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Abstract. The computation of the projective surgery obstruction groups LP.(ZG), for G a hyperelementary 
finite group, is reduced to standard calculations in number theory, mostly involving class groups. Both 
the exponent of the torsion subgroup and the precise divisibility of the signatures are determined. For G 
a 2-hyperelementary group, the LP.(ZG) are detected by restriction to certain subquotients of G, and a 
complete set of invariants is given for oriented surgery obstructions. 
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O. Introduction 

The projective surgery obstruction groups were first introduced by S. P. Novikov 
1-30] in the context of Hermitian K-theory and the topology of infinite cycle 
covers of compact manifolds. These groups arise as the codimension 1 summands 
in a splitting theorem for the Wall surgery obstruction groups of a Laurent 
polynomial extension 1,39, 12], or more generally in the classification of non- 
compact manifolds [40, 41, 27, 33]. The algebraic description of projective L-theory 
and the splitting theorem were given a systematic exposition by A. A. Ranicki 
1-34, 36], including a definition of the lower L-groups by analogy with the lower 
K-groups of Bass. 

With the extensive development of 'bounded' or 'controlled' topology in the last 
decade, the role of projective and lower surgery obstruction groups has increased in 
importance. For example, the concrete structure of these groups is relevant to the 
classification of linear representations of finite groups up to topological conjugacy 
~5, 6, 18] and the recent survey article I13] describes other applications. The purpose 
of the present paper is to provide a reference for further computations in this area. 
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Here we treat only the projective surgery obstruction groups and defer the discussion 
of lower L-groups to a subsequent paper. 

The problem of computing the projective surgery obstruction groups L~(ZG) 
has already been extensively studied for the case where G is a finite hyper- 
elementary group (see, for example, [2, 3, 7, 20, 23, 24, 32, 44]). These computa- 
tions may be considered as a further development and application of the 
classical theory of quadratic forms over fields. In many cases a particular geometric 
problem provided the motivation for considering, a special class of groups in detail. 
This occurred for example in the space form problem [26, 10, 15,4], or in the 
problem of surgery obstructions on closed manifolds [14, 17]. Unfortunately, the 
most complete statements in the literature for 2-hyperelementary groups (in 
[3,23,24]) are based on an incorrect calculation [1, Cor. 4a] of the map 

In this paper, we reorganize the calculations so that it is easy to incorporate the 
correct results about this map (from [16, 1.16]) and then focus on two aspects of 
these computations which have not received close attention. The first aspect is 
functoriality: is the calculation arranged so that one can determine (even in principle) 
the induced maps on L-groups arising from group homomorphisms? The second 
aspect is effectiveness: given a character table for G, how much of the calculation 
is derived via an algorithm from this information, and what additional data is 
needed? 

From this point of view, the situation is satisfactory at the moment only for G a 
finite 2-group [20]. In Section 2 we establish the analogous results for the relative 
group L~(ZG ~ Z2G) when G is 2-hyperelementary, and tabulate the answers (see 
Table 2 at the end of Section 2). Note that when G is not a 2-group, the relative 
group does not instantly decompose in a natural way according to the character table 
of G (compare [3, 23, 24] where the reduction to character theory is not functorial). 
To obtain this we need the splitting of [15, Section 6]. In the technique of 
calculation, our only other innovation is to take up a suggestion of C. T. C. Wall [44, 
p. 259]: 'The statements for CL~(S) could probably be simplified by using relative 
groups.' Indeed we replace Wall's CLff(S), which measure the deviation from the 
Hasse principle, by the relative groups L~(S ~ SA) where S denotes a central simple 
algebra (with involution) and Sa is its adelic completion. 

Our functorial description of the relative groups L~(ZG ~ Z2G) and [16, 4.6] leads 
to an efficient 'computation' of LP(ZG) for hyperelementary groups in the sense that 
we have reduced it to standard calculations in number theory, mostly involving class 
groups. In the process we have settled all the extension questions and the precise 
divisibility of the signatures. Section 5 lists the necessary steps and the answers. One 
consequence is the following corollary. 

COROLLARY 5.21. The torsion subgroup in LP,(ZG, a, u) has exponent 4 for any 
geometric antistructure. In the special case of the standard oriented anti-structure, the 
torsion subgroup has exponent 2. 
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By Dress induction [11], [45,2.1.2], the L-theory for a general finite group is 
computed by restriction to the collection of 2-hyperelementary subgroups of G. 
More precisely, the result is a computation of L~(ZG) in terms of L p of 2-hyper- 
elementary groups, provided that the maps induced by group homomorphisms are 
also calculable. This paper can be viewed as a step towards determining these 
induced maps (see [20] if G is a 2-group). 

We now give two qualitative results, valid for the standard oriented antistructure 
(defined by the involution g ~ g- 1, for g ~ G). First, it turns out that we can reduce 
further to the class of basic 2-hyperelementary groups using the methods of [21] and 
the main result of [16]. Recall that a basic group is one for which all normal Abelian 
subgroups are cyclic. More explicitly [21, 3.A.6], a basic 2-hyperelementary group 
G = Z/m >< a, where m is odd and a a 2-group, has 

al = ker(t: a ~ (Z/m) ×) 

cyclic, dihedral, semi-dihedral or quaternion. 

THEOREM A. Let G be a 2-hyperelementary group. Then the sum of all the 
(generalized) restriction maps 

L,P(ZG) ~ L,P(Z[G]) ~) ~ {LP,(Z[H/N]): H/N a basic subquotient of G} 

is a natural (split) injection, where G = G/[al, cq] and ZG has the standard oriented 
antistrueture. 

A generalized restriction map is restriction followed by the map induced by a 
surjection of groups. The usefulness of Theorem A is likely to be in deciding whether 
a surgery obstruction is zero or non-zero, in terms of the information available over 
the sub-quotients. 

Our second general result deals more specifically with the problem of deciding 
whether the surgery obstruction of a geometric problem is nonzero. Let 2P(f, b) 
L,P(ZG) be the surgery obstruction of a degree t normal map f :  M ~ X, b: vM ~ 4, 
where M" is a closed n-manifold and X is a finitely dominated Poincar6 space of 
dimension n [33]. Associated to this situation, there are certain primary invariants: 
the multisignature, Arf invariants, semi-characteristic Z½, and (cohomology) finiteness 
obstruction a. (X)  ~ H°(Ko(ZG)). These are defined at the beginning of Section 4 in 
terms of certain natural maps of L-groups. 

Here and in the rest of the paper, we use the notation H i(A) as a short form for the 
Tate cohomology group Hi(Z/2; A) with coefficients in a Z/2-module A. In order to 
have compatibility with the maps in the arithmetic sequence, we will use the 
Z/2-module structure on /~o(ZG)induced by [P] ~ - [ P * ]  for any projective 
module P. Then our final invariant for detecting the surgery obstruction, defined on 
the kernel of the primary invariants, is the 6-invariant: 

~(f, b) e U"+ I(Wh(O2G)/Wh'(ZG))/{LL I(Z2G) • d*H"(go(ZG))}. 

This is defined in detail in (4.3) following [15, Section 5]. 
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THEOREM B. For any oriented degree 1 normal map ( f  b), the projective surgery 
obstruction 2P( f ,  b) is detected by the multi-signature, A t f  invariants, semicharacter- 
istic, cohomology finiteness obstruction and the 6-invariant. 

We remark that both the finiteness obstruction ([26, 28, 46]) and the 6-invariant 
(see [15, Sections 4, 9]) are computable using Reidemeister torsion. 

1. Reduction to Simple Algebras 

The geometrically significant surgery obstruction groups are L~(ZG), and these are 
algebraic L-groups ([34]) with decorations in an involution-invariant subgroup 
- ~ _  Ko(ZG) or X _  Wh(ZG). The most important examples for this paper are 
L~(ZG) or L~(ZG), where )7( = K0(ZG) or ~ = Wh(ZG) respectively. In order to 
compute these groups in terms of the character theory of G and the number theory 
associated to the centre fields in QG, it is convenient to use the Morita invariant 
'round' algebraic L-theory LXn(A, ~, u) for a ring A with antistructure, based on 
involution-invariant subgroups X of KI(A) (see [19, Section 2]). In addition, we will 
use the 'round' projective L-groups L~(ZG) based on the subgroup Ko(ZG)_ 
Ko(ZG). These are related to the usual projective L-groups by the exact sequence 
[19, 3.2], [15, 3.8] 

0 ~ Lfk(ZG) ~ Lfk(ZG) ~ Z/2 -~ Lf,_ ~(ZG) ~ Lfk- ~(ZG) ~ 0. (1.1) 

The map into Z/2 is given by the rank (rood 2) of the underlying projective module. 
Now let G = Z/m x a be a 2-hyperelementary group, where m is odd and a is a 

finite 2-group. Let R = Z[G], S = Q[G] and for dim, let R(d)= Z[(a]ta be the 
twisted group ring quotient of R defined by sending a generator of Z/m to (d. The 
'round' L-groups of these rings based on the full K1 are denoted L K. These were 
introduced by C. T. C. Wall and used extensively in his calculations of L-groups 
[45, Section 1.1]. 

The following is a version of Wall's 'main exact sequence' [45]. 

THEOREM 1.2 ([15, 6.13, 7.2]). There is a natural sptittin9 
@ 

L,P(ZG) = ~ {L~(ZG)(d): dim} 

such that 

O) for d ~ 1, LP,(ZG)(d) ~ L~(ZG)(d), 

(ii) LP,(ZG)(d) maps isomorphieally under restriction to LP,(Z[Z/d ~ a])(d), 
(iii) for each d Ira, there is a Ion9 exact sequence 

• -.--* L~+ l(S(d)) -~ LP,(ZG)(d) ~ I-I L~,(R*(d)) ~ Lr,(S(d)) ~ Lff(S(d)) --.... 

where S(d) = R(d) ® Q and ~(d) is the completion S(d) ® Z of S(d). 
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R e m a r k  1.3. In order to obtain the splitting above from the results of [15, Section 
6-1 it suffices to show that the maps in the arithmetic sequence are compatible with 
the usual Mackey functor structure on each term, defined by induction and 
restriction with respect to odd-index subgroups of G. Most of these maps are just 
'change of ring' maps in L-theory, and the required compatibility is clear from the 
definitions given by Dress [11] or Ranicki [35]. The connecting homomorphism in 
the arithmetic sequence is the composite of two 'change of ring' maps for relative 
L-groups and the boundary map in the exact sequence of a pair (see [35, p. 485]). 
The compatibility for the connecting homomorphism with induction and restriction 
now follows immediately from the algebraic description in [35, p. 109] for relative 
L-groups. The same proof works for geometric anti-structures (see Section 3) of the 
form (R, rio, bo) with bo ~ a, since these admit induction and restriction maps of anti- 
structures for the set of odd-index subgroups containing bo. 

Such exact sequences for computing L-groups come from the arithmetic square, 
[35, Section 6], where the basic form is 

LP.(R)---* L~(R)  ~ L r , ( S )  Lr ,(S)  P • .. ~ ~ L , _  I(R) --*."  

