g. Then X is diffeomorphic to (Y — T> X D*) UV,% whereY = S3[# x S*.

Proof. This is clear from the discussion above, using the fact (from [15]) that one
S! factor is preserved in the log transforms used to construct X. O

Proposition 1.6. Let X be a minimal elliptic surface with non-cyclic finite fundamental
group © and geometric genus p, = g = 2. Then X is stably homeomorphic to

E,_, % KK # (S?x S?),

where ny(E,_,) = .

Proof. Both manifolds admit normal 1-smoothings into the same normal 1-type B.
It is therefore enough to show that £, and £, _, 4 K % (S? X §?) are B-bordant. From 1.5
we have the decompositions

E,= (Y —T?xD*)U¥°
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and

E,_, % K% (S2x S2) = (Y —T2x D*) UV%, 4 K 4 (S*x §?).

However, the B-structure on the T3 = 6Vg° and the T3 = 0 Vg"i , is the same, by Lemma 1.4.
Hence the difference of the two manifolds is B-bordant to

—VOUR, # K#(S*x S,

which is 1-connected spin manifold with signature zero. Since this manifold is B-bordant
to zero, the result follows.

When p, = 1 we consider the following model for X. As above, £, denotes an elliptic
surface with the same fundamental group n = 7, X and e(£,) = 12. Let D, denote an
Enriques surface (with fundamental group Z/2 and universal covering spin). Choose a non-
trivial homomorphism f: Z/2 — n, and note that the normal 1-type of D, is

B(f*w) = (K(Z/2,1) x BSpin - BO).

Now consider embeddings of S*!x D* into £, and D, representing f(1) and the non-
trivial element in 7, ,, compatible with the B and B( f * w) structures (with opposite orien-
tation). Then our model for X is

1.7 M = (E,— S*x D3 u (D, — S'x D?).
By construction, the normal 1-type of M is again B = B(w).

Proposition 1.8. Let X be a minimal elliptic surface with non-cyclic finite funda-
mental group © and geometric genus p, = 1. Then X is stably homeomorphic to M.

Proof. Let S3/# =X and L3*(Z/4) = X'. To shorten the notation we let
(ExSHY =(ZxSt—D?*xT?

and (2’ x §1)° = (2’ x §* — D? x T?). We are again using the Seifert fibering structure of £
and X’ to remove a small neighbourhood of a regular fibre. We have B-bordisms:

M~E+Dy,=EXS'—D*xTHUVL+(2'x S*—=D*xT*)uVy

by 1.5. We can write K = VUV, where the glueing diffeomorphism is orientation-
reversing. This leads to B-bordisms:

M+ (—K)~ExSYUVL+(Z' x SH UV + (= VEu—VP)
~(EXxSHOUE % S0
=[(Z-D*xSYHu (' —D*x SH)]x St
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where the final S* factor has the non-trivial spin structure by Lemma 1.4 and “U” denotes
identifying along a common boundary.

On the other hand, F, + (— K) is B-bordant to Z x S*, with the non-trivial spin
structure on the S*. Thus we are finished if 2 and (X — D?x $*)U (2’ — D*x S!) are B-
bordant in ,(B). By Lemma 1.4 this follows if both have the same fundamental class in
H,(m, Z). But, by construction, in both cases the fundamental class factors through
H,(f,Z) = Z/|r| and is non-trivial there. Since the map induced by projection

Hy(Z]4,2) —» Hy(Z[2,Z)

is zero, we are done. 0O

If p, =0 and =, (X) is non-cyclic, then we only know how to construct a suitable
decomposable model for X # CP2. This will be done in the proof of Theorem A, after
some further preparation. For rest of the discussion up to the proof of Theorem A, we will
assume that = = n, (X) itself does not act freely on S°. In other words, = is not cyclic, or
dihedral of order 2k, with k odd. As above, we let 7 < SU(2) be the two-fold covering
group of 7.

To begin, let Y, be the result of doing two surgeries on Y = §3/# x S, one to kill
the class represented by * x S*, and the other to kill the central element {z) of order 2 in #.
We fix a spin structure on Y as the product of any spin structure on S3/# with the
null-bordant spin structure on S!. The surgeries are done preserving this spin structure.
The result is a smooth spin 4-manifold Y, with e(Y,) = 4 and =n,(Y,) = =, where = is the
quotient of & by the central Z/2, and hence is a finite subgroup of SO(3).

Note that Y, has another description. It is the double of a suitable thickening of a
finite 2-complex K with fundamental group n. Namely, Y, is the double of

(Ss/ﬁ_Da)xIUslxDZszDz >~ K.
Here the handle D? x D? is attached to (S3/# — D3) x1 < (§3/% — D?) x I along a tubular
neighbourhood S! x D? of a circle in (S3/# — D3) representing the class {z)>. Since the

Euler characteristic of Y, is four, and we assume that = is not periodic, 7,(K) =R is a
minimal representative for Q3Z. In other words,

0O - N->C,>C,»C »>2Z2-0

with C, = C;(K) finitely generated free Zn modules, and i has the minimal Z-rank for
n,(K) of a two-complex with the given n,.

