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1.1 Introduction

In this chapter we will summarize the ten years of research we have done
to try to better understand, model and compute fully-developed turbulent
flows using wavelets and wavelet packets. Fully-developed turbulence is a
highly nonlinear regime (very large Reynolds number tending to infinity)
and is distinct from the transition to turbulence (Reynolds number of order
100 or 1000). We have chosen to present a personal point of view concerning
the current state of our understanding of fully-developed turbulence. It may
not always coincide with the point of view of other researchers in this field
because many issues are still undecided and highly controversial. This paper
is a substantially revised and extended version of: Wavelets and Turbulence
by Farge, Kevlahan, Perrier and Goirand which appeared in Proceedings of
the IEEE, vol. 84, no. 4, April 1996, pp. 639–669.

After more than a century of turbulence study [156], no convincing theo-
retical explanation has produced a consensus among physicists (for a histor-
ical review of various theories of turbulence see [143], [141], [64]). In fact,
a large number of ad hoc ‘phenomenological’ models exist that are widely
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used by fluid mechanicians to interpret experiments and to compute many
industrial applications (in aeronautics, combustion, meteorology . . . ) where
turbulence plays a role. For these models there is no need to suppose the
universality of turbulence since they are not derived from first principles.
They are compared with experiment, such as wind tunnel measurements, in
order to tune the parameters necessary to match the model to the observa-
tions. This procedure is done case by case, for a given type of turbulent flow
and for a given geometry of the internal or external boundaries. Actually,
it is still not known whether fully-developed turbulence has the universal
behaviour (independence of initial and boundary conditions) which is gen-
erally assumed in the limit of small scales. Already in 1979 [63] we expressed
reservations about our understanding of turbulence and thought that we did
not yet know the pertinent questions to ask in order to guide research in
this field. Nearly twenty years of work on the subject have persuaded us
that we have not yet identified the appropriate objects, by which we mean
the structures and elementary interactions, from which it will be possible to
construct a satisfactory theory of turbulence. Turbulent flows are chaotic,
i.e. sensitive to initial conditions, therefore we are looking for a statistical
theory. The classical averages used at present do not appear to be adequate.

In our opinion, our present ignorance of the elementary physical mecha-
nisms at work in turbulent flows arises in part from the fact that we perform
averages using point measurements and also because we think in terms of
Fourier modes. This approach already been pointed out by Zabusky [185]
when he wrote:

In the last decade we have experienced a conceptual shift in our view of turbulence.
For flows with strong velocity shear . . . or other organizing characteristics, many
now feel that the spectral description has inhibited fundamental progress. The
next “El Dorado” lies in the mathematical understanding of coherent structures in
weakly dissipative fluids: the formation, evolution and interaction of meta-stable
vortex-like solutions of nonlinear partial differential equations . . . ’

By using point measurements or the Fourier representation, we probably
miss the point, because these classical methods ignore the presence of the
coherent vortices that one observes in physical space and whose dynamic
role seems essential. As Hans Liepmann, successor to Von Karman as direc-
tor of the Aeronautical Laboratory of Caltech, has commented [126], [125],
in turbulence research we are like the drunk man who has lost his keys in
a dark alley, but who finds it easier to search for them under the street
light. Everyone knows that turbulence has to do with vortex production
and interaction. This is even embedded in the Latin etymology of the word
’turbulence’: turba for crowd and turbo for vortex. Namely, a turbulent flow
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can be described as ‘a crowd of vortices in nonlinear interaction’. However,
because we do not have a good enough theoretical grasp of the structure of
these vortices, on the mechanism of their production by nonlinear instabili-
ties, and on their long-range collective dynamics, we prefer to forget about
them and content ourselves with studying turbulence as far as possible from
regions where vortices are produced. In particular, as far as possible from
boundaries.

This approach has led turbulence research for the last fifty years to ex-
plore the unphysical academic case of statistically stationary, homogeneous
and isotropic turbulence, which, under those hypotheses and assuming pe-
riodic boundary conditions, represents turbulent fields in terms of Fourier
modes. To construct this theory one needs to suppose that the injection of
energy is confined to the low wavenumbers, while the dissipation of energy
is confined to the high wavenumbers. This assumption allows us to define
an intermediate range of wavenumbers, called the inertial range, where the
flow behaves in a conservative manner, which then enables us to predict
the scaling of the inertial range energy spectrum. Unfortunately these hy-
potheses are incompatible with the local production of vorticity in boundary
layers or shear layers, due to the duality between physical localization and
spectral localization: if you have one you cannot have the other and vice-
versa (Heisenberg’s uncertainty principle). The same remark holds for the
dissipation of energy. Incidentally, we are convinced that this lack of phys-
ical soundness of the statistical theory proposed in 1941 by Kolmogorov,
and strongly advocated by Batchelor, explains why G. I. Taylor had never
been convinced by this redirection of turbulence research. In fact, as early
as 1938 he had already recognized the importance of vortices in turbulence
when he wrote [170]:

The fact that small quantities of very high frequency disturbances appear, and
increase as the speed increases, seems to confirm the view frequently put forward
by the author that the dissipation of energy is due chiefly to the formation of very
small regions where the vorticity is very high.

To refocus turbulence research towards a more physical approach, we
should take up the challenge proposed by Hans Liepmann [126] during a
workshop we organized in February 1997 in Santa Barbara:

As long as we are not be able to predict the drag on a sphere or the pressure drop
in a pipe from first principles (namely from continuous, Newtonian, incompressible
assumptions, without any other complications), we will not have made it!

As astonishing as it may seem, these two very ‘simple’ and basic problems
are still open and should be taken as a serious challenge. Our conviction is
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that the wavelet representation, because it keeps track of both position and
scale, can help us to address these problems and improve our understanding
of fully-developed turbulence.

As far as we know, we have been the first to introduce wavelets to an-
alyze turbulence in two [73] and then three dimensions [68], to design or-
thogonal wavelet algorithms to solve PDEs [148], to use wavelet packets to
extract coherent vortices out of turbulent flows [67], to solve the Navier–
Stokes equations in a wavelet basis [85], [40], and to force turbulent flows
using wavelets [74]. We are convinced that the wavelet transform, which
decomposes the vorticity field onto a set of smooth functions with com-
pact (or quasi-compact) support and thus permits a representation in both
space and scale, seems to be an appropriate tool, not only for analyzing
and interpreting experimental results, but also for attempting to construct
a more satisfactory statistical theory and to define new numerical methods
to compute fully-developed turbulent flows. Moreover, the unconditional
approximation property of the wavelet representation may help us to com-
pute high Reynolds number flows, to replace periodic boundary conditions
by more physical ones, and to simulate the local production of vortices at
the wall or in shear layers, while controlling the quality (local resolution and
smoothness) of the approximation. This is the programme we will expose
in this chapter. We will discuss the results we have obtained in the last ten
years, but it is still very much work in progress and it will be a long time
before its potential is confirmed or denied.

Our chapter is organized as follows. We first state the problem of tur-
bulence and the main open questions. We then focus on how wavelets and
wavelet packets can be used to answer these questions. We present frac-
tal and multifractal analysis, turbulence analysis and turbulence modelling,
and finally the use of wavelets to numerically solve the Navier–Stokes equa-
tion. In conclusion we present several perspectives, and point out where
new methods need to be developed in order to improve our understanding
of turbulence.

1.2 Open questions in turbulence

1.2.1 Definitions

Turbulence is a highly unstable state of fluid flows, where by fluids we mean
continuously movable and deformable media. Liquids, gases and plasmas
are considered to be fluids when the scale of observation is much larger than
the molecular mean free path. Turbulence is characterized by the Reynolds
number, which is the ratio of the nonlinear inertial forces, responsible for
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the flow instability, to the linear dissipative damping, which converts kinetic
energy into thermal energy. We will focus on ‘fully developed turbulence’,
namely the limit of very large Reynolds numbers, which corresponds to,
either very large velocities (strong advection), and/or very small viscosity
(weak dissipation, which tends to a constants as the Reynolds number tends
to infinity), and/or very large turbulent scales. For flows encountered in
hydraulics and naval engineering Reynolds numbers are of the order of 102

to 106, in aeronautics (engines, airplanes, shuttles) 106 to 108, in meteorology
and oceanography 108 to 1012, and in astrophysics larger than 1012.

While the dissipation term is optimally represented in Fourier space be-
cause Fourier modes diagonalize the Laplacian operator (for periodic bound-
ary conditions), the nonlinear convective term is very complicated in Fourier
space where it becomes a convolution, i.e. all Fourier modes are involved. As
fully developed turbulence corresponds to flows where nonlinear convection
is dominant, i.e. is larger than linear dissipation by a factor of the order of
Reynolds number, it is obvious that the Fourier representation is inadequate
for studying and computing flows in this large Reynolds limit. We need to
find a mathematical tool to optimally solve the nonlinear convection term,
in the same way as the Fourier transform is the most economical represen-
tation to solve the linear dissipation term for the rather unphysical case of
periodic boundary conditions. Surprisingly, however, all classical methods in
turbulence rely on the Fourier representation, which is inappropriate for the
nonlinear convection term. For a review of these methods the best references
are Monin and Yaglom [141] for the statistical theory of three-dimensional
turbulence and Kraichnan and Montgomery [108] for the statistical theory
of two-dimensional turbulence.

Turbulence remains an unsolved problem because our traditional concep-
tual and technical tools are inadequate. For instance, classical Hamilto-
nian mechanics describes steady states of conservative systems, but tur-
bulent flows are non-stationary and dissipative. Classical dynamics only
solves systems with a few degrees of freedom, while fully developed turbu-
lent flows have a very large, perhaps even infinite, number of degrees of
freedom. Classical statistical theories deal with closed reversible systems
in thermal equilibrium, but turbulent flows are open irreversible systems
out of thermal equilibrium. Classical mathematical methods solve linear
differential equations, but cannot (apart from a very few cases) integrate
analytically the nonlinear partial differential equations encountered in the
study of turbulence. In fact, even the existence and uniqueness of solutions
of the Navier–Stokes equations describing the fluid motions is an unsolved
problem when nonlinear advection becomes dominant, i.e. in the fully de-
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veloped turbulent regime. We should mention here a recent mathematical
result [34] which gives, using multi-scale (Paley-Littlewood) decomposition,
a local existence and uniqueness theorem for Navier–Stokes equations in IR3

if initial conditions are sufficiently oscillating (in a Besov norm sense). Some
other mathematical attempts have been made using divergence free vector
wavelets [75], [18], but in all cases these proofs are done in an unbounded
space. However, physical fluid flows are bounded either internally or exter-
nally, and we still do not know the optimal functional space for describing
real turbulent flows.

In summary, the theory of fully developed turbulence is in what we call
a pre-scientific phase, because we do not yet have an equation, nor a set of
equations, that could be used to efficiently compute turbulent flows. The in-
compressible Navier–Stokes equations, which are the fundamental equations
of fluid mechanics, are not the right ones for turbulence because their com-
putational complexity becomes intractable for large Reynolds number flows.
However, in this limit it should then be possible, as it is done in statistical
mechanics, to define averaged quantities which would be the appropriate
variables to describe turbulence and then find the corresponding transport
equations to compute the evolution of these new quantities. Likewise, the
Navier–Stokes equations can be derived from the Boltzmann equation by
considering appropriate limits (Knudsen and Mach numbers tending to zero
[10], [11]) and appropriate averaging procedures to define new coarse-grained
variables (velocity and pressure) and associated transport coefficients (vis-
cosity and density). The turbulence equations should be derived as a further
step in this hierarchy of embedded approximations, but this scientific pro-
gram may be impaired by the possible non-universality of turbulence, which
remains an essential question to address.

More precisely, it is easier to define the appropriate parameters to go
from Boltzmann to Navier–Stokes than from Navier–Stokes to turbulence
equations [138]. In the first case only a linear averaging procedure, namely
coarse-graining, is needed, while in the second case we have to find an appro-
priate nonlinear procedure, namely some conditional averaging. For this we
should first identify the dynamically active structures constituting turbulent
flows, classify their elementary interactions and define the averaging proce-
dures to construct appropriate statistical observables. Wavelet analysis is a
good tool for exploring this conditional averaging and for seeking an atomic
decomposition of phase space, defined in both space and scale. Tennekes and
Lumley in 1972 [171] had already the intuition of such a phase-space decom-
position when they proposed to consider a turbulent flow as a superposition
of Gaussian-shaped wave packets, they were calling ‘eddies’; but we know
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since Balian’s theorem [9] that we cannot built orthogonal bases with such
functions. This is why we propose to use instead wavelet or wavelet packet
bases to study how phase-space ‘atoms’ exchange energy, or other important
dynamical quantity, during the flow evolution and possibly combine to form
phase-space ‘molecules’.

We still hope that there will be enough universality in the behaviour of
these phase-space ‘atoms’ so that we can find a general theory and a set of
equations to describe their evolution, but this could well be an unrealistic
goal. In addition, wavelets may supply new functional bases better adapted
to represent and compute turbulent flows, i.e. to extract their elementary
dynamical entities, perform the appropriate averages on them, and predict
the evolution of these statistical quantities.

1.2.2 Navier–Stokes equations

The fundamental equations of the dynamics of an incompressible (constant
density of fluid elements) and Newtonian (rate of strain proportional to
velocity gradients) fluid are the Navier–Stokes equations:

∂V

∂t
+ (V · ∇)V +

1
ρ
∇P = ν∇2V + F , (1.1)

∇ · V = 0, (1.2)

plus initial and boundary conditions,

where t is the time, V the velocity, P the pressure, F the resultant of the
external forces per unit of mass, ρ a constant density and ν a constant
kinematic viscosity.

The mathematical difficulty of the Navier–Stokes equations arises from
the fact that the small parameter ν, which tends to zero in the limit of
infinite Reynolds numbers, i.e. for fully developed turbulent flows, appears
in the term containing the highest-order derivative, namely the dissipation
term ν∇2V . Thus the character of the equations changes as ν tends to
zero, since in this limit it is the nonlinear advection term (V · ∇)V which
dominates. This singular limit seems similar to the semi-classical limit of
quantum mechanics when the Planck’s constant tends to zero; incidentally
Planck’s constant has the same dimensions as kinematic viscosity. When
ν = 0, i.e. for infinite Reynolds numbers, the Navier–Stokes equations are
called Euler’s equations.