One of the points we wish to emphasize is that most of the difficulties involved in 
computing L ~ ( Z G )  concern the group L~(Z2G). We therefore reorganize the calcu- 
lation by considering the exact sequence 

• .. --* L~-hl (ZG --* •2G) --~ L~'(ZG) ~ Lh(ZzG) ~ LI~'h(ZG ---, Z2G) ... (1.4) 

By excision 

L~'h(ZG ~ Z2G) ~ Lr(/~odd @ S ~ S), (1.5) 

where/~odd is the product of the l-adelic completions of R at all odd primes I. 
We now introduce the groups 

CL~(S) = L~(S  -~ SA) (1.6) 

where SA = (S ® Z) @ (S @ R) is the adelic completion of S. The exact sequence in 
(1.2) can be rewritten by adding in the L-groups of the completion of S(d)  at the 
infinite primes: T(d)  = S(d)  @ R. Then by the arithmetic sequence and (1.5) we have 
the for each d Ira, a long exact sequence 

... CL~r+ l(S(d)) ~ L~_hI(ZG ~ Z2G)(d) 

--* I-I L~(R, (d) )  ~) L~(W(d)) e~(d) CL~(S(d)) (1.7) 
lt2d 

Since l X 2d each factor (and the maps ?,(d)) splits according to the decomposition of 
S(d)  into simple algebras. By quadratic Morita equivalence [20, 2.5], [19, Section 5-1, 
we are reduced to the L-groups of (skew) fields or the rings of integers in the centre 
(with some antistructures). 
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In the next section we will tabulate the domain, range, kernel and cokernel of y~(d). 
Then there is an exact sequence 

0 -o coker 7i(d) ~ L~'h(R ~/~2)(d) ~ ker ~i- l(d) ~ 0 (1.8) 

determining the relative group up to extensions. 
In the rest of this section we summarize some of the standard facts about 

quadratic forms on simple algebras with centre field continuous, local (of characteris- 
tic 0), and finite. For our purposes, the main references are [-43] and 1-44]. Since we 
are mainly interested in the applications to surgery theory, we will restrict ourselves 
to the simple algebras which arise from the rational group rings of finite groups. This 
assumption will simplify the arguments at various points. More precisely, if D 
denotes such a skew field with centre E, and A _~ E the ring of integers, then E is an 
Abelian extension of Q. We fix an odd integer d such that /gt  is split, and Ez is an 
unramified extension of (~z for all finite primes I with l ~ 2d. We also assume that D has 
'uniformly distributed invariants': the Hasse invariants and Schur indices of D at all 
primes 1 ¢ E over a fixed rational prime are equal. This holds for the algebras arising 
from group rings by the Benard-Schacher Theorem 1-48, Th. 6.1]. 

In addition to listing the values of the groups, we mention explicit invariants (such 
as signature and discriminant) used to detect them. From these facts we compute the 
CL~ (see Table I) and prepare for the computation of the maps 71. The reader, if 
inclined to check the tables given later, should first assemble a complete table of the 
L s to L K Rothenberg sequences from the information given below (I-45, 1.2] is useful 
for LS). Recall that L s is the 'round' L-theory based on the subgroup 0 _ KI(D). We 
remark that whenever the discriminant L((D, ~, u)-oHi(KI(D)) is an isomorphism, 
the map L S(D, a, u) ~ L ~(D, ~, u) is zero. 

If (D, , ,  u) denotes an antistructure on a division algebra with centre E (and A _ E 
the ring of integers), then we distinguish as usual types U, Sp and O (see 1-45, Section 
1.2]). We further subdivide into types OK if D = E, type OD if D ~ E and similarly 
for type Sp. If an involution-invariant factor is the product of two simple rings 
interchanged by the involution, this is type GL. Such factors make no contribution 
to L-theory. When the anti-structure is understood, we will say 'D has type.. . '  for 
short. Recall that L~(D, c~, - u )  = L~+ 2(D, ~, u) and types O and Sp are interchanged, 
so we usually just list type O. 

(1.9) CONTINUOUS FIELDS 

For continuous fields (E = R or C) the signature gives an explicit isomorphism of 
LoK(C, ¢, 1), L~(C, c, 1), Lo~(R, 1, 1) and LoK(H, c, 1) onto 2Z (the types are U, U, O and 
Sp); in all these cases except for (H, c, 1) the discriminant map L ~ ( E ) ~  H°(E ×) is 
onto. Indeed the groups Hi(KI(H)) = 0 so LS(H, c, 1) = L~(H, c, 1). The discriminant 
also gives an isomorphism for L~(R, 1, 1) = Z/2 and L~(C, 1, 1) = Z/2. The other L r- 
groups are zero. In the final calculation we wish to keep track of the divisibility of the 
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the signatures. The notation 2Z stands for an infinite cyclic group of signatures 
taking on any even value. 

(1.10) LOCAL FIELDS 

Over local fields (of characteristic 0), in type U: LEr,(O)-__ H°(E ×) = Z/2 via the 
discriminant and L r i . l ( D ) =  0. In type OD, L~(D)~ H°(E ×) and the others are 
zero. In type OK, Li t (E)~ HI(E ×) = Z/2 by the discriminant and L~(E) is an 
extension of H°(E ×) by Z/2 described in (1.12), while L~(E)= Lr (E) - -0 .  The 
natural map LS(E) ~ L~(E) is zero (see [44, 3.5]). 

(1.11) FINITE FIELDS 

For finite fields in type U, L s = L~ = 0, and in type O characteristic 2, L s = L f  = 
Z/2 for each i. For type O odd characteristic, the discriminant gives isomorphisms 
L ~ Z / 2 ,  L f = Z / 2  a n d L ~ = L ~ = 0 .  The groups L s = 0  for i = 0 ,  3 and L s =  
L s = Z/2. The map L s --* L~ is zero. 

PROPOSITION 1.12. In type OK over a loeal field E, L~(E, 1, 1) is given by the extension 

0 - .  Z/2 ~ Lg(E, 1, 1) ~ H°(E ×) ~ O. 

This extension is split ~ - 1 e E × 2. 
Proof. Only the last part remains to be proved here. See [31, 63:20] for an 

alternate argument. There is an isomorphism 

~: LS(E, 1, 1) - ~  CLS(E) -_ Z/2 

for the local field E given by 

to(q) = SE(q)SE(½r(q)H) 

where S~ denotes the Hasse-Witt invariant over E [29, p. 80], [31, Section 63B], here 
applied to a form of determinant 1 (e E×/E x2) and rank r (q) -  0 (mod 4). The 
hyperbolic form of rank 2 is denoted H. Since 

SE(q J- q') = Se(q)" SE(q') 

for forms of rank - 0 (mod 4) and every element of L s is represented by such a 
form, it is easy to check that x is well-defined. To extend this homomorphism to 
Lg(E, 1, 1), consider the Clifford algebra associated to a quadratic space [43, p. 133]. 
This gives an isomorphism 

C: L~(E, 1, 1) --~ GBr+(E), 

where the right-hand side is the graded Brauer group: i.e. {_  1} ~<E×/E × 2 with the 
multiplication 

/ ) 
d,) = t y t,--i-)' da, 



544 IAN HAMBLETON AND IB MADSEN 

This is a split extension if and only if the 2-cocycle defined by the Hasse symbol 
((d, d')/E) is a coboundary. Since the Hasse symbol gives a nonsingular symmetric 
bilinear form on a Z/2-vector space V = E×/E ×2, [31, 63.13], 

SE: V x V ~  {+ 1}, 

((d, d')/E) is a coboundary only when 

But 

(~) = + 1  f o r a l l d e E  ×. 

so this happens if and only if - 1  ~ E ×2. Assuming this, we choose a function 
f:E×/E×2~ {___1} such that f(1) = + 1, 

f(d)f(d')f(dd') = (d'~dE '), for all d, d' eE×/E ×2, 

and Arf(V,f) = 0. 
Now an extension of x 

f~:: LKo(E, 1, 1) --* Z/2 

can be defined by ~c:(q) = SE(q)f(d(q)), where d(q) = determinant of q. Since 

r~:(q ± q') = S d q  ± q')f(d(q)d(q')) 

)(d(q)'-~(q'!) f(d(q)d(q )) = S~(q)SE(q' 

= Sdq)f(d(q))Sdq')f(d(q')) 
= Yc:(q)~c:(q') 

this gives a homomorphism. Also, ~:(q ± H ) =  ~(q), so it is well defined on the 
L-group. [] 

The choice f of a quadratic refinement in the above proof is not unique. For a 
nondyadic field, for example, E×/E ×2 has rank 2 and basis {A, n} with n a prime 
element and A a generator of units modulo squares. There are two choices of f with 
trivial Arf invariant, namely either f(A) = - I, f(rc) = 1 or f(A) = 1, f(rc) = - 1. Let 
us note that the composition 

LK(A, 1, 1) ~ LK(E, 1, 1) x : ,  {+ 1} 

is f(A), where A is the integers of E. 



PROJECTIVE SURGERY OBSTRUCTION GROUPS 545 

This completes the discussion of the L~-groups in type OK, for E a local field. The 
remaining terms needed in (1.7) are L~(l~(d)) for some finite prime l~2d. We can 
reduce modulo the radical to the case of finite fields [44]. 

Next we will calculate the groups CL~(D) for each type of anti-structure, with the 
final result listed in Table I below. Let C(D)= KI(DA)/KI(D). The weak approxi- 
mation theorem [31, p. 8] combined with the calculation of KI using reduced norms 
([37, 33.15], [47]) implies that C(D) = C(E) = E~4/E ×. We consider the diagram: 

L~(o,,) L'/(O.,) CL,"(O) H'(C(O)) 

> <  > <  > <  
L~(D) CLS(D) H~(K~(DA)) L~x_,(D) (I.13) 

>< >< >< 
H'+ ,(C(D)) H'(K,(O)) LL,(D) LL,(D~) 

together with the results of [43, 44, 22]. The diagram contains four interlocking long 
exact sequences. This follows easily from naturality of L-theory under change of 
K-theory [35, 6.2]. The groups CL s = 0 in type U, and for type O are [44]: 

CLS(D) = Z/2, H°(C(E)), HI(C(E)), 0 (i = 0, 1, 2, 3 (mod 4)). (1.14) 

In type O the only place to check is the exact sequence 

0 -~ CLf(D) ~ HI(C(E)) ~ CLS(n) ~ CLoK(D) ~ H°(C(E)) ~ 0 

II 
z/2 

To understand maps involving Hi(C(D)), we will use the short exact sequences 
(i = 0, 1) 

0 ~ H'(E ×) ~ H'(E~) ~ H*(C(D)) ~ O, (1.15) 

following from the global square theorem [31, 65C]. Note that for D # E, C(E) 
C(D) and the involution is trivial. Therefore HI(E~])= IIv{+t}~ and H~(C(D)) 
is this product modulo - 1  ~E ×. The map HI(ff~)~HI(C(D)) is the obvious 
projection. 

LEMMA 1.16. The map 3 is zero in type OK and nonzero in type OD. 
Proof. To check this one needs to know that, in type O, the map 

LS(b~) ~ Ls(Oa) --, CLS(D) ~ Z/2 

is an isomorphism for any I finite ([44, p. 259]) and onto for I an infinite real place 
where D splits ([43, p. 140]). 

Now in type OK note that the map H l(/~t ~) -~ LS(/~) is zero for any prime l, since 
in odd dimensions the nonzero LK-groups listed above are all isomorphic via 
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discriminant to HI(E~). On the other hand the map H I ( / ~ ] ) ~  HI(C(E))is onto, so 
6 is onto. 

In type OD where D is nonsplit at some finite prime l, the map H I ( / ~ )  ~ LSo(/),) is 
an isomorphism and so is LSo(bl) --. CLS(D). 

Finally, in type OD where D is nonsplit only at infinite primes, we have the 
isomorphism L~(Da) - ~  Ha(KI(DA)) and 

cok(n I(KI(D A)) --* H ~(C(D ))) ~ (Z/2)'- ~, 

where r is the number of primes at which D is nonsplit, here equal to the number of 
real places. In type OD, Kneser (see [38, p. 370]) gives the formula r - 2 for the rank 
of the elementary 2-group ker(LoK(D) --, L~(DA)). This implies the exact sequence 

0 ~ Lf(DA) _o, CLf(D) ~ (Z/2) ~-2 ~ 0. 

I f6 = 0, CLf(D) would surject onto HI(KI(DA)) and then in turn onto (Z/2) "-1, but 
the surjection would factor through (Z/2) "-2, which is impossible. [] 

Before we can tabulate the results for the CL K we must determine the map ~ and 
settle an extension question. 

