
Applied Scientific Research 53: 339-355, 1994. 339 
(~) 1994 Kluwer Academic Publishers. Printed in the Netherlands. 

A Comparison of Different Analytical Techniques 
for Identifying Structures in Turbulence 

N.K.-R. KEVLAHAN 1, J.C.R. HUNT 1,2 and J.C. VASSILICOS 1 
I DAMTP, University of  Cambridge, U.K. 
2 Meteorological Office, Bracknell, U.K. 

Received 8 September 1993; accepted in revised form 4 April 1994 

Abstract. Vortical structures play an important role in the kinematics and dynamics of turbulence, but 
in order to understand this role we require techniques to identify and classify them. Proper Orthogonal 
Decomposition (POD), conditional sampling with ensemble statistics, and conditional sampling with 
conditional statistics are applied to a simple test function and the results are compared to determine 
the strengths and weaknesses of each approach. The second method gives the closest approximation 
to the test signal and is the easiest to use, although it is sensitive to the choice of conditions. None of 
these techniques can give much insight into the dynamics of turbulence, or into the organisation of 
eddies with complex, fine-scale structure. 
New methods for investigating complex (self-similar) structures based on fractal and wavelet analyses 
are presented. Methods of distinguishing between locally (accumulating) and globally (fractal) self- 
similar structures are suggested. 

1. Introduction 

There has been much interest recently in the identification of characteristic struc- 
tures in turbulence as a way of understanding its dynamical properties such as 
intermittency, the transfer of energy between length scales and the dispersion of 
contaminants. Experiments and Direct Numerical Simulations (DNS) have provid- 
ed evidence that turbulence is not random, but contains structures with complex 
internal organisation (Vincent and Meneguzzi, 1991). Statistical approaches to 
turbulence are capable of predicting some quantities averaged over many realisa- 
tions of a turbulent flow, but they are not able to provide insight into dynamical 
quantities that are directly related to the flow structures of a given realisation. In 
order to be effective the structural approach requires mathematical tools capable of 
unambiguously identifying complex turbulence structures according to appropriate 
kinematical and dynamical criteria. Once different sorts of structures have been 
identified it is possible to determine which of them play important roles in the 
dynamics of turbulence. 

Many mathematical techniques have been used to identify and describe struc- 
tures, e.g. the Fourier transform, Karhunen-Loeve orthogonal decomposition 
(Lumley, 1967; Aubry et al., 1988), functional/pattern recognition (Mumford, 
1982), non-functional conditional sampling (Hussain, 1986), kinematic classifi- 
cation (Chen et al, 1990; Kevlahan, 1992; Wray and Hunt, 1990), and, more 
recently, fractals (Vassilicos and Hunt, 1991) and the wavelet transform (Brasseur 
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and Wang, 1992; Farge, 1992; Hunt et al., 1993). Each of these techniques breaks 
down the flow in different ways and places a different emphasis on the various 
aspects of turbulence (usually velocity, pressure, and their gradients). The ques- 
tion then arises: which methods are best able to detect, classify and describe eddy 
structures which may contain significant complexity? This paper has two parts: the 
first is concerned with the identification and eduction of large coherent structures. 
The second presents and discusses subtler tools capable of identifying small scale 
complex eddy structure. 

We evaluate three common eduction techniques for coherent structures, namely 
Proper Orthogonal Decomposition (POD), conditional sampling with ensemble 
statistics, and conditional sampling with conditional statistics by applying each of 
these techniques to a simple test function that is asymmetric and whose energy is 
not contained in a single mode (i.e. f ( x )  = (a + xb) e x p  --(X2)). Then we assess 
the strengths and weaknesses of each approach. Some of these techniques have 
been tested before on actual turbulent flows (e.g. Guezennec, 1989), but the goal 
here is to assess these techniques on mathematically simple test signals so that the 
precise differences between the techniques are brought out. Differences between 
the techniques and the reasons for those differences may be obscured when they 
are applied to more complex flows. The results show that these techniques can lead 
to quite ambiguous and erroneous inferences as to the structure of eddies. 