One of the physical difficulties of the Navier–Stokes equations comes from
the incompressibility condition, namely the divergence-free requirement im-
posed by equation (1.2), which implies that the speed of sound is infinite. In



8

this case any local perturbation is instantaneously transmitted throughout
the whole domain. This requirement seems too drastic and quite unphysical
because the speed of sound is large in real flows but never infinite. In the
future we may prefer to consider instead weakly compressible Navier–Stokes
equations to simplify the computation of turbulent flows and represent their
local behaviour more accurately. Moreover, on physical grounds Euler’s
equations are unrealistic because the limit ν = 0 contradicts the fluid hy-
pothesis, which supposes that the system is locally close to thermodynamical
equilibrium due to molecular collisions (which implies macroscopic dissipa-
tion).

Taking the curl of equations (1.1) and (1.2) gives the equation of vorticity
ω, the curl of velocity,

∂ω

∂t
+ (V · ∇)ω = (ω · ∇)V + ν∇2ω +∇× F . (1.3)

In three dimensions this equation shows that vortex tubes may be stretched
by velocity gradients, a mechanism which has been proposed to explain the
transfer of energy towards the smallest scales of the flow. In two dimensions
the right-hand side becomes zero, because the vorticity is then a pseudo-
scalar ω = (0, 0, ω) perpendicular to the velocity gradients. The vorticity,
and its infinitely many moments, are therefore Lagrangian invariants of the
flow (Helmholtz theorem). In this case there is no vortex stretching and
energy cannot cascade towards the smallest scales, but tends to accumulate
into the largest scales, the so called inverse energy cascade [107], [14], while
enstrophy instead cascades towards the smallest scales where it accumulates.

1.2.3 Statistical theories of turbulence

The first statistical method to analyse turbulent flows was proposed in 1894
by Reynolds [157] who assumed that turbulent flows can be described by
ensemble averages, without considering the details of each flow realization.
He then decomposed the velocity field V (x) into a mean contribution ūi
plus fluctuations ui′ and rewrote the Navier–Stokes equations to predict the
evolution of ūi, which gives the Reynolds equations

∂ūi
∂t

+ ūj
∂ūi
∂xj

+
1
ρ

∂P̄

∂xi
=

∂

∂xj

(
ν
∂ūi
∂xj

− u′iu
′
j

)
+ F̄i. (1.4)

To solve the Reynolds equations one should compute the second order mo-
ment of the velocity fluctuations u′iu

′
j , called the Reynolds stress tensor,

which in fact depends on the third order moment u′iu
′
ju
′
k (i, j, and k are
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dummy indices), which depends on the fourth order moment, and so on
ad infinitum. This is the closure problem: there are more unknowns than
equations and to solve the hierarchy of Reynolds equations the traditional
strategy is to introduce another equation, or system of Reynolds equations,
chosen from some a priori phenomenological hypotheses, to close the set of
equations.

For instance, to close the hierarchy of Reynolds equations, Prandtl intro-
duced a characteristic scale for the velocity fluctuations, called the mixing
length, which led him to rewrite the Reynolds stress tensor as a turbulent
diffusion term. Following an hypothesis proposed by Boussinesq [29], and
by analogy with molecular diffusion which smoothes velocity gradients for
scales smaller than the molecular mean free path, Prandtl assumed that
there exists a turbulent diffusion which regularizes the mean velocity gradi-
ents for scales smaller than the mixing length. Unfortunately this hypoth-
esis is wrong because, contrary to molecular diffusion, which is decoupled
from the large scale motions and can then be modelled by a linear operator
(Laplacian) with an appropriate transport coefficient (viscosity), turbulent
motions interact nonlinearly at all scales and there is no spectral gap to
decouple large scale motions from small scale motions. This is a major
obstacle faced by all turbulence models and the closure problem remains
open. This is also the reason why renormalization group techniques [184]
and nonlinear Galerkin numerical methods [132] have not yet lived up to
their promises. An important direction of research is to find a new repre-
sentation of turbulent flows in which there is a gap, decoupling motions out
of equilibrium from well thermalized motions, which can then be modelled.
Such a separation seems only possible with a nonlinear closure, based on
conditional averages which depend on the local behaviour of each flow real-
ization. Nonlinear wavelet or wavelet packet filters are good candidates for
this (see section 5.2).

Taylor [169], under the influence of Wiener with whom he was in cor-
respondence [17] since his famous paper on turbulent diffusion [168], pro-
posed in 1935 characterizing turbulent fields by their correlation functions,
in particular by the Fourier transform of their two-point correlation func-
tion which gives their energy spectrum. This relies on Wiener–Khinchin’s
theorem, which states that the Fourier transform of one realization of a
stationary and ergodic random process in IRn is the same as the Fourier
transform of the correlation function of this process. Twenty years before
Einstein [56] had outlined the same method to characterize fluctuating data,
but he was not followed at the time [183]. To simplify the computation of
correlation functions, Taylor made the hypothesis of statistical homogeneity



10

and isotropy of turbulent flows, supposing that the averages are invariant
under both translation and rotation. In the thirties Gebelein proposed ap-
plying the probability theory of Kolmogorov to hydrodynamics, a method
later developed by Kolmogorov himself and his student Obukhov [144], who
published in 1941 three key papers on the statistical theory of fully devel-
oped turbulence. Kolmogorov [103], [104], [105] studied the way in which
Navier–Stokes equations in three dimensions distribute energy among the
different scales of the flow. This type of approach is common in statistical
mechanics, but a difficulty arises here from the fact that turbulent flows are
open thermodynamical systems, due to the injection of energy by external
forces and its dissipation by viscous frictional forces. To resolve this diffi-
culty Kolmogorov supposed that external forces act only on the largest scales
while frictional forces act only on the smallest scales, which, in the limit of
very large Reynolds numbers, leaves an intermediate range of scales, called
the inertial range, in which energy is conserved and only transferred from
large to small scales at a constant rate ε which is supposed to be constant.
But this cascade of energy concerns ensemble averages and not individual
flow realization; moreover, it is only phenomenological and has never been
proved from first principles. Kolmogorov also supposed that turbulent flows
are statistically homogeneous and isotropic; he also uses the fact that the
skewness, namely the departure from Gaussianity of the velocity increment
probability distribution, is constant, which implies that the flow is non-
intermittent. These hypotheses lead him to the K41 model which predicts
the following energy spectrum scaling, known as the k−5/3 law

E(k) = Cε2/3k−5/3 (1.5)

where k is the modulus of the wavenumber averaged over directions, corre-
sponding to the inverse of the scale, and C is called Kolmogorov’s constant.

Landau criticized Kolmogorov’s hypothesis of a constant rate of energy
transfer ε independent of the scale, arguing that the dissipation field should
also be considered random. Following this remark Kolmogorov proposed to
model the energy transfer as a multiplication process where only a fraction
β of energy is transferred from one scale to another. Assuming that the
probability density of the dissipation field varies randomly in space and
time with a log-normal law, this lead him to propose the K62 model which
predicts the following energy spectrum scaling

E(k) = Cε
2
3k−

5
3 ln

(
k

kI

)β
(1.6)



11

where kI is the wavenumber at which energy is injected (inverse of the
integral length scale).

For two-dimensional turbulence there is a statistical theory similar to
Kolmogorov’s theory developed by Batchelor [14] and Kraichnan [107]. This
theory takes into account, in addition to the conservation of energy in the
inertial range, the conservation of enstrophy (integral of vorticity squared),
which is true only for the two-dimensional Euler equations. Making the
same kind of hypotheses as Kolmogorov, they predicted a direct enstrophy
cascade, from large to small scales, giving a k−3 energy spectrum, and an
inverse energy cascade, from small to large scales, giving a k−5/3 energy
spectrum. The problem is that the energy spectra obtained from numerical
simulations are always steeper than the predicted k−3. There is another
more recent statistical theory proposed by Polyakov [153] which takes into
account, in addition to the energy conservation, the conservation of infinitely
many moments of vorticity in two dimensions, which led him to predict
different scalings depending on the way energy is injected; thus, Polyakov’s
theory is not universal. In fact the same non-universal behaviour of two-
dimensional turbulence is also observed in numerical simulations [113].

Since the pioneering works of Onsager [146] and Joyce & Montgomery [99],
there are several statistical theories for decaying two-dimensional turbulence
[161], [135], [162], [48], [163], [61] which are not based on ensemble averages
nor Fourier representation. These theories, unlike those of Kraichnan’s and
Polyakov’s, do not discard the spatial flow structure. For a recent review of
these theories a good reference is [131]. Onsager’s theory assumes that all
vorticity is concentrated into a finite number of point vortices and predicts
that there exist negative temperature states; more precisely it predicts that
high energy states can be favoured compared to low energy states, contrary
to classical statistical physics. These negative temperature states correspond
to the clustering of same-sign vortices characteristic of the inverse energy
cascade of two-dimensional turbulence. But the extension of Onsager’s ap-
proach to describe continuous vorticity fields, involving infinite number of
degrees of freedom and therefore infinite Liouville measure, leads to a highly
singular limit which has been overcome only recently using large deviation
probabilities and maximum entropy techniques. This new theory, due inde-
pendently to Robert [162], [163] and Miller [135], predicts final stationary
states (in the absence of external forces) characterized by a functional rela-
tion between coarse-grained vorticity and streamfunction. This relation is
called the coherence function and it seems to be verified for strong mixing
situations, such as two-dimensional shear layers or vortex merging [167].
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1.2.4 Coherent structures

Since the beginning of turbulence research there has been, alongside the
statistical approach based on ensemble averages, a tendency to analyze each
flow realization separately. This leads to the recognition that turbulence con-
tains coherent structures, even at very large Reynolds numbers [98]. Exam-
ples of coherent structures include the Karman vortices observed by Roshko
in 1961 at a Reynolds number of 107 [164], the horseshoe vortices observed
in turbulent boundary layers and mixing layers [37], and the vorticity tubes
(often called filaments) [43], [31] observed in statistically homogeneous flows.
Coherent structures are defined as local condensations of the vorticity field
which survive for times much longer than the eddy turnover time character-
istic of the turbulent fluctuations.

The vorticity field is easy to visualize in numerical experiments, but very
difficult to visualize in laboratory experiments; therefore, one usually ob-
serves the pressure field instead. Indeed, if we take the divergence of equa-
tion (1.1) we obtain

2∇2P/ρ+ σ2 − ω2 = ∇ · F , (1.7)

where σ = 1
2(∂iuj + ∂jui) is the rate of strain which controls dissipation.

This equation shows that vorticity concentrations, corresponding to coherent
structures, are sources of low pressure, while strained regions, corresponding
to dissipation, are sources of high pressure. Couder et al. [43], [31] recently
measured the histogram of the probability distribution function of pressure
and shown that for the large negative pressures it has an exponential be-
haviour, while for the pressures around zero it has a Gaussian behaviour.
In other words, the coherent structures, which are characterized by strong
depressions, are responsible for the non-Gaussian behaviour of turbulent
flows, which is consistent with observations made before by Van Atta and
Antonia [175] from measurements of the spatial gradients of velocity. This
has also been shown by Abry et al. [2] using wavelet techniques to separate
the coherent structures from the background flow in a one-dimensional cut
of pressure signal.

The mere existence of finite (and quite small) coherent structures [181]
may invalidate the ergodic hypothesis, which is an essential ingredient of any
statistical theory, necessary to replace ensemble averages by space averages.
Then, according to Taylor’s hypothesis, which requires that fluctuating ve-
locities should be much smaller than the mean velocity, space averages can
be replaced by time averages, which are easier to obtain in laboratory exper-
iments. As far as we know, almost all existing laboratory results measuring
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the turbulence energy spectrum rely on Taylor’s hypothesis. We are there-
fore sceptical of their validity when the coherent structures produce rare
but intense velocity fluctuations. In this case, even though the rms of the
velocity fluctuations remains small compared to the mean velocity, it is not
clear that time and space averages can be interchanged.

Concerning numerical experiments, we interpret the energy spectrum, and
its inertial range power-law form, as characteristic of the random processes
responsible for turbulence. In practice, however, we analyze only one flow
realization because in most simulations the correlation length is the of the
order of the size of the computational periodic domain. In this case a power-
law behaviour could be interpreted as indicating the presence of some quasi-
singular structures in the flow, and not as a proof of its random dynamics.
This new point of view led Saffman [165] to interpret the energy power-law
behaviour as resulting from the presence of vorticity fronts. Later Farge and
Holschneider [69] proposed another interpretation based on the emergence
of cusp-like coherent structures. In the limit of an infinite Reynolds number,
these vorticity cusps will tend to point vortices, which correspond to the limit
case of negative temperature states [33]. The wavelet transform, because
it measures the local scaling of a field, is the appropriate tool for verifying
these different interpretations in relating the power-law scaling of the energy
spectrum to the geometry of coherent structures.

Today we still do not have a complete theory to explain the formation and
persistence of coherent structures, and we shall have to content ourselves
with a qualitative description of their behaviour. This is more evidence that
we are still in a pre-scientific phase, having as yet only a limited grasp of
the nature of turbulence. The new point of view is to consider that coherent
structures are generic to turbulent flows, even at very high Reynolds num-
bers, and that they probably play an essential role in their intermittency.
Indeed, several wind tunnel experiments [16], [4] have shown that the en-
ergy associated with the smallest scales of turbulent flows is not distributed
densely in space and time. This has led various authors to conjecture that
the support of the set on which dissipation occurs should be fractal [130],
[80], or multifractal [147]. It is now thought, but not proven, that the time
and space intermittency of turbulent flows is related to the presence of co-
herent structures [68]. This is still an open question and wavelet analysis
seems to be one of the appropriate techniques to answer it.

The classical theory of turbulence is blind to the presence of coherent
structures because they are advected by the flow in a homogeneous and
isotropic random fashion, and hence they are lost by low-order moments.
Moreover, the spatial support of coherent structures becomes smaller and



14

smaller when Reynolds number increases, whereas in three-dimensional flows
coherent structures (vorticity tubes often called filaments) become highly
unstable [43] and therefore their temporal and spatial support may be very
small. Consequently, the presence of coherent structures only affects the
high-order velocity structure functions (defined as the high-order statistical
moments of the velocity increments) which are most sensitive to rare and
extreme events (large deviations). The high-order structure functions have
been measured only recently [4], because their calculation requires very long
data sequences. They do not follow Kolmogorov’s theory which predicts a
linear dependence of the scaling exponent of the velocity structure functions
on their order. Van der Water [177] has observed that there are in fact two
distinct nonlinear dependencies for odd and for even orders, which may be
interpreted in terms of the multi-spiral model of Vassilicos [176].

It is important to provide statistical predictions based on coherent struc-
ture models. It is shown in [136] that a system of singular vortex elements in
two dimensions and three dimensions possesses statistics that deviate from
Gaussian. In that work it was shown that probability density functions
(PDF’s) of velocity derivatives are Lévy stable distributions with exponents
different 2 (i.e. the PDF’s are not Gaussian). The experimental evidence of
similar findings is contained in the work of Goldburg and collaborators [172]
in which the Cauchy distribution, predicted in [136] to be the consequence
of 1/r velocity decay of a vortex, is seen for the region of small velocity
differences. The results of [136] also indicate that the tails of PDF’s are
determined by the structure of vortex cores.