LEMMA 1.17. In type OD the composite 

Hi(El)  --* HI(C(D)) '~, CLS(D) ~ Z/2 

maps (--1) t  e HI(E~) trivially if and only if lgl is split. 
Proof. Unless I is an infinite place at which/)~ is nonsplit, this follows easily from 

the facts listed in the beginning of the proof of (1.16). Note that the map 

H°(KI(D)) ~ H°(KI(DA)) 

is not injective precisely when D is nonsplit at infinity (an element in K~(D) ~ E* 
represents zero in H°(KI(D)) only when it is the square of some totally positive 
element). Its kernel is (Z/2) '1-1  where rl is the number of real primes in the totally 
real field E. Hence H°(KI(Da))~ HI(C(D)) is not onto in that case. 

If D is nonsplit only at the infinite places, the fact that di is nontrivial and Galois 
invariance implies the result. In the remaining case we will look at the maps in (1.13) 
more closely. 

Let D be the quaternion algebra over E spanned by 2 and #, with 22 = a, #2 = b 
and 2# = - #2. Then there exists a form q over D with discriminant d(q) -- v 2, for 
some v e E × with vt < 0 at only one infinite place l and Hilbert symbol (a, v)p = - 1 
precisely at a nonempty set 6 e of primes, with j Szl even, where D is nonsplit. In fact, 
let q = (2).L ( a - l v 2 )  where 22 = a (see [38, Chap. 10, p. 370]). 

Then since ker(Lg(D) ~ LKo(Da) is represented by forms (2)  3_ ( - u2) with Hilbert 
symbol (a, u)p = - 1 only at an even number of places where D is nonsplit, it follows 
that 

[q] s ker(Lg(D) ~ Lor(Da). 
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We choose an element x ~ CLlr(D) which maps to [q] under the boundary map, 
and call z the image of x in HI(C(E)). It follows that z is represented by 
I I { ( - 1 ) p : p ~ S e } ,  modulo indeterminacy at the primes where D splits, cf 
(1.13). 

Next, define a class y ~ H~(C(E)) by the id61e which agrees with v at finite primes 
and equals 1 at infinite primes. Note  that y represents the image of ( -  1)~ e H ~(/~) 
since y/[v] is non-trivial only at the prime I and C(D) ~ C(E). 

Then both z and y map to Iv 2] e H°(Ki(D)) and, hence, y - z is the image of the 
element w = H { ( - -  1)p: p ~ 5 e, p ~ l} under the map H~(KI(DA))~ H~(C(E)). As in 
the first part of the proof, it now follows that 6(y) = 6(y - z) v~ 0 since I5 e - {l}l is 
odd. []  

LEMMA 1.18. In type OK, the sequence 

0 ~ Z/2 ~ CLo~(E) ~ H°(C(E)) ~ 0 

is split ~ - 1 ~ E × 2 

Proof. At a finite prime l, by (1.12) the upper sequence in the diagram 

0~LS(/~z, 1, 1 ) ~  r ^ Lo(El, 1, 1) ~ H ° ( / ~ )  ~ 0 

0 ~ CLS(E) , CLo~(E) --~ H°(C(E)) ~ 0 
(1.19) 

splits ¢ ~ - 1  ~ / ~ z .  Since LSo(/~z, 1, 1)-~ CLS(E) is an isomorphism for l finite, the 
lower sequence must be nonsplit whenever the upper sequence is. By the global 
square theorem, if - 1  ¢ E ×z there is a finite prime 1 for which - 1  ¢/~{2 and the 
lower sequence is non-split. 

Conversely, if - 1 ~ E ×z, then H°(E~) = H°(/~ ×) and (1.15) implies that H°(/~ ×) 
maps onto H°(C(E)). It follows from [44, Section 4] and the vanishing of LS-groups 
of local rings of integers that LS(/~) is the direct sum of the groups Lg(/~t, 1, 1) from 
(1.19). Hence the sequence 0 ~ LS(/~) ~ Lg(/~) ~ n°(/~ ×) ~ 0 remains exact and so 
Lg(/~, 1, 1) maps onto CLoK(E). However the upper exact sequence splits, so CLot(E) 
has exponent 2. 

In the following table, C(E)= E] /E  ×. The results are now summarized in 
Table I. 

Table I 

CL~(D) Type OK Type OD Type U 

i = 3  0 0 0 
i = 2 0 0 H°(C(E)) 
i = 1 HI(C(E)) ker(& HI(C(E)) ~ Z/2) 0 
i = 0 Z/2 ~ H°(C(E)) H°(C(E)) H°(C(E)) 
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2. The Computation of the Relative Group 

We are now ready to compute the map ~(d) for each involution-invariant factor of 
S(d). Such a factor is a matrix algebra over a skew field, and by Morita equivalence it 
suffices to study ~ for and antistructure (D, ~, u) on a skew field D. Its centre E is an 
Abelian extension of Q with ring of integers A __ E. We fix an odd integer d such that 
/)l is split, and Et is an unramified extension of Q, for all finite primes I with IX 2d. We 
also assume that the Hasse invariants and Schur indices of D at all primes 1 e E over 
a fixed rational prime are equal  

First we consider type U where H°(C(E)) = Z/2 lies in the sequence 

0 -~ H°(E ×) ~ H°(E]) -* H°(C(E)) -+ O. 

At finite primes L~(A,)= L~(flt/Rad)= 0, since the right-hand side is the sum of 
Lr-groups of finite fields. At the infinite places we have the signature group Lt~i(D.). 
This is non-zero when D,  remains type U (a change to type GL is possible) and the 
fixed field Eo - E of the involution is real. We call this type U(C) and otherwise 
U(GL), In type U(C), each factor 2Z maps surjectively to H°(C(E))= Z/2 so 
cok ~2i = 0 and ker Y2~ = X, where X is a subgroup of index 2 in a direct sum of 
factors 2Z, one for each complex place. 

Next we consider type O. It is convenient to introduce the 'discriminant part' ~i of Yi for 
a factor (D, ~, u) = (E, i, I) of type OK to fit into the following commutative diagram: 

l~ L~(J_,) x L~(Eo~) ~' , CL~(E) 

,,2d I I (2.1) 

where A~n, = Ht~2eA~. Below we will also use the notation A~d = FIll2dJ~. Since 9i 
has the same kernel and cokernel as the map (see (1.14)) 

H'(fl~d,) x H'(E~o) x H'(E ×) --. H'(E]), 

we are led to consider the following commutative diagram (for i = 0): 

0 , ker~o ----~H°(.4~a,) x H° (E~)  x H°(E×)-~H°(f f~)----~cok~o - -*0  

0 -~ E(2)/E ×2 ~ no(d×) x H°(E~,) x H°(E ×) -+ H°(JE~) ~ H°(F(E)) -~ 0 

H°(A~d) H°(A~a) (2.2) 

Here E (2) denotes the elements of E with even valuation at all finite primes and F(E) 
is the ideal class groups defined by 

I ~ EX/A × ~ E×/A ~ -~ F(E)-~ 1. 
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TO obtain the middle sequence, add H°(/i~d) to the domain of Yo, then the map to 
H°(E~) has the same kernel and cokernel as H°(E ×) ~ H°(I(E)) where I(E)= 
E×/A × is the ideal group of E. 

From (2.2) we obtain the following exact sequence 

0 --* ker ~o -'* E(2)/E × 2 ¢_~ n O ( ~ )  ~ cok ~o --* H°(F(E)) ~ 0 (2.3) 

for the computation of ~o in type OK. In type OD when (D, ~, u) is non-split at all 
infinite primes, the term tt°(E~) is missing from the top row of (2.2). This produces 
instead: 

0 ~ ker ~o ~ E(2)/E × 2 ~ Ho(A~,O @ HO(E~) ~ cok Yo ~ H°(F(E)) ~ 0 (2.4) 

For the map ~1 in type OK a similar but easier analysis gives ker ~ = 0 and an exact 
sequence 

0 ~ HI(A ×) ~ H~(A~a) ~ cok ~ ~ 0. (2.5) 

In type OD, nonsplit at infinite primes, H~(E~o) is added to the middle term. 
It remains now to obtain ker ~, and cok 7, from the results above. We introduce 

subtypes: 

Type O: 
OK(R) 
OK(C) 
OD(H) 
OD(R) 
on(c) 

if E has a real embedding, 
if E has no real embedding, 
if D is nonsplit at infinite primes, 
if D is split at infinite primes and E has a real embedding, 
if D is split at infinite primes and E has no real embedding. 

Type U: 
U(C) if D~o has type U, 
U(GL) if D~o has type GL. 

We remark that in type U(C) the centre field of D~ at each infinite place is the 
complex numbers with complex conjugation as the induced involution. Type U(GL) 
algebras are isomorphic to matrix rings over C x C or R x R, at each infinite place, 
with the induced involution interchanging the two factors of C or R. 

In case OK(R), CLot(E) is an extension of H°(C(E)) by CLS(E)= Z/2. This 
is in the image of LSo(R, 1, 1 )~  LS(Eo~, 1, 1) so does not appear in cok 70. It fol- 
lows that cok 7o = cok ~o and ker 7o is an extension of ker Po by ,~, where ,E = 
ker(LS(Eoo, 1, 1) ~ Z/2) is a free Abelian group of rank equal to rl ,  the number of real 
places of E. In general, the extension for ker 7o is nonsplit. This implies that the 
signature divisibility in the corresponding summand X of L['h(R ~ Rz) differs from 
that in ~,, which is a subgroup of index 2 in a direct sum (4Z) '1. 

In case OK(C), L~(Eoo, 1, 1) = 0 and we will determine in (2.8) when the Z/2 in 
CLot(E) can be hit from kerPo in the 'snake' homomorphism associated to (2.1). 
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Let ®E:E(2)/E × 2 ~ H °(E ~) denote the reduction map at the infinite places, and rE 

be the 2-rank of image (~glker  ~). Define 

q~": ker ®E ~ H°(A~a) (2.6) 

to be the restriction of q~ to ker OE. By comparison with (2.4) we see that ker (I)" - 

ker ~ ' .  In addition, there is an exact sequence 

0 ~ ker (I)' --. ker (I) --. im Og ~ cok q)" --. cok (I) ~ 0, (2.7) 

where the middle map is induced by OElker (I), which will allow us to compute the 

2-ranks of these groups in terms of fundamental invariants of E such as class groups 

and im OE. 

L E M M A  2.8. In type OK(R), ker 7o = ~ @ ker q)' and cok 7o = cok (I) @ H°(F(E)). 
The signature group Z ~ (8Z) @ (4Z) '~ - r~-  1 ~ (2Z)~. 

In type OK(C), ker 7o = ker • and 

cok 70 = Z/2 ~ (cok (I) @ H°(F(E)). 

The extension is split ,**. - 1 ~ E × 2. 

Proof. First we consider type OK(C), via the diagram 

O ~ k e r ? o  ~H°~A×t Zd'~ 

0 --* ker P® --* H°(J~d ") 

0 
+ 

z/2 z/2 
+ { 

?o , Z/2 ~ H°(C(E))  ---+ cok 7o ~ 0 

~o , HO(C(E)) , cok 7o -~ 0 

0 

leading to the 'snake' sequence, 

0 --. ker 7o --* ker ~o a ~ Z/2 ~ cok 70 ~ cok 7o --* 0. 

From (2.3), cok ?o = cok • @ H°(F(E)) and ker ?o = ke r~ ,  so it remains to check 

that ~ = 0. 
Choose an element ( e )  = IIt~za ( e l )  in kerPo. By (2.3) there exists a e E × such 

that 

a- le l~f f~{  2 if IX2d, /finite, (2.9) 

a ~/~{ 2 if l[ 2d, or I infinite. 