In the second part of this paper we address the problem of identifying and 
analysing eddies with significant internal complexity; none of the traditional 
approaches described above are capable of giving this sort of information. By 
'complex structure' we mean eddies with a self-similar or singular internal struc- 
ture. The usual Fourier transform can provide some limited information about the 
existence of such singular regions or structures in the flow. A non-integer power law 
energy spectrum (e.g. Kolmogorov's E ( k )  c< k -5/3 for the inertial range of isotrop- 
ic turbulence) implies that the velocity field must contain singularities 'worse' than 
discontinuities (Moffat, 1984; Hunt and Vassilicos, 1991; Zel'dovich and Sokolov, 
1985). These singular structures could be cusps, accumulating discontinuities or 
oscillations (e.g. functions of the form f ( x )  = x ~ sin(x-t)), fractal functions 
(e.g. the non-differentiable Weierstrass function f ( x )  = ~k~=l )~(s-z)k sin()~kx)), 
or some more complex superposition of these. Both the accumulating and frac- 
tal functions are self-similar, however the accumulating functions are self-similar 
only about a specific point wl~ile fractals (characterised by a non-integer Hausdorff 
dimension) are self-similar everywhere. Accumulating and fractal structures may 
be considered globally and locally self-similar respectively. Turbulence models 
have been developed using both these types of structures as building blocks (e.g. 
the fractal/3-model of Frisch et al. (1978) and the strained spiral vortex model of 
Lundgren (1982)). 

To detect whether or not the structure of eddies actually corresponds to that 
assumed by these models requires a method for unambiguously determining and 
distinguishing between global and local self-similarity. The differences between 
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Fig. 1. Typical eddy structure from the test function ~(x) = (a + bz) exp(-x2).  

these classes of self-similar structures are investigated by applying Fourier, wavelet 
and fractal methods to an accumulating test function as f ( z )  = sin 27r/z t (which 
is locally self-similar) and a related function constructed from the random super- 
position of its Fourier components (which is globally self-similar). Finally, gener- 
al analytical methods of distinguishing between locally and globally self-similar 
structures are proposed. 

2. Comparison of Methods for Large Eddy Eduction 

In this section we investigate the relative strengths and weaknesses of methods for 
eduction based on unconditional, or ensemble, statistics compared to those based on 
conditional sampling by applying each of them in turn to a simple one-dimensional 
test function. 

Methods based on invariants of the deformation tensor and/or pressure (e.g. 
Wray and Hung, 1990; Chen et al., 1990) are in a different class, since unlike the 
above approaches they classify each point of the flow in a given realisation and do 
not extract whole eddy structures. Invariant/pressure methods do, however, have 
the advantage of being equally applicable to both large and small scale coherent 
structures. The invariant/pressure approach also requires more sophisticated and 
physically realistic test signals for evaluation, and for this and the previous reasons 
these methods are not included in the comparison. 

The test function u(x) we use is a simple sum of the Gaussian profile and its 
first derivative, both having random amplitudes, viz.: 

= (a + exp(-  2) (2.1) 

where a and b are normally distributed random variables with zero mean. This 
is representative of the velocity profile across a flow (e.g. a free shear flow) in 
which there are different kinds of eddies that are asymmetrical about the centre 
line z = 0 (see Fig. 1). If the eddies are uncorrelated with each other a and b are 
also uncorrelated. It is assumed that the variances a~, cr 2 of a and b are of similar 
magnitude. Each of the structure eduction techniques will be judged on its ability 
to pick out these typical eddies with the least amount of subjective manipulation. 
This is a more demanding task than in many flows, where the dynamics leads to a 
selection of a few dominant modes or types of eddy (Hussain, 1988). 
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2.1. PROPER ORTHOGONAL DECOMPOSITION (POD) 