In conclusion, we can say that the presence of coherent structures is prob-
ably responsible for the non-Gaussian statistics of fully developed turbulent
flows. Due to the sensitivity to initial conditions of turbulent flows, any the-
ory of turbulence should be statistical. But, before being able to construct
a new statistical theory of turbulence, we need to find new types of averages
able to preserve the information associated with coherent structures and
therefore take into account the intermittency of turbulent flows. Wavelets
can play a role there in separating the coherent (non-Gaussian) components
from the incoherent (Gaussian) components of turbulent flows, in order to
devise new conditional averages to replace the classical ensemble averages.

1.3 Fractals and singularities

1.3.1 Introduction

According to the K41 model turbulence in the inertial range has a power
law energy spectrum (1.5), and thus does not have a characteristic length
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scale. Therefore turbulence in this range of length scales looks similar at any
magnification and can be described as self-similar. According to experimen-
tal observations, however, turbulence is also characterized by quasi-singular
structures such as vortices and is intermittent (quantities such as energy
dissipation vary greatly in time and space). A quasi-singular structure is
one that appears singular until the dissipation scale at which the smoothing
effect of viscosity becomes important †. In fact the theoretical k−

5
3 iner-

tial range energy spectrum predicted by Kolmogorov’s theory implies that
some sort of quasi-singular distribution of velocity and vorticity must be
present in turbulent flows [94], [137], [89]. This quasi-singular distribution
could be the result of a set of quasi-singular structures (e.g. vortices), or
due to a particular statistical distribution of structures (independently of
their smoothness). One of the difficulties in turbulent flow analysis is how
to disentangle these different contributions to the overall statistics.

It remains an open question whether this quasi-singular behaviour is due
to the randomness of turbulent motions resulting from their chaotic dynam-
ics or to the presence of localized quasi-singular structures resulting from
an internal organization of the turbulent motions. Kolmogorov’s theory is
based on ensemble averages, but in using them we are unable to disentangle
these two hypotheses. Ensemble averages should be replaced by an analysis
of turbulence for each realization and be based on the local measurement
and statistics of singularities for which we need effective ways of detecting
and characterizing quasi-singularities in turbulent signals.

The types of possible singularities in the turbulent velocity or vorticity
may be divided into two classes: cusps (i.e. non-oscillating singularities in
which the function or one of its derivatives approaches infinity at a certain
point, e.g. 1/x) and spirals (i.e. oscillating singularities in which the fre-
quency of oscillation approaches infinity at a certain point, e.g. sin(1/x)).
Figure 1.6 shows an example of a two-dimensional flow containing both cusps
and a spiral. (A cut through the spiral is an oscillating singularity over a
certain range of length scales.) Likewise the distribution of singularities in
turbulence may also be divided into two classes: isolated (singularities at
a finite number of points) and dense (singularities at an infinite number
of points in a finite area). Dense distributions of singularities are called
fractals and are characterized by one (monofractal) or more (multifractal)
fractal dimensions. Figure 1.1(a) shows a typical fractal signal. Note that
fractals may contain both cusp and spiral type singularities. Turbulence
might contain both fractal and isolated distributions of singularities, and

† Note that for simplicity we shall use the terms ‘singular’ instead of ‘quasi-singular’ and ‘infinite’
instead of ‘very large’ throughout this section.
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Fig. 1.1. Different types and combinations of singularities. (a) A fractal signal with
energy spectrum E(k) ∝ k−

5
3 . (b) A spiral with fractal noise (both noise and spiral

have the same energy spectrum E(k) ∝ k−
5
3 ).

spiral and cusp types of singularities. Figure 1.1(b) shows a spiral type sin-
gularity with fractal noise superimposed; both the noise and the spiral have
the same energy spectrum.

This section is concerned with wavelet-based techniques for calculating
quantities such as energy spectra, structure functions, singularity spectra
and fractal dimensions. These subjects are connected by the fact that they
all measure the local regularity of the signal (i.e. strength of singularities
in the signal). For example, the slope of the usual Fourier energy spectrum
of a signal containing only isolated cusp singularities is determined by the
strongest singularity [188]. The advantage of the wavelet transform is that
it is able to analyse locally the singular behaviour of a signal. One can then
use this local information to construct statistics describing the distribution
and type of singularities (e.g. multifractals), and define local or condition-
ally averaged versions of traditional diagnostics such as the energy spectrum
and structure functions. We are primarily concerned with cusp type singu-
larities (either isolated or fractal), although we also discuss methods for
distinguishing between signals containing isolated spirals and purely fractal
signals.

In subsection 1.3.2 we review the mathematical results on one of the key
properties of wavelet transforms: their ability to detect and characterize sin-
gular structures. We then describe three related applications which rely on
this property: calculation of local energy spectra, structure functions (sub-
section 1.3.3) and the singularity spectra which characterize multifractals
(subsection 1.3.5). These wavelet methods generally require the assumption
that the singularities of the signal are cusps. Because isolated spirals are
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likely to be present in turbulence it is essential to have a method of deter-
mining which sort of singularity a signal contains. In subsection 1.3.6 we
review a different wavelet-based method for distinguishing between signals
containing isolated spirals and purely fractal signals (the two types of signal
most likely to be measured in a turbulent flow). Each section gives a prac-
tical review of the method and briefly summarizes some results that have
been obtained for turbulence data. Formulating these techniques in terms
of wavelet transforms brings out the connections between them as well as
providing new information, and this point is emphasized throughout this
section.

1.3.2 Detection and characterization of singularities

The most useful property of the wavelet transform is its ability to detect and
accurately measure the strength (given by the Hölder exponent) of individual
singularities in a signal. We will first give a precise definition of the Hölder
exponent.

A function f(x), such that

f : IR→ IR, (1.8)

is said to belong to the Hölder space Cα for α a positive non-integer if there
exists a constant C such that for each x0, there exists a polynomial P of
order less than α such that

|f(x)− P (x− x0)| ≤ C|x− x0|α. (1.9)

f is said to have the Hölder exponent α(x0) at point x0 if α(x0) = sup{θ >
0/f ∈ Cθ(x0)}. The exponent α(x0) therefore measures the smoothness of
the function f(x) near x0: the larger α(x0) is, the smoother or more regular
the function f(x) is near x0, while the smaller α(x0) is, the rougher or more
singular the function is. If the Hölder exponent is less than one, there is
an actual singularity of the function at x0 (or a quasi-singular behaviour
near x0 over a certain range of length scales if one is measuring a physical
quantity like velocity).

It is important to note that equation (1.9) does not hold for oscillating
singularities because in this case the Hölder exponent increases by more
than one when the function is integrated. This anomalous behaviour is due
to the fact that there are an infinite number of accumulating oscillations in
the neighbourhood of the singularity.

Consider the L1 norm wavelet transform (which conserves the L1 norm of
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a function)

f̃1(x, r) =
1
r

∫ ∞

−∞
f(x′)ψ(

x′ − x

r
) dx′. (1.10)

The wavelet transform is thus a two-dimensional function in position x and
scale r > 0. Mallat and Hwang [129] have shown that singularities in f(x)
produce a maximum in the modulus of the wavelet transform |f̃1(x, r)| and
that following the position of a wavelet modulus maximum as r → 0 gives
the position x0 of the singularity. Furthermore, each singularity has an
associated ‘influence cone’ defined by

|x− x0| ≤ Cr (1.11)

and if the singularity is an isolated cusp then the wavelet transform modulus
for all points within the influence cone is

|f̃1(x, r)| ≤ Arα(x0) (1.12)

provided that at least the first n > α(x0) moments of the analysing wavelet
ψ(x) vanish, where the nth moment is defined by the integral∫ +∞

−∞
xnψ(x) dx. (1.13)

Equation (1.12) shows that the Hölder regularity α(x0) can be found from
the slope of the graph of log |f̃1(x, r)| versus log r at a position x satisfy-
ing inequality (1.11). When several singularities are present only the non-
overlapping parts of the cones associated with each singularity satisfy (1.12).
Intuitively, it is the self-similar scaling property of the wavelet which allows
the wavelet transform to measure the rate of self-similar narrowing with
decreasing scale which characterizes the strength of a cusp singularity.

If the singularity is not isolated and there is only one zero-crossing of
the wavelet transform near x0, one can find the regularity in the left and
right neighbourhoods of x0 by measuring the decay of the wavelet modulus
transform along maxima lines of the wavelet transform to the left and right
of the influence cone of x0.

In practice, such graphs of log |f̃1(x, r)| versus log r contain oscillations
superimposed on the power-law behaviour which can make it difficult to de-
termine the slope at larger scales. Vergassola and Frisch [178] showed that
these oscillations are necessarily present for any self-similar random process
whether or not the signal is multifractal (the lacunarity of multifractal sig-
nals should also produce oscillations). These oscillations can be reduced by
finding the average decay of the wavelet modulus along many lines in the
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influence cone, or by averaging the decay along vertical lines at many differ-
ent points (e.g. one may be interested in the conditionally averaged scaling
of points in regions of irrotational straining). Arnéodo, Bacry and Muzy [5]
have suggested that the deviations from a strict power-law may be reduced
by measuring the decay of the modulus of the wavelet transform along the
line of maximum modulus within the influence cone.

The analysis of signals containing spiral singularities either isolated (e.g.
sin 1/|x − x0|) or fractal (e.g. the Riemann-Weierstrass function) is more
complicated because the worst singular behaviour of a spiral singularity ap-
pears outside the cone of influence. In this case one measures the decay as
r → 0 of the modulus of the wavelet transform along the set of points which
are general maxima below the cone of influence (i.e. maxima in both the
position and scale directions). This gives an upper bound on the Hölder ex-
ponent, but in general one has to use lines of maximum modulus both inside
and outside the cone of influence to fully determine the singular behaviour
of an oscillating singularity.

Arnéodo, Bacry and Muzy [6] have recently carried out work defining
two wavelet-based exponents that measure the strength of an oscillating
singularity. They find that the faster the frequency increases, the more
irregular its derivative. In general, oscillating behaviour appears in frac-
tal objects that are self-similar under non-hyperbolic mappings, e.g. the
Riemann-Weierstrass function or the Farey-tree partitioning of rationals.

1.3.3 Energy spectra

The Fourier energy spectrum has been one of the most popular techniques
for turbulence analysis, indeed traditional turbulence theory was constructed
in Fourier space [15]. The Fourier energy spectrum E(k) of the real function
f(x) is defined by

E(k) =
1
2π
|f̂(k)|2 for k ≥ 0 (1.14)

where (̂·) signifies Fourier transform. Note that when analysing turbulence
velocity signals one usually ensemble averages the energy spectra from many
realizations (or integral length-scales). This produces a much smoother
curve. In traditional turbulence theory only the modulus of the Fourier
transform is used (e.g. the energy spectrum) and thus the phase informa-
tion is lost. This is probably a major weakness of the traditional way of
analysing turbulence since it neglects any spatial organization of the turbu-
lent velocity field.
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The wavelet transform extends the concept of energy spectrum so that
one can define a local energy spectrum Ẽ(x, k) using the L2 norm wavelet
transform (which conserves the L2 norm of a function) rather than the L1

norm used in subsection 1.3.2 (i.e. the wavelet transform is normalized by
1/r

1
2 rather than by 1/r and the resulting function is designated by f̃ instead

of f̃1)

Ẽ(x, k) =
1

2cψk0

∣∣∣∣f̃ (x, k0

k

)∣∣∣∣2 for k ≥ 0 (1.15)

where k0 is the peak wave number of the analysing wavelet ψ and

cψ =
∫ +∞

0

|ψ̂(k)|2

k
dk. (1.16)

By measuring Ẽ(x, k) at different places in a turbulent flow one might es-
timate what parts of the flow contribute most to the overall Fourier energy
spectrum and how the energy spectrum depends on local flow conditions.
For example, one can determine the type of energy spectrum contributed
by coherent structures, such as isolated vortices, and the type of energy
spectrum contributed by the unorganized part of the flow.

Since the wavelet transform analyses the flow into wavelets rather than
sine waves it is possible that the mean wavelet energy spectrum may not al-
ways have the same slope as the Fourier energy spectrum. Perrier, Philipovitch
and Basdevant [149] have shown, however, that the mean wavelet spectrum
Ẽ(k)

Ẽ(k) =
∫ +∞

0
Ẽ(x, k) dx (1.17)

gives the correct Fourier exponent for a power-law Fourier energy spectrum
E(k) ∝ k−β provided that the analysing wavelet has at least n > (β − 1)/2
vanishing moments. This condition is obviously the same as that for detect-
ing singularities derived in the previous section since β = 1+2α for isolated
cusps. Thus, the steeper the energy spectrum the more vanishing moments
of the wavelet we need. The inertial range in turbulence has a power-law
form. The ability to correctly characterize power-law energy spectra is there-
fore a very important property of the wavelet transform (which is of course
related to its ability to detect and characterize singularities).

Note that if the singularities are all isolated cusps then the exponent of
the Fourier energy spectrum is determined by the strongest singularity α of
the signal

E(k) = Ck−2(α+1), (1.18)



21

where C is a constant. If the singularities are spirals and/or are not isolated
then the strongest singularity sets a lower bound on the exponent of the
energy spectrum [188]

E(k) ≤ Ck−2α. (1.19)

The way the dense singularities accumulate can make the signal effectively
more singular, decreasing the magnitude of the exponent of the energy spec-
trum by up to 2. Because they are both controlled in the same way by sin-
gularities, the wavelet energy spectrum can be thought of as a sort of local
Fourier transform.

The mean wavelet energy spectrum is a smoothed version of the Fourier
energy spectrum. This can be seen from the following relation between the
two spectra

Ẽ(k) =
1
cψk

∫ +∞

0
E(ω)

∣∣∣∣ψ̂ (k0ω

k

)∣∣∣∣2 dω (1.20)

which shows that the mean wavelet spectrum is an average of the Fourier
spectrum weighted by the square of the Fourier transform of the analysing
wavelet shifted at wavenumber k. Note that the larger k is, the larger the
averaging interval. This property of the mean wavelet energy spectrum is
particularly useful for turbulent flows. The Fourier energy spectrum of a
single realization of a turbulent flow is too spiky to be useful, but one can
measure a well-defined slope from the mean wavelet energy spectrum.