Extend the definition of ( e )  by setting el = 1 if I I 2d or l infinite and consider the 
quadratic form 

q = ( a - ~ )  A_ ( - 1)_1_ (e)_k ( -  1) 
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representing an element in LoK(/~a, 1, 1). Since q has discriminant 1, for each prime l 
we can compute xl(q) = S~7(q)S~7(2H) using the properties of the Hilbert symbol 1-31, 
63B] to determine whether 0 ( a )  is nonzero. If l~2d, 

~h(q)=(  a- l ' l  J \  1 J \ - l ' ] (cq- l ' ] ( -a- l"I -e) (  - l ' - I  1 ) = ( ~ 1 ) .  

If l j 2d or I infinite, q = H @ H so ~h(q) = 1. Therefore, under the reciprocity map 

1,1) CLg(e) Z/2 

given by x(q) = IIl lh(q), we get 

since a e E × 
Next we consider type OK(R) by using a similar diagram 

0 , ~, , t ~  4Z , Z/2 , 0  

1 t 
0-o  ker 7o ---* H°(A~a,) @ ( ~  2Z ~° , CLo~(E) -* cok 70 -o0 

0 --* ker Po ~ H°(A~a ,) G H°(E~) ~ H°(C(E)) -o cok 7o -o 0 

i 
0 

Clearly the torsion subgroup of ker 7o injects into ker ~ '  _~ ker @ = ker 7o. Conver- 
sely, if ( . )  ~ ker q~', the same calculation of Hasse symbols as above shows that ( . )  
is the image of a torsion element of ker ~'o. 

We also observe that if x ~ '2 is an indivisible element such that x = 2y, 
y ~ ker 7o, then the image of y in H°(E~) is nontrivial. It follows that a generator 
of the factor 8Z is not divisible in ker 70, and the remaining divisibility assertions 
are clear. []  

For type OD the discussion must be modified to take the situation at infinite 
primes into account in (2.2), but CLot(D) = H°(C(E)) so the corresponding result to 
(2.8) is not as elaborate. 

L E M M A  2.10. In type OD(H), 

k e r ~ , o = k e r ~ ' ,  c o k T o = c o k O ' ~ H ° ( F ( E ) ) ,  and ker~,z=Y.. 
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The divisibility of the signature at each infinite place is 2Z. In type OD(R), ker ?o = 
Z @ ker @' and cok Vo = cok @ @ H°(F(E)). The signature group Y ~ (4Z) "~) - '~  
(2Z) ~. In type OD(C), ker ,% = ker @' and cok ?o = cok @ @ H°(F(E)). 

We now carry out a similar procedure to analyse ker 71 and cok h ,  starting from 
(2.1) and (2.5). Note that in type OK, 

eLf(E) ~'= HI(C(E)) 

so that }'i = 71- In type OD there is a (split) exact sequence 

0 --, eLf(D)  ~ H ~(C(E)) ~-L Z/2 --, O. 

In type OD(H), the diagram 

HI(E X) HI(~ ~) 

i i ~ 

o -~ ker ~i -* H i(~i~ ,) ~ HI(E x) ~ HI(E~) _~ cok ~, -~ 0 
II l l $ (2.11) 

0--+ ker ~l ; H i ( ~ a , )  ........... ; n l ( C ( E ) ) _ ~ c o k ~ l ~ O  

0 0 

shows that ?l has the same kernel and cokernel as the map ~i (this has already 
been used in the derivation of (2.5) for type OD(H)). But 7i is related to h by 
the diagram, 

0 0 

l 1 
0 ---, k e r h  ---, HI(A~d,) ~ , eLf(D) ~ cok h ~ 0 

II II i l 
0 + ker 9i + Ht(A~a ,) ~ HI(C(E)) ~ cok 91 + 0 

Z/2 = Z/2 

It follows that ker ?i = 0 and in type OD(H) (after substituting the formula (2.5) for 
cok 71), 

Hl(A~a) G Hi(E~0) ~¢ Z/2 ~ 0 (2.12) 
0 ~ cok 71 -" H i(A×) 

The map A' is defined by 

- 1, /Sz nonsplit, 
A'(<- 1>3 = + 1, /5~ split. 
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This definition arises from (1.17) and (2.1l). Note that in types OD(R) or OD(C), 
HI(Eo~) is not present in (2.12) and 

HltA× t 2d) A 
0 ~ c o k T t  ~ HI(A×) ¢ Z / 2 ~ 0  (2.13) 

describes cok Yl (the map A is defined by the same formula as for A'). 
The results are summarized in Table II (where any groups not displayed are zero!). 

Recall that for a simple factor of type Sp, the groups cok 7, and ker ~, are equal to 
cok"f i+2 and ker~i+2 respectively. In the table within the type OK section, the 
subcases are for types OK(R) ad OK(C), respectively. A similar convention applies to 
the other sections. The extensions in type OK for i =  0 are split if and only if 
- 1 s E × L The symbol £ denotes the subgroup in ker 7~ detected by signatures. The 
rest of the notation in the table was defined earlier: C(E) just before Table I in 
Section 1, F(E)just  after diagram (2.2), O, ~ '  in (2.3), (2.4), and A, A' in (2.12), (2.13). 

Remark 2.14. In the exact sequence (1.8) 

0 ~ cok 7i(d) ~ LP'h(R -~ /~2) (d)  ---r ker yi_ l(d) ~ 0 

decomposes as a direct sum over the simple involution-invariant factors of S(d), so 
Table II determines L~'h(R ~ l~z)(d) up to extension. But we will show in (Proposi- 
tion 4.7) that (1.8) is actually split, so that we have 

L~'h( R -'->/{2)(d) ~ cok 7i(d) @ ker 7 i - l ( d ) .  

Furthermore, it follows from Table II that the torsion subgroups of these relative 
groups have exponent four at most, and have exponent two if no type OK(C) factors 

Table II 

Itt,~2,~L~(Al) x L~(Eo~) CL~(E) kery~ cok7~ 

Type OK(~) 

l u { X@ker@' f cok (I) ~ H°(F(E)) 

ker (1) ~Z/2 ~ (cok • (~ H °(F(E))) 

i = 1 Hl(2~,v) x HI(E~) HI(C(E)) 0 

Type OD(H) 
i = 0 H°(A~d,) x 0 H°(C(E)) ker~ '  

i = 1 HI(A~d ,) x 0 ker5 0 

i = 2  Ox O2Z 0 Z 

ryp~ OD(~) 
o ~× [@2Z " ~X@ker~' 

i = 0 H (A2d,) x i 0 H°(C(E)) kere~ 

i = I H l(J~d,) x H t(E~) ker 5 0 

Type U(~CL) 

fOx ~2Z Ho(c(E)) {X 0 
i=0,2 [ OxO 

H I(A~)/H I(A ×) 

cok g~' (~ H°(F(E)) 

ker A' 
0 

cok • @ H°W(E)) 

ker A 

{;2 
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are present. Such factors do not occur, for example, in the standard oriented 
antistructure on ZG, for any finite group G, and hence the projective obstruction 
groups LP,(ZG) for oriented surgery problems have torsion of exponent ~<4. In 
Section 5 we will show that the torsion subgroup actually has exponent two in this 
case, and give the precise answer for any geometric anti-structure. 

We now recall some notation from number theory, needed to compute some of the 
entries in Table II. Let F(E, d) = Ko(A[1/d]) denote the ray class group of the field 
E, and F*(E, d) the strict ray class group. These groups are usually described by the 

sequences 

0 -~ A l l / d ]  × ~ E × --+ ]-I E ~ / A ~  ~ F(E, d) ~ 0, 
l(d 

o r  

O-~ A[1/d]*~ E*~ I-I ~7/AT-~r*(E,d) 40 .  
lid 

Here E* ~_ E × is the subgroup of elements which are positive at all real places. There 
is an exact sequence (assuming that E has trivial involution) 

0 ~ H°(A[1/d] ×) ---> E~2)/E x2 ~ HI(Y(E, d)) ~ 0 (2.15) 

where _E~ 2)., _~ _E × is the subgroup of elements with even valuation at all primes not 
dividing d. The map into H I(F(E, d)) sends e ~ E~f)/E ×2 to E lta½vt(e)" I. 

Let '/(E, d) (resp. y*(E, d)) denote the 2-rank of the (strict) class group of All~d]. 
The 2-ranks of F(E), F*(E) are denoted ~ and 7* respectively. In general it is a 
well-known and difficult problem in number theory to compute these ranks. We will 
now see that they appear as the ranks of certain groups in Table II, and hence the 
final computation of the relative L-groups is reduced to number theory (compare [4] 
for related calculations). 

Let gv denote the number of primes in A over the rational prime p and gd(E) = 
2ptagr Then 9d(E) is the rank of H°(E~/A~). Let rl, r2 denote the number of real and 
complex places of E, so that [E : Q] = r~ + 2r2. 

The 2-ranks of the kernel and cokernel of the maps 

and 

~E: E(2)/E x2 __~ Ho(A~e), (2.16) 

O~: E~2)/E ×2 -* H°(A~) ~ n°(E~) (2.17) 

from (2.3) and (2.4) can now be given in terms of more familiar invariants. Recall that 
in (2.17) the field E is totally real. The 2-rank of H°(A~d) is just g2a + [E : Q] = 

g2d "~- r l  "3L 2r2. 
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P R O P O S I T I O N  2.t8. 

O) The 2-rank of ker (I)~ (resp. ker (I)j~) is ?*(E, 2d) (resp. 7(E, 2d)). 
(ii) The 2-rank of cok (I)~ (resp. cok q)k) is g2a(E) + r2 + 7*(E, 2d)) - ?(E) (resp. 

gza(E) + rl + ?(E,2d)) - ?(E)). 
(iii) The 2-rank re of im(OEIker(I)~) is 7*(E, 2 d ) -  ?(E, 2d). I f  rl ~ 0 then rE <<, 

( r~  - 1) .  

Remark 2.19. I f  d is an odd prime and E c Q((a) is a subfield such that (2 )  
generates the Galois group of E over Q, then 7(E, 2d) = ?(E, d) = ?(E). 

Proof. We have just collected some of the results described in more detail 
in [45, Section 4.6]. Since E/Q is a Galois extension either rl or r2 is zero, and 
for (I)' note that r2 = 0. Now by (2.15) and the Dirichlet unit theorem, the 2- 
rank of E(2)/E ×2 is (rl+r2+7(E)). Then the rank of ker(I)(resp, ker(I) ' ) is  
7*(E, 2d) (resp. 7(E, 2d)) by [45,4.6.1], and (i) and (ii) follow directly. For (iii), 
note that the definition of OE and (2.6) imply that ker (I)'= ker O". If rE = rx, 
then r~ + ?(A, 2d) = 7*(A, 2d) and cok (I)' = cok O. From the exact sequence 

"'" -~ I-I { -+ 1} ~ F*(E, 2d) ~ F(E,2d) --. 0 
lloo 

we would conclude that the map from the group of signs at the infinite places maps 
injectively into the strict ray class group. However, this map factors through the map 
H{___ 1} ~ F * ( E )  and this always has a non-trivial kernel (from the global unit 
- 1  cA×). []  

An Example: Finite 2-Groups 

Here complete calculations already appear in [20, Section 3, p. 80]. To check our 
results against the tables there note that F(E) and F*(E) have odd order (Weber's 
Theorem) for all the centre fields appearing in QG and g2(E) = 1. Hence, (I) and O' 
are injective with cok (I) E of 2-rank 1 + rz (resp. cok (1)~ of 2-rank 1 + rl). As above, 
the degree [E, Q]  = rl + 2r2, where rl denotes the number of real places of E and r2 
the number of complex places. 

