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A rational permutation module for a finite grodpis a rational represen-
tation of the formV” = QX for some finiteG setX. Let P(G) denote the
subring of the rational representation riRg§G) spanned by the permuta-
tion modules. AlternativelyP(G) is the image of the Burnside ring 6fin
R(G). Define the functof’(G) as the cokernel

0 — P(G) — R(G) — C(G) — 0.

By the Artin Induction theorent; (G) is a finite abelian group with exponent
dividing the order of5.

Some work on this sequence has already been done. In [14] and [16],
Ritter and Segal proved that(G) = 0 for G a finitep—group. Serre [17, p.
104] remarked that’(G) # 0 for G = Z/3 x Qg (the direct product of a
cyclic group of order 3 and a quaternion group of order 8).

Berz [2] gave a nice description @f(G) for G metabelian or super-
solvable. To describe the result, recall th{t7) additively is a free abelian
group with basis given by the irreducible rational representatiods dhe
subgroupP(G) is generated by the induced representatibng’(1,,) =
Q[G/H], whereH runs over the subgroups 6f. If a, denotes thgcd over
all H of the numbers¢, Ind“(1,,)), thena, divides(¢, x) whenevery is
a virtual permutation representation. legf = ﬁ.

Theorem: (Berz [2]) For G metabelian or supersolvable the lattieg¢G) C
R(G) has a basisy, - ¢ where¢ runs over the irreducible rational repre-
sentations of5.

The authors wish to thank the Max Planck Instiiit Kathematik in Bonn for its hospitality
and support. This research was also partially supported by NSERC and the NSF.
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It follows immediately from the definition that(G) C @ - ¢ for any
finite groupG. In an earlier version of this paper we claimed that equality
held for all finite groups, but Berz [2] gives a counterexample. The error lay
in the assertion that the lattice defined@s, - ¢ has good induction and
restriction properties.

In §1 we review some of the foundational work of A. Dress on induc-
tion theory and observe that hyperelementary computation follows for the
Mackey functors?(G), R(G) andC(G). Since hyperelementary groups are
supersolvable, Berz’'s result applies and this information leads in principle
to further information abouf’(G) for general groups:.

In §2, we prove that the functor®, R andC are “detected” by thbasic
subquotients of7 [9]. This leads to a different proof of the Berz equality
P(G) = @ a49, for G hyperelementary, and to more efficient methods for
computingC(G).

Each basic grouB is p—hyperelementary for some prinpeand each
basic group has a unique irreducible faithful rational representation
Representations have induction and restriction for quotient maps as well as
subgroups. Hence they also have “push forward” and “pull back” maps for
subquotients. IfH is a subquotient o7, we call the map fromR(G) to
R(H) the restriction and we call the map fraR{ H ) to R(G) the induction
map.

Hyperelementary computation and basic detection can be combined (see
§3) to give an explicit numerical criterion for an arbitrary rational represen-
tation to be a virtual permutation representation.

Theorem A: Given a rational representatioq on G, x is a virtual permu-
tation representation if and only if,, . divides(x, Ind“(p,)) for all basic
subquotients3 of G.

In §4 we describe the basic groups and give a partial calculation of the
ap,. - In conjunction with the general theory, this leads to a short proof of
the Ritter—Segal theorem §6.

In §7 we construct examples of grougsfor which C'(G) is arbitrarily
complicated. In§8 we give some calculations @f(G) and prove some
vanishing results. One consequence of Corollary 8.3 is:

Theorem B: If p is the largest prime dividing the order 6f, thenC'(G) is
p—torsion free.

To state the calculation fak nilpotent (se€59-10) we need some no-
tation. LetC'hg(G) denote the ring of rational valuetharactersof GG, and
recall that

(0.1) 0 — R(G) = Cho(G) = @ Z/mg — 0

is a short exact sequence where the sum runs over the irreducible rational
representationg of G andmy is the Schur index of an irreducible complex
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constituent ofp. If we letC(G) denote the cokernel of the inclusiat{G) C
Chq(G), then we also have the following isomorphisms

(0.2) C(G)/C(G) = Cho(G)/R(G) = @D Z/my .

Let R(G) denote the kernel of the restriction m&pG) — R({e}). For
nilpotent groups( is the direct sum of itg—Sylow subgroupér,,, and we
may writeG = G2 X G,qq. Note thatR(Goqq) = ®p odd R(Gp). In [14,
Satz 3] it was asserted th@t{(G) = 0 for G nilpotent, butC(G) = Z/2
for G = Z/3 x Qs ([14, Hilfsatz 6.1(1)] is incorrect). More generally,
C(G) = Z/2for G = Z/p x Qo for any odd primep andr > 4. On
the other hand(’(G) = 0 for G = Z/7 x Qs. This dependence, both on
the prime factors of7,4; and on the quaternion algebras, complicates the
calculation for nilpotent groups.

Call an odd primep non-splitif 2% = 1 (mod p) whenp — 1 = 2%w
with w odd: otherwise call isplit. Let G denote the product of the—
Sylow subgroups for split primes and lét,; denote the product of the
p—Sylow subgroups for non—split primes. We will show in Proposition 6.2
thatC(Gs) is aZ/2 vector space with on&/2 for each irreducible rational
representation whose division algebra is quaternionic. There is a direct sum
decompositiorC(Gy) = C(G2)s ® C(G2)>16 depending on whether the
center field isQ or not. Then

Theorem C: For G nilpotent,C(G) = R(Go4q) @ C(G2) and

C(G) = R(Goaa) ® C(G2)316 ® R(Gs) @ R(Gps) @ C(Go)s -

In this formula, the termR(G,) ® R(Gys) is just the kernel of the
restriction mapR(Gogq) — R(Ghps).