The Mexican hat wavelet

ψ̂(k) = k2 exp(−k2/2) (1.21)

has only two vanishing moments and thus can correctly measure energy
spectrum exponents up to β < 5. Only the zeroth order moment of the
Morlet wavelet

ψ̂(k) =
1
2π

exp(−(k − kψ)2/2) for k > 0

ψ̂(k) = 0 for k ≤ 0 (1.22)

is zero, but the higher nth order moments are very small (∝ knψ exp(−k2
ψ/2))

provided that kψ is sufficiently large. Therefore the Morlet wavelet transform
should give accurate estimates of the power-law exponent of the energy
spectrum at least for approximately β < 7 (if kψ = 6).

Perrier and Basdevant [149] present a family of new wavelets with an
infinite number of cancellations

π̂n(k) = αn exp
(
−1

2

(
k2 +

1
k2n

))
, n ≥ 1, (1.23)
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where αn is chosen for normalization. The wavelets defined in (1.23) can
therefore correctly measure any power-law energy spectrum. Furthermore,
these wavelets can detect the difference between a power-law energy spec-
trum and a Gaussian energy spectrum (E(k) ∝ exp(−(k/k0)2)). It is im-
portant to be able to determine at what wavenumber the power-law energy
spectrum becomes exponential since this wavenumber defines the end of the
inertial range of turbulence and the beginning of the dissipative range.

The first measurements of local energy spectra in turbulence was reported
by Farge et al. [68] and Meneveau [133]. Meneveau used the discrete wavelet
transform to measure local energy spectra in experimental and Direct Nu-
merical Simulation (DNS) flows and found that the standard deviation of
the local energy (a measure of the spatial fluctuation of energy) was approx-
imately 100% throughout the inertial range. Meneveau also calculated the
spatial fluctuation of T (k) which measures the transfer of energy from all
wavenumbers to wavenumber k. On average T (k) is negative for the large
scales and positive for the small scales, indicating that in three dimensional
turbulence energy is transferred from the large scales to the small scales
where it is eventually dissipated (in agreement with Richardson [159]’s cas-
cade model of turbulence). Meneveau found, however, that at many places
in the flow the energy cascade actually operates in the opposite direction,
from small to large scales, indicating a local inverse energy cascade (also
called back-scattering). This local spectral information, which links the
physical and Fourier space views of turbulence, can only be obtained using
the wavelet transform.

1.3.4 Structure functions

Another fundamental quantity in the classical theory of turbulence [103] is
the pth order structure function Sp(r)

Sp(r) =
1
L

∫ L

0
|f(x)− f(x+ r)|p dx, (1.24)

where L� r is the length of the signal, and L must be long enough so that
Sp(r) does not change if L is increased (and thus the increments of f should
be stationary in x). The velocity signal of a turbulent flow varies in both
space and time and between different realizations of the flow. Thus the inte-
gral in (1.24) should, in general, be replaced by a suitably defined ensemble
average in order to calculate the structure function of turbulent velocities.
To justify the use of space or time averages instead of ensemble averages
(over different realizations of the flow), one supposes that the turbulent flow
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motions are ergodic, which is an unvalidated hypothesis and is probably
wrong for two-dimensional turbulence [181]. If the energy spectrum expo-
nent β is in the range 1 < β < 3 (as is usually the case for the inertial range
of turbulence) the velocity increments are a stationary function even though
the velocities themselves are not [45], this is a good reason to work with ve-
locity increments rather than the velocities themselves since stationarity is
necessary in order to justify estimating a quantity by averaging over space.
The larger p the more Sp(r) is dominated by extreme events. Thus the pth

order structure function characterizes more and more extreme events as p
increases.

If f(x) is self-similar then, just as in the case of the energy spectrum, the
structure functions will have a power law dependence on the scale r

Sp(r) = rζ(p). (1.25)

The first order structure function ζ(1) provides a measure of the smoothness
of f(x), and in fact ζ(1) is related to the box dimension DF of the graph of
f(x)

DF = 2− ζ(1) (1.26)

where DF measures the space-fillingness of f(x). The second order structure
function is related to the energy spectrum by

β = ζ(2) + 1. (1.27)

The Kolmogorov theory [103] showed that the inertial range of turbulence
has β = 5/3, or equivalently that

ζ(p) = p/3, (1.28)

however recent experiments [4] have shown that the structure function ex-
ponents increase more slowly than linearly with p for p > 5, contradicting
Kolmogorov’s 1941 theory. The cause of this difference is generally thought
to be the fact that the energy dissipation ε(x) = (du(x)/dx)2 is intermittent
in space, i.e. it varies greatly from place to place.

The velocity increment ∆f(x, r) = |f(x) − f(x + r)| is equivalent to a
wavelet transform with ψ∆(x) = δ(x + 1) − δ(x). In fact Jaffard [95] has
shown that the exponent η(p) is defined by

S̃p(r) =
1
L

∫ L

0
|f̃(x, r)|p dx ∼ rη(p) (1.29)

is the same as ζ(p) provided p > 1 and ζ(p) < p, no matter what wavelet is
used. The wavelet-based method of calculating the structure function unifies
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the analysis of structure functions with the calculation of energy spectra and
the strength of local singularities. If one uses a wavelet with a sufficient num-
ber of vanishing moments, then the wavelet-based structure function S̃p(r)
should also be more sensitive to larger α singularities since the equivalent
wavelet for the structure function, ψ∆(x), has only one vanishing moment.
By changing from an integral to a sum over wavelet maxima we circum-
vent the divergence of the integral for negative p and thus one can extend
the definition of structure functions to include negative p’s (as in Arnéodo,
Bacry and Muzy [5]’s Wavelet Maximum Modulus Method discussed in the
following section).

The wavelet-based version of the structure function allows us to see di-
rectly how the structure function is determined by the singular behaviour of
f(x). From equation (1.12) the wavelet transform modulus is proportional
to rα(x0) and thus, since r � L, the stronger singularities contribute most to
the higher order structure functions and least to the lower order structure
functions. In other words, the value of ζ(p) is determined mostly by the
stronger singularities for large p’s and mostly by the weaker singularities for
small p’s.

Davis, Marshak and Wiscombe [45] point out that the ‘dissipation’ of a
discrete function fj , εj = |fj − fj−1|, is in fact a measure. Because εj is a
measure, the generalized dimension D(p) of f(x) can be calculated from the
exponent K(p) of the structure function of ε(x),

D(p) = 1− K(p)
p− 1

. (1.30)

The generalized dimension D(p) is the dimension of the set containing the
singularities that contribute most to the pth order structure function. Be-
cause ε(x) is a homogeneous variable (for 1 < β < 3) we have 0 < βε(x0) < 1
and thus −1/2 < α(x0) < 0. Because α(x0) < 0 the dissipation contains
actual singular behaviour (the dissipation tends to infinity).

In general terms the exponents ζ(p) characterize the homogeneity of the
field, while the exponents K(p) characterize the singularity of the field. One
can learn a great deal about the behaviour of a signal from the variability of
ζ(p) and K(p) and from the value of the first structure function exponents
ζ(1) and K(1). This information is summarized in table 1.1.

Davis, Marshak and Wiscombe [45] introduced the ‘mean multifractal
plane’ defined as the plane with coordinates given by the most informative
exponents 0 < ζ(1) = 2−DF < 1 and 0 < K ′(1) = 1−D(1) < 1 (whereDF is
the fractal dimension and D(1) is by definition the information dimension).
The position of a particular flow or model on the mean multifractal plane is a
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Value of structure function Type of signal

ζ(1) = 0 stationary, DF = 2
ζ(1) = 1 noiseless, DF = 1
K ′(1) = 0 weak variability
K ′(1) = 1 δ−function
ζ(p) variable non-stationary multifractal
ζ(p) constant non-stationary monofractal
K(p) variable stationary multifractal
K(p) constant stationary monofractal

Table 1.1. Properties of a signal from the behaviour of the exponents of its
structure function ζ(p) and the structure function of the modulus of its

derivative K(p).

good indicator of its self-similar characteristics. The higher the flow’s K ′(1)
component the more intermittent and multifractal it is, and the higher the
flow’s ζ(1) component, the smoother and less stationary it is. Experimental
turbulent velocity fields lie in the centre of the mean multifractal plane.
Turbulence models, however, tend to lie along the boundaries of the domain:
purely multiplicative cascade models (such as δ−functions) lie on the K ′(1)
axis and purely additive models (such as fractional Brownian motion) lie on
the ζ(1) axis! This clearly indicates that the current turbulence models do
not represent correctly the self-similar structure of turbulent flows.

1.3.5 The singularity spectrum for multifractals

In order to characterize a multifractal function it is necessary to calculate its
singularity spectrum. The singularity spectrum D(α) may be defined as the
Hausdorff (or ‘fractal’) dimension of the set of points with Hölder exponent
α

D(α) = DF {x, α(x) = α}. (1.31)

Note that this definition is equally valid for multifractal functions and mea-
sures. The singularity spectrum of a monofractal has only one point, e.g. the
singularity spectrum of the fractional Brownian signal B1/3(x) which has a
k−

5
3 energy spectrum is D(α = 1/3) = 1 (the function B1/3(x) is singular

everywhere with α = 1/3), while a the singularity spectrum of a multifractal
is a curve.

Parisi & Frisch [147] found a way of estimating the singularity spectrum
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from the Legendre transform of the structure function exponents ζ(p)

D(α) = inf
p

(pα− ζ(p) + 1) (1.32)

where, as explained in subsection 1.3.3, ζ(p) may be calculated using the
wavelet transform.

Equation (1.32) can be derived heuristically by noticing that near a sin-
gularity of order α

|f̃(x, r)| ∼ rα, (1.33)

where we have used equation (1.12) and have written α = α(x0) for sim-
plicity. Now, if the dimension of the points with singularity α is D(α) then
there are about r−D(α) ‘boxes’ (in this case wavelets) with the scaling (1.33)
in each interval r, so that the total contribution to the integral (1.29) is
rαp−D(α)+1. To leading order the magnitude of the integral is given by the
largest contribution so that

ζ(p) = inf
p

(αp−D(α) + 1). (1.34)

Since ζ(p) is concave, formula (1.32) can be obtained by an inverse Legendre
transform.

Jaffard [95] proved mathematically, however, that structure function cal-
culations of the singularity spectrum can, in general, only set an upper
bound on D(α) and he gave some counterexamples where such calculations
give completely misleading answers.

Arnéodo, Bacry and Muzy [5] have developed a method for calculating
the singularity spectrum called the Wavelet Transform Modulus Maximum
(WTMM) method. This method is closely related to the calculation of
structure functions by wavelet transforms except that, instead of integrating
(or summing in case of discretely defined functions) the wavelet transform
over all positions, one only sums the wavelet transforms located at maxima,
i.e.

Σ̃p(r) =
∑
l∈L(r)

(
sup
(x,r′)

|f̃(x, r′)|p
)
, (1.35)

where l is a maxima line of the wavelet transform modulus on [0, r] and
sup(x,r′) means that the supremum is taken for (x, r′) on l (so that r′ ≤ r).
The wavelets are in fact playing the role of ‘generalized boxes’ in a new form
of the standard box-counting algorithm used to estimate fractal dimensions
D(α). Summing only over the wavelet modulus maxima makes sense since,
as Mallat & Hwang [129] showed, most of the information in the wavelet
transform is carried by the wavelet maxima lines. Furthermore, because one
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Thermodynamic parameter Multifractal parameter

T (temperature) p−1

Z (partition function) Σ̃p(r)
G (free energy) τ(p)
S (entropy) D(α)

Table 1.2. Analogies between statistical thermodynamics and the Wavelet
Transform Modulus Maximum method for multifractals.

does not sum over places where the wavelet modulus is zero, Σ̃p(r) is also
defined for p < 0 as well as for p ≥ 0. Note that the structure function
methods are defined only for p ≥ 0.

Arnéodo, Bacry and Muzy draw the analogy with statistical thermody-
namics and interpret Σ̃p(r) as a ‘partition function’ (see table 1.2).

If f(x) is a self-similar function then Σ̃p(r) ∝ rτ(p) and the singularity
spectrum can be found by calculating the Legendre transform

D(α) = inf
p

(pα− τ(p)). (1.36)

To avoid technical problems associated with calculating the Legendre trans-
form in (1.36) Arnéodo, Muzy and Bacry [5] recommend an alternative way
of finding D(α) (see their paper for details).

Jaffard [95] proved mathematically that the WTMM method, unlike the
structure function methods, gives the correct singularity spectrum for all p
provided it is slightly modified. Indeed a problem might arise if the wavelet
modulus maxima are too close together; in that case the sum in an interval
of width r must be restricted to the largest maxima. Jaffard also shows that
even the modified WTMM method fails if the function f(x) contains too
many oscillating singularities.

Arnéodo, Bacry and Muzy [5] find the relation between τ(p) and ζ(p)
from their respective definitions in terms of D(α), but given the limitations
of equation (1.32), it is perhaps better (and more intuitive) to find the
connection directly through the structure functions. In terms of discrete
signals, the wavelet transform-based calculation of the structure function
(1.29) becomes

S̃p(r) =
1
N

∑
j=1,N

|f̃(xj , r)|p. (1.37)

Each cone of influence of width r must contain only maxima lines with the
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same scaling (since the scaling rα(x0) is the same for all points within the
influence cone of point x0) and if the function is everywhere singular all
intervals of size r must contain at least one maxima line. If one follows
Jaffard [95]’s refinement to WTMM, and only counts one maximum for
each interval of length r, then the number of terms in the sum must be
proportional to N/r. Therefore, if the wavelet moduli are only summed
over their maxima the structure function becomes

S̃p(r) =
1

N/r

∑
l∈L(r)

(
sup

(xj ,r′)
|f̃(xj , r′)|p

)
=

1
N/r

Σ̃p(r), (1.38)

We thus find that the relation between the structure function exponents ζ(p)
and the WTMM ‘free energy’ exponents τ(p) is

ζ(p) = τ(p) + 1. (1.39)

Note that equation (1.39) only holds if the function f(x) has singularities
everywhere and WTMM is modified by only counting one wavelet modulus
maximum for each interval of length r.

Arnéodo, Bacry & Muzy [5] applied the WTMM method to single point
high Reynolds number (the Taylor scale based Reynolds number is Rλ =
2720) velocity data obtained by Gagne [87] from the wind tunnel of ONERA
at Modane. The self-similar inertial range follows the Kolmogorov E(k) ∼
k−

5
3 law for almost three decades. The WTMM analysis was carried out

for this inertial range of scales on a section of data 100 integral (energy
containing) scales long.