In [20] the basic antistructures on the simple components of Q~ are labelled Fr~-, 
FN, RN, HN, U1 and UH. These have type OK(C), OK(C), OK(R), OD(H), U(C) and 
U(GL) respectively in our notation. In our tables, the distinction between FN and FN 
is whether - 1 ~ E ×2. Let fin denote a primitive 2Nth root of unity. The centres E for 

_ - 1  + the type O factors are Q(ffN+ 1), Q(~N+ 2 ff~ 1+ 2), Q(~N+ z + ~N + z), Q(~.,~ ~ 1) so that 
(rl, r2) equals (0, 2 N- 1), (0, 2 N- 1), (2 N, 0), (2 u -  2, 0), respectively. Therefore using Table 
II and the exact sequence (1.8), for the contribution of the components to L~(R ~/~2) 
we get Table III. 
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Table III 

IAN H A M B L E T O N  AND IB MADSEN 

OK(C), - 1 s E ×2 OK(C), - 1 ¢ E ×2 OK(R) OD(H) U(C) U(GL) 

i = 3  0 0 0 Y, £ 0 
i =  2 0 0 0 0 0 Z/2 
i =  1 0 0 Z (Z/2) '~-~ ~ 0 
i = 0 Z /2  • (Z/Z) "=+' Z/4 @ (Z/Z) '= Z/2 (Z/Z) ' '+* 0 Z/2 

Notice that ker 7i-1 contributed only the signature group Y~ (free Abelian of rank 
equal to the number of real places in the fixed field of the involution), so no extension 
problems arise. Also from (2.5), cok 71 = 0 in type OK because d = 1 and there is 
only one prime over 2. However from (2.12), in type OD(H), the group cok ~1 is 
nontrivial in general with 2-rank (rl - 1). In [20] the groups LP-groups for ZG were 
completely determined, for G a finite 2-group with any geometric anti-structure. To 
carry this out for more general groups G we need to compute the maps ~b~: 
L)(Z2G) -+ L~'h(ZG ~ Z2G) and settle some extension questions. This will be done in 
the next three sections. 

3. The P roo f  of  Theorem A 

Our starting point is the main result of [16, 1.16] which computes the map 

W,: L~(ZzG) ~ L~(O2G). (3.1) 

We are assuming that R = ZG has an oriented or nonoriented geometric antistruc- 
ture (R,/3, b) given by/3(g) = w(g)0(g- 1), where 0 is an automorphism ofG = Z / d ~  o 
with 02(g) = bgb -1, b ~ G and w: G ~ {+ 1} is an orientation character (see [16, 1.4] 
or [20, p. 110] for the relations). If T ~ Z/d denotes a generator, then 0 induces an 
automorphism of Z/d given by O(T) = T ~ (this corrects a misprint in the formula in 
[16, p. 148, l.-9]). To complete the proof of Theorem A we will later specialize to the 
case when 0 is the identity as usual in surgery theory. 

In [16, (1.7), (2.4)-(2.7)] we showed that whenever the domain L~(/~2,/3, b) of ~Pi is 
nonzero, there exists a global 'scaling' isomorphism so that the scaled anti-structure 
(R,/30, bo) has bo ~ 0. Then by Remark 1.3 it follows that the d-components are 
defined and that the splitting of Theorem 1.2 applies to our situation. In particular, 
since the map ~i splits as in (1.2), it is enough to give the answer for the 
d-component. 

Recall that if Ol = ker(t: o ~ (Z/d)×), then any irreducible complex character of G 
is induced up from Y ® ~ on Z/d × ol where Z is a linear character of Z/d and ~ is an 
irreducible character of Ol. The representations in the semisimple algebra S(d) are 
the ones involving faithful linear characters Z of Z/d. These representations are 
divided into types O, Sp and U, and we say that the order of a linear character ¢ is 
the order of its image ~(ol). Let S(d, 4) denote the simple factor of S(d) associated to 
an involution-invariant character (Z ® ~)*, induced up from Z ® ~. 
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THEOREM 3.2. (['16, 1.161) I f  d > 1 and there is no element go e a  satisfying 
t(go) = _ 0 - 1 ,  then Lf(R2(d),fl, b)= O. Otherwise if d > 1 pick such a go (or when 
d = 1 set go = 1), and let m = i + (1 - w(go)). For each irreducible complex character 
of al the composite 

L~(R2(d),fl, b) 't',(d) , L~(g2, fi, b)(d) proj.  > L~(g2(d, ¢),fl, b) 

is injective or zero and detected by the discriminant. It is injective if and only if the 
character ~ is 

(a) linear type 0 (and m - 0 or 1 (rood 4)) 
(b) linear type Sp (and m - 2 or 3 (mod 4)) 
(c) linear type U (and m even), order 21 and ~(b 2~-~) = - 1 .  Here the types 

refer to the antistructure (Q2[al],flo, bo), with flo(a)= gofl(a)go t and bo = 

gofl(go 1)bw(go) ~ at. 

Remark. A type I linear character ~ has type O (resp. Sp) if ~(bo) = 1 (resp. 
~(bo) = - 1). If o't has a linear character ~ of type 3.2(c), then (by projecting onto the 
Z/2 quotient of 4(o1)) it also has linear characters of type O and Sp. 

The next step is to use this calculation to obtain information about the map 
t~:L~(Z2G)~L~'h(ZG--*~2G) in (1.4). Notice that the d-component of this 
map factors through the natural map Lir(Q2G)(d)--* cokTi(d). The composite of 
qJi(d) with this natural map is denoted ~i(d). We remark that the subtype in (3.2)(c) is 
U(C), and hence the image of O~(d) projected into one of these factors is zero by 
Table II. 

COROLLARY 3.3. Let G = Z/m >~ a a 2-hyperelementary group, with a geometric 
antistructure. For any dim the map ~i(d): L~(Z2G)(d) --~ L~'h(ZG -~ ~2G)(d) is detec- 
ted by the projection, G ~ G = Z/m>~a/[al,  al l .  

In this situation, we can finish the proof of Theorem A by using the relative 
detection theorem for L~"h(ZG -~ Z2G)(d) given in [21, 1.B.7] to obtain an absolute 
detection theorem for L~(ZG)(d). Although Theorem A is stated only for the 
standard oriented anfistructure; the same technique gives a version for the 
nonoriented case as well. 

To carry this out, we will apply another result of [21] to the functors 

FI(G, w) = Lp;hl(ZG --* ~2G)(d) and F2(G, w) = L~(ZG)(d) 

for d fixed, and a: F~(G, w)--*F2(G, w) is the boundary map in the long exact 
sequence of L-groups. 

The result is stated in the following setting. Let F1 be an additive functor defined 
on (Z[1/m]G, w)-Morita (see [21, 1.B.3]) into an Abelian category d .  Let F 2 be a 
functor defined on (ZG, w)-Morita into d.  Consider Ft also to be defined on 
(ZG, w)-Morita, and let ~: F1-~F2 be a natural transformation. Let N<~ H be 
subgroups of G with N c ker w. Fix a w-invariant unital representation t/of H/N (see 
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[21, 4.A.2] for the definition). We say that the triple (H, N, t/) is d-good if the 
composite 

ker d ~_ FI(Z[1/2d][HJNp],  w) Ee,] FI(Z[1/2d][Hp/Np], w) 

is injective, where z is the maximal unital representation with z < t/. 

THEOREM 3.4 ([21, 6.2]). Fix a p-hyperelementary group G and let m = [G[. Let K 
denote a normal subgroup of G with K c ker w, and let ~c: G ~ G/K be the projection. 
Let SP be a complete set of unital representations of G, each of which is w-invariant. 
Suppose there is one representation, pr E S~, which contains precisely the irreducible 
Q-representations of G whose kernels contain K. For every other p ~ 6 a suppose given a 
subquotient Np <~ Hp and a unital representation rl = tip such that p is imprimitively 
induced from t I. Finally, suppose that for each p ~ PK, the triple (Hp, Np, tlp ) is d-good. 

Consider the commutative square 

FI(G, w) - -~ FI(G/K, w) • (~  FI(HJNp, w) 
s~ 

F2(G, w) F2(G/K, w) e F2(I-Io/N w) 

I f  rt: ker(Fl(G, w) ~ F2(G, w)) ~ ker ( f  l(G/K, w) --* F2(G/K, w)) is onto, then d2 hm0 
is one to one. 

The Proof of Theorem A: Let the subgroup K referred to in the statement of (3.4) 
be K = [a~, a~] and let PK denote the sum of all the irreducible Q-representations of 
G, faithful on Z/d, whose kernels contain K. For every other representation p in a 
complete set of w-invariant unitals ~ we must find a subquotient N o-~ Hp and a 
unital representation t/p such that p is imprimitively induced from t/o and the triple 
(H o, Np, tlp) is d-good. 

For each p ~ S a whose kernel does not contain K we choose an w-basic sub- 
quotient H/N for which the faithful representation induces imprimitively to p. If p is 
induced from a proper subquotient with cyclic ker t, it is d-good unless ker t  is order 
2, or in type O of order 4. In these exceptional cases, we can choose d-good 
subquotients with ker t dihedral of order 8 or the group M16 respectively (see 
[21, 1.C.8] and the discussion at the end of [21, Section 6]). The remaining condition 
of [21, 6.2] is satisfied since the map Lh(Z2G) ~ L/h(g2G) is an isomorphism. [] 

There is a version of Theorem 3.4 for functors out of (Z[1/m] G, O, w, b)-Morita: the 
relevant representation theory is done in [21, 3.C.4]. This leads to another generaliz- 
ation of Theorem A for arbitrary geometric antistructures, by using [21, 3.C.1, 4.C.4] 
to identify the Witt-basic groups and give a detection theorem for the relative 
groups. The details are very similar and the proof will be left to the reader. The 
statement of [21, 4.C.4] uses the concept of an 'oriented geometric antistructure' 
(0, w, b, e) on a group ring RG. Here the word 'oriented', defined on [21, p~ 256], refers 
to a certain choice of unit 8 in the coefficient ring and not to a property of the 
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orientation character w: G ~ { + 1}. To avoid confusion, we will always take e = + 1 
and suppress this terminology. By a Witt-basic subquotient of (ZG, O, w, b) we mean an 
antistructure (Z[H/N],O',w',u') where H/N is a subquotient of G such that (i) 
N ~ ker w with w' the induced map, (ii) there exists a c ~ G such that H, N are invariant 
under 0' = c o 0 o c- 1, and (iii) the unit u' = w(c)b' where b' = cO(c)b ~ H. Associated to a 
Witt-basic subquotient, there is a twisted restriction map 1-21, p. 261] on L-theory. 

THEOREM 3.5. Let G be a 2-hyperelementary group with a geometric antistructure 
(0, w, b), and let fl(g) = w(g)O(g-a). Then the sum of all the twisted restriction maps 

L P,(ZG, fl, b) ~ L,P(Z[G], fi, b) @ ~ { Lg(Z[H/N],  fl', u')} 

is a natural (split) injection, where 6 = G/[al, at] and we sum over the Witt-basic 
subquotients of (ZG, fl, b). 

