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A rational permutation module for a finite groupG is a rational represen-
tation of the formV ∼= QX for some finiteG setX. LetP (G) denote the
subring of the rational representation ringR(G) spanned by the permuta-
tion modules. Alternatively,P (G) is the image of the Burnside ring ofG in
R(G). Define the functorC(G) as the cokernel

0 −→ P (G) −→ R(G) −→ C(G) −→ 0 .

By the Artin Induction theorem,C(G) is a finite abelian group with exponent
dividing the order ofG.

Some work on this sequence has already been done. In [14] and [16],
Ritter and Segal proved thatC(G) = 0 for G a finitep–group. Serre [17, p.
104] remarked thatC(G) /= 0 for G = Z/3 × Q8 (the direct product of a
cyclic group of order 3 and a quaternion group of order 8).

Berz [2] gave a nice description ofP (G) for G metabelian or super-
solvable. To describe the result, recall thatR(G) additively is a free abelian
group with basis given by the irreducible rational representations ofG. The
subgroupP (G) is generated by the induced representationsIndG(1H ) =
Q[G/H], whereH runs over the subgroups ofG. If aφ denotes thegcd over
all H of the numbers〈φ, IndG(1H )〉, thenaφ divides〈φ, χ〉 wheneverχ is
a virtual permutation representation. Letαφ = aφ

〈φ,φ〉 .

Theorem: (Berz [2])ForGmetabelian or supersolvable the latticeP (G) ⊆
R(G) has a basisαφ · φ whereφ runs over the irreducible rational repre-
sentations ofG.

The authors wish to thank the Max Planck Institut für Mathematik in Bonn for its hospitality
and support. This research was also partially supported by NSERC and the NSF.



708 I. Hambleton, L.R. Taylor

It follows immediately from the definition thatP (G) ⊆ ⊕
αφ ·φ for any

finite groupG. In an earlier version of this paper we claimed that equality
held for all finite groups, but Berz [2] gives a counterexample. The error lay
in the assertion that the lattice defined as

⊕
αφ · φ has good induction and

restriction properties.
In §1 we review some of the foundational work of A. Dress on induc-

tion theory and observe that hyperelementary computation follows for the
Mackey functorsP (G),R(G) andC(G). Since hyperelementary groups are
supersolvable, Berz’s result applies and this information leads in principle
to further information aboutC(G) for general groupsG.

In §2, we prove that the functors,P ,R andC are “detected” by thebasic
subquotients ofG [9]. This leads to a different proof of the Berz equality
P (G) =

⊕
αφφ, forG hyperelementary, and to more efficient methods for

computingC(G).
Each basic groupB is p–hyperelementary for some primep and each

basic group has a unique irreducible faithful rational representationρB .
Representations have induction and restriction for quotient maps as well as
subgroups. Hence they also have “push forward” and “pull back” maps for
subquotients. IfH is a subquotient ofG, we call the map fromR(G) to
R(H) the restriction and we call the map fromR(H) toR(G) the induction
map.

Hyperelementary computation and basic detection can be combined (see
§3) to give an explicit numerical criterion for an arbitrary rational represen-
tation to be a virtual permutation representation.

Theorem A: Given a rational representationχ onG, χ is a virtual permu-
tation representation if and only ifaρ

B
divides〈χ, IndG(ρB )〉 for all basic

subquotientsB ofG.

In §4 we describe the basic groups and give a partial calculation of the
aρ

B
. In conjunction with the general theory, this leads to a short proof of

the Ritter–Segal theorem in§6.
In §7 we construct examples of groupsG for whichC(G) is arbitrarily

complicated. In§8 we give some calculations ofC(G) and prove some
vanishing results. One consequence of Corollary 8.3 is:

Theorem B: If p is the largest prime dividing the order ofG, thenC(G) is
p–torsion free.

To state the calculation forG nilpotent (see§§9-10) we need some no-
tation. LetChQ(G) denote the ring of rational valuedcharactersof G, and
recall that

0 → R(G) → ChQ(G) → ⊕
Z/mφ → 0(0.1)

is a short exact sequence where the sum runs over the irreducible rational
representationsφ ofG andmφ is the Schur index of an irreducible complex
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constituent ofφ. If we letC(G) denote the cokernel of the inclusionP (G) ⊆
ChQ(G), then we also have the following isomorphisms

C(G)/C(G) ∼= ChQ(G)/R(G) ∼= ⊕
Z/mφ .(0.2)

Let R̃(G) denote the kernel of the restriction mapR(G) → R({e}). For
nilpotent groups,G is the direct sum of itsp–Sylow subgroupsGp, and we
may writeG = G2 × Godd. Note thatR(Godd) =

⊗
p oddR(Gp). In [14,

Satz 3] it was asserted thatC(G) = 0 for G nilpotent, butC(G) = Z/2
for G = Z/3 × Q8 ([14, Hilfsatz 6.1(1)] is incorrect). More generally,
C(G) = Z/2 for G = Z/p × Q2r for any odd primep andr ≥ 4. On
the other hand,C(G) = 0 for G = Z/7 × Q8. This dependence, both on
the prime factors ofGodd and on the quaternion algebras, complicates the
calculation for nilpotent groups.

Call an odd primep non–split if 2w ≡ 1 (mod p) whenp − 1 = 2sw
with w odd: otherwise call itsplit. Let Gs denote the product of thep–
Sylow subgroups for split primes and letGns denote the product of the
p–Sylow subgroups for non–split primes. We will show in Proposition 6.2
thatC(G2) is aZ/2 vector space with oneZ/2 for each irreducible rational
representation whose division algebra is quaternionic. There is a direct sum
decompositionC(G2) = C(G2)8 ⊕ C(G2)≥16 depending on whether the
center field isQ or not. Then

Theorem C: For G nilpotent,C(G) = R(Godd) ⊗ C(G2) and

C(G) = R̃(Godd) ⊗ C(G2)≥16 ⊕ R̃(Gs) ⊗R(Gns) ⊗ C(G2)8 .

In this formula, the termR̃(Gs) ⊗ R(Gns) is just the kernel of the
restriction mapR(Godd) → R(Gns).