There is another description of the answerd@armilpotent. Let€, denote
the setof conjugacy classes of odd order cyclic subgrou@gsBachE € Eq
has a unique faithful, irreducible, rational representapon Let m, (€)
denote the real Schur index of an irreducible complex constitueptafd

let fr = [Qa(p,) : Qa-
Theorem C': For G nilpotent,

C(G) = E%{Z/Q | m, (&) =2and fp - [Q(¢) : Q] =0(mod2)} .

where¢ runs over the irreducible rational representationg®f and{e} #+
E e é&q.
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To compare the two versions, note that the ranlkofr,44) is just the
cardinality of the sefq (see§9 for an idempotent description of this cor-
respondence). The condition, (¢) = 2 picks out the quaternionic repre-
sentations of7,, the degredQ(¢) : @] is the degree of the center field
extension, ang’r determines whethef is split or non—split.

Finally we remark that hyperelementary calculation has some limita-
tions. For example, all the irreducible complex representations of the sym-
metric groupsy,, come from permutation modules [11, Thm.2.2.10,p.39],
soC(X,) = 0.However, any finite collection of hyperelementary subgroups
occurs in a fixed,, oncen is sufficiently large.

1. A review of Dress’s work on induction

The work to which we are referring (see [4] and [5]) assumes that we are
given a Mackey functoyM and a family of subgroups af, denotedH.
In general it is only important th&# be closed under conjugation and
subgroups, but in this paper it is the family of hyperelementary subgroups.

One can then form what Dress calls an Amitsur complex: this is a chain
complex

MG @ M)
HeM

where the higher terms are explicitly described sumabapplied to ele-
ments of{. The boundary map, is the sum of restriction maps and the
higherg; are just sums and differences of restriction maps. There is a sec-
ond Amitsur complex defined using induction maps for which the boundary
maps go the other direction.

Dress further assumes that some Green ringgsagts onM. Write

5 @ G(H) —G(G)

HeH

for the sum of the induction maps.

Theorem 1.1: If there existsy € 4 G(H) such thatd’(y) = 1 €
G(G), then both Amitsur complexes & are contractable.

Remark:One writes the conclusion ast(G) = lim M(H) or M(G) =
H
lim M(H) where the first limit made up of restrictions and the second of

H
inductions. The result above follows from [5, Prop.1.2,p.305] and the remark
just above [5, Prop.1.3,p.190].

This is a very powerful theorem whose main difficulty in use comes in
finding a Green ring which acts. The Burnside ring is a Green ring which
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always acts on any Mackey functor, but it satisfies Dress’s conditiafj‘on
ifand only if G € H.

Observation: The image of the Burnside ring h denotedAg, is a Green
ring which acts onM. The method that prove@‘ hits 1 will probably prove
thaté” also hits 1. The advantage df; overg is that.Ag acts on Mackey

functors which are subfunctors or quotient functorshdfwhereas; may
not act on all of them. In particulag never acts ondg unless they are
equal.

This observation has been made before, e.g. [12, p.253], [10, Sect. 3],
and [1]. ForG the complex representation ring, Dress [4, Prop. 5.2,p. 210]
proved that* hits 1. The same proof applies verbatim®G), the image
of the Burnside ring il?(G). It follows that

Proposition 1.2: Any subquotient—Mackey functor of the complex repre-
sentation ring has hyperelementary calculation.

Remark:A subguotient—Mackey functor is a sub—Mackey functor followed

by a quotient Mackey functor. Examples incluBleC or C, andR or Chy.
Dress also proves a local result which says the following abat).

Fix a primep, let ,, denote the family op—hyperelementary subgroups

and letC'(G), denote the—primary subgroup of (G). Then

(1.3) C(G)p =lim C(H), =lim C(H), .

2. Basic detection

In [9, 1.A.4] we introduced the categoRG—Morita, for any commutative
ring R. The categoryQG—Morita is defined as follows. The objects are
subgroupsH < G, and the morphisms fromi; to H, are generated by
the Ho—H; bisetsX, modulo some relations spelled out in [9, p.249-250].
From [9, 1.A.12(i),p.251],R(G) is a functor onQG—Morita defined by
sending a rational representatibiof H; to Q[X| ®qm, V. Note if V' is a
permutation module on thE;—setY’, thenQ[X| ®gm, QY] = Q[X X x,

Y] so P is also a functor orQG—Morita. We proved in [9, 1.A.9,p.251]
that the morphisms iQRG—Morita are generated by generalized inductions
and restrictions corresponding to homomorphigings; — G2 which are
either injections (subgroups) or surjections (quotient groups).

Theorem 2.1 (9], 1.A.11, p. 251):The sum of the generalized restriction
maps,
C(G)— & C(B)

BeBg
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is a split injection wherds; denotes the set of basic subquotient&oThe
sum of the generalized induction maps is a split surjection.