Moreover, we have an isomorphism H,(Y,) = N® 9%, and N denotes the dual left
module N* made into a right 4-module in the usual way. The intersection form

Sy, = Met(),

where Met (M) denotes a metabolic (weakly) quadratic form on NS N
with 0 @ 9 totally isotropic. The exact sequences for R, | were considered in [I], §2. Let
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3 = J(n) denote the augmentation ideal of 4, and observe that the ideal {3, 2) used in [1],
§2 sits in an exact sequence

1.9 0 - (32> 4->2Z/2->0.
In particular, by [I], Lemma 2.4 there is a short exact sequence
(1.10) 0 -3 >N > G2 >0
and its dual extension
1.11) 0-5E2D->N->3I->0
is classified by an element 0y € Ext} (3, (3,2)) = H2(n, Z/2).

Now let W denote the cobordism from Y to Y, given by the trace of the surgeries
described above. We have the following diagram of exact sequences arising from the triple
W, Y., Y),

1.12) 0 0

! l

0> 3®A4 » H,(W,0W) - Z/2 -0

I l l
034> HFY,) - HW) -0
l l
IO = I
l l

0 0
where the homology is taken with 4 = Z [n] coefficients. Note that

ker (H,(W,Y) - H,(Y)) =3 ®<3,2),

by construction.

Next we need to recall some of the notation and results of [I], §2. Our goal is to
find a quadratic submodule of H,(Y,) which also embeds in a non-singular quadratic
module of the form H(p, 4) L Met(L). Here (as in [II], §1), H(p, 4) is the hyperbolic
form on the module p, 4 @ q, A. We use p, A (resp. q, A) to denote the free rank one
module (dual module) with basis elements p, (resp. q,). In[1], (2.7) we used the submodule

| =R(n) =23 (n)
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such that the extension (1.11) splits when pulled back over & From this we get a commu-
tative diagram
0> g4 - qgA®K - & -0

l ! l

l l !
0- Z/2 - T - J/] - 0.

The cokernel T may be chosen to have exponent two (see the proof of [I], (2.9)), and we
define its dual module to be 7' = Hom, (T, @/Z). Let I denote the module obtained from
N by the pushout of (1.11) using the projection (J,2) — Z/2.

We obtain exact sequences
(1.13) 022 >W->J >0
and
(1.14) 0> gAd->N->BW->0,
and an identification 7 =~ /K.
From the diagram above, we also constructed a short exact sequence

0—>‘ﬁ—>p1A@.§—>T—+O

by dualizing. This was used in [I], (2.9) to show that 9t had an alternate description, as an
extension

1.15) 0->pA->N>L->0,

where p, A < p, 4 is a (two-sided) ideal. The embedding R=p, 4 D K, induces an injec-
tion of the quotient modules L = K. The submodule J = N is mapped injectively into the
second factor 0 @ K. It remains to see how these sequences relate to the maps in our surgery
diagram.

Lemma 1.16. There are A-module isomorphisms
H,W,oW)=3® 3,2, H,(Y)=RON and H,W)=WDJ,2),
such that for the sequences in (1.12):
(i) the upper horizontal sequence is the dual of (1.9) direct sum withid:J - 3,

(ii) the middle horizontal sequence is the direct sum of (1.14) and (1.10),
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(iii) the middle vertical sequence is the direct sum of (1.10) and (1.11),
(iv) the right-hand vertical sequence is the direct sum of (1.13) and the map
id: 3,2 - <{5,2).

Proof. For part (i), we note that the upper sequence is part of the exact sequence
of the triple:

0 - Hy(Y) » H;W,Y,) » H,(W,0W) —» Hy(Y) - 0.
The maps in this sequence are dual to the attaching maps of our handles in the surgery given
byA® A~ H,(W,Y) > H,(Y) = Z® Z/2. In this way, a direct sum splitting of the map
H,(W) - H,(W,Y) induced by the handles gives a dual direct sum splitting of the map
H,W,Y,) — Hy(W,0W).
For part (ii) we consider the middle horizontal sequence, which in geometrical terms is:
H,W,Y,) > Hy,(Y,) » H,W) - 0.
We use the embedding K +— Y, to split H,(Y,) in a natural way, and then (1.10) is realized
geometrically by attaching a 3-cell to K as the core of one of the 3-handles generating
Hy(W,Y,). Parts (iii) and (iv) then follow. O
Let y: H,(W) — T be defined as the composite
VIH,W)=WDJ,2) > W]K=T,

where the last map is the obvious projection.

Under the isomorphisms of 1.16, the composite y, of y with the geometrically induced
map H,(Y,) - H,(W) is just the composite of the second factor projection

H,(Y)=RON - N
followed by the quotient map it — W — T given above. Recall that the intersection form
Sy, is the metabolic (weakly) quadratic form Met (9t). We now use the description (1.15)
for N to (i) fix the embedding N < p, 4 @ L, and (ii) identify the rational space Sy, ® Q
with Met(p,; 4 ® Q) L Met(L ® @). This rational space also contains the form
Met (p,; 4) L Met(R),

with basis {p,, q,} for the first factor Met (p, 4).