4. The Proof of Theorem B 

The primary invariants listed before the statement of Theorem B compute the image 
of 2P(f, b) under certain maps of L-groups. For instance, 

multi-signature: L~i(ZG) ~ Lzh~(RG) 

Arf invariant: L~i(ZG) -~ L~i(ZzG) 

semi-characteristic: Lfi+I(ZG) ~ L2~+h I(ZzG)^ 

(cohomology) finiteness obstruction: L]'(ZG) ~ H i .  I(R0(ZG)) 

We use here the involution [P]  ~ - [ P * ]  on Ko(ZG). 
In each case the usefulness of these invariants depends on their computability from 

the information available about the surgery problem. 
The 6-invariant is a secondary invariant, defined on the kernel of the last three 

primary ones (omitting the multisignature). Before giving the definition, we point out 
that the formulation in [35, 2.5] for any morphism of rings with involution A ~ B of 
the relative L-groups Lx,'Y(A -~ B) in the exact sequence 

• .. ~ LX(A) ~ Lr(B) -* LX'r(a -* B) ~ L x_ I(A) - - ~  " ' "  

as relative quadratic Poincar6 cobordism groups has the following consequence: 

LEMMA 4.1. The *-invariant subgroups defined by 

u = I m ( R I ( A )  -+ g l ( . ) )  _ R~(B), 

V = ~;I(~)/U = Im(RI(B) -+KI(A -+B)) =_ KI(A -+S), 

W = ker(/~0(A) ~/~o(B)) ~ Ko(A) 

yield a short exact sequence of Z/2-modules 

O ~  V-*  KI(A ~ B) ~ W ~ O  
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and the following commutative diagram 
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f ~ f " '  
H"(Z2; W) H "+ t(Z2; V) 

. /  
L~. +, ~B) Lh.{A ) 

- -  

. /  
L l{t(A ~ B) L~' t fA -.* B) 

L V(B) L~'V(A -* B) 

fl  "+ I(Z2; KI(A --* B)) L~(B) 

/ 

L~(A) H "+ '(Z2; W) 

(4.1) 

of exact sequences in L-theory. Diagram chasing induces a homomorphism 

6: ker(LW(A) ~ L~(B) • H "+ 1(Z2; W)) 

--* coker(L~+ I(B) @ H"(Zz; W) --. H" + 1(Z2; V)). 

We will now apply this result for A = ZG and B = Z2 G, to obtain a diagram 
involving the geometrically significant L-groups (as defined in Section 1), and to 
explicitly define the 6-invariant. Similar diagrams appear also in [15, 3.7, 3.11]. 

Our intermediate L-theory decorations are given by U =  Im(Wh'(ZG)~ 
Wh'(Z2G)), or more precisely by its pre-image U_/~I(Z2G)), together with 
V = Wh'(Z2G)/U and W = Ko(ZG). 

Recall that the 'prime' notation denotes the image of these Whitehead groups in 
Wh(QG) or Wh(Q2G) respectively [15, Section 3]. We can see by reduced norms that 
the natural map Wh(QG) ~ Wh(02G) is an injection. It follows that Wh'(ZG) injects 
into Wh'(~2G)), and so U ~ Wh'(ZG). 

Now Lemma 4.1 gives a commutative diagram: 

H"(Ro(ZG)) n "+ J(V) 

/ 
L.k+ t(Z2G) LI(ZG) 

/ 
L;+ t(ZG "* Z2G) P~ L.+ t(ZG -* Z2G ) 

L~AZ26) L',,(ZG --, Z,a) 

- . . . .  
n "+ ~(KdZ6 -, Z~6)) Lh.(Z2a) (4.2) 

-.. . .  
L~(ZG) H "÷'(£o(z6)) 

. I  

The definition of the 6-invariant needed for Theorem B (a special case of the map 
given in Lemma 4.1) is based on the homomorphisms 

L.h(ZG) ---> L v(Z,2G) ~- H "+ ~(Wh'(Z2G)/Wh'(ZG)) 

H" + I(Wh(QzG)/Wh'(ZG)) 

(4.3) 
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More explicitly, an element x e L.~(ZG) in the kernel of the cohomology finiteness 
obstruction can be lifted to L.h(ZG) and then mapped into LV.(ZzG). If in addition, 
the original element had trivial Arf invariant or semicharacteristic, then x 
ker(L,P(ZG) ~ Lh,(ZzG)). By commutativity of (4.2), we can further lift from Lnu(z2 G) 
into 

H "+ ~(V) ~- H "+ ~(Wh'(Z2G)/Wh'(ZG)) ,  

and the 6 invariant is defined as the image of this lifted element under the natural 
map 

H "+ ~(Wh' (Z2G)/Wh' (ZG))  J*, H "+ I (Wh(Q2G)/Wh' (ZG)) .  

In order to obtain a well-defined invariant on the kernel of the primary invariants 
listed above for L.P(ZG), we again refer to diagram (4.2). It follows that we must 
divide out the image under j ,  of the indeterminacy 

I = L,h+ l(Z2 G) (~ d*H"(Ko(ZG)) c_ H "+ I ( W h ' ( ~ z G ) / W h ' ( Z G )  ) 

where the first term is mapped to H "+ I(V) by the discriminant, and the second term 
is just the image of the connecting homomorphism: 

d*: H"(Ko(ZG)) --* H "  + I (Wh ' (Z2G) /Wh ' (ZG) )  

in Tate cohomology associated with the sequence 

0 ~ W h ' ( ~ 2 G ) / W h ' ( Z G )  ~ Wh'(ZG ~ Z2G) -~ Ko(ZG) -~ 0. 

We next check that the map j ,  on H"+I (V)  does not lose any information 
after dividing out the indeterminacy, and note that the advantage of composing 
with j ,  is to produce a range for the 6-invariant which is computable by reduced 
norms. 

LEMMA 4.4. Let  V = W h ' ( Z 2 G ) / W h ' ( Z G )  and V'  = W h ( Q z G ) / W h ' ( Z G  ). The map 

j ,  in (4.3) induces an injection 

H "+ ~(V)/I ~ H "+ ~(V') / j , (I)  

Proof. The composite 

K I ( Z G  --* Z2G) ~ K~(ZG --* Q2G) ~ K~(QG G ZoddG --* QG) 

is an isomorphism by excision. Consider the diagram 

0 --+ Wh ' (Z ,2G) /Wh ' (ZG)  --* K I ( Z G  ~ Z2G) --+ Ko(ZG) -~ 0 

0 ~ W h ( O 2 G ) / W h ' ( Z G  ) -~ K I ( Z G  --* 02 G) ~/ (o(ZG)  ~ 0 
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and compare the induced sequences on Tate cohomology. Since the induced map l, 
is an injection on Tate cohomology, the commutative diagram 

Hn(~,o(ZG) ) d* , Hn+a(V) ~ H .+I (K i (ZG - - ,  ~2G) ) 
J*l t*l 

H n ( g o ( Z G ) )  d~., o n +  l ( g  r) ~ H,+ I(Ka(ZG --, Q2G)) 

implies that j ,  induces an injection 

H "+ ~(V)/d*H"(K,o(ZG)) ~ H "+ i(v ' ) / j ,d*Un(Ko(ZG)).  

Now the proof of Lemma 4.4 is completed by comparing the following exact 
sequences via j , :  

L~+~(Z2G) ~ H"+~(V)/d*H"(F;o(ZG)) , Hn+a(V)/I , 0  

J*l t*l 
L~+ ~(Z2G) ~ H "+ I(V') / j ,d*H"(Ko(ZG))  ~ H n+ ~(V')/j,(I) ~ 0 [] 

From Lemma 4.4 and (4.2), the proof of Theorem B amounts to showing that the 
image of the composite 

t ~ ph Ln+ i(ZG Z2G) i, --~ L,7 I(ZG ~ ZzG) ~ L,P(ZG) (4.5) 

is mapped injectively by the multi-signature 

L,P(ZG) ~ L.h(RG). 

This may be checked on the d-component, where i, in (4.5) splits further according to 
the representations of QG which are faithful on Z/d. 

The groups L~,+i(ZG ~ Z2G)(d) have been studied in [45,25] by a sequence 
similar to (1.7). The comparison can easily be made by considering the commutative 
diagram: 

CLS+ l(S(d)) ~ L~+ I (ZG ~ Z2 G)(d) ~ [ I  LS(l~,(d)) @ LS(T(d)) ~ CLS(S(d)) 
l~2d 

il ~2 13 l 
CLf+ i(S(d)) --* Lf~-hI(ZG ---r ZzG)(d) ~ I-[ L~(l~t(d)) • L f (T(d))  -- CLf(S(d)) 

l~2d 

(4.6) 

From Section 1 we know that the map 1 is nonzero only on type OK factors with 
i + 1 = 0 (mod 4), where there is a short exact sequence 

0 ~ CL~(D) --* CL~(D) ~ H°(C(D)) ~ 0 

II 
z/2 
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In type OK(R) from Table II, the image of 1 does not survive to L~'h(ZG ~ Z2G)(d ). 
In the standard oriented anti-structure there are no type OK(C) factors. 

Note that the map 3 is trivial on the terms LS(l~l(d)) -~ L~(l~l(d)) and an injection 
on the term LS(T(d)). 

The remaining point to check is the possibility that there is an element in the 
image of 2 which comes from CL~+ l(S(d)). If we consider an element in some factor 
of L~+I(ZG ~Z2G)(d)  which is non-trivial in LS(l~oda(d)) but trivial in LSi(T(d)), 
then the factor has type O and i -  1,2 (rood 4) by (1.11). On the other hand, the 
groups cokvi+~ are nonzero in type O only when i + t - 0 ,  1 rood4, or i - 0 , 3  
mod 4. [] 

Remark. The argument applies more generally to any geometric antistructure with 
no type OK(C) factors. Such factors, however, are common in nonoriented situations 
(e.g. G = Z/4 with w ~ 1). To extend Theorem B to cover the nonoriented case, we 
must add restriction to the subquotients detecting the type OK(C) factors to the list 
of invariants. The relevant subquotients are 2-hyperelementary groups Z/d  >~ a with 
~1 = Z/4 and w t al  ~ 1. If G is one of these groups to begin with, we could define a 
third level invariant on the kernel of the 6-invariant by taking the Hasse invariant at 
each type OK(C) factor. 

PROPOSITION 4.7. The sequence (1.8) is split exact, so that 

L~'h(ZG --* Z2G) - cok Yl ~3 ker ?~_ 1. 

Proof. From Table II this is obvious unless i = 1 (rood 4) and S(d) contains a 
factor (D, a, u) of type O. To handle these cases we use another braid diagram: 

f ...... ~ f 
H ~+ t(Kl(R ~/~2)) L[(R ~ 1~2) 

/ 
CLs(S) H i(K d/~,,na • T)) 

/ 
L~(/~.  • T) CL~(S) 

-~. ..... f ~_ 

L~- I(R,~a ~ T) L~- i(/~,~a ~ T) 

L~'h( R "* ~2) CLf_,(S) (4.8) 

n~(c(s)) n~g,(n -~ G)) 
. f  ~ , I  

In order to avoid introducing more notation, we will also use "L~'h(R ~ a2) '  for 
summand of this group corresponding to a simple factor of S(d). This should cause 
no confusion. For a type O factor the maps in the above braid 

H'(C(D)) ~ CL s_ I(D) 

are isomorphisms for i -- 2, 3 (mod 4), as we checked in calculating CL~(D) from 
diagram (1.13). 

Since LS(/~odd ~ T) = LSo(T), it follows that there are short exact sequences 

{0 {0} Z/2 --,0, 
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where the upper row in the bracketed terms refers to types OK(R) or OD(R), 
and the lower row to types OK(C), OD(H) and OD(C). Since the middle group 
Hi(K1( R ~/~z) )  has exponent 2, and the torsion subgroup of L~'h(R ~/~2)  injects 
into it, we are done. [] 

5. The LP-theory of Hyperelementary Groups 

In this section we will summarize and complete the calculation of L~(ZG, fl, b) for an 
arbitrary geometric antistructure (ZG, fl, b) on a 2-hyperelementary group G, with 
b E G. We point out that these groups are sufficient to compute (in the sense of Dress 
induction) the L theory localized at 2 for all finite groups, at least for the standard 
oriented or nonoriented antistructures. In these cases it may be useful to have a 
direct calculation of the LP-groups of p-hyperelementary groups for p odd. It was 
remarked in [45, 2.4.1-1 that any such group is the direct product of a cyclic 2-group 
and a group of odd order, and we obtain the corresponding result to [45, 2.4.2-1. 