WhenG is hyperelementary, Theorem 2.1 has a more precise version
which will imply the corresponding special case of Berz’s theorem. To de-
scribe this result, first recall some results from [9]. For each irreducible
rational representatiop there exists a basic subquotight so thate is the
generalized induction gf, with additional control on the induction. Corre-
sponding tap there is an idempoteat, in QG—-Morita. This idempotent has
the property that il is any rational representation 6f, theney - V' = b¢
where¢ occursh times inV. If V' is a virtual permutation representation so
is e - V, sinceQG—-Morita acts onP(G). It follows from this observation
thatay¢ € P(G) for G hyperelementary. It is clear that, dividesa,
since the virtual permutatiom, . p,,, induced up tdx, is juste, ¢. On the
other hand, itv,¢ is restricted ta3 and then hit withapB , one gets a virtual
permutation representation whichdg¢. Hencea, = a, . and we have
shown

Proposition 2.2: For G hyperelementaryP(G) = @¢ ap, Zanday, =
apB.
In §4 we will say more about the,, .. In particular, for every—hyper-
elementary group all the, are powers op.

3. The proof of Theorem A

To fix some notation for the proof, Idi(G) denote the set of all rational
representationg of G such that(x, Ind“(p,)) is divisible bya,  forall
basic subquotient® of G. Clearly, L(G) is a subgroup of?(G). The goal
is to proveL(G) = P(G).

Frobenius reciprocity holds even for generalized restrictions and induc-
tions so

(x,Ind%(p,)) = (Resp(x), py) -

Since virtual permutation representations are also preserved by generalized
induction and generalized restriction, it is clear that Frobenius reciprocity
implies P(G) C L(G).

If G is p—hyperelementary, the Berz lattice f6r equals@d) ap, L.

From this it follows thatZ(G) C @, «,, Z. Proposition 2.2 now implies
P(G) = L(G).

Next note that ifH < G, we haveResy (L(G)) C L(H). The proof
concludes by induction on the order@f The result is trivial for the trivial
group. Assume thalP(H) = L(H) for all proper subgroups @¥. SinceL
always has restrictions and since it is equal to a Mackey functor on proper
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subgroups, it also has inductions. Hentds a Mackey functor for the
category of finite subgroups @f. SinceP(H) = L(H) on all hyperele-
mentary subgroups @f, proper or not, it follows from Proposition 1.2 that
P(G) = L(G).

4. Basicp—hyperelementary groups

A p—hyperelementary group is any group which can be written as an exten-
sion,C' <« G — P where(C'is a cyclic group of order prime teandP is a
p—group. There is an action map P — Aut(C). Any such extension is
split. The notation follows [9], Sect. 3.A. From [9, 3.A.6,p.27@]js basic

if and only if

(1) pis odd and the kernel af is cyclic;

(2) p = 2 and the kernel ofy) is cyclic, dihedral, semi—dihedral or
quaternion and if the kernel B(8) the conjugation homomorphism
P — Out(D(8)) is onto.

This includes the theorem of Roquette [15] identifying the basic
groups as cyclic ifp is odd and cyclic, quaternionic, semi—dihedral and
dihedral of order at least 16 if = 2.

An F—group is a group with a cyclic normal subgrodp « F —
F/A where the action map: F//A — Aut(A) is injective. Each basip—
hyperelementary groug; < G — P, has a maximal order cyclic subgroup
A, < kertp which is normal inP. Let A = A, x C. The extensio <
G — G/A displaysG as anF'—group withG/A an abeliarp—group. This
extension is classified by an element € H%(G/A; A).

From [9, 2.11,p.267], a basic group has a unique faithful rational repre-
sentatiorp,,. It is the only irreducible rational representationofvhich is
faithful when restricted tel, andRes ,(p,,) = m,,, p,,- Moreoverdnd®(p, )

_ laya]
= T, P

We can describe the Schur index, . as follows. LetI"” denote the
Galois group ofQ(( 4|) overQ. Embedding4 as a subgroup of the roots of
unity inQ((| 4) determines an isomorphism bfwith Aut(A). Use the map
G/A — Aut(A)toidentifyG/Aasasubgroup df. The center field(p,,)
is just the field corresponding t6/A under the Galois correspondence.
There is an induced map

H*(G/A; A) — H(Gal(Q(¢4)/Qpg)): QGa)*) L Br(Qpg))

whereG/A = Gal(Q(¢4)/Q(p.)). Br(Q(p,)) is the Brauer group of
the fieldQ(p,,), and the map labelegl injects its domain onto the set of
division algebras with centéb(p, ) which split overQ((| 4|). The classic




714 I. Hambleton, L.R. Taylor

is mapped to the class of the simple factofg¥ determined by, (see [7,
p.193]). The order of this classis,, ., [13, Thm.32.19,p.280].

We introduce notation to deal with, , locally. By the Benard—Schacher
Theorem, [3, 74.20,p.746], the order of the imagesgfin one of these
local Brauer groups is the same for each prigriging over a fixed prime
q of Q, so letmy(p,) denote this common order. At the infinite primes,
the same result holds, so let, (p ) denote its order. Recath,(p,,) is
either1 or 2 and it is a result of Frobenius and Schur that iRig and
only if Yyeqp,(g?) < 0. 1If ¢ does not divide the order of the grod
mq(ps) = 1, [3, 74.11,p.740]. Finally, recall that, , is the least common
multiple of all the local Schur indices [3, 74.11,p.740]. In our casg,
is a power ofp and hence so are all the local Schur indices so the Icm
becomes a max. Let, - - -, ¢ denote the distinct primes dividing/|. Then
Mo, = maX(mR(pc)v Mg, (pc)v crr My, (po))'

In general itis not easy to compute local Schur indices, but in the discus-
sion below we carry this out in some special cases. We will use the notation
L = Q(¢4) andK = Q(p,,)- Fix a primeq € Q, and primes; in K and
Qin L with Q C q C (q). Let Ly denote the residue field dfy.