Lemma 1.17.  With the identifications of Lemma 1.16, kery, = N D (9, A® K). The
second factor is kery, NN and kery, is a quadratic submodule of Met(p, A) L Met(R),
where the first factor W < p, A @ K has the fixed embedding.

Proof. Direct from the definitions and 1.16. O
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The proof of Theorem A. The procedure described above has already been carried out
to prove Theorem A for cyclic groups [9], Cor. 5. For non-cyclic fundamental groups we
first consider the cases when p, > 0. In these cases, we have shownin 1.6 or 1.8 that X is stably
homeomorphic to one of the models M from (1.3) or (1.7).

When p, = 2 M contains one S? x S factor, and our cancellation theorem [II], Thm.
B applies.

When p, =1 we need to use the fact that the Enriques surface [, decomposes topo-
logically. First note that for 7 = Z/2, there exists a rational homology 4-sphere X with
n,(Z) = n and w,(2) + 0. From surgery theory, we can also construct such rational
homology 4-spheres X’ with non-trivial KS invariant. Now D), is stably homeomorphic to
' 4 M (Eg) # (S?x S?). Since the latter topological model splits off an S2 x §? factor,
we apply [II], Thm. B twice to finish the proof in this case.

We now consider an elliptic surface X with n = =, (X) non-cyclic and p, = 0. If n is
periodic dihedral, we compare X # CP2 with Z # (S? x §2) 4 9 CP?2, where X is a suitable
rational homology 4-sphere. These two smooth manifolds are stably homeomorphic, and
we are done again by [II], Thm. B.

It remains to consider the case when n, (X) is non-periodic and p, = 0. We will use
the decomposition of our elliptic surface given in Lemma 1.5. For any manifold ¥’ cobor-
dant to ¥, a cobordism Z between X # CP*and Y, 4 V' 4 CP? can be constructed by
attachmg W to ¥, x I along T>x D> ¥,x 0, and then glueing on any 1-connected co-
bordism U between ¥,x1 and V" To the result, we attach CP2x I by “connected sum
along I”. In the present situation, ¥, = 9CP? 4 CP? and we take V' = 8CP>.

After the connected sum with CP? the normal 2-type is B = K(n,1) X BSO and Z is
a bordism between the two normal 1-smoothings. The next step is to extend the map
y : Hy(W) - T over Z so that its restriction to H,(X) is also surjective. Since T has at
most three generators over 4 (see [I], (2.7)) this is straightforward. Note that since the
T?x D? used to attach W and ¥, has a simply connected complement in ¥, the module
H, (Vgo) is a free A-module in the induced coefficient system. The extended map y is induced
by a geometric map W — K(=n,1) X, K(T,2), since the first k-invariant of W is the image
of k€ H3(n, M) and hence vanishes under the induced homomorphism

’V* : H3(7t, HZ(W)) - H3(T[, T)

by Lemma 1.16. From this we conclude that Z is a bordism of two 1-smoothings into
= Bx_K(T,2), and hence X # CP? and Y, # V' 4 CP? are stably homeomorphic
over B'.

By induction, we can assume that there is a homeomorphism
h:X4% CP24 (S2xS?) — =5 Y, # V' # CP? 4 (S*x §%).

We will now apply the results of [II] to geometrically cancel the last (S x S?)-factor.
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By Lemma 1.17, the submodule kery, = (H,(Y,), Sy,) is a quadratic submodule of
Met (p, A) L Met(R). We fix an isometry v: Met(p, 4) = H(p, A) and use it to identify
these quadratic modules. Let H(p,A4) denote the intersection form of the last
(S§2 x S?)-factor, and define

N = H(p,A) Lkery, L Kn,(V' # CP?),
where Km,(V’' # CP?) is the kernel of w, in n,(V’' # CP?). Now let
M = H(p,A) LH(p, A) L Met(R) L Kn,(V' # CP?)
and embed N < M as a quadratic submodule using Lemma 1.17 and v.

We will now check that N and O = Ann(M/N) satisfy the assumptions of [II],
Theorem 1.19. By construction, P = p, 4 @ p, A has the property that both PO, P N.
To find a subgroup G, < U(M) which is (N, H(P), ¢)-transitive, we apply [I], (2.9) and
[11], 1.17, where the geometric argument below is used to show that certain linear auto-
morphisms of p, 4 @ N can be lifted to isometries. The form Met (R) has (4, Z)-hyper-
bolic rank =1 by construction.

We may now conclude that algebraic cancellation is possible, and geometric can-
cellation follows by the same method used in the proof of [II], Theorem B, if we can realize
the necessary self-automorphisms of N by homeomorphisms of

Y =Y, 4%V 4% CP*4 (S2x §?).

These self-automorphisms are listed in [11], 1.8, 1.11. At each step in the algebraic process
we are moving a hyperbolic element in N by an isometry of M which preserves N. Moreover,
all of these automorphisms except for the elements of G, are given by transvections defined
using elements of N. It follows that they also induce isometries of the intersection form of
Y’, since this form contains N and has the same rational space as M. To realize the ele-
mentary automorphisms in

EU(H(P),Q;Met(L) L Kn,(V' # CP?)),
where Q = PO, P, by self-homeomorphisms of Y’ we can apply [11], 2.3 with ¥, = H,(Y,).