There is another description of the answer forG nilpotent. LetEG denote
the set of conjugacy classes of odd order cyclic subgroups ofG. EachE ∈ EG

has a unique faithful, irreducible, rational representationρE . Let m
R
(ξ)

denote the real Schur index of an irreducible complex constituent ofξ, and
let fE = [Q̂2(ρE ) : Q̂2].

Theorem C′: For G nilpotent,

C(G) ∼= ⊕
(ξ,E)

{
Z/2 | m

R
(ξ) = 2 and fE · [Q(ξ) : Q] ≡ 0 (mod 2)

}
.

whereξ runs over the irreducible rational representations ofG2 and{e} /=
E ∈ EG.
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To compare the two versions, note that the rank ofR(Godd) is just the
cardinality of the setEG (see§9 for an idempotent description of this cor-
respondence). The conditionm

R
(ξ) = 2 picks out the quaternionic repre-

sentations ofG2, the degree[Q(ξ) : Q] is the degree of the center field
extension, andfE determines whetherE is split or non–split.

Finally we remark that hyperelementary calculation has some limita-
tions. For example, all the irreducible complex representations of the sym-
metric groupsΣn come from permutation modules [11, Thm.2.2.10,p.39],
soC(Σn) = 0. However, any finite collection of hyperelementary subgroups
occurs in a fixedΣn oncen is sufficiently large.

1. A review of Dress’s work on induction

The work to which we are referring (see [4] and [5]) assumes that we are
given a Mackey functorM and a family of subgroups ofG, denotedH.
In general it is only important thatH be closed under conjugation and
subgroups, but in this paper it is the family of hyperelementary subgroups.

One can then form what Dress calls an Amitsur complex: this is a chain
complex

M(G) ∂0−−→ ⊕
H∈H

M(H) ∂1−−→ . . .

where the higher terms are explicitly described sums ofM applied to ele-
ments ofH. The boundary map∂0 is the sum of restriction maps and the
higher∂i are just sums and differences of restriction maps. There is a sec-
ond Amitsur complex defined using induction maps for which the boundary
maps go the other direction.

Dress further assumes that some Green ring, sayG, acts onM. Write

δHG :
⊕

H∈H
G(H) → G(G)

for the sum of the induction maps.

Theorem 1.1: If there existsy ∈ ⊕
H∈H G(H) such thatδHG (y) = 1 ∈

G(G), then both Amitsur complexes forM are contractable.

Remark:One writes the conclusion asM(G) = lim←−
H

M(H) or M(G) =

lim−→
H

M(H) where the first limit made up of restrictions and the second of

inductions. The result above follows from [5, Prop.1.2,p.305] and the remark
just above [5, Prop.1.3,p.190].

This is a very powerful theorem whose main difficulty in use comes in
finding a Green ring which acts. The Burnside ring is a Green ring which



Rational permutation modules 711

always acts on any Mackey functor, but it satisfies Dress’s condition onδHG
if and only ifG ∈ H.

Observation: The image of the Burnside ring inG, denotedAG , is a Green
ring which acts onM. The method that provedδHG hits1 will probably prove
thatδHAG

also hits 1. The advantage ofAG overG is thatAG acts on Mackey

functors which are subfunctors or quotient functors ofM whereasG may
not act on all of them. In particular,G never acts onAG unless they are
equal.

This observation has been made before, e.g. [12, p.253], [10, Sect. 3],
and [1]. ForG the complex representation ring, Dress [4, Prop. 5.2,p. 210]
proved thatδHG hits1. The same proof applies verbatim toP (G), the image
of the Burnside ring inR(G). It follows that

Proposition 1.2: Any subquotient–Mackey functor of the complex repre-
sentation ring has hyperelementary calculation.

Remark:A subquotient–Mackey functor is a sub–Mackey functor followed
by a quotient Mackey functor. Examples includeP ,C orC, andR orChQ.

Dress also proves a local result which says the following aboutC(G).
Fix a primep, let Hp denote the family ofp–hyperelementary subgroups
and letC(G)p denote thep–primary subgroup ofC(G). Then

C(G)p = lim←−
Hp

C(H)p = lim−→
Hp

C(H)p .(1.3)

2. Basic detection

In [9, 1.A.4] we introduced the categoryRG–Morita, for any commutative
ring R. The categoryQG–Morita is defined as follows. The objects are
subgroups,H ≤ G, and the morphisms fromH1 to H2 are generated by
theH2–H1 bisetsX, modulo some relations spelled out in [9, p.249–250].
From [9, 1.A.12(i),p.251],R(G) is a functor onQG–Morita defined by
sending a rational representationV of H1 to Q[X] ⊗QH1 V . Note if V is a
permutation module on theH1–setY , thenQ[X] ⊗QH1 Q[Y ] = Q[X ×H1

Y ] soP is also a functor onQG–Morita. We proved in [9, 1.A.9,p.251]
that the morphisms inQG–Morita are generated by generalized inductions
and restrictions corresponding to homomorphismsf : G1 → G2 which are
either injections (subgroups) or surjections (quotient groups).

Theorem 2.1 ([9], 1.A.11, p. 251):The sum of the generalized restriction
maps,

C(G) → ⊕
B∈BG

C(B)
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is a split injection whereBG denotes the set of basic subquotients ofG. The
sum of the generalized induction maps is a split surjection.

WhenG is hyperelementary, Theorem 2.1 has a more precise version
which will imply the corresponding special case of Berz’s theorem. To de-
scribe this result, first recall some results from [9]. For each irreducible
rational representationφ there exists a basic subquotientB, so thatφ is the
generalized induction ofρB with additional control on the induction. Corre-
sponding toφ there is an idempotenteφ in QG–Morita. This idempotent has
the property that ifV is any rational representation ofG, theneφ · V = bφ
whereφ occursb times inV . If V is a virtual permutation representation so
is eφ · V , sinceQG–Morita acts onP (G). It follows from this observation
thatαφφ ∈ P (G) for G hyperelementary. It is clear thatαφ dividesαρ

B

since the virtual permutationαρ
B
ρB , induced up toG, is justαρ

B
φ. On the

other hand, ifαφφ is restricted toB and then hit witheρ
B

, one gets a virtual
permutation representation which isαφφ. Henceαφ = αρ

B
and we have

shown

Proposition 2.2: For G hyperelementary,P (G) =
⊕

φ αρ
B

Z andαφ =
αρ

B
.