Let I'n denote the decomposition group Qf over Q and letG, =
I'aNG/A < G/A denote the decomposition groupsdfover K. Then the
image ofk¢ under the composition

H*(G/A; A) S H2(Gg; A)SH?(Gg; L) 22 Br(K,)

determines the image of the local division algebra in its Brauer group. Here
i* is the map induced by the inclusi@®, < G/A, G, = Gal(Lq/K,),
andjgq is the injection into the Brauer group.

The Galois groug'q maps onto the Galois group éf overF,. The
first inertia group is the kernel, denotét. LetG,, = I'qoN G/A:itis
the first inertia group of) over K.

There is an exact sequencelgi modules

0->U—=L5—>Z—0

whereZ is a trivial I'qo module and is the group of units in the ring of
integers ofL 4. It follows that

0=HYGyZ) = H*(G4;U) — H*(G o3 L)

is exact and se factors through a magi?(G,; A)i>H2 (I'n;U). This
map can be analyzed by means of the exact sequences

0o0Al 5 A5 A 50
{ { {

0-U'—-U—L5—0
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where the vertical maps are injections. Recall that there is a Hausdorff fil-
tration onU! so that the associated graded is a vector spacelayer
From this discussion, we can recover the well-known result on the Schur

indices for the quaternion groups:

my (pg,) = 2,m2(py, ) = 2,and the remaining local Schur
indices are 1;

mg (pg,, ) = 2, and all the local Schur indices are 1 if
r >4,

We now describe two further situations where the calculation of the local
Schur index is relatively easy.

Case 1. The prime does not divide. Then
HYG4;UY) = H*(G4;UY) =0.

This follows from [18, Lemma 3,p.185], sinc@,, is ap
group and the associated graded /g vector space. Hence
H?*(G4;U) — H*(G 4; L) is an isomorphism. The grading
onU" also shows thatl, — A, is an isomorphism and hence
H%*(G,; A) — H?*(G,; A) is an isomorphism. Up to these
isomorphisms, it suffices to determine the map

H*(G,; A) — H* (G4 LY) -

Case 2. The groupr,, = {e}. Equivalently,q is unramified over.
Then G, is also the Galois group ofn over K. Again
HYG,;UY) = H*G,;U') = 0 [18, Lemma 2,p.185]
and by [18, Ex. a,p.162] we havé?(G ,; L) = 0. Hence
H?*(G,;U) = 0 so theg—local Schur index is 0.

Recall for use below the following fact from algebraic topology.

Lemma 4.1: If Z/p" acts trivially on cyclic groupZ/p* andZ/p' and if
s < t then the map induced by the inclusianZ/p* — Z/p*

iv: HX(Z/p" Z/p°) — H2(Z/p"; Z/p")

is the map between cyclic groups which sends a generator of the fifstto
times a generator of the second.

Proposition 4.2: Let G be a basig—hyperelementary group. f/A acts
trivially on A,,, thenm,(p.,) = 1. Suppose, in addition, thatd| = p* - ¢ for
some prime, and thats < ¢ wherep! is the fullp—power divisor of; — 1. If
G/A has orderp”, thenm,(p,,) equals the order of, (k) under the map
from Lemma 4.1. Two extreme cases arg: # ¢, thenm,(p,,) equals the
order of kg; if r + s <t thenmg(p,,) = 1.
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Proof: SinceA = A, x C, L = Q((ps, {jcp) With Q(¢ps) N Q({jc) = Q.
SinceG/A acts trivially onA,, G/A < Gal(L/Q((y+)). To apply Case
2 to prove the first assertion, note that all fhgoower roots of unity in_
are contained i, so the extensiolh o/ K is unramified. Case 2 shows
my(p,) = 1. Case 1 can be applied to prove the remaining assertions. Here
(o] = GgandK = Q(()9/4((ps). Sinceq = 1 (mod p*), the decompo-
sition group/y = Gal(L/Q((ps)) and the residue class fieldy = F,.

It follows that G, = G/A, that(Ly), = Z/p', and that the action of
G, on Ly is trivial. Hence the map ofl, — (L), is just an injection
Z/p* — Z/p'. SinceG is basic,G, = G/A = Z/p" for somer < ¢, and
we must compute the map from Lemma 4.1. Ifs = ¢, the mapi, is an
isomorphism sen,(p,,) is the order of:. If  + s < t the mapi, is zero,
somg(p,) = 1.1

5. Calculations for basicp—hyperelementary groups

The goal of this section is to come as close as we can to compM,;iGn@pr
basicp—hyperelementary groups. First we prove a general lemma.

Lemmab5.1: LetU < G be a normal subgroup. Let be a representation
onU with ¢ = Ind“()). Let H be any subgroup af, let L = H N U and
let H = H/L. Then

(6,nd%(1,)) = — 5 (Resps(\), 114) .
|H| geU\G

Proof: Consider

S.= ¥ <)\,IDdU(1HgmU)>
geU\G

X A, IndY (1
gGU\G/H<heH/(HgmU)< ( thmU)>>

A .
- Yy ————\,Ind"(1 _
geU\G/H |H9ﬂU]< (1g9nv))

To see the second equality, ndi&" = ghHh~'¢g~' = H9. The conjuga-
tion by h does not change the character, so all the terms in the second
sum are seen to be equal. N6fé N\U = (HNUY ') = (HNU)Y = LY
sinceU < G. Hence

S = |H/L| 'geU\ZG/HO\,IndU(ngmU)) — |H/L| - (A, Resy (Ind®(1,,)))
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where the last equality is just the Mackey double coset formula applied to
the composit&es, (Ind“(1,,)). But

(¢, Ind%(1,)) = (Ind®(N\),Ind“(1,)) = (A, Resy(Ind“(1,,)))
by Frobenius, so

|H| - {¢,Ind(1,)) =S = ¥ (Resps()),119)
geU\G

by Frobenius reciprocity applied {0\, Ind” (1zsny)).