POD decomposes a signal onto a basis of non-specified functions chosen to rep- 
resent the energy of the signal in the fewest number of modes. This method is 
completely objective (no possibility of subjective bias or control in the process), 
and it optimally efficient. The attempt to find the structure that is best correlated (in 
terms of energy) with the random turbulence field reduces to a problem of maximi- 
sation (Aubry et al., 1988). The calculus of variations reduces this maximisation 
problem to the solution of a Fredholm integral equations of the first kind 

f Rij(x, x')Oj(x') dx' = A¢i(x), (2.2) 

where R/ j (x ,  x ~) is the autocorrelation tensor and ¢i(x) are the eigenfunctions, 
or modes (which are often interpreted as independent eddy structures). Then the 

signal ui (x) may be written as the sum of the eigenfurlctions ¢!'~)(x) with random 
amplitudes a ('0 

o o  

ui(x) = ~ a( '0¢In)(x). (2.3) 
n = l  

The turbulent kinetic energy is the sum over the n eigenvalues 

o o  

E = f (uiui) dx = ~ A (n), (2.4) 
n--1 

because of the orthogonality of the eigenfunctions and the statistical independence 
of the amplitudes, i.e. 

f ¢(n)¢(m) dx = ~,~ and (a(m)a (n)) = (~mn/~ rn, (2.5) 

where ( ) denotes the ensemble average. In the case of discrete data, solving 
Eq. (2.2) reduces to a matrix inversion problem. Note that although (2.3) converges 
optimally fast, some signals require many POD modes to capture a significant 
portion of the energy. POD is only useful for those signals where the energy can 
be captured in a few modes, or where the coefficients a (n) decrease abruptly after 
a certain mode. 

The correlation function of the test signal (2. l) is 

R(x,x') = (o .2 + O'2bXX')exp(--x 2 -  x'2), (2.6) 

where a and b are taken to be random uncorrelated variables with standard devi- 
ations 0-a and 0-b. For this simple correlation function Eq. (2.2) can be solved 
analytically by the separable kernel method (Arfken, 1985, p. 872) to give 

~z(X) = a(1)qS(1)(X) q- a(i)qs(2)(x),  a (1) = a (2) = ~ ( °-2 q- 0-2) (2.7) 
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where the two modes are symmetric and anti-symmetric, 

¢(1) = v ~  rc-1/4xexp(-x2), ¢(2) = rc-1/4exp(_x2). (2.8) 

Note that neither qS(1) nor 95(2) describes the asymmetrical form of the general 
eddy (see Fig. 1). It is evidently misleading to interpret the largest mode, 950), 
as a typical eddy of the flow. The problem of interpreting the first mode arises 
here because the energy of the signal is fairly evenly distributed between the two 
largest modes. If the majority of the energy is not captured by the first mode it 

N a(n)¢n is more appropriate to consider the truncated series ~n=l for which an 
increase of N by 1 results in little increase in energy, but for which a decrease of 
N by 1 removes a large portion of the energy. The first N modes together are then 
interpreted as the typical flow structure. It is important to remember that signals 
are possible for which even this method of interpreting the POD is not suitable 
(e.g. the complex eddies studied in Section 3). 

2.2. CONDITIONAL SAMPLING WITH ENSEMBLE STATISTICS 

The goal in conditional sampling is to estimate u(x, t) given that the velocity 
at (x', t) assumes a specific value u(x' ,  t). It can be shown (see Adrian et al., 
1988) that the best estimate of the profile u(x,  t), which is defined as fi(x), is the 
conditional average 

fi(x) = (u(x, t ) I  u(x '  , t)). (2.9) 

The conditional average (2.9) can be approximated in terms of second-order (linear) 
and third-order (non-linear) two-point spatial correlations by 

~2i(x) ~ Aij(x',x)uj(x') + Bij~(x',x)uj(x')uk(x') + O(u3(x')), (2.10) 

where Aij and Bijk are found by requiring that the mean-square errors ei = 
(02i(x) - ui(x)) 2) be minima. Setting the derivatives of ei with respect to Aij 
and Bij~ equal to zero and carrying out the indicated averages gives the following 
equations for the components of Aij and Bijk for inhomogeneous, anisotropic 
turbulence 

Aij(x',x)(ujul}(x') + Bijk(x',x)(ujukul)(x') = (ul(x)'ui(x)) (2.11) 

Aij(x',x)(ujUzUm)(X') + Bijk(X',X)(UjUkUlUm}(X') 