The histogram of singularities α(x0) in the turbulence data was found to
be quite wide and centred about the Kolmogorov value α = 1/3. Surpris-
ingly, at some places in the flow α is negative which implies actual singular
behaviour (velocity tending towards infinity). These negative α values may
be spurious or may indicate the (rare) presence of strong vortices. The
function τ(p) is convex which suggests that the regularity of the flow varies
greatly from place to place. The singularity spectrum is peaked at the Kol-
mogorov value αmax(p = 0) = 0.335 ± 0.005 with D(αmax) = 1.000 ± 0.001.
This result indicates that the signal is fractal everywhere because the fractal
support of D(αmax) is equal to its topological dimension (i.e. the dimension
of the signal, which is 1).
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1.3.6 Distinguishing between signals made up of isolated and

dense singularities

Although the inertial range of turbulence has a self-similar structure, not all
self-similar functions are fractal; in fact one of the most physically plausible
turbulence structures, the spiral vortex, can generate self-similar oscillat-
ing singularities with a non-trivial box-counting dimension (a technique to
estimate the Hausdorff or fractal dimension). The conclusion drawn by
Arnéodo, Bacry and Muzy [5] that turbulence is everywhere singular with
a multifractal structure may be invalid if the turbulent velocity signal they
analysed contains oscillating singularities. Because the WTMM method is
only valid for signals that contain dense distributions of cusp type singulari-
ties, one should first try to determine whether a signal has isolated oscillating
singularities before attempting to use the WTMM method. Unfortunately,
the difference between signals containing singularities everywhere (‘fractals’)
and signals containing a large number of isolated oscillating singularities
(isolated ‘spirals’ in multi-dimensions or isolated ‘chirps’ in one dimension)
is not obvious: both signals can have non-trivial box-counting dimensions.

Kevlahan and Vassilicos [101] developed two methods for distinguishing
between isolated spiral and fractal signals based on the wavelet transform.
(In fact their method only distinguishes between isolated and dense sin-
gularities, however isolated cusp singularities have a trivial box-counting
dimension and thus can be distinguished from fractal signals on the basis
of box-counting dimension alone.) The first method takes advantage of the
fact that the singularities in a fractal are dense (there are singularities at
an infinite number of points) whereas the singularities in an isolated spiral
signal are isolated (the signal contains oscillating singularities only at the
centres of spirals). If one averages the wavelet transforms of many realiza-
tions, or different data segments together, one can prove that the average
wavelet transform modulus

〈
|f̃(x, r)|

〉
decays differently for the two types

of singularity

as
〈
|f̃(x, r)|

〉
∝ N−1/2|f̃(x0, r)| for fractal signals, (1.40)

but,

as
〈
|f̃(x, r)|

〉
∝ |f̃(x0, r)|, r < L/N for spiral signals, (1.41)

where N is the number of segments averaged together and L is the length
of each segment. Thus, the average wavelet transform of the random phase
fractal signal is N−1/2 times a single realization, while that of the spiral
signal does not depend on the number of realizations below a certain scale.



30

The difference in the behaviour of
〈
|f̃(x, r)|

〉
is striking, and provides a

diagnostic for determining whether a signal contains spiral-type singularities.
This method was applied to the Gagne [87] turbulence data. The results
were inconclusive, perhaps due to insufficient resolution near expected spiral
scales or rarity of spiral vortices passing near the velocity probe.

The second method for distinguishing between isolated spiral and frac-
tal singularities derives from the observation that the spatial fluctuation of
wavelet energy Ẽ(x, k) (measured by the standard deviation σ̃(k) of Ẽ(x, k))
is independent of wavenumber for a random phase fractal signal, but in-
creases with wavenumber for a spiral signal with the same energy spectrum.
Analysis of the turbulent signal shows that σ̃(k) increases with wavenumber
(although at a slower rate than for the purely spiral test signal), indicating
that turbulence probably contains some sort of isolated oscillating singular-
ities. This conclusion should be borne in mind when interpreting the results
of multifractal analyses of turbulence.

1.4 Turbulence analysis

1.4.1 New diagnostics using wavelets

It is impossible to define a local Fourier spectrum, because Fourier modes
are non-local, but it is possible to define a local wavelet spectrum, since
wavelets are localized functions. Actually, due to the inherent limitation
of the uncertainty principle stating that there is a duality between spectral
and spatial information, we should be aware that the spectral accuracy will
be poor in the small scales and that the spatial accuracy will be poor in the
large scales.

Since turbulent flows are either two-dimensional or three-dimensional, in
the following section we will use the two-dimensional wavelet transform.
Let us consider a two-dimensional scalar field f(x) and a two-dimensional
real isotropic wavelet ψ(x). We generate the family ψx,r(x′) of wavelets,
translated by position parameter x ∈ IR2, and dilated by scale parameter
r ∈ IR+, all having the same L2 norm

ψx,r(x) = r−1ψ(
x− x′

r
). (1.42)

The two-dimensional wavelet transform of f(x) is

f̃(x, r) =
∫
IR2
f(x′)ψx,r(x′) d2x′. (1.43)
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The local wavelet spectrum of f(x) is defined as

Ẽ(x, r) =
|f̃(x, r)|2

r
. (1.44)

A characterization of the local ‘activity’ of f(x) is given by its wavelet inter-
mittency Ĩ(x, r), which measures local deviations from the mean spectrum
of f at every position x and scale r, defined as follows

Ĩ(x, r) =
|f̃(x, r)|2∫

IR2 |f̃(x, r)|2 d2x
, (1.45)

Another measure of interest for turbulence is the wavelet Reynolds number
R̃e(x, r), given by

R̃e(x, r) =
ũ(x, r) r

ν
, (1.46)

where r is the scale parameter, ν the kinetic viscosity of the fluid, and ũ the
root-mean-square (r.m.s.) value of the velocity field contribution at position
x and scale r defined as

ũ(x, r) =

(
1

3Cψ

3∑
i=1

|ũi(x, r)|2
)1/2

, (1.47)

with the constant

Cψ =
∫
IR2
|ψ̂(k)|2 d

2k

|k|2
. (1.48)

The expectation is that at large scales r ∼ L, the wavelet Reynolds num-
ber should coincide with the usual large-scale Reynolds number Re = uL/ν,
where u is the r.m.s. turbulent velocity and L is an integral scale character-
izing the flow. In the smallest scales (say r ∼ η, where η is the Kolmogorov
scale of the flow which characterizes the high wavenumber limit of the iner-
tial range where dissipation becomes significant), one expects this wavelet
Reynolds number to be close to unity when averaged spatially. The question
we want to address here is the variability of such a wavelet Reynolds num-
ber defined for space and scale: are there locations where such a Reynolds
number at some small scale is much larger than in others, and how do such
regions correlate with regions of small-scale activity in the flow? If so, then
R̃e(x, r) gives an unambiguous measure of the nonlinear activity at small
scales (or at any desired scale). Regions of high wavelet Reynolds number
could then be interpreted as regions of strong nonlinearity.

Concerning the computation of energy and enstrophy transfers and fluxes,
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we should be aware that the results depend on the functional basis we con-
sider. Indeed, due to Heisenberg’s uncertainty principle, each representation
measures different types of transfers and fluxes. In Fourier space one com-
putes transfers between different independent wavenumber bands, which
detect the modulations and resonances excited under the flow dynamics. In
wavelet space one computes exchanges between different locations and dif-
ferent scales, which detect instead advections and scalings. But one should
never forget that in wavelet space spatial resolution is bad in the large scales
and spectral resolution is bad in the small scales, while, by duality, space
resolution is good in the small scales and spectral resolution in good in the
large scales. In an orthogonal wavelet basis, although all wavelets are inde-
pendent in space and scale, they are not independent in wavenumber. In an
orthogonal wavelet packet basis all wavelet packets are independent in space,
scale and wavenumber, but their Fourier spectrum presents several peaks at
distant wavenumbers and they are no longer local in wavenumber space;
therefore wavelet packets are unable to precisely measure transfers between
different wavenumber bands. This is the reason why a comparison between
transfers computed in wavelets, in wavelet packets and in Fourier modes is
misleading: these three diagnostics do not measure the same quantities!

1.4.2 Two-dimensional turbulence analysis

Unlike the velocity field, the vorticity field is invariant with respect to uni-
form rectilinear translations of the inertial frame (Galilean invariance). The
dependence of streamlines and streaklines on the reference frame causes con-
siderable difficulties in the study of fluid flows, particularly in observing and
defining vortices. In fact due to its Galilean invariance, vorticity is the most
suitable field for tracking the dynamics of turbulent flows, in both two and
three dimensions. The vorticity field is directly accessible from numerical
simulations, but is difficult to obtain from laboratory experiments. This is
why we will now focus on vorticity fields obtained from direct numerical
simulations (DNS) results. The drawback with DNS, i.e. the integration of
Navier–Stokes equations without any ad hoc turbulence modelling, is that
current supercomputers are only able to compute low Reynolds number flows
(up to a few thousand).

Let us show an example of a wavelet analysis of an instantaneous vorticity
field computed using the Navier–Stokes equations [151], [65]. We segment it
into three regions using the Weiss criterion [180], [57], namely into rotational
regions corresponding to the coherent structures, strongly strained regions
corresponding to the shear layers surrounding the coherent structures, and
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weakly strained regions corresponding to the background flow made of vor-
ticity filaments (these vorticity filaments encountered in two-dimensional
turbulence are not the same dynamical objects as the vorticity tubes en-
countered in three-dimensional turbulence and often called filaments). We
then decompose the vorticity field into a continuous wavelet representation
using an isotropic (Hermite) wavelet to integrate in space the wavelet coef-
ficients for each type of region. This decomposition is in fact a conditional
statistical analysis because the energy spectrum is computed separately for
each type of region.

The energy spectrum of the coherent structure regions tends to scale as
k−6, the sheared regions as k−4 and the background regions as k−3 (fig-
ure 1.2). We found [151], [66] that each region has energy throughout the
inertial range and therefore there is no scale separation. This is why the
Fourier representation cannot disentangle these different regions. The scal-
ing of the coherent structures seems compatible with the cusp-like model
proposed by Farge and Holschneider [69], the scaling of the shear layers
seems compatible with the k−4 spectrum predicted by Saffman [165] and
only the scaling of the homogeneous background regions seems to verify
the Batchelor-Kraichnan prediction of a k−3 spectrum. From this analysis
we confirm that there is no universal power-law scaling for two-dimensional
turbulent flows; the slope of the Fourier energy spectrum varies with the
density of coherent structures (their number per unit area in 2D and per
unit volume in 3D), which depends on initial conditions and forcing (energy
injection by external forces). We then conjecture that there may be a uni-
versal scaling for each region of the flow considered separately, but this has
not yet been proven. Extensive wavelet analysis of very different types of
turbulent flows would be necessary to check this conjecture.

The new approach we have proposed is to decompose turbulent flows
into organized (and therefore inhomogeneous) components and random (and
therefore homogeneous) components, which will have different scalings and
different statistical properties [67]. We have observed that the former, cor-
responding to strong vorticity values, is non-Gaussian, while the latter, cor-
responding to weak vorticity values is Gaussian (see Section 1.6.4.3) and
figure 1.11(d)). If this point of view is confirmed, then only conditional
averaging will make sense. There is still some hope of finding a universal
behaviour for each component taken separately, and we may then be able to
design a new statistical theory of two-dimensional turbulence based on this
property.

A key question, which remains open, is the following: is there a generic
shape (namely a typical vorticity distribution) for coherent structures? The
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Fig. 1.2. Conditional wavelet spectra (this computation was done in collaboration
with Thierry Philipovitch). (a) Vorticity field. In red: elliptic regions, dominated
by rotation (antisymmetric part of the stress tens ∇V ), which correspond to the
coherent vortices. In blue: hyperbolic regions, dominated by strain (symmetric
part of the stress tensor ∇V ), which correspond to the incoherent background
flow. (b) Coherent vortices where rotation dominates. (c) Shear layers where
strain and strong velocity dominates. (d) Background flow where strain and weak
velocity dominates. (e) Energy spectra. In black: Fourier energy spectrum, which
tends to scale as k−5. In dark blue: wavelet energy spectrum, which is a smooth
approximation of the Fourier spectrum and tends to scale as k−5. In red: wavelet
energy spectrum of the coherent vortices, which tends to scale as k−6. In green:
wavelet energy spectrum of the shear layers, which tends to scale as k−4. In light
blue: wavelet energy spectrum of the background flow, which tends to scale as k−3.
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answer to this question influences our analysis, in particular our interpreta-
tion in terms of scale, because the notion of scale is intrinsically linked to
the generic shape we assume for the coherent structures. A prioris are as
essential in statistical analysis as hypotheses are in modelling: we should
state them clearly, otherwise our results will be nonsensical. For instance,
without a definition of vortex shape the notion of vortex size and vortex
circulation would be meaningless. A misunderstanding has persisted for
years in the field of turbulence due to the identification of scale with the
inverse wavenumber, which is true only if one assumes a wave-like shape
for the vorticity field. Conversely, in other papers one encounters different
implicit models of coherent structures (vortex patches, Gaussian vortices, or
cusp-like vortices), which indeed condition our statistical analysis. There-
fore one first needs a method to extract coherent structures out of turbulent
flows in order to study them individually. The classical method consists of
thresholding the vorticity field and identify as coherent vortices all regions
where vorticity is larger than this threshold. However, the spectral infor-
mation is then lost due to the discontinuity introduced by the threshold.
We have proposed instead [72] two new methods based on the continuous
wavelet representation, which preserves the regularity of the vorticity field
and therefore its spectrum.

These methods depend on the choice of the analyzing wavelet and ide-
ally we should use a wavelet which is a local solution of the linearized
Navier–Stokes equations, namely a solution of the heat equation, such as
any isotropic and smooth distribution of vorticity. This is why we use two-
dimensional Hermite wavelets (derivatives of the Gaussian), which are solu-
tions of the heat equation. The higher the derivative, the better the cancel-
lations and the more sensitive the wavelet will be to quasi-singular vortices,
however its spatial selectivity will not be as good as for low order derivative
wavelets. In the examples shown in this chapter (figures 1.2, 1.3 and 1.5)
we use Marr’s wavelet which is the Laplacian of the Gaussian.

The first method is to retain only the wavelet coefficients inside the in-
fluence cones (namely the spatial support of the wavelets) attached to the
local maxima of the vorticity field corresponding to the centers of coherent
structures; wavelet coefficients outside the influence cones are then discarded
before reconstructing the vorticity field. The second method is to retain only
the wavelet coefficients which are larger than a given threshold and to dis-
card all other coefficients before reconstructing the vorticity field. We thus
extract the coherent structures, and subtracting the original vorticity field
gives us the background field. By computing the Fourier spectrum of these
two fields we have confirmed our previous analysis: the energy spectrum of
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coherent structures tends to scale as k−6 and that of the background field as
k−3 (figure 1.3). With our first method we can also extract just one coher-
ent structure, analyze its shape, and compute its coherence function, namely
the pointwise relation between vorticity and streamfunction, to check if it
corresponds to the stationary states predicted by Montgomery’s [99] or by
Robert’s [161],[162],[163] statistical theories. We are presently working in
this direction, but have not yet published any result.