Proposition 5.2: For G basic p—hyperelementary;,, . is the gcd of the

numbersp“(‘l# as H runs over all subgroups aF with H N A = {e}:

Qp, is the gcd of the numbe| |-|1‘{G|-Impc running over the samé.

Proof: Apply Lemma 5.1 toU = A with A an irreducible complex con-
stituent ofp , . Since is faithful, the inner products on the right arenless
H9N A= LY9 = {e} when they are all. Next recall thap, is just a sum

of Galois conjugates ok and recall thaind“(p,) = L%M - pg- Since
G

m 1
(PosPa) = WA\()’ the result followsn

Lemma 5.3: C(G) is ap—torsion group ifG is p—hyperelementary.

Proof: Since subquotients gf-hyperelementary groups are agaiyper-
elementary the result follows from Proposition 5.2 and Propositiors2.2.

Since the gcd of a set of powers;ofs just the minimum, the following
is an immediate consequence of Proposition 5.2.

Proposition 5.4: Given a hyperelementary basic groGf there exist sub-

groupsH such thatH has maximal order subject to the conditiGhn A =

G e(lA)m
{e}. Forany suchf, o, , = W anda, = T”G wherep(n)

is Euler’s phi function of the integer.

Proposition 5.5: If G is basic and4 <« G — G/A is split,m, =1 and
ap., = 1.

Proof: TakeHH = /A in Proposition 5.4 and recall, , is an integer

Corollary 5.6: Let G be a finite group with elementary abeligrSylow
subgroup. Thed'(G), = 0.
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Proof: By (2.1)and (2.2)itis enough to computg , for basic subquotients
of G. Now apply (5.3) and Proposition 5.1.

Sometimes a basje-hyperelementary group can be decomposéd as
E x G’ where the order of is prime top. Note thatG’ is automatically
basic and that the basic representafipnis justp, © p_,. For a givenGd
there is a unique maximal direct factrof order prime ta.

Lemma5.7: LetG = E x G’ be a basicp—hyperelementary group, with
the order ofE prime top. Thenm,, . - a, . =m, , -, , . The Schurindex

mp, =mp_, it E= Z/2 or {e}. Otherwisem, (p,) = 1, mq(p,) = 1if
(¢.|G"]) = 1, andmy(p,) = mq(p.,)/(f4(E), mq(p,,)) Wherefy(E) is
the order ofg € (Z/|E|)™ if ¢ divides|G’|.

Proof: The first assertion follows from Proposition 5.4: the quamﬂ;yc .

Qp, for a basicp—hyperelementary group depends only on ph&ylow
subgroup. The calculation of the change in Schur index is easy to describe
at the level of simple factors of the group rings: the center field for the factor
for p., in Q[G'] is just extended by tensoring with(¢| ) = Q(p,,). Since

the order ofE is prime to the order of’, the new center field is jug(p,.)

and we compute the local invariants of this extended factor.

The result is immediate fg| < 2, so assuméE| > 2. Since the field
Q(p) is totally imaginarym, (p.,) = 1. If my(p.,) = 1 then under the
extension it remains split: in particular(f, |G'|) = 1, mq(p,) = 1.

We now turn to the primes dividing=’|. Since the order oF is prime
to the order ofG’, we can reduce to the cyclotomic case as follows.{Met
be a prime ofQ(p_, ) lying over the prime; of Q. If ¢ splits inQ(p,,) into
Q1. -+ g, thenQ splits inQ(p,, ) into Qy, - - -, Q. The main issue here is
the degree of the extensi@(pc)éi OVGI’@(pG,)Qi. By Galois theory, this

equals the degree @(p,, ) overQ,,.

The classical theory says that is unramified inQ(p,,) and that the
degree of the residue field extension is the ordes; of (Z/|E|) ", denoted
fq,(E) and therefore the degree@’(pE)q—i over@qi is just f,, (E).

Each local Brauer group at a finite place i€dZ. The map on the
sum of the local Brauer groups is a diagonal map intecopies ofQ/Z
corresponding to the splitting of the primiepreceded by multiplication by
the degree of the local field extensigp(E) (see [18, Prop.7,p.193p.

As an application of Lemma 5.7, we consider the product of cyclic
groups with quaternion groups. The prihéas ordee in (Z/3) . Hence
m2(py4.0,) = 1 Which is one explanation of Serre’s example. Butas

order3in (Z/7)" S0m2(p,7,4,) = 2aNd fOrZ/7 x Qs all rational repre-
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sentations are permutation representations. For any odd prandr > 4
we havems(p,,,. ., ) = 1-
Lemma 5.7 gives a partial converse to Proposition 5.5.