= (x') (x%i  (x)>. (2.12) 

In the case of homogeneous, isotropic turbulence these relations simplify to 

Aij(x', x) = (uj(x')u~(x)>/u 2, (2.13) 
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Bi jk (x t , x )  = 3 (u j ( x t )uk (x t )u i ( x ) ) /2Ku  4 (2.14) 

where u 2 = 1/3(uiui),  and K is the kurtosis. Note that these correlations are 
unconditional, and they are not selected for particular 'eddies'; they are ensemble 
statistics. The Linear Stochastic Estimation (LSE) for u(x ,  t) retains only the first 
term on the right-hand side of Eq. (2.10). 

From (2.10), (2.11), and (2.12) the LSE for our test function is 

,,(x) = R(x,x')  u(x'), (2.15) 

which, using (2.6), becomes 

= (a2 + a2xx')exp(-x2 + x'2) 
(.2 + .b2x,2 (2.16) 

This purely statistical estimate may be combined with conditional sampling 
to determine the form of all eddies whose maximum amplitude is negative, i.e. 
u,~x < 0. Conditional sampling governs how the reference point (in space and 
time) is chosen. In general, conditions are placed on both the location of the 
reference point, x', and the value of the velocity at that point, u(x'). If the location 
of the maximum (Xmx) is taken as the reference point x' then (2.16) shows that if 

2 2 t Umx < 0 the point u = 0 lies at x = --aa/(ab x ). Therefore the location of the 
'zero point' always has the opposite sign to that of the location of Um,. This is a 
significant improvement over POD: the conditional eddy correctly represents the 
qualitative characteristics of the typical physical eddy as shown in Fig. 1. 

How robust is the conditional eddy to changes in the sampling criteria? Con- 
sider a purely conditional approach (not based on the correlation tensor). If the 
conditional average is based on the criterion Xm, > 0 then the conditional eddy 
becomes 

(u(x) 2 I Xmx > O) = ,2xexp(- -z2) .  (2.17) 

This conditional eddy has lost all information about the symmetrical part of the 
velocity field (and half the energy)! If we now add an additional criterion u(0) > 0 
the conditional eddy becomes 

(u (x )2 lXmx  > 0, u(0) > 0} = (a 2 + , 2 ) e x p ( - x 2 ) .  (2.18) 

This is again a very different structure from the one obtained by conditioning only 
on Xmx > O. These examples show how sensitive the LSE method can be to the 
conditions chosen: slight changes in conditions can lead to the identification of 
completely different eddies. 
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2.3. CONDITIONAL SAMPLING AND CONDITIONAL STATISTICS 

The Coherent Structures method (Hussain, 1986) is an interactive and iterative 
from of conditional sampling. In this approach one first defines the signal, its 
nature and the relevant length scales of the coherent structure for there to be a 
conditional event. The location of the structure is adjusted until an optimal mean 
structure pattern is obtained. If the spread of structures is too great one reclassifies, 
introducing more structure classes. This process continues until an optimal mean 
structure pattern with minimum spread is obtained. 

Consider our test signal (2.1). Initially we may decide that there is only one 
coherent structure, and then filter the signal to remove white noise. On examining 
the signal we could then split the structures into two classes based on the sign of the 
maximum velocity: umx > 0 and umx < 0. This classification would still allow 
too great a spread of structures so we would reclassify further into four groups 
based on the sign and position of the maximum velocity: um~ > 0, xm~ > 0, 
xmx < O, u , ~  < O, xmx > O, um~ < O, Xm~ < 0. These structure classes can be 
further divided by the magnitude of the maximum velocity: e.g. 1/2 < um~ < l, 
1 < u ~  < 3/2, 3/2 < umx < 2, 2 < um~ < 5/2, 5/2 < umx. Finally, by this 
iterative, subjective process we have ended up with twenty structure classes. This 
example shows that the coherent structures approach can require a large amount 
of manipulation to obtain representative structures, but also permits a great deal of 
fine control and sensitivity. An advantage of this approach is that, unlike LSE, it is 
able to separate out the incoherent noise of the signal. 