For the elements of G, we use the fact established in [I], Lemma 2.11, that the linear
automorphisms of [I], (2.9) are all realized by simple homotopy equivalences of the two-
complex Kv S2, where K was used to construct Y,. The argument was to check that the
k-invariant of K v S2 is preserved by such linear automorphisms, and then use SK, (Zn) = 0
(valid for finite subgroups of SO(3) by [12], 14.1, 14.5) to show that the induced homo-
topy equivalence is simple. Since Y, is the boundary of a 5-dimensional thickening of
K < R3, the s-cobordism theorem [7] implies that simple homotopy equivalences of K v S?
induce self-homeomorphisms of Y, # (S? x §2). In addition, the homeomorphisms con-
structed in this way extend over the cobordism W # (S2 x §2 x I') between Y, # (S2 x §2)
and Y # (S? x S?) and preserve the B’-structure. We extend by the identity to get homeo-
morphisms of Y’ whose induced maps on homology preserve N.
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The effect on =, (Y, # (S x §?)) is to lift the original linear automorphism 7 of
n,(Kv S?) = P, @® N to an isometry

. (7 0
’“(ﬂ )

of the metabolic form H(P,) L (H,(Y,), Sy.). In this notation, f: P, ® N —» P, @ N has
image which projects to zero under the reference map R — T. The automorphism % on
(H,(Y"), Sy.) is just this one extended by the identity. By construction (of our linear equi-
valences 1) the restriction of 7 to N extends over M. This provides a lifting of the linear
automorphisms into G, = U(M) satisfying the assumptions of [II], (1.17).

It follows that X # CP? and Y, # V' # CP? are homeomorphic. O

§ 2. Metabolic forms

In this section we return to our original algebraic setting. Let R be a Dedekind
domain and F its field of quotients and recall that a /attice over an R-order A4 is an A-
module which is projective as an R-module. Let 4 be an order in a separable algebra over
F [4], 71.1, 75.1. In [I] we introduced the following definition: a finitely generated A-
module L has (4, B)-free rank =1 at a prime p € R, if there exists an integer r such that
(B"® L), has free rank =1 over 4,. Here 4, denotes the localized order 4 ® R,,.

Similarly, we will say that a quadratic module V has (4, B)-hyperbolic rank =1 at a
prime p € R if there exists an integer r such that (H(B") @ V'), has free hyperbolic rank
21 over 4,. Our general reference for quadratic and hermitian forms is [2], pp. 80, 87.

One way to obtain quadratic modules V with (4, B)-hyperbolic rank =1 at all but
finitely many primes is to assume that ¥ has a submodule Met (L) where L has (4, B)-
free rank =1. A generalization of this would be to assume that ¥ contains a ‘“metabolic
form” on a non-split extension of L and L. In this section we define a notion of metabolic
forms general enough for our applications to topological 4-manifolds in § 3. The notation
and conventions of [II], §1 will be used.

If N is an A-lattice and g: Nx N —» A is an R-bilinear form, let

[e] = {2.18.(d, &) = g(d, ¢') + (¢, 1(¢')>, T € Homg (N, N)} .

Any 0 € Ext} (N, N) defines an extension
2.1) 0-N_'‘SE-L N0

of A-lattices which splits over R. We say that [g] is 0-sesquilinear if there is a cocycle
y € Homg (N ®g 4, N) representing 0, and A-maps «, € Hom (N, N) such that for all
ae A:

g(da,¢') = ag(e, ) — i{a*(¢),7(¢, ),

@2 26, 8'a) = g(d ¢)a— B*D). 7 D).
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Note that any cocycle y satisfies the relation:

(9, a,a;) =y(d,a,)a, +y(day, a,)

and serves as a way to specify the 4-module structure E on the R-module N @ N given
by 6. For (x, ¢) e N® N define

(23) (x,9) - a=(xa+7y(¢,a), da).

If we vary the choice of representative g, € [g], then the new 7y is y, = y + dt, where

(01) (¢, a) = 1(p)a—1(¢a),

for some 1€ Homg (N, N), and all ae A. Then g, (¢, ¢') = g(d, ¢') + (P, t(¢')) satisfies
(2.2). Given an extension (¥, 6) and a 6-sesquilinear form [g] with a + f =1, we define
the metabolic (A, A)-quadratic form Met (N, 0, [g]) = (E, [q]) as follows: pick a compatible
y, g satisfying (2.2) and set

24 q(Cx, 9), (x', ¢)) = <B* (@), x> + A<a* (), x> + g (¢, &) -

It is easy to check that g is sesquilinear in the usual sense if [g] is 0-sesquilinear. Since
o+ B =1 the associated hermitian form g + Ag* is non-singular. We remark that the
special case o = 0, f =1 gives the usual definition of a quadratic metabolic form on the
split extension.