Corollary 5.8: LetG be ap—hyperelementary basic group A§ # 0 then
there exists a cyclic groufy of order prime top such thap dividesa,,

Proof: Sincexkg # 0, p dIVIdeSmp " Qp,, . Letp’ be the exact power of
dividing Mp,, andlet/y,--- ,/,.be the dlstlnctprlmes dividing the order@f
ot
. . . . S |
(includingp). Pick a primey; dividing L andletE =Z/q1 -+ - qr.
60 —1
Use Lemmab5.7tosee, . =1sopdividesa, .8

pt

, - o -1 .
Note that any prime divisay of —T will have p! as the order of

¢ -1
n(Z/q)"

6. Calculations for ap—group

If G is a basigp—group, therG /A is trivial or Z /2. The groupG /A is trivial
except wherty is dihedral, semi—dihedral or quaternion. The extensgion

G — G/Ais splitif G is dihedral or semi—dihedral and is non—splitif

is quaternion. In this last case, the Schur index is 2. Therefore in all cases,
Qp, = 1.

Theorem 6.1 Ritter—Segal)C'(G) = 0 for G a p—group.

Proof. The result follows from Proposition 2.2 and the calculation that
a,,. = 1 for basicp—groupsG. This line of argument was attributed to W.
Feit in the introduction to [16]a

For a basig—group,C(G) = 0if G is cyclic, dihedral or semidihedral,
andC'(Q2r) = Z/2. This follows from (0.2) and our previous remarks about
Schur indices.

Proposition 6.2: For any p—group,p odd, C(G) = 0. For any finite 2—
group G there exists a sdf of quaternionic subquotients so that both the
generalizedinduction and the generalized restriction induce an isomorphism
betweerC(G) and €B C(Qar).

21" GB

Proof: It follows in general from [9, 4.A.8,p.283] that there is a set of ba-
sic subquotient®3’ so that for any functo’ on QG—Morita, F'(G) and

@D e,, - F(B) are isomorphic via either the generalized induction or the
BeB'
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generalized restriction. For the caBe= C, only the quaternion subquo-
tients can make a non—zero contribution and the idempotent factot( B
is alsoZ/2 as one sees by applying the general resufpio. n

Discussion:The defining property of the basic subquotient8iris thatp,,
goes to an irreducible rational representatioof G under the generalized
induction and thaty and p,, have the same center and division algebra
(hence the same Schur index). Therefore the number of elemefitanid

the orders of the variou§s-'s that occur can be read off if one knows
the Wedderburn decomposition@fG]. Alternately, an irreducible rational
charactew is of quaternion type if and only ¥ . #(g?) < 0;ifitis of
quaterniontype, thef®, ¢) = 4-2"—3 = 2"~ 1 determines the corresponding
guaternion subquotient group.-. If one knows the complex characters,
look for irreducible characterg so that) x(g?) = —1. Work out the
orbits under Galois conjugacy of these characters. The number of orbits
is the cardinality of3 and an orbit with2"—3 elements corresponds to a
Qo € B.

Notation: The isomorphism in Proposition 6.2 introduces a direct sum de-
composition orC'(G) by the orders of the quaternion subquotients. For us
it will only be important whether the quaternion grouplJs or not, so let
C(@G)s denote the summand 6f(G) corresponding to subquotiertis and

let C(G)>16 denote the summand corresponding to the subquotiei?gof
and larger.

7. Examples of largeC (G)

We can construct groups with large torsiordfG) as follows. Fix a prime
p and integers:, s andt with 0 < » < ¢t and0 < s < t. Let ¢ be any
prime withq = 1 + b - p' with p 1 b, and formG = Z/q xZ/p**". The
action is defined by the compositi@yp*™" — Z/p" — Aut(Z/q). Note
thatG is basicp—hyperelementary and that the extension ciasbas order
p". A computation using Lemma 4.1 and Proposition 4.2 shows that the
Schur indexm, . = p™**~"if t < r +sandm,_ = 1 otherwise. By
Proposition 5.4, it follows that, . = p"*if ¢t < r + s andap =p"
otherwise. Therefor€(G) has aZ/p summand coming from “the basic
representation off whenever > r + s.

SinceC'is afunctor oQG—Morita,C'(G' x G") containg” (G") & C(G")
as a summand. We can now construct examples of gr@uphkich contain
a given finite abelian group as a summand’t~). Note further that the
groups constructed are all metabelian, so these also provide examples where
the Berz lattice has large index R G).
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8. Vanishing results and preliminary calculations
This next result will enable us to calculat&G) in many cases needed later.
Lemma 8.1: LetG = Gy x Gy with (|Go|, |G1]) = 1. Then
Yaoxcy i C(Go x G1) = C(Go) @ Chg(Gr) ® Chg(Go) ® C(Gh)
is an isomorphism. Give@{, < G

C(Go x Gy) —229 T(Go) @ Cho(Gh) & Cho(Go) @ C(Gh)

Rescéxc1 (ResG6®1)EB(ResG6®1)

_ Yol x . _

C(Gl) x G1) —2 %L T(Gh) ® Cho(Gh) ® Chg(Gh) ® C(G1)
commutes.

Proof: The Burnsideringisthe free abelian group on cosetd/ asH runs

over the conjugacy classes of subgroup§ dforG as in the LemmaG x
Gl)/H = (Go/Ho) X (Gl/Hl), so it follows thatP(Go X Gl) = P(Go) &
P(Gy). Each irreducible complex representatior(ois the tensor product

of complex representations @y andG1, even without the assumption on
the orders. The assumption on the orders guaranteeSthgizo x G1) =
Chg(Go) ® Chg(G1) because the tensor product of two fields of relatively
prime orders remains a field. The calculation follows. The commutativity
of the square follows from the behavior of the tensor product of characters
under restrictionn

The next goal is to calculaté(G) whenG is ap—elementary group: i.e.
G = E x G, whereFE is cyclic of order prime tp andG), is ap—group.
Note thatC'(E) = 0 for E any cyclic group (see [17, Ex. 13.1(c),p.105]).
Since the Schur indices are trividl( E) = 0 as well.