3. Small Scale Complex Eddy Structures 

How can small scale structures with complex internal organisation (e.g. the accu- 
mulating oscillatory signal from a cut through a spiral vortex) be identified? The 
continuous spectrum and accumulating structure of these eddies makes them diffi- 
cult to represent in a few terms of a series (their energy is not concentrated in the 
first few POD modes). Conditional sampling is also inappropriate since it is diffi- 
cult to extrapolate on such a highly oscillatory function. New tools are definitely 
needed to identify and analyse eddies with complex fine scale structure. 

In this section we introduce some new tools for the analysis of complex eddy 
structures and apply them to two test signals: a sin(27r/x) 'spiral' which is an oscil- 
latory locally self-similar function, and the Fourier phase scrambled version which 
is a globally self-similar fractal function. We use two new tools: the box-counting 
algorithm and the wavelet transform, and one old tool: the Fourier transform. The 
problem we address here is how to determine whether turbulence has a local- 
ly self-similar ('spiral') structure, or a globally self-similar fractal structure. The 
long term goal of the analysis of complex eddy structures is to find the relation 
between the quantities o~ (the exponent of the self-similar Fourier energy spectrum), 
~b(k) (the Fourier phase spectrum), DK (the Kolmogorov capacity, a measure of 
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Fig. 2. The relation between quantities important for the analysis of the fine-scale structure 
of turbulence: the exponent of the Fourier energy spectrum c~, Fourier phase spectrum q~(k), 
Kolmogorov capacity DK, and Hausdorff dimension DR. The solid lines indicate primarily 
fixed relationships, while the dotted lines indicate that the relationship is determined by the 
dynamics of the turbulence. 

self-similarity), D~r (the Hausdorff dimension, a non-integer Hausdorff dimension 
defines a fractal) and the dynamics and geometry of the flow (see Fig. 2). 

The box-counting algorithm gives a number (the Kolmogorov capacity) which 
characterises the self-similarity of a signal. A non-integer Kolmogorov capacity 
means that the signal is in some way self-similar, however both locally and globally 
self-similar functions will have a non-integer dimension. The Kolmogorov capacity 
alone cannot tell us whether the turbulence is fractal or spiral. 

The general form of our accumulating 'spiral' test function 

f ( z )  = z 2 sin(2rcx -t)  (3.1) 

is locally self-similar; its zero crossings form a set of points which Hausdorff 
dimension D ~  = 0, but a non-trivial Kolmogorov capacity D~: = t ( t  + 1) (Hunt 
et al., 1993). Using the method of stationary phase, one finds that for large k the 
energy and phase spectra of (3.1) are given by (Hunt et al., 1993) 

E ( k )  cx: /~-2p (3.2) 

2p = (2s + 1)(1 - D~)  + 1 (3.3) 

D t qS(k) o( k K (3.4) 

provided that 1 < 2/9 < 2, - t  < s < 1, and t > 0. 
Orey (1970) showed that Gaussian sample functions with an energy spectrum 

E(k)  = k -2p are fractal and that their zero crossings have a Hausdorff dimension 

1 
D~ = 5 (3 - 2 p ) .  (3.5) 

Notice that the two functions just mentioned differ in three aspects: (i) D~  = 0 for 
(3.1), D ) / ~  0 in (3.5), (ii) they have different relations between p and respectively 
D ~  and D~r, (iii) they have different phase spectra - the phase spectrum of a 
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Gaussian random function is random. A question which then arises is whether the 
phase spectrum can discriminate between local and global self-similarity. 

To study the relation between an ordered phased spectrum q~(k) and the type of 
self-similar structure we took the Fourier transform of the accumulating function 
(3.1) with s = 0 and t = 1, scrambled the phases and then transformed back 
to physical space. This procedure destroys the spatial organisation of the original 
signal and produces a function that is quantitatively and qualitatively indistinguish- 
able from a fractal in the Hausdorff sense. The Kolmogorov capacity of the signal 
was significantly altered by this operation! In fact it is then given by Eq. (3.5) 
for Gaussian random functions. This property appears to be generally true for 
power-law spectra with random phase (Osborne and Provenzale, 1989), but may 
not hold for practical reasons related to the scrambling procedure when s ¢ 0 in 
the initial signal. By considering both the scrambled and original versions of the 
signal we will try to find analytical ways capable of distinguishing between such 
localised and global self-similar structures that we have the same energy spectra 
or Kolmogorov capacities, but different phase spectra and Hausdorff dimensions. 