In §4 we will say more about theαρ
B

. In particular, for everyp–hyper-
elementary group all theαφ are powers ofp.

3. The proof of Theorem A

To fix some notation for the proof, letL(G) denote the set of all rational
representationsχ of G such that〈χ, IndG(ρB )〉 is divisible byaρ

B
for all

basic subquotientsB of G. Clearly,L(G) is a subgroup ofR(G). The goal
is to proveL(G) = P (G).

Frobenius reciprocity holds even for generalized restrictions and induc-
tions so

〈χ, IndG(ρB )〉 = 〈ResB(χ), ρB 〉 .
Since virtual permutation representations are also preserved by generalized
induction and generalized restriction, it is clear that Frobenius reciprocity
impliesP (G) ⊆ L(G).

If G is p–hyperelementary, the Berz lattice forG equals
⊕

φ αρ
B

Z.
From this it follows thatL(G) ⊆ ⊕

φ αρ
B

Z. Proposition 2.2 now implies
P (G) = L(G).

Next note that ifH ≤ G, we haveResH(L(G)) ⊆ L(H). The proof
concludes by induction on the order ofG. The result is trivial for the trivial
group. Assume thatP (H) = L(H) for all proper subgroups ofG. SinceL
always has restrictions and since it is equal to a Mackey functor on proper
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subgroups, it also has inductions. HenceL is a Mackey functor for the
category of finite subgroups ofG. SinceP (H) = L(H) on all hyperele-
mentary subgroups ofG, proper or not, it follows from Proposition 1.2 that
P (G) = L(G).

4. Basicp–hyperelementary groups

A p–hyperelementary group is any group which can be written as an exten-
sion,C / G → P whereC is a cyclic group of order prime top andP is a
p–group. There is an action mapψ : P → Aut(C). Any such extension is
split. The notation follows [9], Sect. 3.A. From [9, 3.A.6,p.272],G is basic
if and only if

(1) p is odd and the kernel ofψ is cyclic;
(2) p = 2 and the kernel ofψ is cyclic, dihedral, semi–dihedral or

quaternion and if the kernel isD(8) the conjugation homomorphism
P → Out

(
D(8)

)
is onto.

This includes the theorem of Roquette [15] identifying the basicp–
groups as cyclic ifp is odd and cyclic, quaternionic, semi–dihedral and
dihedral of order at least 16 ifp = 2.

An F–group is a group with a cyclic normal subgroupA / F →
F/A where the action mapψ : F/A → Aut(A) is injective. Each basicp–
hyperelementary group,C / G → P , has a maximal order cyclic subgroup
Ap ≤ kerψ which is normal inP . LetA = Ap × C. The extensionA /
G → G/A displaysG as anF–group withG/A an abelianp–group. This
extension is classified by an elementκG ∈ H2(G/A;A).

From [9, 2.11,p.267], a basic group has a unique faithful rational repre-
sentationρG . It is the only irreducible rational representation ofG which is
faithful when restricted toA, andResA(ρG) = mρ

G
ρA . MoreoverIndG(ρA)

=
∣∣G/A

∣∣
mρ

G

· ρG .

We can describe the Schur indexmρ
G

as follows. LetΓ denote the
Galois group ofQ(ζ|A|) overQ. EmbeddingA as a subgroup of the roots of
unity inQ(ζ|A|) determines an isomorphism ofΓ withAut(A). Use the map
G/A → Aut(A) to identifyG/Aas a subgroup ofΓ . The center fieldQ(ρG)
is just the field corresponding toG/A under the Galois correspondence.
There is an induced map

H2(G/A;A) → H2(Gal
(
Q(ζ|A|)/Q(ρG)

)
; Q(ζ|A|)

∗) j−→Br(Q(ρG))

whereG/A = Gal
(
Q(ζ|A|)/Q(ρG)

)
, Br(Q(ρG)) is the Brauer group of

the fieldQ(ρG), and the map labeledj injects its domain onto the set of
division algebras with centerQ(ρG) which split overQ(ζ|A|). The classκG
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is mapped to the class of the simple factor ofQG determined byρG (see [7,
p.193]). The order of this class ismρ

G
, [13, Thm.32.19,p.280].

We introduce notation to deal withmρ
G

locally. By the Benard–Schacher
Theorem, [3, 74.20,p.746], the order of the image ofκG in one of these
local Brauer groups is the same for each primeq lying over a fixed prime
q of Q, so letmq(ρG) denote this common order. At the infinite primes,
the same result holds, so letm

R
(ρG) denote its order. Recallm

R
(ρG) is

either1 or 2 and it is a result of Frobenius and Schur that it is2 if and
only if Σg∈GρG(g2) < 0. If q does not divide the order of the groupG,
mq(ρG) = 1, [3, 74.11,p.740]. Finally, recall thatmρ

G
is the least common

multiple of all the local Schur indices [3, 74.11,p.740]. In our case,mρ
G

is a power ofp and hence so are all the local Schur indices so the lcm
becomes a max. Letq1, · · · , qr denote the distinct primes dividing|G|. Then
mρ

G
= max

(
m

R
(ρG),mq1(ρG), · · · ,mqr(ρG)

)
.

In general it is not easy to compute local Schur indices, but in the discus-
sion below we carry this out in some special cases. We will use the notation
L = Q(ζ|A|) andK = Q(ρG). Fix a primeq ∈ Q, and primesq in K and
Q in L with Q ⊂ q ⊂ (q). Let L̄Q denote the residue field ofLQ.