Proposition 8.2: If G is ap—elementary group((G) = C(G) = 0if pis
odd. Ifp = 2 bothC'(G) andC(G) are Z /2 vector spaces which vanish if

C(Gs) = 0.

Proof: SinceC(E) = 0, Lemma 8.1 show§'(G) = R(E) ® C(G)). By
Theorem 2.1 and Proposition 62(G),) = 0if pis odd and is & /2 vector
space ifp = 2.1

We say that a Mackey functo¥! is p—elementary generated f6# pro-
vided the sum of induction magp ,; M(H) — M(G) is onto whereHd
runs over the—elementary subgroups 6f. We say that it ip—elementary
detected fol& provided the sum of restriction mapd (G) — @, M(H)
is injective. The next result is immediate from Proposition 8.2.
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Corollary 8.3: Letp be a prime. I is odd andC), is p—elementary gener-
ated or detected fof7, thenC(G), = C(G), = 0. If C; is 2—elementary
generated or detected f6t, thenC(G), andC(G), are Z/2 vector spaces:
if in addition C(K) = 0 for K any subgroup of the 2-Sylow subgroup of

G, thenC(G)2 = C(G)g = 0.

Thep—localization of any hyperelementary computable Mackey functor,
such asC or C, will be p—elementary computable f@¥ any time all the
p—hyperelementary subgroups Gf are p—elementary. This happens in a
variety of situations, for example:

1. If p is the largest prime dividing the order 6f, any p—hyperelem-
entary subgroup is—elementary. Theorem B is an immediate conse-
guence ifp > 2 and follows from Theorem 6.1 jf = 2.

2. If pis a prime dividing the order off and (p, o(|G/G,|)) = 1 any
p—hyperelementary subgroupgselementary.

3. If the p—Sylow subgroup of7 is normal, anyp—hyperelementary
subgroup of7 is p—elementary.

9. Idempotents in the2—local Burnside ring

In addition to induction theory, Dress constructed idempotents in the local
Burnside ring. In [8, Sect. 6] and [12, Sect. 11] these idempotents are com-
bined with induction theory to do calculations. We only discustHecal

case on a grouf¥,qq of odd order. Dress constructs one idempotgntn

the 2—local Burnside ring for each conjugacy class of cyclic subgroups of
Goaq- One can then split any 2—local Mackey functor using these idempo-
tents, and the main result we want is Oliver's identification of the pieces
[12, 11.5,p.256]. Let" be a 2—local Mackey functor off,;q which is 2—
hyperelementary computable. Then for each cyclic subgiwmd each
subgroupK of G,qq4,

(e - F)(K) = (e - F)(B)Ns (D).

In general Oliver describes the answer as a limit over subgroupyg9f)

of the formE < H — P whereP is a2—group. Sinces has odd order®

is the unique such group and all that remains of the limit is to take the fixed
subgroup. Hence we have

Theorem 9.1: Let F' be a 2—-local Mackey functor on a group of odd order.
Let F' be 2—hyperelementary computable. Then for any subgrfoup

F(K)= Egg ((eE . F)(E))NK(E) '
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The next task is to calculate the idempotepnt We should really do this
in the 2—local Burnside ring, but for a cyclic group the Burnside ring and the
rational representation ring are isomorphic, and it will be more convenient
to have the answer in terms of representations anyway. To fix some notation,
let £ be a cyclic group and a divisor of| £|. Define)] to be the irreducible
rational representation obtained by pulling the faithful irreducible rational
representation ofi/d back toE under an epimorphistt — Z/d (there
are usually several but the representation is independent of choice).

Lemma 9.2: The idempotentz for the odd order cyclic groug in the
2—-local Burnside ring is

i —1)1g — A\E
eE — é <(pl ) E p2>
=1 Di

where|E| = fj p;* with s; > 0 forall it egey = 1ge3.
=1

Proof: Provisionally, lete denote the element on the right hand side of our
formula. The formula; @ A\; = (p—1)1g+(p—2)A; can be used to show
e is an idempotent. If one works /2 ® R thene = ®@;_; A7 and this is
an irreducible rational representation 6f Hencee generates a summand
of Z(Q) ® R.

It follows from [8, Prop. 6.17,p.821] thatr - Z9) ® R)(E) = Zy ®
Ko(Q({|g|)) = Z(2)- There is also a less mysterious descriptiono{see
[8, (6.12),p.819)). IfE’ runs over the maximal proper subgroupsFhf

0= (e - F)(E) — F(E)—2¢, B F(E)

is split exact for any 2-local Mackey functor includifig,) @ R. One can
seeRes, (€) = 0 since one of the elements in the tensor product will vanish.
Thereforee is contained ineg - Z(p) ® R)(E) and hence must bes. The
formula forey,, is obviousa

10. The calculation ofC(G) and C(G) whenG2 < G

Let G/G2 = Goqq- The analysis promised proceeds in several steps. For
any groupK let.x : C(K) — C(K) denote the inclusion. Define a 2—local
Mackey functor onGoqq by F(K) = C (7~ }(K)) wherer: G — Goga IS
the projection. Definé”’(K) = C(r~!(K)). Recallr "' (E) = E x G
wheneverF is cyclic.