3.1. BOX COUNTING ANALYSIS AND KOLMOGOROV CAPACITY 

The Kolmogorov capacity (DK) of a curve is calculated by finding the slope on a 
log-log graph of the plot of the number of boxes required to cover the curve as a 
function of the size of the box. The range of length-scales which need to be resolved 
to calculate DK is in certain cases much smaller than that required to obtain a good 
estimate of the exponent of the energy spectrum (Vassilicos and Hunt, 1991). 

Thus, the Kolmogorov capacity is a more practical measure of self-similarity 
than the energy spectrum. Although DK alone cannot distinguish between the orig- 
inal and scrambled signals, the overall shapes of the curves do differ significantly. 
In the case of the scrambled signal the transition from a slope of -1.5 (the true 
dimension of the function) to 0 (caused by the finite number of points in the repre- 
sentation of the function) is very abrupt, while in the case of the original signal the 
transition is much more gradual (see Fig. 4). This difference is due to the fact that 
in the original signal the points representing the function are distributed evenly, but 
the increasingly smaller scales emerge only as one near the origin. The scrambled 
signal is self-similar at every location, so the box-counting algorithm suddenly 
saturates everywhere at a particular length-scale whereas in the original signal the 
saturation occurs at different length-scales at different positions, thus smoothing 
the transition of the box-counting curve. This result may give a practical way of 
distinguishing between locally and globally self-similar structures. 

The on-off function generated by the zero-crossings, i.e. the function that jumps 
from 0 to 1 and from 1 to 0 at the zero-crossings, but remains constant elsewhere, 
has a Fourier power spectrum F(k) ,--, ]~-2p, 2p = 2 - D ~  (Vassilicos and Hunt, 
1991), whether the zero-crossings are of a fractal or a spiral signal. Two such 
different signals with the same value of D ~  will have the same p, but different p. 
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Fig. 3. (a) Original, and (b) scrambled versions of the accumulating function f (x )  = 
sin(2~-/x). 

In the case of Gaussian sample functions, p = 2p - 1/2 (see (3.5)); in the case of 
spiral functions, such as (3.1), the relation between p and p is different. A good 
understanding of this relation may again lead to new practical ways of detecting 
whether D}4 = 0. 
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Fig. 4. Calculating the box-counting dimension. (a) Spiral function sin(27r/z), lower curve 
is ×c 1'5. (b) Scrambled spiral, lower cure is × c  1'75. Note the much more gradual transition 
between ¢min (the lower limit of the power-law section of the curve) and co (the minimum 
spacing between points in the signal) for the locally self-similar spiral. 

3.2. WAVELET ANALYSIS 

A more systematic tool for obtaining local information about spectral quantities 
is the recently developed wavelet transform (Grossman and Morlet, 1984; Farge, 
1992) 

The wavelet transform allows one to investigate the structure of the signal f ( z )  
at different scales A and different positions :Co simultaneously. Because we are 
interested in what are essentially local fractal dimensions and fractal dimensions 
are related to energy spectra the wavelet transform would seem to be a good way 
of determining whether a flow contains locally self-similar accumulating functions 
or global fractal structures. In this section we use the wavelet analysis to develop 
another way of distinguishing between our locally and globally self-similar test 
functions. 