Another application of the wavelet representation in turbulence should be
to design new types of forcing for numerical simulations. The method would
consist of injecting energy and enstrophy at each time step, but only into
the wavelet coefficients inside the influence cone corresponding to a given
location. Depending on the type of forcing we want, we could either excite
the same vortices or randomly select new vortices at each time step. Forcing
is currently done in Fourier space and is rather unphysical, while wavelet-
based forcing could simulate the production of vorticity in boundary layers
or mixing layers, which is a local process. This is another promising, but as
yet untried, application of wavelet techniques for turbulent flow simulation.

1.4.3 Three-dimensional turbulence analysis

We have analysed different flow fields resulting from direct numerical simu-
lations of three-dimensional turbulent flows [68], using the complex-valued
Morlet wavelet, which plays the role of a numerical polarizer due to its an-
gular selectivity, and whose complex modulus directly measures the energy
density. We have first studied the temperature, velocity and pressure fields
of a channel flow near the wall and have used the wavelet intermittency to
pinpoint the regions of the flow dominated by strong nonlinear dynamics.
It appears that the most intermittent regions are correlated with those of
large vertical velocity, corresponding to ejections from the boundary layer.
We have found that temperature behaves as a passive scalar almost every-
where, except in these very localized ejection regions. We have also observed
that there is no return to isotropy in the small scales, contradicting one of
the hypotheses of the statistical theory of turbulence, which supposes that
turbulent flows become homogeneous and isotropic at small scales.

We have then analyzed the vorticity, velocity and a passive scalar in a tem-
poral mixing layer after the mixing transition. We have found that wavelet
intermittency is very strong, up to 120, in the collapsing regions where the
ribs (streamwise vorticity tubes produced by a three-dimensional instabil-
ity) are stretched and engulfed into the primary spanwise vortex (produced
by a two-dimensional Kelvin-Helmholtz instability). On the other hand, the
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Fig. 1.3. Wavelet packet compression of vorticity. (a) The uncompressed vorticity
field and its Fourier spectrum which scales as k−5. (b) The vorticity field recon-
structed from the 5% strongest wavelet packet coefficients, which contains 89% of
the total enstrophy, and its Fourier energy spectrum which scales as k−6. (c) The
vorticity field reconstructed from rest of the flow (95% of wavelet packet coeffi-
cients) which contain 11% of the total enstrophy, and its Fourier energy spectrum
which scales as k−3.
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wavelet intermittency in the braids, i.e. outside the spanwise vortex, remains
very low, not exceeding 5. We have also noticed a return to isotropy in the
small scales. From the local spectrum of the vertical vorticity we have ob-
served that the collapsing regions have a spectral slope much shallower than
the one of the braid regions; this departure from the space average wavelet
spectrum increases with the scale and confirms the strong intermittency
of the mixing layer. If we extrapolate the observed slopes, we conjecture
that intermittency should increase with Reynolds number. We have then
visualized the iso-surfaces of the wavelet Reynolds number, which can be
interpreted as surfaces of iso-nonlinearity in the flow. The peaks on these
iso-surfaces, which are associated with the most unstable regions, are located
in the primary vortex core; this confirms our previous conclusions concerning
the concentration of small-scale nonlinear activity there, due to the stretch-
ing of the ribs rolled around the primary vortex. We have also shown that
the Kolmogorov scale, corresponding to the iso-surface Re(x, r) ' 1 where
linear dissipation balances nonlinear advection, varies with location, being
at much smaller scale in the vortex core than in the braids, with a scale
variation of four octaves. This means that there should be some (spatially
localized) dissipation for scales belonging to the inertial range. This observa-
tion contradicts Kolmogorov’s hypothesis of non-dissipative energy transfers
in the inertial range; but is in agreement with Castaing’s theory of turbu-
lence [35], [36], with Frisch and Vergassola[81]’s multi-fractal model and
with Benzi et al’s [20] extended self-similar model, which assume a weak
dissipation in the inertial range.

For shear flows, such as the channel flow or the mixing layer we have
studied, there is a clear correlation between large-scale events and small-scale
activity, due to the presence of coherent structures. Wavelet analysis has
been an essential tool for identifying them as phase-space regions correlated
in both space and scale, where intermittency increases with scale [68]. We
conjecture that for large Reynolds numbers these regions may become more
and more localized and very intense in small-scale enstrophy. Therefore
they are susceptible to develop singularities at very large Reynolds numbers.
For the mixing layer these quasi-singular regions correspond to collapsing
events, where the ribs are stretched and accumulated inside the primary
vortex core, while for the channel flow these regions correspond to the tip
of the horseshoe vortices ejected from the wall boundary layer. According
to the Cafarelli-Kohn-Nirenberg theorem [32], singularities, if they exist,
should be at most a set of Hausdorff measure one in space–time for any
Reynolds numbers. Therefore if we want to look for quasi-singularities in
three-dimensional turbulent flows we would be better of using a space-time
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continuous wavelet transform, whose theory is being initiated by Duval-
Destin and Murenzi [55], but has not yet been sufficiently developed.

1.5 Turbulence modelling

We will now reconsider the closure problem mentioned in subsection 1.2.3,
taking advantage of the new observations we have made of turbulent flows,
and in particular the dynamical role of coherent structures, using the wavelet
analysis.

1.5.1 Two-dimensional turbulence modelling

To compute turbulent flows we must separate the active components, re-
sponsible for their chaotic behaviour (namely sensitivity to initial condi-
tions), from the passive components, which are advected by the velocity
field resulting from the overall coherent structure motion. The active com-
ponents are not in thermal equilibrium, while the passive components are
well thermalized. Therefore the active components should be computed
explicitly, while the passive components can be modelled by some ad hoc
parameterization.

Classical numerical techniques (Galerkin methods [91], Large Eddy Simu-
lation [117], [158], [119] and Nonlinear Galerkin methods [132]) assume that
the active components are the low-wavenumber Fourier modes, or the scales
resolved by the computational grid, while the passive components are the
high-wavenumber Fourier modes, or the sub-grid scales. This scale separa-
bility of the turbulent dynamics is assumed to be true in both two and three
dimensions.

We have shown [182] that a compression in the wavelet packet represen-
tation extracts the coherent structures out of the background flow, while
the same amount of compression done in the adapted local cosine (Malvar)
representation, which is a type of windowed Fourier basis, does not have
this property (figure 1.4). Indeed, the more you compress in Fourier or win-
dowed Fourier representations, the more you smooth the coherent structures,
and consequently lose their enstrophy, destroy their phase information, and
introduce parasitic wiggles in the background. Indeed, the more you com-
press the larger the effect of the analysing function. Therefore wavelets and
wavelet packets, being localized functions, tend to separate coherent struc-
tures from the background flow (figure 1.4a), while Fourier and windowed
Fourier, being non-localized functions, tend to smear coherent structures
into the background flow (figure 1.4b).
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Fig. 1.4. Comparison between wavelet packet and adapted local cosine compres-
sion (this computation was done in collaboration with Echeyde Cubillo). (a) The
uncompressed vorticity field. (b) The vorticity field reconstructed from the 70
strongest wavelet packet coefficients, which contain 90% of the enstrophy. (c) The
vorticity field reconstructed from the 425 strongest adapted local cosine coefficients,
which contain 90% of the total enstrophy. (d) Enstrophy contained in the retained
coefficients versus their number. We observe, for instance, that 70 wavelet packet
coefficients retain 90% of the total enstrophy, while 70 adapted local cosine coeffi-
cients retain only 50% of the total enstrophy.
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We have shown [67], using nonlinear wavelet packet compression, that
there is no scale separability in two-dimensional turbulence. To prove this
we have computed the time evolution of a two-dimensional turbulent flow
which we use as our high-resolution reference flow. We have then com-
pressed the initial vorticity field in two ways: either by retaining only the
lower wavenumber Fourier modes, or by selecting the strongest (in L2-norm)
wavelet packet coefficients. We found that for a compression ratio of 200
the wavelet packet representation preserves, in a statistical sense (namely
the energy spectrum is well predicted), the reference flow evolution while
the Fourier representation leads to a statistically different solution. This
conclusion is not surprising, considering the existence of an inverse en-
ergy cascade in two-dimensional turbulence, which implies that the high-
wavenumber Fourier modes remain active and affect the evolution of the
low-wavenumber modes. The implication of this behaviour has not been
implemented in turbulence models, because there were not yet any alterna-
tive method to replace grid-point and Fourier representations.

In the same paper [67] we showed that there is a possible separability
between active modes, namely the coherent structures corresponding to the
strong wavelet packet coefficients, and passive modes, namely the vorticity
filaments of the background flow corresponding to the weak wavelet packet
coefficients. Both components are multi-scale, which is why the Fourier rep-
resentation is not able to disentangle them and a fortiori to model them.
According to Weiss analysis [180] the coherent structures correspond to el-
liptic regions (nearby fluid trajectories remain nearby) where rotation ω2

dominates strain σ2, while the background flow corresponds to hyperbolic
regions (two nearby fluid trajectories separate exponentially) where strain
σ2 dominates rotation ω2. In the elliptic regions the local Reynolds num-
ber R̃e(x, r) is larger than one, while in the hyperbolic regions it is smaller
than one, which indicates that the background flow is actually laminar (fig-
ure 1.5). Coherent structures are local quasi-stationary solutions of Navier–
Stokes equations. The probability distribution of the velocity field associated
to the coherent structures is out of thermal equilibrium and varies depend-
ing on their configuration in space. On the contrary the background flow
has already thermalized due to the very strong mixing resulting from the
straining imposed by the coherent structures. Therefore the probability dis-
tribution of the velocity field of the background flow is stationary and does
no more depend on the spatial configuration of the coherent structures. We
should then be able to model this background flow by an ad hoc stochastic
process having the same enstrophy and the same statistics, in particular
the same spectral slope, whereas the coherent structures should be explic-
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itly computed in phase-space. A possible direction would be to construct a
wavelet or wave packet frame (namely a quasi-orthogonal basis) made of lo-
cal solutions of the linearized Navier–Stokes equations (namely any isotropic
smooth function). We do not yet know neither to construct it, nor to com-
pute Navier–Stokes equations in it, but preliminary steps in this direction
will be discussed in section 1.6.

We have also shown [100] that the presence of coherent structures inhibits
the nonlinear instability of the background flow, namely the formation of
new coherent structures. Using the wavelet packet representation to extract
the coherent structures we then computed the evolution of the remaining
background flow, in the absence of coherent structures, and observed the
emergence of new ones out of it (figure 1.6). Actually when coherent struc-
tures are present, they impose a strain on the background flow, which then
inhibits the formation of new coherent structures, and therefore there is no
energy or enstrophy backscatter from the incoherent to the coherent compo-
nents of two-dimensional flows. The next step to validate this observation
will be to compute the different transfers between coherent and incoherent
components of the flow (namely from coherent structures to coherent struc-
tures, from coherent structures to background, from background to coherent
structures and from background to background) and check that there is no
transfer from background to coherent structures. If this is confirmed, there
will be a possible wavelet separability between the coherent and incoherent
flow components and we may then be able to propose new parameterizations
based on this gap.

1.5.2 Three-dimensional turbulence modelling

The assumption that the high-wavenumber Fourier modes are slaved to the
active low-wavenumber Fourier modes, is probably also wrong for three-
dimensional turbulence due to the recent evidence of energy backscattering
[49], [48], [50], [114], [152], i.e. inverse energy transfer from small to large
scales, resulting from the presence of organized structures which locally in-
teract and transfer energy to larger scales. We should take this observation
with caution knowing that the amount of backscattering observed depends
sensitively on the sharpness of the spectral filter used. There are two other
reasons to explain why this assumption is not valid and should be revised.

The first reason comes from the fact that we do not have any universal
theory of turbulence aside from the statistical theory which deals with ho-
mogeneous and isotropic ensemble averages, while a numerical simulation
computes one flow realization at the time (at the highest resolution possible
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Fig. 1.5. Wavelet Reynolds number (this computation was done in collaboration
with Thierry Philipovitch). (a) Velocity field computed with resolution 1282

(∆x = 1 unit length between two grid-points). (b) Wavelet Reynolds number
at scale 64∆x, which fluctuates between 148 and 2700 with a mean value of 1713.
(c) Wavelet Reynolds number at scale 20∆x, which fluctuates between 31 and 578
with a mean value of 365. (d) Wavelet Reynolds number at scale 8∆x, which fluc-
tuates between 1 and 27 with a mean value of 17. (e) Wavelet Reynolds number at
scale 2∆x, which fluctuates between 0 and 3 with a mean value of 2.
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Fig. 1.6. Dynamical analysis of coherent structures and incoherent background flow.
(a) Total vorticity at t = 30 computed with a resolution 10242. (b) Vorticity corre-
sponding to the coherent vortices alone at t = 30. They are made up of 31 strong
wavelet packet coefficients which contain 83% of the total enstrophy. (c) Energy
spectra at t = 30. In green: the total energy spectrum. In red: the coherent vortices
energy spectrum. In blue: the filament energy spectrum. (d) Vorticity correspond-
ing to the filaments alone at t = 30. They are made up of 1 048 545 weak wavelet
packet coefficients which contain 17% of the total enstrophy. (e) Integration of the
total vorticity until t = 120. (f) Integration of the coherent vortices alone until
t = 120. (g) Energy spectra at t = 120. In green: the total energy spectrum. In
red: the coherent vortices energy spectrum. In blue: the filament energy spectrum.
(h) Integration of the filaments alone until t = 120.
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with present supercomputers) and not ensemble averages (which will require
too many computations of the same turbulent flow). Actually each flow re-
alization is, unlike an ensemble average, highly inhomogeneous due to the
presence of coherent structures. As we have shown in performing wavelet
analyses of two and three dimensional turbulent flows, coherent structures
are multi-scale and, through their mutual nonlinear interactions, are respon-
sible for inverse energy transfers. If the computational grid is too coarse,
its resolution is insufficient to accurately compute these transfers. Likewise
sub-grid-scale parameterization is only able to model direct transfers (from
resolved to unresolved scales) and inverse transfers (from unresolved to re-
solved scales) in a statistical sense, assuming homogeneity, but not for the
given inhomogeneous flow realization one computes. In fact backscattering is
a major unresolved drawback of current numerical methods, which will last
as long as they will be unable to separate the coherent structures from the
background flow and take into account the parameterization of homogeneous
turbulent components separately from the inhomogeneous components.