Recall from the Introduction that a prinfaés non—split if and only if2
has odd order irfZ/¢)*. Call a cyclic groupE non-split if all the primes
dividing its order are non—split: otherwise, call it split.
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Choose a basis @ (G2) by irreducible rational-valued class functions:
X1, , Xs corresponding t@)g subquotients angh, - - - , n; corresponding
to Q- subquotients withr > 4.

Finally, recall the the representation§ from Lemma 9.2. The main
calculation is

Theorem 10.1: If E is a cyclic group witH E| odd and> 1, thenF'(E) =
R(E) ® C(Ga):

(ex- F)(E)= C(G2)

. C(Gs) if £ is split

(ep - F)(B) = {C(G2)>16 if E is non—split

A basis for the summantty - F)(E) is given by the tensor products
(®_1 A5) ® x; and (®]_; AZ) ® n;. The map.y preserves the idem-
potent decompaosition and restricts to the identity onstheummand i is
split. If £ is non—split the restriction afg to theey summand is the evident
inclusion.

Proof: That F(E) = R(E) ® C(G>) follows immediately from Lemma
8.1. A basis for it is given by the; ® x; and¢; ® n; where thep; run over
the irreducible rational representationstof

SinceC'(G») is aZ/2 vector space, we can usé_, A for the idempo-
tent: see Lemma 9.2. Hentez - F)(E) is as claimed and situated iy E)
as claimed.

Recall the isomorphisifi: C/C — @¢ Z/m from (0.2). For our basis

elementg) = (®7_, A2 )®@x;0r¢ = (®i_; AL ) @1, the image9(¢) isthe
Schur index ofp. From Lemma 5.7 we see that the]_, \) © n; always
have Schurindex 1, but that eagh]_, A" ) ® x; has @-local Schur index
which is2 if 2 has odd order iiZ/| E|)* and isl otherwise. Therefore the
order of2 in (Z/|E|)* is odd if and only if all the primes dividingZ| are
non-split. We have established the calculatioriegf - F')(E). The claim

about. g follows from checking it on the bases just givan.

In what follows, Ieté‘spf;t denote the congugacy classestoguch that

E # {e} and E is split. LetS"O”SP“t denote the congugacy classesmf
such thatF # {e} andF is non—spllt

Corollary 10.2: Suppose the—Sylow subgrougs of G is normal. Then
C(Gr= @ C(Gy)NGuaP)

B€EG 44
CG)r= @ TGP e @  (C(Ga)sig) o
EE(‘,‘SPM Eegnonsplzt

Godd Godd
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The inclusion respects the summands.

Proof: Apply Theorem 9.1 to the functo® andF'. Use Theorem 10.1 to
evaluate the summands fdr'|1. For E = {e}, use (9.2) and Theorem 6.1
to evaluate the summarfd({e}).n

One can construct examples of groups of odd order permuting the factors
in a direct sum of quaternion groups, and in such examples the fixed sets can
be proper subspaces. Assuming tiat G, x G,q4, €ach fixed point set in
Corollary 10.2 is the whole subspace. Lemma 8.1 gives the nice description
C(@)2 = R(Goqq) ® C(Gy), but it is still difficult to identify the subgroup
C(G)2 in a functorial way. One solution is to recall the chosen collection of
guaternion subquotient§.r C B.

Corollary 10.3: Under the generalized induction maps,

@ é(Godd X QQ’I‘)2 — é(G)Q
QoreB

@ C(Godd X QQT‘)Q — C(G)Q
QoreB

are isomorphisms. There are similar isomorphisms using the generalized
restrictions.

Proof: Using Theorem 9.1, write down a basis for both sides of the isomor-

phism and observe that by construction the generalized induction map takes

each basis element in the domain to a basis element in the range and that

every basis element in the range is accounted for under this correspondence.
The same proof works for the generalized restriction maps, but here is

a different one. Define a Mackey functgron G,q4 by J(K) = @QQT%

C(K X Qar)2 for any K < Gqq. Becausesy = Go x Goqq, the sum of

the generalized restriction maps define a natural transformation of Mackey

functors,fx : F(K) — J(K). Check thafig is anisomorphism for cyclic

subgroups® and use Theorem 9.1 to finigin.

Another solution to describing our calculation succinctly is to assume a
bit more. Suppose that there exists a normal subgéaup G4, such that
only split primes divide the order &f, and only non—split primes divide the
order ofG,q4/Gs = Gns. Inthis case sag 44 has anormal split subgroup

Corollary 10.4: If there is a normal split subgroup it/,;q and if G =
Go X Godd, then

C(G)e =V @ C(Ga)s @ R(Goad) ® C(Ga)>16

whereV denotes the kernel of the restriction mBPG,4q4) — R(Gps)-
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Proof: Observe that non—split cyclic subgroupg#f;,; correspond to non—
trivial cyclic subgroups of7,,; under the projectiorn

Note that the formulain Theorem C now follows since all the hypotheses
of Corollary 10.4 are satisfied and the kerneR§t7,44) — R(G,s) can be
identified WithR(G) @ R(Gys).

The formula in Theorem Cfollows from (10.2): all the quaternion
representationg of G; havem,({) = 2 and Qg can be distinguished
from Q2 by the degreéQ(¢) : Q] of the center field. Finally, note that
fe= [@Q(pE) : @2] is odd precisely wheil’ is non—split.
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