Using the Morlet wavelet, 

~ ( x )  = eikgx e-(Ixl2/2) , 

the squared modulus of the wavelet transform of the sin(27rx - t )  spiral is 

If(A, z0)l 2 ,~/~1/2/~ -((2s+I)(DIK-1)+I) exp (z0 --  (t)~) 1-D~( )2] 

(3.7) 

(3.8) 
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where A is the length-scale and :Co is the location. The wavelet transform of the 
spiral is thus peaked around :Co = (tA)1-D~. By contrast, the wavelet transform of 
the scrambled spiral shows no spatial organisation, although, of course, it reflects 
the overall distribution of the energy of the signal between different length-scales 
(see Fig. 5). This difference is brought"out most clearly by looking at the local 
wavelet energy spectra at various locations. The local wavelet energy spectrum 
is obtained from the modulus of the wavelet transform by taking a slice through 
length-scale space at a particular location. The difference between the scrambled 
and spiral test functions is obvious in Fig. 5. The scrambled spiral has essentially the 
same local energy spectrum everywhere (on average o(k--((2s+l)(DtK--1)+l) where 
D)c is the capacity of the original spiral), but the spiral test function has different 
ranges of k-((2s+l)(D~: -1)+1) spectrum depending on the location. Looking at the 
way the local energy spectrum varies from position to position may provide another 
way of determining whether turbulence has a 'spiral' or fractal structure. 

It has been claimed that branching in the wavelet transform indicates the signal 
is fractal (e.g. Arnrodo et al., 1989), however this is not necessarily the case. If a 
signal holds only one singularity of the type (3.1) and is totally regular elsewhere, 
then (3.8) shows that the wavelet transform will point towards z0 = 0 since most of 
the power If(A, :C0)[ 2 is concentrated around a curve :co ,,o A 1-D~ in the x0-A plane 
of the wavelet transform. The exponents t and s or D ~  and s characterising this 
singularity can be extracted from the examination of that curve and of the scaling 
of the wavelet transform along that curve. Problems arise when the signal carries 
an unknown distribution of singularities of the type (3.1), thereby producing a 
plethora of intertwined inverse branchings which may not be easily distinguishable 
from the branching pattern obtained when a fractal or multifractal signal is wavelet 
transformed (or even when random noise is transformed). It is then not a trivial task 
to untangle the local scaling exponents from the wavelet transforms of a complex 
signal, let alone interpret them. A simple example of the way this sort of fractal-like 
branching may arise is shown in Fig. 6. 

Note also that one must be careful in applying real wavelet transforms to deter- 
mine scaling exponents (related to Hausdorff dimension). Vergassola et al. (1991) 
have shown that spurious scaling exponents can be obtained from the Mexican Hat 
wavelet transform of a fractional Brownian signal. The same conclusion is reached, 
for other reasons, on the basis of a different example: the spiral accumulation func- 
tion sin 27r:C -t .  From (3.8) it can be seen that the closer :Co is to 0, the centre of 
the accumulation, the smaller the range over which Ill 2 is dominated by the power 
law/~l/r)~ ((2s+I)(D~K-1)+I) rather than by the Ganssian filter. A calculation of the 
scaling over the wrong range will give misleading results. Furthermore, even in 
the correct range, the detection of a power law does not prove that the signal is 
fractal; it can evidently also be a spiral accumulation. These two examples show 
the difficulty of determining the precise self-similar nature of a signal. 
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Fig. 5. Distinguishing between locally and globally self-similar signals using the wavelet 
transform. (a) Wavelet energy spectrum averaged over all locations for the spiral (upper curve 
is ×k]'5). (b) Wavelet energy spectrum averaged over all locations for the scrambled spiral 
(upper curve is × kLS). (c) Local wavelet spectra ×k I'5 of the spiral at locations (I) 0.05, 
(II) 0.1, (III) 0.2, (IV) 0.4, (V) 0.8. The flat regions indicate the locations of k -15 spectrum. 
(d) Typical local wavelet spectrum of the scrambled spiral at location x = 0.4 (upper curve is 
xkl.5). 