Let ΓQ denote the decomposition group ofQ over Q and letG
Q

=
ΓQ ∩G/A ≤ G/A denote the decomposition group ofQ overK. Then the
image ofκG under the composition

H2(G/A;A) i∗−→H2(G
Q
;A) s−→H2(G

Q
;L∗

Q

) jQ−−→Br(Kq)

determines the image of the local division algebra in its Brauer group. Here
i∗ is the map induced by the inclusionG

Q
≤ G/A, G

Q
= Gal

(
LQ/Kq

)
,

andjQ is the injection into the Brauer group.
The Galois groupΓQ maps onto the Galois group of̄LQ overFq. The

first inertia group is the kernel, denotedΓQ0. LetG
Q0 = ΓQ0 ∩G/A: it is

the first inertia group ofQ overK.
There is an exact sequence ofΓQ modules

0 → U → L∗
Q → Z → 0

whereZ is a trivial ΓQ module andU is the group of units in the ring of
integers ofLQ. It follows that

0 = H1(G
Q
; Z) → H2(G

Q
;U) → H2(G

Q
;L∗

Q

)
is exact and sos factors through a mapH2(G

Q
;A) s′−→H2

(
ΓQ;U

)
. This

map can be analyzed by means of the exact sequences

0 → A1 → A → Ā → 0
↓ ↓ ↓

0 → U1 → U → L̄∗
Q → 0
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where the vertical maps are injections. Recall that there is a Hausdorff fil-
tration onU1 so that the associated graded is a vector space overL̄Q.

From this discussion, we can recover the well–known result on the Schur
indices for the quaternion groups:

m
R
(ρQ8

) = 2,m2(ρQ8
) = 2, and the remaining local Schur

indices are 1;
m

R
(ρQ2r

) = 2, and all the local Schur indices are 1 if
r ≥ 4.

We now describe two further situations where the calculation of the local
Schur index is relatively easy.

Case 1. The primeq does not dividep. Then

H1(G
Q
;U1) = H2(G

Q
;U1) = 0.

This follows from [18, Lemma 3,p.185], sinceG
Q

is a p
group and the associated graded is aZ/q vector space. Hence
H2(G

Q
;U) → H2(G

Q
; L̄∗

Q) is an isomorphism. The grading
onU1 also shows thatAp → Āp is an isomorphism and hence
H2(G

Q
;A) → H2(G

Q
; Ā) is an isomorphism. Up to these

isomorphisms, it suffices to determine the map

H2(G
Q
; Ā) → H2(G

Q
; L̄∗

Q) .

Case 2. The groupG
Q0 = {e}. Equivalently,q is unramified overK.

ThenG
Q

is also the Galois group of̄LQ over K̄q. Again
H1(G

Q
;U1) = H2(G

Q
;U1) = 0 [18, Lemma 2,p.185]

and by [18, Ex. a,p.162] we haveH2(G
Q
; L̄∗

Q) = 0. Hence
H2(G

Q
;U) = 0 so theq–local Schur index is 0.

Recall for use below the following fact from algebraic topology.

Lemma 4.1: If Z/pr acts trivially on cyclic groupsZ/ps andZ/pt and if
s ≤ t then the map induced by the inclusioni : Z/ps ↪→ Z/pt

i∗ : H2(Z/pr; Z/ps) → H2(Z/pr; Z/pt)

is the map between cyclic groups which sends a generator of the first topt−s

times a generator of the second.

Proposition 4.2: LetG be a basicp–hyperelementary group. IfG/A acts
trivially onAp, thenmp(ρG) = 1. Suppose, in addition, that|A| = ps ·q for
some primeq, and thats ≤ twherept is the fullp–power divisor ofq−1. If
G/A has orderpr, thenmq(ρG) equals the order ofi∗(κG) under the map
from Lemma 4.1. Two extreme cases are: ifs = t, thenmq(ρG) equals the
order ofκG; if r + s ≤ t thenmq(ρG) = 1.
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Proof: SinceA = Ap × C, L = Q(ζps , ζ|C|) with Q(ζps) ∩ Q(ζ|C|) = Q.
SinceG/A acts trivially onAp, G/A ≤ Gal

(
L/Q(ζps)

)
. To apply Case

2 to prove the first assertion, note that all thep–power roots of unity inL
are contained inK, so the extensionLQ/Kq is unramified. Case 2 shows
mp(ρG) = 1. Case 1 can be applied to prove the remaining assertions. Here
ζ|C| = ζq andK = Q(ζq)G/A(ζps). Sinceq ≡ 1 (mod ps), the decompo-
sition groupΓQ = Gal

(
L/Q(ζps)

)
and the residue class field̄LQ = Fq.

It follows thatG
Q

= G/A, that (L̄∗
Q)p

∼= Z/pt, and that the action of
G

Q
on L̄∗

Q is trivial. Hence the map ofAp → (L̄∗
Q)p is just an injection

Z/ps → Z/pt. SinceG is basic,G
Q

= G/A = Z/pr for somer ≤ t, and
we must compute the mapi∗ from Lemma 4.1. Ifs = t, the mapi∗ is an
isomorphism somq(ρG) is the order ofκG. If r+ s ≤ t the mapi∗ is zero,
somq(ρG) = 1.

5. Calculations for basicp–hyperelementary groups

The goal of this section is to come as close as we can to computingαρ
G

for
basicp–hyperelementary groups. First we prove a general lemma.

Lemma 5.1: LetU / G be a normal subgroup. Letλ be a representation
onU with φ = IndG(λ). LetH be any subgroup ofG, letL = H ∩ U and
let H̄ = H/L. Then

〈φ, IndG(1H )〉 =
1

|H̄| Σ
g∈U\G

〈ResLg(λ), 1Lg〉 .

Proof: Consider

S := Σ
g∈U\G

〈λ, IndU(1Hg∩U )〉

= Σ
g∈U\G/H

(
Σ

h∈H/(Hg∩U)
〈λ, IndU(1Hgh∩U )〉

)

= Σ
g∈U\G/H

|H|
|Hg ∩ U | 〈λ, IndU(1Hg∩U )〉 .