The second reason comes from the fact that our current numerical meth-
ods are defined, either in grid-point, finite element or Fourier representation,
and are unable to compute multi-scale objects with a small number of coef-
ficients. This would be possible using either adapted multi-grid or wavelet
numerical methods. Multi-grid techniques were proposed 20 years ago by
Achi Brandt [30] for solving elliptic problems, such as the diffusion equation;
they were then adapted to quasi-stationary problems, but do not seem yet
optimal to solve time-dependent problems. Actually the multi-grid approach
is very similar to a wavelet approach using a Haar wavelet, which is very
well localized in physical space and corresponds to a set of embedded grids,
but which is too de-localized in spectral space and tends to produce large
errors in the higher order derivatives of the solution. As far as we know,
locally refined multi-grid techniques have been tried for the Navier–Stokes
equations, but not yet in the turbulent regime.

One possible approach is to use the wavelet Reynolds number to split the
Navier–Stokes equations at each time step into advection and diffusion oper-
ators, which will be solved separately using the most appropriate numerical
method and turbulence parameterization for each operator. Namely, the
advection term is computed only where R̃e(x, r) > 1, and the diffusion term
where R̃e(x, r) < 1. This method makes sense only if the flow is computed
either in a multi-grid or in a wavelet representation section 1.6. We could,
for instance, build an appropriate wavelet frame (namely a quasi-orthogonal
basis) made of local solutions of the linearized Navier–Stokes equations,



46

which could be any isotropic smooth function such as a circular Gaussian
vortex (e.g. the Burger’s vortex).

Actually, as we have already said, the Navier–Stokes equations are com-
putationally intractable for the large Reynolds number limit which corre-
sponds to fully developed turbulent flows. Although the use of wavelets
may improve current numerical methods of solving the Navier–Stokes equa-
tions (see section 1.6), a more promising direction may be to look for a new
set of equations specific to the turbulent regime. Such equations would be
written in terms of a small number of new variables corresponding to the
degrees of freedom attached to the coherent structures. As a consequence
they may break some of the symmetries of Navier–Stokes, in particular its
translational invariance. This is analogous to the way in which Boltzmann’s
equation, describing the macroscopic level, breaks the time reversibility of
Newton’s equation, describing the microscopic level. For modelling turbu-
lent flows we ought to go one step further in this hierarchy of embedded
equations and define a new ‘organized’ level emerging out of the thermal-
ized background flow.

1.5.3 Stochastic models

The idea is to find stochastic models of turbulence that mimic the behaviour
of Navier–Stokes equations at high Reynolds numbers, but which would be
easier to solve numerically, and perhaps even analytically. These models
could then be used to study some properties of turbulent flows, such as
energy cascade, probability distribution functions, intermittency and depar-
ture from Kolmogorov’s scaling.

The first attempt was done in 1974 by Desjanski and Novikov [46] who
devised a so called shell model where the Navier–Stokes equations were rep-
resented on a discrete set of wavenumbers in Fourier space, each Fourier
shell corresponding to one octave. The coupling between different octaves
was supposed to be local in Fourier space and energy was transferred only
from large to small scales. Such shell models, sometimes also called cas-
cade models, are still popular because with them it is easy to obtain very
large inertial range, up to Reynolds numbers 1010, at a limited computa-
tional cost. The number of degrees of freedom needed to compute three-
dimensional Navier–Stokes equations by standard direct simulations scale
as Re9/4, whereas they scale as Re for shell models. The weak point of shell
models is that the vectorial structure of Navier–Stokes equations is lost, the
incompressibility condition is not satisfied and they do not give accurate
information on the spatial structure of the flow.
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In 1981 Zimin [186], [79], [187] proposed another model, called the hier-
archical model , defined in both space and scale. He projected the three-
dimensional Navier–Stokes equations onto Littlewood-Paley basis and dis-
cretized them by octaves, considering a limited number of vortices for each
octave, few in the large scales and more in the small scales in accordance
to the uncertainty principle. He then assumed that each vortex is advected
by the velocity field of the larger vortices, which lead him to propose a set
of semi-Lagrangian wavelets to compute the flow evolution. This impressive
work fore-shadowed the wavelet decomposition, and has since been devel-
oped by Frick [78], [77], [7]. Hierarchical models are more physical than shell
models because they also take into account the vortex motions, but they are
still not very realistic from a physical standpoint because they neglect the
vortex deformation which is responsible for energy transfers and subsequent
dissipation. Recently Eyink, in an unpublished paper [62], has criticized
this approach in showing that semi-Lagrangian wavelets do not remove the
effect of large-scale convection to the energy transfers and therefore do not
guarantee their locality (in wavenumber space). This is again due to Heisen-
berg’s uncertainty principle and is related to the fact that it is impossible
to compare transfers between wavenumbers and transfers between wavelets,
this point has already been discussed in section 1.4.

Ideas on turbulence evolve at a very slow pace. As example of this, let us
quote what Liepmann wrote in the proceedings of the turbulence conference
held in Marseille in 1961 [124]: ‘The success of the spectral representation
of turbulent fields is due, after all, not to the belief in the existence of def-
inite waves but to the possibility of representing quite general functions as
Fourier integrals. In the application to stochastic problems the usefulness
of the Fourier representation stems essentially from their translational in-
variance. Consequently, really successful models for representing turbulent
shear flows will require far broader invariance considerations. It is clear
that the essence of turbulent motion is vortex interaction. In the particular
case of homogeneous isotropic turbulence this fact is largely masked, since
the vorticity fluctuations appear as simple derivatives of the velocity fluc-
tuations. In general this is not the case, and a Fourier representation is
probably not the ultimate answer. The proposed detailed models of an eddy
structure represent, I believe, a groping for an eventual representation of a
stochastic rotational field, but none of the models proposed so far has proven
useful except in the description of a single process’. These remarks, written
33 years ago, are still very pertinent and define the direction we should take
for future research in turbulence.

Nowadays, using continuous wavelets we can construct more elaborate
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stochastic processes. As Liepmann has perceived we should be able to syn-
thesize stochastic rotational fields, built from a set of randomly translated,
rotated and dilated elementary vortices, which should have the same non-
Gaussian statistics as those observed for two and three dimensional tur-
bulent flows. Recently Elliott and Majda [58], [59] have used wavelets to
build a Gaussian, stationary and self-similar stochastic process for synthe-
sizing turbulent velocity fields satisfying Taylor’s hypothesis and displaying
Kolmogorov’s energy spectrum. Using these synthetic velocity fields they
recover Richardson’s law for scalar pair dispersion [60]. It is well-known that
the Gaussian hypothesis is of somewhat limited validity in turbulence, but
their method may be useful to model the background flow, which, contrary
to coherent structures, does present Gaussian statistics.

1.6 Turbulence computation

1.6.1 Direct Numerical Simulations

The numerical simulation of turbulent flows, based on the direct integration
of the Navier–Stokes equations at high Reynolds number without a sub-grid
turbulence model, requires a very large number of degrees of freedom. This
number increases like Re in two dimensions and like Re9/4 in three dimen-
sions. Among the numerous Eulerian and Lagrangian numerical schemes,
one may identify two different points of view: spectral and physical.

The first long-time simulations of two-dimensional turbulent flows [13],
[127], [21] based on spectral methods, i.e. Fourier decomposition, had a res-
olution of 5122. More recently, resolutions of 40962 have been calculated [41],
but even these high-resolution simulations cannot attain realistic Reynolds
numbers. On the other hand the physical point of view resulted in the de-
velopment of Lagrangian methods ([1], e.g. vortex methods [118] or contour
dynamics methods [112]) which follow the motion of each vortex, but which
are imprecise concerning the background flow between the vortices. Finite-
element, -difference or -volume methods allow mesh refinement in regions
of the flow where small structures appear, for instance in the boundary
layer of an obstacle; unfortunately automatic adaptive refinements requires
post-processing to follow these small structures.

Wavelet bases, in the context of the numerical simulation of PDEs (partial
differential equations), appear to be a good compromise between spectral
methods (precise, but expensive), contour dynamics (which automatically
follow coherent structures, but not the background flow) and finite element
or finite difference methods (local in space, of low order and therefore not
precise). Wavelet numerical methods have already been used to solve Burg-
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ers’ equation in one [8], [92] and two dimensions [24], Stokes’ equation in
two dimensions [174], the Kuramoto-Sivashinsky equation [142], Benjamin-
Davis-Ono-Burgers’ equation [76], the heat equation in two dimensions [39],
some reaction–diffusion equations in one and two dimensions [83] [28] [27],
the non-linear Schrödinger equation [88], Euler’s equation [155] and Navier–
Stokes’ equation in two dimensions [40], [85].

1.6.2 Wavelet based numerical schemes

The localization of wavelet bases, both in space and scale, leads to an effec-
tive nonlinear compression of the solution as well as of the operators involved
in equations (1.1). Such a sparse representation is obtained by performing
nonlinear thresholding of the wavelet coefficients of the solution and of the
operator, i.e. those coefficients with absolute value below a given threshold
are set to zero. This thresholding can be justified by theoretical results [47]
and verified by numerical experiments.

The sparsity of the wavelet expansion of a given function is linked to its
local smoothness: where the function is regular, the corresponding wavelet
coefficients decrease with scale. This fact is related to the characterization
of point-wise Hölder spaces [96], [93] (see subsection 1.3). Recall that for the
Fourier decomposition, the decay of the coefficients depends on the global
regularity of the function [188]. Another important property of wavelets is
the nonlinear approximation of functions: the approximation error between
a function and its wavelet series taken as theN largest coefficients (in a given
norm) can be estimated, in some Lebesgue space, by a (negative) power of
N which depends on the smoothness, or non-smoothness, of this function.
This result follows from the characterization of Sobolev and Besov spaces by
mean of wavelet coefficients [134], [47], [52]. Note that the nonlinear wavelet
approximation of a given function is associated with a grid in physical space
which is refined where there are singularities of this function.

A comparison of Fourier versus wavelet and wavelet packet nonlinear com-
pression for a numerical vorticity field is shown in figure 1.7. We observe that
the wavelet packet compression is the most efficient, both in terms of the
minimal number of coefficients used and the quality of the approximation.

Another important consequence of the simultaneous localization in space
and scale of wavelet bases is that many pseudo–differential operators and
their inverse have a sparse representation, i.e. are almost diagonal or have a
typical finger structure, depending on the employed form, i.e. non-standard
or standard form [23]. This is the case for the gradient operators and the
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Fig. 1.7. Nonlinear compression of a vorticity field. In each case the strong coef-
ficients (containing 95% of the total enstrophy) are displayed on the left, and the
weak coefficients (containing 5% of the total enstrophy) are displayed on the right.
(a) Uncompressed vorticity field computed with a resolution of 5122. (b) Compres-
sion in a Fourier basis (813 strong coefficients). (c) Compression in a wavelet basis
(338 strong coefficients). (d) Compression in a wavelet packet basis (156 strong
coefficients).



51

Fig. 1.8. Discretization matrix of the heat operator (1− 10−4∆)−1. The gray code
is a logarithmic scale from white to black, the significant values being black. (a) In
finite differences of fourth order. (b) In a wavelet basis with the same precision.

heat kernel. For a theoretical justification in the general context of Calderon-
Zygmund operators we refer the reader to [134].

As an example, the discretized heat kernel (on a 10242 grid) is projected
onto a wavelet basis (figure 1.8b) and we observe that only 9.5 % of the
coefficients are greater than 10−8, absolute value to be compared to the
largest eigenvalue which is order 1, instead of 21 % for a finite difference
projection (figure 1.8a).

These two fundamental properties (compression of the solution and of the
operator) allow us to define adaptive wavelet-based numerical schemes for
solving PDE’s. By neglecting small coefficients in the solution and/or in
the operator’s wavelet representation, each step of the algorithm is based on
approximate but fast matrix–vector products computed in wavelet space.

Note that the schemes based on scaling functions (often deliberately con-
fused with wavelets) [90], [109], [76] instead of wavelet functions are no more
efficient than classical finite element methods on a regular grid! Theoretical
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error and stability estimates for some particular wavelet schemes may also
be derived [23], [44], [25]. A scaling function scheme for solving the Euler
equations has already been developed by Qian and Weiss [155].

1.6.3 Solving Navier–Stokes equations in wavelet bases

Before presenting wavelet-based numerical schemes to solve the Navier–
Stokes equations, we should mention a very interesting direction which con-
sists of simplifying the Navier–Stokes equations by re-writing them in an
appropriate wavelet basis. Jacques Lewalle has shown that some continu-
ous wavelets, namely the Hermitian wavelets (derivatives of the Gaussian),
simplify the resolution of the linear term and allow a simpler convolution
formula for the nonlinear term [120], [121]. He has found that the first
derivative of the Gaussian gives a Hamiltonian form of the diffusion equa-
tion, where dissipation is replaced by spectral transport, namely Hermitian
wavelets are propagators for the diffusion equation [122].

The first wavelet adaptive schemes for the Navier–Stokes equations, have
been derived by Charton & Perrier [38] and Fröhlich & Schneider [85]. Dif-
ferent approaches can be used to solve the two-dimensional Navier–Stokes
equations. We will focus here on the two recently developed wavelet schemes
for solving Navier–Stokes equations: the algebraic wavelet method of Char-
ton & Perrier [40] and the Petrov-Galerkin scheme of Fröhlich & Schneider
[85, 84]. Both methods are based on the discrete wavelet transform and
use take advantage of the nonlinear compression of the operators and the
solution.

Apart from the above Eulerian schemes another possible approach would
be to develop Lagrangian-type wavelet methods, based on the continuous
wavelet transform. The travelling wavelet method in which wavelets behave
like particles evolving in phase-space coordinates has been proposed in 1990
by Basdevant, Holschneider and Perrier [12]. The travelling wavelet method
looks for an approximate solution of the above equation (1.50) which is a
finite sum of wavelets evolving in phase-space:

ω(x, t) ≈
N∑
i=1

ci(t) ψ
(
x− bi(t)
ai(t)

)
, ai > 0, (1.49)

where ψ is the base-wavelet and ci, ai, bi, are respectively the time dependent
amplitude, scale and position parameters.

This method works well for linear equations, such as the convection–
diffusion equation, and also for the Korteweg-de-Vries equation. It has also
very recently been applied to the study of the formation of galaxies [19].
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However, in the nonlinear case the method encounters technical difficulties
which have not yet been completely overcome. These difficulties arise when
two wavelets approach each other in phase-space which leads to a “phase-
space atom collision”.