4. C o n c l u s i o n s  

By  applying the POD, conditional  sampling with conditional statistics (Linear 
Stochastic Estimation), and conditional sampling with conditional statistics (Coher- 
ent Structures) to a test signal we have clarified the strengths and weaknesses of  each 
approach. First, the physical  interpretation of  POD is unclear: the first e igenmode 
will  n o t  be a typical flow structure unless it contains most of  the energy. Secondly,  
conditional  sampling can give a qualitatively accurate physical representation of  
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Fig. 6. Branching pattern in the modulus of the Morlet wavelets transform produced by a 
random superposition of four sin(27r/z) spirals. 

the flow structures, but the resulting eddy may be sensitive to the precise condi- 
tions chosen. A combination of ensemble statistics with conditions determining 
the location (in space and time) of the reference point gives physically realistic 
results with a minimum of manipulation. Thirdly, the Coherent Structures method 
requires significant manipulation to obtain representative structures, although the 
interactive nature of this approach also makes it the most flexible and least liable to 
misinterpretation. The Coherent Structures approach also gives a way of separating 
out the incoherent noise of the signal. 

Approaches based on invariants of the deformation tensor and pressure can 
give information about the relative number and location of regions with particular 
dynamics, but say nothing about their shape or internal structure. No clear way of 
interpreting invariant plots exists yet! 

None of the above methods are incapable of analysing or identifying the local 
fine-scale structure of the flow. 

The new techniques of fractal analysis and the wavelet transform have been 
applied to the problem of distinguishing between globally ('fractals') and locally 
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T A B L E  I. T h e  d i f ferences  be tween  signals  with r andom and 
n o n - r a n d o m  phase  spectra  

~b(k) r a n d o m  ~b(k) n o n - r a n d o m  

D H  = D /c  = ½ (5 - c~) Du, D/ c ,  ~ - no fixed relat ion 

- no energy  cascade  - a l lows for cascade  

- no s t ructures  - a l lows for s t ructures  

('spirals') self-similar signals. The Kolmogorov capacity gives one parameter for 
describing the average degree of convolutedness within a coherent structure where 
the fields are self-similar over a range of length scales that may be quite small 
compared to those necessary for conventional Fourier methods. Alone among the 
methods examined, the wavelet transform is able to provide a simple functional 
description in terms of local length scales and position of the typically complex 
distribution of velocity and vorticity within turbulence structures. Three methods 
of distinguishing between fractals and spirals have been suggested: the first is based 
on the box counting algorithm (the variation of the range over which a Kolmogorov 
capacity is clearly defined), the second exploits the difference between the Fourier 
power spectrum of the original function and the on-off function obtained from the 
zero-crossings, and the third uses the variation of the local wavelet energy spectrum 
with position. 

The long term goal of the development of new techniques to analyse complex 
structure is to clarify the relationship between the Fourier energy spectrum (expo- 
nent oz), the Fourier phase spectrum (q~(k)), the Hausdorff dimension (D~),  and 
the Kolmogorov capacity (DK). This knowledge will have far-reaching implica- 
tions for a deeper understanding of the dynamics of turbulence. A major part of 
this investigation is a study of the differences between signals with a non-random 
qS(k) ('spirals') and those with a random ~b(k) ('fractals'). The phase spectrum 
of turbulence largely determines its dynamics and structure. For example, if the 
phases of a DNS are randomised the characteristic small-scale vortex tubes vanish. 
The nature of the energy cascade also depends crucially on the phase spectrum; 
in a velocity field with random phases there can be no net cascade of energy. The 
phase spectrum also changes the relationship between DK and DH. In a sin 1 /z  
spiral DK = 1.5 and DH = 1, while if the phases of the spiral are scrambled 
DK = DH = 1.75. The fixed relation between DH and o~ given by Orey's formu- 
la (3.5) holds for a Gaussian (random phase) signal. It is interesting to note that 
the Kolmogorov cascade in turbulence implies a non-random ~b(k) which in turn 
means that DH in turbulence is probably not given by (3.5), i.e. if c~ = 5/3 then 
DH ~ 2.67 in three-dimensional turbulence (contrast with results of Procaccia et 
al., 1991). Some differences between signals with random and non-random phases 
are summarised in Table I. 
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This invest igat ion has helped to quantify the differences between the many  
methods  of  analysing a turbulent flow into turbulence structures, and has sug- 
gested op t imum structure types for elucidating the dynamics  of  turbulence. The 

results obta ined will give greater  power  and  precision to the structural approach to 
unders tanding turbulence. 
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