To see the second equality, noteHgh = ghHh−1g−1 = Hg. The conjuga-
tion by h does not change the character1H , so all the terms in the second
sum are seen to be equal. NoteHg ∩U = (H ∩Ug−1

)g = (H ∩U)g = Lg

sinceU / G. Hence

S =
∣∣H/L∣∣ · Σ

g∈U\G/H
〈λ, IndU(1Hg∩U )〉 =

∣∣H/L∣∣ · 〈λ,ResU(IndG(1H ))〉
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where the last equality is just the Mackey double coset formula applied to
the compositeResU(IndG(1H )). But

〈φ, IndG(1H )〉 = 〈IndG(λ), IndG(1H )〉 = 〈λ,ResU(IndG(1H ))〉
by Frobenius, so

|H̄| · 〈φ, IndG(1H )〉 = S = Σ
g∈U\G

〈ResLg(λ), 1Lg〉

by Frobenius reciprocity applied to〈λ, IndU(1Hg∩U )〉.

Proposition 5.2: For G basic p–hyperelementary,aρ
G

is the gcd of the

numbers
ρ

A
(1)mρ

G
|H| asH runs over all subgroups ofG withH ∩A = {e}:

αρ
G

is the gcd of the numbers |G|
|A|·|H|·mρ

G

running over the sameH.

Proof: Apply Lemma 5.1 toU = A with λ an irreducible complex con-
stituent ofρA . Sinceλ is faithful, the inner products on the right are0 unless
Hg ∩ A = Lg = {e} when they are all1. Next recall thatρA is just a sum

of Galois conjugates ofλ and recall thatIndG(ρA) =
∣∣G/A

∣∣
mρ

G

· ρG . Since

〈ρG , ρG〉 =
m2

ρg
·ρ

A
(1)

|G/A| , the result follows.

Lemma 5.3: C(G) is ap–torsion group ifG is p–hyperelementary.

Proof: Since subquotients ofp–hyperelementary groups are againp–hyper-
elementary the result follows from Proposition 5.2 and Proposition 2.2.

Since the gcd of a set of powers ofp is just the minimum, the following
is an immediate consequence of Proposition 5.2.

Proposition 5.4: Given a hyperelementary basic groupG, there exist sub-
groupsH such thatH has maximal order subject to the conditionH ∩A =

{e}. For any suchH,αρ
G

= |G|
|A|·|H|·mρ

G

andaρ
G

=
ϕ(|A|)mρ

G
|H| whereϕ(n)

is Euler’s phi function of the integern.

Proposition 5.5: If G is basic andA / G → G/A is split,mρ
G

= 1 and
αρ

G
= 1.

Proof: TakeH = G/A in Proposition 5.4 and recallαρ
G

is an integer.

Corollary 5.6: LetG be a finite group with elementary abelianp–Sylow
subgroup. ThenC(G)p = 0.



718 I. Hambleton, L.R. Taylor

Proof: By (2.1) and (2.2) it is enough to computeαρ
G

for basic subquotients
of G. Now apply (5.3) and Proposition 5.5.

Sometimes a basicp–hyperelementary group can be decomposed asG =
E × G′ where the order ofE is prime top. Note thatG′ is automatically
basic and that the basic representationρG is justρE ⊗ ρ

G′ . For a givenG
there is a unique maximal direct factorE of order prime top.

Lemma 5.7: LetG = E × G′ be a basicp–hyperelementary group, with
the order ofE prime top. Thenmρ

G
·αρ

G
= mρ

G′
·αρ

G′
. The Schur index

mρ
G

= mρ
G′

if E = Z/2 or {e}. Otherwisem
R
(ρG) = 1, mq(ρG) = 1 if

(q, |G′|) = 1, andmq(ρG) = mq(ρG′ )/(fq(E),mq(ρG′ )) wherefq(E) is

the order ofq ∈ (
Z/|E|)×

if q divides|G′|.

Proof: The first assertion follows from Proposition 5.4: the quantitymρ
G

·
αρ

G
for a basicp–hyperelementary group depends only on thep–Sylow

subgroup. The calculation of the change in Schur index is easy to describe
at the level of simple factors of the group rings: the center field for the factor
for ρ

G′ in Q[G′] is just extended by tensoring withQ(ζ|E|) = Q(ρE ). Since
the order ofE is prime to the order ofG′, the new center field is justQ(ρG)
and we compute the local invariants of this extended factor.

The result is immediate for|E| ≤ 2, so assume|E| > 2. Since the field
Q(ρG) is totally imaginary,m

R
(ρG) = 1. If mq(ρG′ ) = 1 then under the

extension it remains split: in particular if(q, |G′|) = 1,mq(ρG) = 1.
We now turn to the primes dividing|G′|. Since the order ofE is prime

to the order ofG′, we can reduce to the cyclotomic case as follows. LetQ
be a prime ofQ(ρ

G′ ) lying over the primeq of Q. If q splits inQ(ρE ) into
q̄1, · · · , q̄g, thenQ splits inQ(ρG) into Q̄1, · · · , Q̄g. The main issue here is
the degree of the extension̂Q(ρG)Q̄i

overQ̂(ρ
G′ )Qi. By Galois theory, this

equals the degree of̂Q(ρE )q̄i overQ̂qi .
The classical theory says thatqi is unramified inQ(ρE ) and that the

degree of the residue field extension is the order ofqi in
(
Z/|E|)×

, denoted

fqi(E) and therefore the degree ofQ̂(ρE )q̄i overQ̂qi is justfqi(E).
Each local Brauer group at a finite place is aQ/Z. The map on the

sum of the local Brauer groups is a diagonal map intog copies ofQ/Z
corresponding to the splitting of the primeQ preceded by multiplication by
the degree of the local field extensionfqi(E) (see [18, Prop.7,p.193]).

As an application of Lemma 5.7, we consider the product of cyclic
groups with quaternion groups. The prime2 has order2 in

(
Z/3

)×
. Hence

m2(ρZ/3×Q8
) = 1 which is one explanation of Serre’s example. But2 has

order3 in
(
Z/7

)×
som2(ρZ/7×Q8

) = 2 and forZ/7×Q8 all rational repre-
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sentations are permutation representations. For any odd primep andr ≥ 4
we havem2(ρZ/p×Q2r

) = 1.
Lemma 5.7 gives a partial converse to Proposition 5.5.