An arbitrary extension need not admit any such form and we wish to determine the
obstructions. Suppose that N is reflexive and let T denote the involution on Ext} (N, N)
given by dualizing exact sequences (N, 0) — (N, 0)*. An extension (N, 0) is A-self-dual (i.e.
(N, 0)* = A(N, 0)) if N is reflexive and there is a commutative diagram

0 > N—E-1LNS0

2.5) [
0> NS E-' LS N->0.

If h* = Ah then h is the adjoint of a metabolic hermitian form on E. We will define a
homomorphism

0:{(N,0)* = A(N,0)} < Exty(N,N) - H'(Z/2;Hom (N, N))

where Hom , (N, N) has the involution o — Za*. We will show that ¢ (N, 0) is the obstruc-
tion for finding a A-self-dual map A. Choose an R-section s: N — E inducing a cocycle y
and identify E = N @ N as above. Then the lower sequence is split over R by s* leading to
an identification of E = N @ N. In these coordinates, for any A-map 4 making the dia-
gram (2.5) commute,

h(x,$) = (x + s*hs(¢), 1)
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and similarly

h*(x, ¢) = (Ax + s*h*s($), ¢) .
Now (h*)™! o Ah(x, ) = (x + o (h)(¢), d) wWhere o(h) = s*hs — Is* h*s. Since (h*)~* o 1h
is an A-map, we can check using (2.3) that g(h) is also an A-map. Similarly, by computing

h* o (Zh~') and comparing with the formula for the dual, we see that go(h)* = — Ao (h).
Moreover the cohomology class

[e(h]e H'(Z/2; Hom (N, N))

is independent of the choice of 4 and the choice of the section s. Define ¢ (¥, 6) = [o(h)]
for any 4 making the diagram (2.5) commute.

Proposition 2.6. If N is a reflexive A-module and (N,0) is a A-self-dual extension,
then (N, 0) admits a metabolic A-hermitian form if and only if

o(N,0) =0e H'(Z/2; Hom (N, N)) .

We want to identify the obstruction to obtain a quadratic refinement, given a meta-
bolic A-hermitian form 4 on the extension. Let

Hom(E,E) = {g: E —» E|i*gi =0, g an A-homomorphism} .
Then define
n:kerg — coker {H°(Z/2; Hom,(N,N)) —» H°(Z/2; Hom{(E, E))}

as the homomorphism # (N, 8) = [h]. The map of Tate cohomology groups is induced by
the homomorphism « +— j*oj, for any « € Hom (N, N).

Proposition 2.7. Suppose that (N, 0) admits a metabolic A-hermitian form. Then (N, 0)
admits a metabolic (1, A)-quadratic form with respect to the minimal form parameter if and
only if n(N,0) = 0.

Proof. If the obstruction is zero, we can write & = g + A¢g*, for some 4-map g such
that i*qi = 0. Now ¢ fits into a commutative diagram

O—»N——i—*E——j—»]VaO
T

0—>N——j*—->E—i‘—+}V—+O

for some A-maps o and f. It is easy to check that g is the adjoint of a 0- sesquilinear form
asin (2.4). O

For our geometric applications it is useful to identify the obstruction to the existence
of a (4, 4)-Quadratic refinement of a metabolic hermitian form (see [11], § 1 for definitions).

7 Journal fiir Mathematik. Band 444
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In the rest of this section, we assume that R = Z and 4 = Zn, where nis a finite group. Then
each lattice L over A is reflexive. Let

y:kerg — coker {H°(Z/2;Hom,(N,N)) —» H°(Z/2; Homg (N, N))}

be the homomorphism defined by y(N, §) = [s*hs], where A is a metabolic A-hermitian
form on the extension. We say that a A-selfdual R-homomorphism g : N — N is weakly even
if {¢,g(¢x)> =0(mod?2) for all € N and all xen, x + 1, with x? =1.

Proposition 2.8. Suppose that (N, 0) admits a metabolic A-hermitian form h and that
H'(Z]2, A) = 0, where the Z |2 action on A is given by a > Aa. Then (N, 0) admits a metabolic
(4, A)-Quadratic form with respect to the minimal form parameter if and only if y(N,0) = 0
and s* hs is weakly even for some section s.

Proof. Under the assumption H'(Z/2, A) = 0, an element a€ 4 such thata = b + Ab
determines b uniquely modulo the minimal form parameter 4 = {¢ — A¢|c € A}. Now the
condition that (¥, 0) = 0 and the assumption that s*hs is weakly even implies that for
each ee E there exists an be A with h(e)(e) = b + Ab. We can define q: E — A/A by
gq(e=[b]. O

Remark 2.9. Suppose that R = Z and 4 = Zn where = is a finite group. If 4 has the
involution induced by g+ g~ !, for gem and A = +1, then H'(Z/2, A) = 0. Note that this
is not always true for involutions on the group ring. For the standard involutions
g w(g)g ! arising from an orientation character w:n — Z/2, the maximal form-
parameter is generated by {a — Aalae A}u{gen|g®> =1,w(g) = —1}.

Remark 2.10. Notice that from (2.4) a metabolic quadratic form has associated qua-
dratic function [¢](x,®) = (¢, x> + g(¢, ), (mod {a — Aa}). This is exactly the usual
formula for the split extension.