PROPOSITION 5.1. Let G = a × p, where a is an abelian 2-group and p has odd 
order. Define Y~2k+ 1 = 0 and E2k = im(L~k(ZG, w) ~ L~k(Ra ~ RG, w)), where w: G 
(+  1) is an orientation character. Then L~(ZG, w ) =  L~(Za, w ) •  Ei. The last sum- 
mand is free abelian and detected by signatures at the type U representations of G 
which are nontrivial on p. 

Proof. The inclusion Za  ~ ZG induces an isomorphism on the 2-adic L-groups, 
and the relative group L~k(R~r ~ RG, w) is detected by the representations of G 
which are nontrivial on p. These all have type U or GL. Now the projection 
map ZG ~ Za  together with the obvious map to Ei is clearly onto, and induces 
a 2-local isomorphism (by reducing to the 2-hyperelementary subgroups of G, 
which are cyclic). Since the 2-localization map on L-groups is an injection, we 
are done. [] 

Now suppose that G = Z/d >~a is a 2-hyperelementary group equipped with a 
geometric antistructure. The steps involved in computing L~(ZG, fl, b) from the long 
exact sequence (1.4) are as follows: 

(1) Determine the types, Schur indices and centre fields for all the rational 
representations of G = Z/d >~ a, following the method given in [16, p. 148], or 
[20, Appendix 1-1. For the d-component (1.2) we need to consider only those 
representations which are faithful on Z/d. 

(2) Refer to Table II for the contribution of each simple involution-invariant 
factor of QG to the relative group L~'h(ZG ~ ~2G, fl, b). 

(3) Compute the necessary ranks of the class groups following (2.18), (2.8) and 
(2.10) to complete the calculation of keryi(d) and coky~(d). By (4.7) the 
d-component of the relative group is just 

L~'h(ZG ~ Z 2 G ) ( d )  --- cok yi(d) • ker 7i- l(d). 
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(4) Apply (3.2) to compute the maps %(d): L~(Z2G, r, b)(d) ~ L~(QzG, r, b)(d). For 
d > 1 the domain of Wi(d) is g2(Z/2), where g2 is the number of dyadic primes 
in the field Q((a) ~. For d = 1, the domain of W, is zero for i odd and Z/2 for i 
even. 

So far these steps are fully described in Sections t-3, and we have no more to say 
about  them. The remaining steps will be carried out in this section, under the 
assumption that d > 1. The case d = 1 has been fully discussed in [20]. 

(5) We note that the maps 

~,(d): L~(ZzG)(d) ~ Lf'h(ZG ~ Z2G)(d) 

factor through 

t~i(d): L~(Z2G)(d) ~ cok yi(d) 

and compute the kernel and cokernel of the maps ~i(d). This step also 
computes the kernel and cokernel of ~(d)  since 

ker ~i(d) = ker ~,~d), and cok ~i(d) ~ cok ~i(d) G ker y~_ l(d) 

by (4.7) again. 
(6) We settle the remaining extension problems in 

0 ~ cok ~k~+ l(d) ~ L~(ZG, t,  b)(d) --* ker q~(d) --* 0, 

to finish the calculation. 

We now begin a discussion of steps 5 and 6. 

5.2. COMPUTATION OF THE MAPS fit(d) 

We begin by remarking that if LPi(d) = 0, then ffi(d) = 0 also. This can happen only if 
i = 2, 3 (mod 4). Suppose that S(d, ~) denotes a summand of S(d) for which the image 
of W,~d) is nontrivial (see (3.2)). Then ~ is a linear type O, Sp or special type U(C) 
character (when i is even) of a l .  Let cok ?i(d, 0 denote the corresponding factor of 
cok yi(d) and ff,(d, ~) denote the composition 

Lr(/~2(d)) ~ (d )  cok yi(d) ~ cok yi(d, ~) 

with the projection map. We will first determine the maps ~(d, 4) for each character 
above. 
In type U the images of the Arf invariant elements in Lg~(/~z(d)) = g2(Z/2) are all 

nontrivial in CLgi(D)= H°(C(E))= Z/2, since the map Lg~(St(d, ¢))--* H°(C(E)) is 
nontrivial for each prime ll2 [8, pp. 172-175]. 

Recall that in type O there is a subgroup of rank g2 ,g2 (1 -4c5 )_  H°(A~a) 
where 6 is a 2-local integer whose reduction to the residue field has nonzero trace 
in ~:2. 
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P R O P O S I T I O N  5.3. Suppose that Wi(d) is injective into a .factor S(d, 4) with skew 
field D and centre field E. 

(i) In type U(C) the image of the map ~i(d, ~) is zero. 
(ii) In type 0 the image of the map ~i(d, 4) is zero unless i = 0 or 1. The kernel of 

~ko(d, 4) has 2-rank T*(E, d) - ?,*(E, 2d) if D is split at infinite primes (resp. T(E, d) - 
7(E, 2d) if D is nonsplit at infinite primes). The image of ~l(d, ~) has 2-rank g2 (i.e. 
~l(d, ~) is injective) unless (a) the type is OK and d = 1, where the image is zero, or (b) 
the type is OD(R) or OD(C) and ga(E) = 1, where the image has 2-rank 92 - 1. 

Proof. For (i) we have already noted that the factor must be type U(C) for q~(d) to 
be nonzero. In that case, cok T~(d, 4 ) =  0. For (ii) in the case when i =  0, we recall 
that the image of Wo(d) is isomorphic to g2(1 - 46) c Ho( /~ )  by [16, 2.12, 3.9]. Now 
the kernel of the map fro(d, 4) in type OK (D split at infinite primes) is easily 
determined from the following diagram 

g2(l -- 46) ~ L~(/~2(d)) 

0 ~ ker tI) ~ E(2)/E × 2 ~ ~. H°(.4~d) - ,~ cok 70(d, 4) 

1 l l 
0 ~ ker • ~ E(2)/E × 2 ~ HO(.~a)/g2(1 _ 46) ~ cok ~o(d, ~) 

(5.4) 

When D is nonsplit at infinite primes we must replace (I) by @', adding H°(E~o) to the 
range of the reduction maps. The result listed in (ii) follows from the fact that the 
2-rank of ker @ or ker ~ '  is T*(E, d) or T(E, d), respectively, [45, p. 56]. In case (iii) we 
use [16, 2.12, 3.10] to conclude that the image of Wl(d) is isomorphic to 
9 2 ( ( -  1)) _ H°( /~) .  Then the result follows by counting ranks in (2.12) and (2.13). 
In case (b), d > 1 (since these types do not occur for 2-groups) so the domain of A in 
(2.13) has rank ( ~ p l 2 d O p )  - -  1 = g2, and ker A has rank g 2  - -  1. []  

For the maps ffi(d) we must compare the kernels of the various ffi(d, 4) for all the 
linear type O or Sp characters 4 of al .  Clearly ker ffi(d) = c~ ker ~i(d, ~). 

L E M M A  5.5. Let ~1, 42 be linear type 0 (resp. type Sp) characters of the antistructure 
(02o"1, flo, bo), with associated centre fields Ej (j  = 1, 2) for S(d, ~j). I f  i = 0 or i = i 
(resp. i = 2 or 3), suppose that ~di(d) is injective into S(d, ~i) and E1 ~- E2. Then 
ker ~i(d, ~l) ~- ker ffi(d, ~2). 

ProoJ: By [16, 2.12, 2.19] the image of ffi(d, 4j) is either ( 1 - 4 6 )  or ( - 1 )  
(i-= 0, l (mod4))  in H~(Al(4j)) for each It 2. Since both of these are mapped injec- 
tively under inclusions E~ ~ E 2 ,  the result follows from (5.4). []  

Since the trivial character ~o of o1 has type OK, and has the minimal possible 
centre field Eo = Q((e)e, we obtain: 

COROLLARY 5.6. Assume that d > 1. The map Ol(d) is injective, and ker Oo(d) = 
ker ~0(d, 40) where ~o denotes the trivial character of a 1. The map ~3(d) is zero if or1 
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has no linear type Sp characters, and otherwise ker @3(d)_c Z/2 with equality only 
when all linear type Sp characters are of type SpD(R) or SpD(C) and ga(E) = l for their 
eentre fields. 

Proof. The first and last statements follow from Proposition 5.3, and the second 
from Lemma 5.5. [] 

Remark 5.7. Suppose that ¢o,~1,---,~r are the linear type O (resp. type Sp) 
characters of the antistructure (Qzal, f lo,  bo), with associated centre fields E i 
(j = 0, 1,... ,r) for S(d, ¢j). Then cok ff~(d) can be computed by the long exact 
sequence 

0 ~  ker t~,(d)--* I-I ker ~i(d, ~j)--* (1--[ L~:(A2(~j)))/LiK(l~2(d)) 
\ J , , ~  

- - ,  cok --, I ]  cok --, o. 
J 

EXAMPLE 5.8. Many of the 2-hyperelementary group arising in the space form 
problem have 0.1 cyclic generated by bo [25]. More generally, suppose that the unit 
bo ~ cq generates a direct factor of o-1/[o-i, o-1]. Then the unique minimal field for the 
type Sp characters is Q(Za) ~, appearing as the centre field for the character 4o of 0.1 
which projects onto the direct factor (bo) and then maps bo to - 1. As in Corollary 
5.6, the map O3(d) then is injective and ker 02(d) = ker tP2(d, ~o). 

To state our final conclusion about the maps ~2(d), we need to generalize the 
notion of ('unramified') quadratic extensions from fields to group algebras. Recall 
that 'unramified' refers to all finite primes, and 'strictly' unramified refers to all places 
including the infinite ones. 

Let R(r0 denote the complex representation ring of re, and R(zc)(d) the subring 
generated by the representations which are faithful on Z/d. It is convenient to denote 
by Rsp(n) the Z-span of the type Sp characters of (Zn, flo, bo). More generally, Rx(n) 
will denote the span of a given set E of irreducible characters. Let no = Z/d x 0.0, 
where 0.0 = (bo). Following [16, 2.12], we have character homomorphisms 

A[: R(no)(d) -* Q~, 

where Q is the separable closure of the rationals, and r ~ Z/d ×/(2). The cohomology 
classes of these character homomorphisms are just the images of the Arf invariant 
one planes under the discriminant 

L~(Z2 ® Z[~d]0.o, flo, bo) -*/4°(Homn~(R(~zo)(d), Q~), flo). 

There is an induced map (project into the type Sp factors) 

/t°(ResSp):/t °(Homn~(R(no)(d), Q~), rio) ~ H °(Homn2(Rsp(x)(d), Q~), rio) 

and we denote by 

Vz(z~, d) _ H°(Homn~(Rsp(z0(d), Q~), rio) 
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the subgroup (of 2-rank g2(d)) generated by the images of the character homomor- 
phisms {A~} under this map. 

For our semisimple algebra S(d) = Q[(d]~a over Q, this subgroup will provide a 
'coherence' condition with respect to a set Z of irreducible characters in our 
definition of quadratic extensions. To relate global and local quantities we use the 
reduction map 

qb~s,z):/l°(Homn(Rsp(n)(d), 0(2d)(2)), flo) 

-~ I ]  H°(n°mn~(Rsp(n)(d), Q~), flo) ~ H°(Homn(Rz(z0(d), C ×), flo). 
pl2d 

Here Q(2d) is the union of all Abelian extensions of the rational numbers Q which 
are unramified at all finite primes p ~ 2d, and Q(2d) tz~ denotes the nonzero elements 
with even valuation at all finite primes p~ 2d. The domain of ~ts,z) is the Tare 
cohomology of a subgroup of the Fr6hlich 'Horn' description for I~l°(Kl(S(d)), flo). 
Using this identification, a unit u ~ S(d) lies in the domain of ~is,z) provided that its 
reduced norm lies in E(2d) ~2) for each centre field E in a type Sp factor of S(d). 