Corollary 5.8: LetG be ap–hyperelementary basic group. IfκG /= 0 then
there exists a cyclic groupE of order prime top such thatp dividesαρ

E×G
.

Proof: SinceκG /= 0, p dividesmρ
G

· αρ
G

. Let pt be the exact power ofp
dividingmρ

G
and let̀ 1, · · · , `r be the distinct primes dividing the order ofG

(includingp). Pick a primeqi dividing
`i

pt

− 1

`i
pt−1

−1
and letE = Z/q1 · · · · · qr.

Use Lemma 5.7 to seemρ
E×G

= 1 sop dividesαρ
E×G

.

Note that any prime divisorq of
`

pt − 1

`
pt−1 − 1

will havept as the order of̀

in (Z/q)×.

6. Calculations for ap–group

If G is a basicp–group, thenG/A is trivial or Z/2. The groupG/A is trivial
except whenG is dihedral, semi–dihedral or quaternion. The extensionA /
G → G/A is split if G is dihedral or semi–dihedral and is non–split ifG
is quaternion. In this last case, the Schur index is 2. Therefore in all cases,
αρ

G
= 1.

Theorem 6.1 (Ritter–Segal):C(G) = 0 for G a p–group.

Proof: The result follows from Proposition 2.2 and the calculation that
αρ

G
= 1 for basicp–groupsG. This line of argument was attributed to W.

Feit in the introduction to [16].

For a basicp–group,C(G) = 0 if G is cyclic, dihedral or semidihedral,
andC(Q2r) = Z/2. This follows from (0.2) and our previous remarks about
Schur indices.

Proposition 6.2: For any p–group,p odd,C(G) = 0. For any finite 2–
groupG there exists a setB of quaternionic subquotients so that both the
generalized induction and the generalized restriction induce an isomorphism
betweenC(G) and

⊕
Q2r ∈B

C(Q2r).

Proof: It follows in general from [9, 4.A.8,p.283] that there is a set of ba-
sic subquotientsB′ so that for any functorF on QG–Morita, F (G) and⊕
B∈B′

eρ
B

· F (B) are isomorphic via either the generalized induction or the
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generalized restriction. For the caseF = C, only the quaternion subquo-
tients can make a non–zero contribution and the idempotent factoreρ

B
C(B)

is alsoZ/2 as one sees by applying the general result toQ2r .

Discussion:The defining property of the basic subquotients inB′ is thatρB

goes to an irreducible rational representationφ of G under the generalized
induction and thatφ and ρB have the same center and division algebra
(hence the same Schur index). Therefore the number of elements inB and
the orders of the variousQ2r ’s that occur can be read off if one knows
the Wedderburn decomposition ofQ[G]. Alternately, an irreducible rational
characterφ is of quaternion type if and only if

∑
g∈G φ(g2) < 0; if it is of

quaternion type, then〈φ, φ〉 = 4·2r−3 = 2r−1 determines the corresponding
quaternion subquotient groupQ2r . If one knows the complex characters,
look for irreducible charactersχ so that

∑
g∈G χ(g2) = −1. Work out the

orbits under Galois conjugacy of these characters. The number of orbits
is the cardinality ofB and an orbit with2r−3 elements corresponds to a
Q2r ∈ B.
Notation: The isomorphism in Proposition 6.2 introduces a direct sum de-
composition onC(G) by the orders of the quaternion subquotients. For us
it will only be important whether the quaternion group isQ8 or not, so let
C(G)8 denote the summand ofC(G) corresponding to subquotientsQ8 and
letC(G)≥16 denote the summand corresponding to the subquotients ofQ16
and larger.

7. Examples of largeC(G)

We can construct groups with large torsion inC(G) as follows. Fix a prime
p and integersr, s and t with 0 < r ≤ t and0 < s ≤ t. Let q be any
prime with q = 1 + b · pt with p - b, and formG = Z/q ×Z/ps+r. The
action is defined by the compositionZ/ps+r � Z/pr ↪→ Aut(Z/q). Note
thatG is basicp–hyperelementary and that the extension classκG has order
pr. A computation using Lemma 4.1 and Proposition 4.2 shows that the
Schur indexmρ

G
= pr+s−t if t < r + s andmρ

G
= 1 otherwise. By

Proposition 5.4, it follows thatαρ
G

= pt−s if t < r + s andαρ
G

= pr

otherwise. ThereforeC(G) has aZ/pr summand coming from the basic
representation ofG whenevert ≥ r + s.

SinceC is a functor onQG–Morita,C(G′×G′′)containsC(G′)⊕C(G′′)
as a summand. We can now construct examples of groupsG which contain
a given finite abelian group as a summand ofC(G). Note further that the
groups constructed are all metabelian, so these also provide examples where
the Berz lattice has large index inR(G).
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8. Vanishing results and preliminary calculations

This next result will enable us to calculateC(G) in many cases needed later.

Lemma 8.1: LetG = G0 ×G1 with
(|G0|, |G1|

)
= 1. Then

γG0×G1 : C(G0 ×G1) → C(G0) ⊗ ChQ(G1) ⊕ ChQ(G0) ⊗ C(G1)

is an isomorphism. GivenG′
0 ≤ G0

C(G0 ×G1)
γG0×G1−−−−−→ C(G0) ⊗ ChQ(G1) ⊕ ChQ(G0) ⊗ C(G1)

Res
G′0×G1

y
y(

Res
G′0

⊗1
)
⊕
(
Res

G′0
⊗1

)
C(G′

0 ×G1)
γG′0×G1−−−−−→ C(G′

0) ⊗ ChQ(G1) ⊕ ChQ(G′
0) ⊗ C(G1)

commutes.

Proof: The Burnside ring is the free abelian group on cosets,G/H asH runs
over the conjugacy classes of subgroups ofG. ForG as in the Lemma,(G0×
G1)/H = (G0/H0)×(G1/H1), so it follows thatP (G0×G1) = P (G0)⊗
P (G1). Each irreducible complex representation ofG is the tensor product
of complex representations onG0 andG1, even without the assumption on
the orders. The assumption on the orders guarantees thatChQ(G0 ×G1) =
ChQ(G0)⊗ChQ(G1) because the tensor product of two fields of relatively
prime orders remains a field. The calculation follows. The commutativity
of the square follows from the behavior of the tensor product of characters
under restriction.