We will now apply these results to a special case. Let N = Q*Z, the kernel of a pro-
jective resolution F, of Z of length k (see [I], (0.1) for the case k = 3). We will show that
every element of Extl(N,N) is (—1)**!-self-dual.

Lemma 2.11. Let N = Q*Z. The involution t given by dualizing exact sequences
induces multiplication by (—1)*** on Ext} (N, N).

Proof. Let X be a projective resolution of N and X the dual co-resolution of N. We
have two isomorphisms «, § : Ext! (N, N) =~ H*(Hom (X, X)) comparing an extension with
X or X respectively. Note that over 4 = Zn we can use X instead of an injective co-
resolution for computing Ext'(N, N). It is not difficult to see that « = —B. Let ¢ be the
involution on H'(Hom (X, X)) induced by dualization. By construction, at = ¢ imply-

ing ata™!= —1.

Note that Hom , (X, X) =~ Hom, (X, X) ®, Z, and that Hom, (X, X) is a co-resolu-
tion of Hom, (N, N). Thus

H(Hom (X, X)) = H'(Hom, (X,X)®,Z) = H (n; N®,N)
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and under these identifications ¢ corresponds to the involution induced by the flip map

s:x®yr—>y®x on N® N. Hence ata~! = —s and we finish by applying the following
more general remark.

Sublemma 2.12. The flipmap s: x @ y+—y ® x on N® N induces multiplication by
(—1)* on Tate cohomology H'(n; N®, N) for each i = 0.

Proof of the Sublemma. We follow an argument suggested by R.Swan (compare
[3]). Extend the projective resolution F defining N to a projective resolution F of Z. Let
f be the chain map on F ®, F mapping x ® y — (—1)¢e® 40, @ x. Since f induces the
identity on Z it induces the identity on all the derived functors. We have the similar chain
map on F®, F which on F,;, = N® N is (—1)*s. Now we consider F®, F as part of a
co-resolution of N ® N ending in Z. Similarly we consider F®, F a part of a complete
co-resolution of Z. Then

Hi(n; N®, N) = H'(Hom,(Z, F®, F)) =~ H'(Hom,(Z, F®, F))
where the last isomorphism is induced by the obvious chain map F — F. Thus
s=(=DFf*=(=Dk. O

Example 2.13. Now we restrict to groups = of odd order. Since Ext}_ (N, N) then has
odd order g(N, 0) and 5 (N, 0) vanish for each A-self-dual extension. In particular for
N = Q¥Zand 4 = (— 1)**1, each extension (N, 0) admits a metabolic (4, 4)-quadratic form.

§ 3. Four-manifolds with odd order fundamental group

We now apply the results of §2 to prove Theorem B. The method of proof is to
construct a model for M and then apply our cancellation theorem. First, let X denote a
closed, oriented 4-manifold with 7, (X) = = and ¢(X) = 0, representing the fundamental
class of a spin 4-manifold M in H,(n, Z). Note that since 7 has odd order,

QPSP (K (n, 1)) = Z @ Hy(m, Z)

and so any class in H,(r, Z) can be realized in this way. We may assume (by forming the
connected sum with enough copies of §2 x S that there is a short exact sequence [8], 2.4(i):

(3.1) 0> N - n1,(X) >N -0,

where 9 is some representative of 23Z. Then X = KU, D*, where K is a finite 3-complex.
The attaching map « € n,(K) which sits in an exact sequence (see [8], §1)

0 » I'(n,(X)) » n;(K) - Hy(K, Z) > 0.
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The module H, (K, Z) = 3(n) as an 4-module and o maps to a generator (it is a cyclic
module).

Lemma 3.2. Ifn has odd order, then the Tate cohomology groups A (n, I' (L)) = 0 for
L any representative of Q37 or S3Z.

Proof. We apply Lemma 2.12 following the method of [3] to conclude that these Tate
cohomology groups have exponent four for 7 any finite group. Since = here has odd order,
they must vanish. O

We can now study A*(x, I'(rn,(X))) using the exact sequences

0 » Ir(@72) » r(n,(X)) - D - 0,
0 » Q7Z®8*7 - D - I'(537) - 0,
0 - K - I'(n,(X)) » I'(S32) - 0.

These sequences can be combined into a commutative diagram. We use the short
notation A*(L) = A'(xn, L) for the Tate cohomology groups of © with coefficients in an
A-module L. In particular, the group H®(r, L) = L™/Y L, where X denotes the norm map
(multiplication by the group ring element X = X {g|g e n}).

ar@z) AT CAI(S*2) >0

\ﬁ"(K)/ \ﬁ°(D) \ﬁl(K)
N e \ﬁl(r(mz)) yd

0 \__/,1?0(93Z®S3Z)
Since A°(n, Q27 ® S37) = Z/|n|, we get (for any group of odd order)
(3.3) HO(n, I (n,(X))) = Z/|x]| .