DEFINITION 5.10. The algebra S(d)[v/u ] = S(d)[t]/(t 2 - u) is said to be an (Sp, 
~)- coherent quadratic extension of S(d) if 

(i) u ~ S(d) is a central unit fixed by flo, projecting to 1 at each factor not of type 
Sp, whose reduced norm in each factor of S(d) has even valuation at all primes 
p ~ 2d, and 

(ii) the class ~s.z)(u) is in the image of H°(ResSp) at the dyadic primes, trivial at 
the primes P l d, and trivial at infinite primes in the factors given by Z. 

The extension is called unramified if 

(iii) the class ¢Pts,z)(u) e V2(z , d). 

Note that condition (iii) implies that the extension of centre fields E[x/~]/E is 
quadratic unramified for each simple factor of S(d, ~) of type Sp, and strictly 
unramified in the factors corresponding to the characters in E. Similarly, we have the 
notion of a Sp-coherent quadratic extension which is decomposed at a prime 
whenever this is the case for the centre field extensions. 

DEFINITION 5.11. Let n be an integer and E a set of type Sp characters. Let 
?sp(S, n, Z) be the number of distinct unramified Sp-coherent quadratic extensions of 
S(d) which are decomposed at the primes dividing n and strictly unramified at Z. If E 
is the set of all type Sp characters we denote this rank by ?sp(S, n). 

PROPOSITION 5.12. Suppose that Wz(d) is injective. Then ~sp(S, d,Z) - ?sp(S, 2d, ~) 
is the 2-rank of ker ~2(d), where E is the set of characters of type SpD (i.e. with simple 
factors nonsplit at infinite primes). 

Proof. A similar diagram to (5.4) including all the characters of S(d) relates 
ker Ors.z) to ker i~2(d). Now with our definitions, the 2-rank of ker ~ts,z) is just the 



PROJECTIVE SURGERY OBSTRUCTION GROUPS 569 

number of distinct unramified Sp-coherent quadratic extensions of S(d) which are 
decomposed at the primes dividing 2d and strictly unramified at E. The modified 
map ~s,~) obtained by dividing out V2(n, d) in the range has kernel whose rank is 
?sp(S, d, Z). [] 

Remark 5.13. These 2-ranks are computable using class field theory in the case 
when S(d) has only one type Sp character (compare Proposition 5.3). In general, the 
above result should be considered as a reduction of our computation to a specific 
arithmetical question. It would be interesting to know whether the answer could 
again be related to ray class groups of R(d) = Z[(a]'a. In this discussion we have 
concentrated on ker ~2(d) since this was not determined above. We remark that 
there is a similar formulation for ker ~'o(d) using type O characters throughout in 
place of type Sp characters, i.e. we use Ro(n) in the definitions of ~(s,z) and/4°(Res°,) 
to introduce unramified O-coherent quadratic extensions, and ranks ?o(S,d, E). In 
the next subsection we will need these maps again. 

5.14. FINAL EXTENSION PROBLEMS 

We now consider step 6, the extensions determining the groups L~(ZG, fl, b)(d). 
Since cok IPi+ l(d) - cok ~ +  l(d) G ker v~(d) and ker ~k~(d) = ker ffi(d), there are 

two potential sources of nontrivial extensions. To study the ones involving an 
extension of ker ff~(d) by ker ?i(d), we introduce the notation 

u,(d): l-[ L~(I~,(d)) 0 Lf(T(d)) ~ CL~(S(d)) 

for the map from the arithmetic sequence. Then we have an exact sequence 

0 ~ ker 7,(d) ~ ker ul(d) ~ ker ~li(d ) ~ O. (5.15) 

The extensions in this sequence can be determined from the diagram 

0 ~ ker ?,(d) ~ 1-I L~(R,(d)) • Lf(T(d)) ~(d)  CLr(S(d)) 

0 ~ ker u~(d) --~ I-I L~(l~z(d)) (~ L~(T(d)) u,(d) CLf(S(d)) (5.16) 

Lf(/~2(d)) - -  Lf(/~2(d)) 

Since the middle vertical sequence is split with torsion subgroup of exponent two, the 
extensions in (5.15) are limited by those in the sequence 

0 ~ A~(d) ~ L~(T(d)) ~ CL~(S(d)). 

But for i odd, the kernel A~(d) = 0 and so (5.15) is split. For i = 0 the kernel is only 
nontrivial at each type OK(R) factor, where it Ao(d, ~) = 8Z • (4Z) ~'(¢)- 1 with rl(~) 
the number of real places in the centre field of the factor. The extension for ker uo(d) 
is therefore nontrivial over the 8Z summands in the linear type OK(R) factors of the 
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signature group of ker 7o(d). These extensions arise already in the classical theory of 
quadratic forms over Z with odd determinant from the (mod 4) relationship between 
the signature and the Arf invariant [29]. When i = 2 and W2(d) is injective, then a 
similar relation exist between the extensions and 8Z summands from linear type 
SpK(R) factors. If Wa(d) = 0, then (5.15) is split. 

Let r1(S) = Y,{rl(~): ~ of type OK}, and Os be the reduction map 

Os:/~ °(nomn(Ro(zc)(d), Q(2d)(2)), flo) ~ / t  °(Homn(R~(rc)(d), C ×), flo) 

over the infinite primes in the centre fields corresponding to the set X of ali linear 
type OKOR) characters. Recall now that the map ~{s.z) is obtained from *s,z by 
dividing out the subgroup Vo(z~, d) in the range. Let ro(S) denote the 2-rank of image 
(@slker ~(s.z)), where Z is the set of type OD characters. 

We will now summarize our computation of ker u~(d). The signature group is a 
direct sum of 2-divisible, 4-divisible and 8-divisible summands, and the torsion 
subgroup is of exponent 2. For ker Vo(d) the signature group is computed in Lemma 
2.8 and Lemma 2.10. The map ~b is obtained from ~{s.~) by taking E as the set of all 
type O characters. 

PROPOSITION 5.17. 

(i) For i odd, ker ui(d) = ker 7¢(d) (9 ker fit(d). 
(ii) I f  ~Po(d) is injective, the torsion subgroup of ker uo(d) is ker ~ with 2-rank 

7o(S, d), and the signature group is the direct sum of (8Z) ~(s)-~°(s) (9 (4Z) "°(s) 
together with the 2-divisible and 4-divisible part of ker 7o(d). I f  W2(d) is injective, 
the analogous conclusion holds for ker u2(d) with type Sp replacing type 0.  
I f  tei(d) = O, then ker ui(d) = ker 7~(d) @ g2(Z/2). 
The torsion subgroup of  ker u~(d) has exponent two. 

(iii) 
(iv) 

Our final problem is to determine the extensions in the sequence 

0 --+ cok ui+ 1(d) --+ L~(ZG)(d) -+ ker ui(d) ~ 0 

It is not difficult to produce the diagram 

(5.18) 

0 0 

1 l 
0 ~ cok @i+ l(d) ~ cok @~+ 1(d) ~ ker ?i(d) ~ 0 

0 --* cok u,+l(d) ~ L~(ZG)(d) ~ ker us(d) ~ 0 

1 1 
ker ~i(d) = ker fit(d) 

t i 
0 0 
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to relate the new maps with the others we have been using. The result is 

PROPOSITION 5.19. There is a splitting 

L~(ZG)(d) ~- cok ffi+ ~(d) • ker ui(d). 

Proof. We must show that the remaining extensions between ker ffi(d) and 
cok ffi+~(d) are trivial. For i =  1 there is nothing to prove, since ffl(d) is injective. 
For i even, we first form the composite extension 

s '  = U u A}, 

where A is a set of central units u ~ S which closely 2-adically approximates one 
of the non-squares ( 1 -  4~), in each centre field of $2 fixed by flo. We take a 
large enough collection A to cover all the possibilities. Now let R' be the order 
in S' obtained by extending the centre of R by the ring of integers in the centre 
fields of S'. We extend the involution flo by the identity. Now we have the 
diagram 

0 ~ cok ffi+ 1(d) - *  Lf(R)(d) ---* ker ui(d) --* 0 

l 1 1 
0 ~ cok i~+ ~(d) ~ Lf(R')(d) ~ ker u~(d) --* 0 

where the 'prime' decoration refers to the arithmetic sequence for R'. Now the map 
induced by inclusion L~(/~2(d))--* L~(R'2(d)) is zero by construction, since we have 
included in S' the square roots of all possible discriminants of the Arf invariant one 
elements in/~2(d). However, the map induced on cok ffi+ l(d) is an injection, since i is 
even (see Table II). Therefore, the torsion in the upper sequence has exponent two 
and the sequence is split. 

For i = 3 we consider the arithmetic square 

R(d) ,/~2(d) 

l l 
l~oaa(d ) • S(d) • W(d) --~ Sa(d) 

where the rings in the lower row split into factors corresponding to the irreducible 
characters ¢ of al .  The extension problem can be considered as one of lifting a 
'patching' isomorphism over Sa(d) between the images of elements of L3K(/~2(d)) and 
L3K(/~odd(d)) ~ L~(S(d)). Now the nontrivial elements in L3K(/~2(d)) are represented by 
automorphisms 

;) 
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in each factor of S2(d). Since only type O or U(GL) factors contribute to cok 7o(d), 
we must look at the trivialization of a at one of these factors over Sa(d). But z can be 
written as the product 

0) 
of elementary unitary and hyperbolic automorphisms and this relation can be lifted 
over the corresponding factors of the lower left corner/~oda(d) • S(d) @ T(d). There- 
fore the extension for L~(ZG)(d) is split. [] 

Remark 5.20. Our computations do not agree with those of Bak-Kolster in [3, 
Theorem 4.1], and we have already pointed out the source of the discrepancy in 
[16, p. t43]. For example, for the group G = Z/3>~Z/4 with k e r t =  Z/2, we get 
LP(ZG) = (Z/2) 2 and Bak-Kolster get L~(ZG) = (Z/2) 3. To extract this answer from 
[3], note that the statements of both parts of [3, Theorem 4.1] are written incorrectly 
(compare the case of L~ for a finite 2-group [20, Section 3, p. 80]). What was 
intended can be seen from reading the proof on [3, p. 62], after correcting the 
misprint in the first line of the displayed formulas for coker O-z at the bottom of the 
page: in the first line 2 = 1 should be 2 = - 1. 

COROLLARY 5.21. The torsion subgroup of L~(ZG, r, b) has exponent four, for any 
finite group G. If  i ~ 3 (mod 4) (resp. i ~ 1 (mod 4)) or the geometric antistructure 
induced on any hyperelementary subgroup has no factors of type OK(C) (resp. type 
SpK(C)), then the torsion subgroup of L~(ZG, r, b)(d) has exponent two. 

5.22. THE ARF SUBGROUP OF L~(ZG, r, b) 

In [9], Clauwens introduced the Arf subgroup Arf~i of L~i(ZG, w) as the kernel of 
the map to the L-theory of even symmetric forms. We might wonder how much of 
the group Lh2i(Z2G, w) is in the image of the Arf subgroup (this affects extensions 
since the Arf subgroup has exponent 2). More generally we could try to explicitly 
give generators for the torsion subgroup of L~i(ZG, r, b), or at least the elements with 
Arf invariant one, using the image of this Arf subgroup. Note that this question 
is related to the computation of ker(L~i(ZG, min) ~ Lt~i(ZG, max)), by applying [i ,  
Theorem 1 & Cor. 4b]. 

The following example (provided by Bob Oliver) shows that the Clauwens 
subgroup will not give enough elements for this purpose. Let al be a central 
extension with normal subgroup H = (2 /2)  6 and al/H = (Z/2) 4. The six possible 
commutators of lifts of the nontrivial elements of o'i/H give a basis for H. Then we 
define an extension a = ( a l ,  go) of al  by setting go z equal to any nonsquare of al  
lying in H. Let go act trivially on the elements of a~. Then for G = Z/d ~ a with the 
standard oriented antistructure, the map We = 0 so there are Arf invariant one 
elements in the L-group but Arf ~ = 0. 
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