The next goal is to calculateC(G) whenG is ap–elementary group: i.e.
G = E × Gp whereE is cyclic of order prime top andGp is ap–group.
Note thatC(E) = 0 for E any cyclic group (see [17, Ex. 13.1(c),p.105]).
Since the Schur indices are trivial,C(E) = 0 as well.

Proposition 8.2: If G is ap–elementary group,C(G) = C(G) = 0 if p is
odd. Ifp = 2 bothC(G) andC(G) are Z/2 vector spaces which vanish if
C(G2) = 0.

Proof: SinceC(E) = 0, Lemma 8.1 showsC(G) = R(E) ⊗ C(Gp). By
Theorem 2.1 and Proposition 6.2,C(Gp) = 0 if p is odd and is aZ/2 vector
space ifp = 2.

We say that a Mackey functorM is p–elementary generated forG pro-
vided the sum of induction maps

⊕
H M(H) → M(G) is onto whereH

runs over thep–elementary subgroups ofG. We say that it isp–elementary
detected forG provided the sum of restriction mapsM(G) → ⊕

H M(H)
is injective. The next result is immediate from Proposition 8.2.
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Corollary 8.3: Letp be a prime. Ifp is odd andCp is p–elementary gener-
ated or detected forG, thenC(G)p = C(G)p = 0. If C2 is 2–elementary
generated or detected forG, thenC(G)2 andC(G)2 areZ/2 vector spaces:
if in additionC(K) = 0 for K any subgroup of the 2–Sylow subgroup of
G, thenC(G)2 = C(G)2 = 0.

Thep–localization of any hyperelementary computable Mackey functor,
such asC or C, will be p–elementary computable forG any time all the
p–hyperelementary subgroups ofG arep–elementary. This happens in a
variety of situations, for example:

1. If p is the largest prime dividing the order ofG, anyp–hyperelem-
entary subgroup isp–elementary. Theorem B is an immediate conse-
quence ifp > 2 and follows from Theorem 6.1 ifp = 2.

2. If p is a prime dividing the order ofG and
(
p, ϕ(|G/Gp|)

)
= 1 any

p–hyperelementary subgroup isp–elementary.
3. If the p–Sylow subgroup ofG is normal, anyp–hyperelementary

subgroup ofG is p–elementary.

9. Idempotents in the2–local Burnside ring

In addition to induction theory, Dress constructed idempotents in the local
Burnside ring. In [8, Sect. 6] and [12, Sect. 11] these idempotents are com-
bined with induction theory to do calculations. We only discuss the2–local
case on a groupGodd of odd order. Dress constructs one idempotenteE in
the 2–local Burnside ring for each conjugacy class of cyclic subgroups of
Godd. One can then split any 2–local Mackey functor using these idempo-
tents, and the main result we want is Oliver’s identification of the pieces
[12, 11.5,p.256]. LetF be a 2–local Mackey functor onGodd which is 2–
hyperelementary computable. Then for each cyclic subgroupE and each
subgroupK of Godd,

(eE · F )(K) = (eE · F )(E)NK(E) .

In general Oliver describes the answer as a limit over subgroups ofNK(E)
of the formE ≤ H � P whereP is a2–group. SinceK has odd order,E
is the unique such group and all that remains of the limit is to take the fixed
subgroup. Hence we have

Theorem 9.1: LetF be a 2–local Mackey functor on a group of odd order.
LetF be 2–hyperelementary computable. Then for any subgroupK

F (K) =
⊕

E∈EK

(
(eE · F )(E)

)NK(E)
.
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The next task is to calculate the idempotenteE . We should really do this
in the 2–local Burnside ring, but for a cyclic group the Burnside ring and the
rational representation ring are isomorphic, and it will be more convenient
to have the answer in terms of representations anyway. To fix some notation,
letE be a cyclic group andd a divisor of|E|. DefineλE

d to be the irreducible
rational representation obtained by pulling the faithful irreducible rational
representation onZ/d back toE under an epimorphismE → Z/d (there
are usually several but the representation is independent of choice).

Lemma 9.2: The idempotenteE for the odd order cyclic groupE in the
2–local Burnside ring is

eE =
r⊗

i=1

((pi − 1)1E − λE
pi

pi

)

where|E| =
r
Π
i=1

psi
i with si > 0 for all i: e{e} = 1{e}.

Proof: Provisionally, let̂e denote the element on the right hand side of our
formula. The formulaλE

p ⊗λE
p = (p−1)1E +(p−2)λE

p can be used to show
ê is an idempotent. If one works inZ/2 ⊗ R thenê = ⊗r

i=1 λ
E
pi

and this is
an irreducible rational representation ofE. Henceê generates a summand
of Z(2) ⊗R.

It follows from [8, Prop. 6.17,p.821] that(eE · Z(2) ⊗R)(E) ∼= Z(2) ⊗
K0(Q(ζ|E|)) = Z(2). There is also a less mysterious description ofeE (see
[8, (6.12),p.819]). IfE′ runs over the maximal proper subgroups ofE,

0 → (eE · F )(E) → F (E)
⊕Res

E′−−−−−→ ⊕
E′
F (E′)

is split exact for any 2–local Mackey functor includingZ(2) ⊗ R. One can
seeResE′(ê) = 0 since one of the elements in the tensor product will vanish.
Thereforêe is contained in(eE · Z(2) ⊗R)(E) and hence must beeE . The
formula fore{e} is obvious.

10. The calculation ofC(G) and C(G) whenG2 / G

Let G/G2 = Godd. The analysis promised proceeds in several steps. For
any groupK let ιK : C(K) → C(K) denote the inclusion. Define a 2–local
Mackey functor onGodd by F (K) = C

(
π−1(K)

)
whereπ : G → Godd is

the projection. DefinēF (K) = C
(
π−1(K)

)
. Recallπ−1(E) = E × G2

wheneverE is cyclic.
Recall from the Introduction that a prime` is non–split if and only if2

has odd order in(Z/`)×. Call a cyclic groupE non–split if all the primes
dividing its order are non–split: otherwise, call it split.