Let Sy denote the equivariant intersection form on #,(X). We can construct other
complexes by varying the attaching map a. More precisely, we can attach the top cell by any
element « + f, where fe I'(n,(X)). The equivariant intersection form on 7, for the new
complex X, is Sy + 2 (f). Since fel' (n,(X)), our new attaching map o + f has the same
image in H,(K, Z) as «. Hence to obtain a new Poincaré complex it remains to arrange that
the new intersection form is non-singular.

Lemma 3.4. Suppose that n,(X) has odd order. There exists a closed topological
4-manifold Y withn,(Y) = n, 6 (Y) = 0 and the same w,-type as X, such that whenw,(X) = 0
(resp. w,(X) % 0), b,(Y) = 2d(n), (resp. b,(Y) = 2d(n) + 2)). Furthermore, Y represents
the same class in H,(n, Z) as X.

Proof. We will give the proof when X is spin; in the non-spin case we form the
connected sum with CP2 4 CP? to finish. Our construction of Y will consist of attaching
suitable cells of dimension = 3 to X and hence a referencemap c¢: Y — K(=, 1) is preserved.
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It follows that the image of the fundamental class ¢, [X] e H,(n, Z) is not changed by
attaching cells using elements of I (n,(X)). This uses the fibration B - G - K(x, 1), and
the fact that H, (B, Z) ~ I' (n,(X)).

We need the following result [3]: when =, (X) has odd order, the sequence
0 > Z - I'(n,(X)) - 73(X) » 0

is split exact as a sequence of 4-modules. The generator of Z maps to the element X (). It
follows that X (o) represents a generator of the group Z/|=| under the isomorphism (3.3).

We begin by noting that the image of [S,] under the natural map
A°(n, I (n,)) - A°(n, I'(S32))

is just the restriction of the form to the submodule = Q*Z of n,(X). Since the group
A°(n, I'(S3Z)) = 0, we can re-attach the top cell to get a complex X, with a metabolic
intersection form (possibly singular). Let 9t = L @ A4°, where L has no projective direct
summands. Then n, (X) = E@® A°@ A°, where E is a well-defined extension of L by L given
by pulling-back the extension (3.1). Let S; denote the form Sy, restricted to the direct
summand E < 7, (X). Since the class of [Sy € A°(r, I (r,)) is unchanged, it follows that
S is non-degenerate, with determinant prime to | x|, after possibly varying by an element of
Im X. This can be verified by considering the class in

A%, *7Z® S*7Z) = A°(n, Hom, (L, L)) = Hom,(L, L)/Im X = Z/|=|

represented by an off-diagonal block of S;, using a splitting over Z to write the matrices.
Now we complete at a prime dividing | 7| and we find that our class is represented by a unit in
Hom, (L, L) modulo Im 2.

The next step is purely algebraic. Any non-degenerate metabolic form on the extension
E@ A°® A* with N = L @ A° totally isotropic is the restriction of a non-singular metabolic
form on E@ A2"**) with L @ A" ** totally isotropic. To see this, note that since X was spin
the form Sy admits a quadratic refinement (see Proposition 2.7). Now the form Sy, is the
pull-back of forms over Zn and Q, glued together over Q= [16]. This reduces our problem
to forms over fields where it is trivial. The pull-back gives a stabilized form hon E®@ P@ P
for some projective module P. By forming the sum with H (Q), where P@® Q = A" * 9, we are
done.

Next, observe that the difference 7 — Sy, = Z(f) for some fe I'(E® A?"). It follows
that we can stabilize X, by copies of $? x S? and then re-attach the top cell to get a finite
Poincaré 4-complex X, with metabolic intersection form Sy, = A. Since (7, (X,), h) contains
the totally isotropic submodule N@ 4" =~ L@ A" **, we can write h = h' L H(A"**). The
final step is to attach cells to X, to kill the hyperbolic summand H (4" **). The resulting
Poincaré complex is called X".

Our final step is to go from a Poincaré complex to a topological manifold. There exists a
degree one normal map Y, — X’ where Y, is a closed topological 4-manifold (since the only
obstruction to reducibility of the Spivak normal fibre space for a 4-complex lies in
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H3(X', Z/2) = 0). The intersection form on Y, has signature zero and contains the inter-
section form of X’ as an orthogonal direct summand.

Lemma 3.5 [16]. Let = be a finite group of odd order. Any element of L% (Zn) with
multisignature zero can be represented by a form H (P), where P is a projective module over Zm.

Every projective module over Zx has the form P = P, ® A*, where P, has rank one, by
Swan’s Theorem [14]. Using this result and our improvement of the Roiter Replacement
Theorem [I], 1.19, we see that (=, (Y;), Syl) contains a hyperbolic summand H (4**1). Now
we can surger away these hyperbolic planes in Y, to obtain the required 4-manifold Y. ©

The proof of Theorem B. The basic part of our model for M is provided by the
manifold Y from Lemma 3.4. To obtain the rest we form the connected sum of Y with a
suitable simply-connected 4-manifold, including at least one S? x S2. The proof is now
finished by [II], Thm.B. O

§ 4. Four-manifolds with cyclic fundamental group

The goal of this section is to prove Theorem C. We will fix the notation n = C, for the
cyclic group of order n, and J for the augmentation ideal in 4 = Zn. By [8], Thm. B we can
assume that n is even. We showed in [9], p. 57, or [11], § 3 that the stable homeomorphism
types are of the form X # Z, where X is a rational homology sphere, and Z is a 1-connected
closed 4-manifold. Recall that there are three w,-types: (I) w, (X) % 0, (I) w, (X) = 0, and
(IID) w, (X) = 0, but w,(X) + 0.

Proposition 4.1. For any n, there exist a rational homology sphere with fundamental
group C,, w,-types (I1) or (111), and hyperbolic equivariant intersection form on the universal
covering. In w,-types (I11), there exist such rational homology spheres with either value of the
Kirby-Siebenmann invariant.

Proof. Since we may construct a rational homology sphere as the double of a suitable
4-dimensional thickening of a 2-complex with cyclic 7, it is clear that the intersection form
can always be chosen metabolic on I @ J (see [8], p. 99). Also, we have shown in [8], 4.5
that for r = C,, both w,-types can be realized with hyperbolic intersection forms H (J). For
n odd it is also true since metabolic implies hyperbolic in this case by 2.13.

To handle the general case with n even, note that the obstruction to finding a quadratic
refinement for the intersection form lies in A°(Z/2,3®,3) = A°(Z/2, Hom, (3, 3J))
(see §2). The restriction map C, < C, induces an injection on A°(Z/2, 3®,3). But the
covering of our rational homology sphere with fundamental group C, is just a rational
homology sphere connected sum with (k —1) copies of S?x S2. This has hyperbolic
equivariant intersection form. It follows that our obstruction is zero, and from [2], p. 85 that
the rational homology sphere Y with 7, (Y) = C, has hyperbolic intersection formon ¥. 0o

Proof of Theorem C. For a manifold X with cyclic fundamental group =, we
abbreviate H, (X)/Tors = H. Then as in the proof of [1I], 4.2 we consider the following three
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fibrations B(I), B(II) and B(III) over B Top, for w,-type (I), (II) and (III) respectively. If X
and Y are two manifolds satisfying the given conditions, by [II], 4.2 there is a
homeomorphism

h:X#r(S*x8? - Y#r(S?x8?
such that A, restricted to H,(X)/Tors is a prescribed isometry
0:H,(X)/ Tors - H,(Y)/Tors.

This implies that the restriction to H, (r (S? x §2)) = H(Z") is an isometry. By [7] or [II],
3.1,any o € U(H, (X, Z)) can be realized by a self-homeomorphism f of r (S% x S2), and we
compose & with Idy # f to get the restriction of 4, the identity on H,(r(S%x §2)).

It is enough to prove the result for X = X # Z, where Z is 1-connected, and X is a

rational homology sphere with the same w,-type as Y and hyperbolic intersection form on
the universal cover.

First we will carry out algebraic cancellation. As usual, we can assume that r = 1. The
intersection form on X # (S?x S?) is just H(P,) L H(J) LV, where V is the intersection
form of Z. Since 0(8* (h*)) induces the identity on H(Z"), we need only prove transitivity
on hyperbolic elements in N = H(P,) L(p, 3@ P,) L V. This is a quadratic submodule
of M =H(P,®P,) LV with Ann(M/N) =DO. We claim that the assumptions of [II],
Lemma 3.2 are satisfied, with 4 = Zn, B= Z[Z/2] and O = J. Indeed, take the group
G, = CH(SL,(4; D)) - EU(H (P); D)), using [11], Lemma 3.4 with © = ¢, (J) to establish
the condition [II], 1.15(ii). The group I' = SL, (A4; ker ¢) has the desired linear transitivity
property by [1], Lemma 1.15. Since ker¢ = J, the group G resulting from [II], Lemma 3.2
is just the G, above. Now to finish the algebraic transitivity, we use [1I], Theorem 1.11.
This last step uses automorphisms from the group

CEU(H(P), Q; VD), H(E(P; D)) EU(H (P); D)) .

For the automorphism g used in the algebraic cancellation, g @ id 2 « 52, can all be realized
by self-homeomorphisms of X 4 3(S2 x S2). For H(SL, (4; D)) we use the fact that X is the
boundary of a suitable thickening of a two-complex K, and apply the same argument used in
§ 1. For the elements of EU (H (P), Q; VO) or EU (H (P); D) we are done by [11], Corollary
2.3, applied with V, = H(J). O

The proof of Corollary D. 1If X is an algebraic surface with cyclic fundamental group
and e(X) + 4, the result was already proved in [9], Cor. 5. If e(X) = 4, we apply Theorem C
to conclude that X is homeomorphic to a smooth decomposable manifold of the form
T # (S2xS?) or Z # CP? 4 CP?, where X is a rational homology sphere with the correct
fundamental group and appropriate w,. O

Remark 4.2. Our methods give new proofs of [6], Thm. 1, Thm. 2. For the (4k + 2)-
dimensional result, we use [II], 1.24 and carry out geometric cancellation. For the
4 k-dimensional case, we use [II], 4.2 and Theorem C.
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