724 I. Hambleton, L.R. Taylor

Choose a basis ofC(G2) by irreducible rational–valued class functions:
χ1, · · · , χs corresponding toQ8 subquotients andη1, · · · , ηt corresponding
toQ2r subquotients withr ≥ 4.

Finally, recall the the representationsλE
pi

from Lemma 9.2. The main
calculation is

Theorem 10.1: If E is a cyclic group with|E| odd and> 1, thenF̄ (E) =
R(E) ⊗ C(G2):

(eE · F̄ )(E) = C(G2)

(eE · F )(E) =
{
C(G2) if E is split
C(G2)≥16 if E is non–split

A basis for the summand(eE · F̄ )(E) is given by the tensor products(⊗r
i=1 λ

E
pi

) ⊗ χj and
(⊗r

i=1 λ
E
pi

) ⊗ ηj . The mapιE preserves the idem-
potent decomposition and restricts to the identity on theeE summand ifE is
split. IfE is non–split the restriction ofιE to theeE summand is the evident
inclusion.

Proof: That F̄ (E) = R(E) ⊗ C(G2) follows immediately from Lemma
8.1. A basis for it is given by theφi ⊗χj andφi ⊗ ηj where theφi run over
the irreducible rational representations ofE.

SinceC(G2) is aZ/2 vector space, we can use⊗r
i=1 λ

E
pi

for the idempo-
tent: see Lemma 9.2. Hence(eE · F̄ )(E) is as claimed and situated in̄F (E)
as claimed.

Recall the isomorphismS : C/C → ⊕
φ Z/mφ from (0.2). For our basis

elementsφ =
(⊗r

i=1 λ
E
pi

)⊗χj orφ =
(⊗r

i=1 λ
E
pi

)⊗ηj the imageS(φ) is the
Schur index ofφ. From Lemma 5.7 we see that the

(⊗r
i=1 λ

E
pi

) ⊗ ηj always
have Schur index 1, but that each

(⊗r
i=1 λ

E
pi

)⊗χj has a2–local Schur index
which is2 if 2 has odd order in(Z/|E|)× and is1 otherwise. Therefore the
order of2 in (Z/|E|)× is odd if and only if all the primes dividing|E| are
non–split. We have established the calculation of(eE · F )(E). The claim
aboutιE follows from checking it on the bases just given.

In what follows, letEsplit
Godd

denote the congugacy classes ofE such that

E /= {e} andE is split. LetEnonsplit
Godd

denote the congugacy classes ofE

such thatE /= {e} andE is non–split.

Corollary 10.2: Suppose the2–Sylow subgroupG2 ofG is normal. Then

C(G)2 ∼= ⊕
E∈EGodd

C(G2)NGodd
(E)

C(G)2 ∼= ⊕
E∈Esplit

Godd

C(G2)NGodd
(E) ⊕ ⊕

E∈Enonsplit
Godd

(
C(G2)≥16

)NGodd
(E)
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The inclusionιG respects the summands.

Proof: Apply Theorem 9.1 to the functorsF andF̄ . Use Theorem 10.1 to
evaluate the summands for|E|1. ForE = {e}, use (9.2) and Theorem 6.1
to evaluate the summandF ({e}).

One can construct examples of groups of odd order permuting the factors
in a direct sum of quaternion groups, and in such examples the fixed sets can
be proper subspaces. Assuming thatG = G2 ×Godd, each fixed point set in
Corollary 10.2 is the whole subspace. Lemma 8.1 gives the nice description
C(G)2 ∼= R̃(Godd) ⊗C(G2), but it is still difficult to identify the subgroup
C(G)2 in a functorial way. One solution is to recall the chosen collection of
quaternion subquotients,Q2r ⊂ B.

Corollary 10.3: Under the generalized induction maps,⊕
Q2r ∈B

C(Godd ×Q2r)2 → C(G)2⊕
Q2r ∈B

C(Godd ×Q2r)2 → C(G)2

are isomorphisms. There are similar isomorphisms using the generalized
restrictions.

Proof: Using Theorem 9.1, write down a basis for both sides of the isomor-
phism and observe that by construction the generalized induction map takes
each basis element in the domain to a basis element in the range and that
every basis element in the range is accounted for under this correspondence.

The same proof works for the generalized restriction maps, but here is
a different one. Define a Mackey functorJ onGodd by J (K) =

⊕
Q2r ∈B

C(K × Q2r)2 for anyK ≤ Godd. BecauseG = G2 × Godd, the sum of
the generalized restriction maps define a natural transformation of Mackey
functors,βK : F (K) → J (K). Check thatβE is an isomorphism for cyclic
subgroupsE and use Theorem 9.1 to finish.

Another solution to describing our calculation succinctly is to assume a
bit more. Suppose that there exists a normal subgroupGs / Godd such that
only split primes divide the order ofGs and only non–split primes divide the
order ofGodd/Gs = Gns. In this case sayGodd has anormal split subgroup.

Corollary 10.4: If there is a normal split subgroup inGodd and if G =
G2 ×Godd, then

C(G)2 ∼= V ⊗ C(G2)8 ⊕ R̃(Godd) ⊗ C(G2)≥16

whereV denotes the kernel of the restriction mapR(Godd) → R(Gns).
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Proof: Observe that non–split cyclic subgroups ofGodd correspond to non–
trivial cyclic subgroups ofGns under the projection.

Note that the formula in Theorem C now follows since all the hypotheses
of Corollary 10.4 are satisfied and the kernel ofR(Godd) → R(Gns) can be
identified withR̃(Gs) ⊗R(Gns).

The formula in Theorem C′ follows from (10.2): all the quaternion
representationsξ of G2 havem

R
(ξ) = 2 andQ8 can be distinguished

from Q2r by the degree[Q(ξ) : Q] of the center field. Finally, note that
fE = [Q̂2(ρE ) : Q̂2] is odd precisely whenE is non–split.
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