Now let us consider the two-dimensional Navier–Stokes equations written
in terms of vorticity and stream function, which are pseudo-scalars{

∂ω
∂t + v.5 ω = ν∇2ω + f, x ∈ [0, 1]2 , t > 0
∇2Ψ = ω , v = (∂Ψ

∂y ,−
∂Ψ
∂x ), (1.50)

We complete the problem with periodic or Dirichlet or Neumann boundary
conditions and a suitable initial condition.

By introducing a time step δt and a classical semi-implicit time discretiza-
tion, and setting ωn(x) ≈ ω(x, nδt) to be the approximate solution at time
nδt, equation (1.50) is replaced, for example (for notational ease we take
here the simplest, but unstable, time scheme), by{

(1− νδt∇2)ωn+1 = ωn + δt(fn − vn.5 ωn)
∇2Ψn+1 = ωn+1 , vn+1 = (∂yΨn+1,−∂xΨn+1)

(1.51)

The spatial discretization is then performed by approximating, at time nδt,
ωn by a function ωnJ belonging to a finite dimensional subspace VJ obtained
from a multi-resolution analysis (Vj)j≥0 of the space L2([0, 1]2).

At this point the algebraic method of Charton & Perrier differs signifi-
cantly from the Petrov–Galerkin scheme of Fröhlich & Schneider. In [40] one
starts with a finite difference scheme on a regular Cartesian grid. Wavelets
are then used to speed up the solution procedure by compression of the dis-
crete inverse operator and the actual solution during the time advancement.
Furthermore, operator splitting by means of an ADI (Alternating-Direction-
Implicit) technique is introduced. The two-dimensional wavelet basis em-
ployed relies on a tensor product of two one-dimensional multi-resolution
analyses. The method of [84, 85] uses a two-dimensional multi-resolution
analysis as the underlying wavelet basis. In this case the inverse operator is
applied during the time advancement, using special test functions.

We will attempt to clarify the basis of these wavelet methods. In principle,
the spatial approximation can be of collocation type, i.e. grid point values, or
of Galerkin type, i.e. a projection onto a basis. The transformation between
the single level representation of a function, i.e. at regular collocation points,
and a multi-level wavelet Galerkin representation uses an orthogonal wavelet
transform. However, problems arise with adaptive schemes because it is
difficult to take advantage of the sparsity of the wavelet decomposition when
going back and forth between grid point and wavelet representations. Let
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us be more precise, and consider the one-dimensional case. Suppose that
dim VJ = 2J . Then the function ωnJ can be expanded onto the scaling
function basis (single level representation) (ϕJ,k)k=0,2J−1 of VJ

ωnJ (x) =
2J−1∑
k=0

cnJ,k ϕJ,k(x), (1.52)

or onto a wavelet basis (ψj,k)0≤j≤J,k=0,2j−1 of VJ

ωnJ (x) =
J∑
j=0

2j−1∑
k=0

dnj,k ψj,k(x) + cn0,0. (1.53)

The transition between both representations is done by the orthogonal wavelet
transform (Mallat’s algorithm).

In the collocation method, the function ωnJ is naturally associated with a
regular grid (xk = k2−J)k=0,2J−1 of [0, 1] and its corresponding collocation
values ωnJ (xk). Often, by using properties of scaling functions ϕJ,k one can
identify

ωnJ (xk) ≈ 2−JcnJ,k. (1.54)

The wavelet Galerkin method is based on the wavelet coefficients dnj,k, and
in practice uses only the few (non-negligible) coefficients larger than a given
threshold ε: {dnj,k ; |dnj,k| > ε}. Mallat’s fast wavelet algorithm works well
for regular grids, but is not efficient for irregular grids made up of irregularly
spaced grid points xk corresponding to the “centers” of wavelets ψj,k, for
which the coefficients of ωnJ (xk) satisfy |dnj,k| > ε.

To avoid this problem, one can introduce, when it exists, an interpolating
function of VJ [179] and adapt Mallat’s fast wavelet algorithm [82, 84]. An-
other way to overcome this problem is to directly construct the interpolating
scaling functions ϕJ,k and the corresponding interpolating wavelet basis ψj,k
[51] [24]. Finally, one can also construct an adaptive multi-resolution anal-
ysis [154], [3].

The algorithm (1.51) for solving the two-dimensional Navier–Stokes equa-
tions can now be split into four steps which we will discuss below: 1. time-
stepping the heat equation, 2. solving a Poisson equation, 3. computing the
non-linear term, 4. imposing the boundary conditions.

1.6.3.1 The heat equation solution

Let us consider the discretized heat equation

(1− νδt∇2) ωn+1 = ωn + δtfn. (1.55)
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The biorthogonal approach introduced in [123], [111], [83] [84] consists of
building a biorthogonal system from a classical wavelet basis ψj,k, first set-
ting

θj,k = (1− νδt∇2)−1ψj,k, (1.56)

with suitable hypotheses on ψ. Then a system θ̃j,k biorthogonal to θj,k is
constructed, and equation (1.55) is reduced to the change of bases

〈ωn+1 | ψj,k〉 = 〈ωn | θj,k〉+ δt〈fn | θj,k〉, (1.57)

where the notation 〈|〉 means scalar product. The functions θj,k and θ̃j,k
are called vaguelettes and have localization properties similar to those of
wavelets [134]. This approach avoids assembling and solving a linear sys-
tem. For the collocation projection operator–adapted cardinal functions [84]
have been constructed which allow the construction of efficient interpolatory
quadrature formulas. The decomposition of the rhs of equation (1.57) can
then be calculated using the fast adaptive vaguelette decomposition of [84]
based on a hierarchical subtraction strategy. This approach has been used
for one- and two-dimensional problems.

The Galerkin approach is to project (1.55) onto a classical, orthogonal or
biorthogonal, wavelet basis (ψj,k) of the space VJ . We can write(

〈ωn+1
J | ψj,k〉

)
j,k

= K(〈ωnJ + δt f | ψj,k〉)j,k (1.58)

where

K(j,k),(j′,k′) = 〈(1− νδt∇2)−1ψj,k | ψj′,k′〉 (1.59)

is the heat kernel, which is almost diagonal, as explained in section 1.6.2,
figure 1.8(b). This step is based on approximated, but fast, matrix–vector
products. An easy way to reduce the previous two-dimensional system to
several one-dimensional systems is to use a tensor wavelet basis

(
ψj,k(x).ψj′,k′(y)

)
and to split the two-dimensional heat kernel into two one-dimensional oper-
ators

(1− νδt∇2)−1 ≈ (1− νδt
∂2

∂x2
)−1(1− νδt

∂2

∂y2
)−1 (1.60)

as in ADI method. Such a method is applied in [39], [40].

1.6.3.2 The Poisson equation

The solution to the Poisson equation

∇2Ψn+1 = ωn+1 (1.61)
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can be obtained using a pseudo-transient technique, i.e. calculating the
steady state solution of the heat equation, which, as in ADI methods, is
reached in only a few iterations by considering iterated powers Kn of the
heat kernel K (1.59) which become sparser with n [39].

An alternative approach, proposed by Jaffard [96], is to consider the well-
conditioned system

P A P P−1
(
〈Ψn+1

J | ψj,k〉
)

(j,k)
= P

(
〈ωn+1
J | ψj,k〉

)
(j,k)

(1.62)

where A is the Galerkin matrix of the Laplacian in a wavelet basis: A(j,k),(j′,k′) =
〈∇2ψj,k|ψj′,k′〉 and P is the diagonal pre-conditioning matrix: P(j,k),(j′,k′) =
2−j δj,j′ δk,k′ , in one dimension (in two dimension this should be modified
according to the chosen 2D wavelet basis). Jaffard proved that the condi-
tion number of PAP does not depend on the order of the system. Then the
solution of (1.62) can be reached in a few iterations by a classical conjugate
gradient method.

The biorthogonal approach is also possible using operator–adapted biorthog-
onal vaguelettes for homogeneous operators, i.e. θj,k = (∇2)−1ψj,k and
θ̃j,k = ∇2ψj,k. The solution of the Poisson equation then also reduces to
a change of basis, analogously to case of the heat equation.

1.6.3.3 The nonlinear term

The nonlinear term vn.5ωn can be computed either by a collocation or by
a Galerkin method. The collocation (also called pseudo-spectral) method
can be sketched as follows: starting from the wavelet coefficients of vn and
ωn, compute the wavelet coefficients of 5ωn. Then, through an inverse
wavelet transform, obtain the grid point values of vn and 5ωn on the asso-
ciated grid, as above. Then the products are calculated at each grid point,
and finally the wavelet coefficients of the nonlinear term are obtained by a
direct wavelet transform. This collocation method requires a fast wavelet
transform between grid points and sparse coefficients sets. This problem was
mentioned in the previous section 1.6.3. Fröhlich and Schneider [84, 82] have
developed a wavelet transform for lacunary bases which enables the adaptive
evaluation of terms of the form f(ω) without derivatives. This method has
been applied for the full adaptive discretization of reaction–diffusion prob-
lems [27]. Recently, this approach has been extended to convective terms
[86], i.e. nonlinear terms of the form f(ω,∇ω). Consequently the implemen-
tation of this algorithm will enable the adaptive evaluation of the convective
term.

On the other hand, a Galerkin method works only in the wavelet coef-
ficient space, avoiding transforms between physical and wavelet space [22].
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The nonlinear term is then written as a convolution of the wavelet coefficients
of vn and 5ωn; these convolutions involve triple wavelet connection coeffi-
cients of the form 〈ψj1,k1 ψ′j2,k2 | ψj3,k3〉. A priori the complexity of such a
calculation is very large, but the method can be competitive for two reasons.
First, since the wavelets are localized both in space and scale, connection
coefficients vanish when two of the three wavelets are separated either in
scale or space. Hence, only a small number of terms in the convolution are
significant. Secondly, the method can, more easily than collocation, handle
adaptive description of the fields, i.e. the convolution can be restricted to
the significant components of the flow [150].

Let us mention that at the moment in both methods [40, 85] the nonlinear
term is computed by a collocation method on a regular grid. This aspect
will be improved in the near future.

1.6.3.4 The boundary conditions

Boundary conditions are in general included in the definition of the spaces
(Vj)j∈Z when constructing the multi-resolution analysis. The simplest and
most popular (due to the development of Fourier spectral methods) are pe-
riodic boundary conditions for which periodic wavelets, in one or several
dimensions, can be easily constructed [148]. For Dirichlet, or Neumann
boundary conditions, compactly supported bases have recently been con-
structed in one dimension [42], [139], [140], and these bases are also associ-
ated to fast orthogonal wavelet transforms, like for the periodic case. They
can easily be included in some of the previous algorithms, since the exten-
sion to cubic domains in several dimensions is trivial using tensor products
of wavelets (in practice all two-dimensional orthogonal wavelet bases are
tensor products, which raises the problem of the lack of isotropy).

One should also mention the existence of divergence-free wavelet bases [116],
[115], which can be used for the velocity-pressure formulation of Navier–
Stokes equation (1.1) and automatically take into account the incompress-
ibility condition. This approach has been used for the linearized Navier–
Stokes equations, the Stokes problem [174].

1.6.4 Numerical results

To illustrate the previously described adaptive wavelet methods we present
some numerical results for two different cases, i.e. a strong nonlinear in-
teraction of three vortices and a decaying turbulent flow. For comparison a
classical pseudo–spectral method serves as a reference. Furthermore in order
to study statistically stationary turbulent flows we discuss results computed
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with a recently developed wavelet based forcing method [74]. In all com-
putations presented below the method of [84] using cubic spline wavelets of
Battle–Lemarié type have been used.

1.6.4.1 Three vortex interaction

As a prototype for vortex merging we consider the strong nonlinear inter-
action of three Gaussian vortices [166]. For details on the numerical sim-
ulation we refer the reader to [166]. The initial condition is given by the
superposition of two positive and one negative Gaussian vortices, ω(x, y) =∑3
i=1Ai exp (−((x − xi)2 + (y − yi)2)/S2

i ) with amplitudes A1 = A2 =
−2A3 = π and variance Si = 1/π. The maximum resolution of the com-
putation corresponds to a finest scale J = 8 which is equivalent to 2562

possible degrees of freedom. As threshold for the adaptive method [84] we
used ε = 10−6, i.e. only wavelet coefficients with absolute value larger than
ε have been computed.

In figure 1.9 we show the vorticity field for the reference pseudo–spectral
method and the adaptive wavelet method with the corresponding computed
wavelet coefficients (dark entries) at for instants, t = 10, 20, 30 and 40.
We observe that during the interaction high frequency components are pro-
duced, which is directly reflected in the active wavelet coefficients. For the
initial condition only about 3 % of the wavelet coefficients, the strongest
ones. At later times the number of active coefficients increases to 20 %, i.e.
we still have a compression of a factor 5. The comparison of the vorticity
fields with the pseudo–spectral method, see figure 1.9, shows no signifi-
cant difference. If we look at the energy spectra at t = 40 we can observe
quantitatively that all relevant scales, in particular the small ones, are well
resolved. However, as the fine resolution is only required locally, the number
of degrees of freedom has in comparison to the pseudo–spectral method been
reduced by a factor 5.

Let us mention that at the moment both existing adaptive wavelet meth-
ods [40, 84, 85] are not yet more efficient in terms of computing time than a
classical, well-optimized, pseudo–spectral method. In principle the adaptive
wavelet methods have a computational complexity of order Nad, where Nad

denotes the number of the degrees of freedom adapted to the solution. In
comparison the pseudo–spectral methods are of O(Nreglog2Nreg) complex-
ity, where Nreg denotes the number of degrees of freedom on the regular
grid. The actual numerical cost depends directly on the constant multi-
plying the order term. At the moment this factor is rather high for the
adaptive wavelet methods. For simulations at moderate resolutions, such
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Fig. 1.9. Simulation of the merging of three vortices at times t = 10, 20, 30, 40.
(a) Vorticity field, reference pseudo–spectral method. (b) Vorticity field, adaptive
wavelet method. (c) Wavelet coefficients used in the adaptive wavelet method.
(d) Comparison of Fourier energy spectra for the pseudo–spectral and adaptive
wavelet methods (note that the two curves are essentially identical).
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as 1282 or 2562, the adaptive wavelet methods cannot yet outperform the
classical spectral methods.

1.6.4.2 Decaying turbulence

For the computation of decaying turbulence one typically uses a statistical
initial condition, generated by means of Gaussian random numbers and im-
posing a given energy spectrum. Here we used a broad band spectrum of
the form E(k) = ck2/(k0

6 + k6) exp(−k2/kν
2) with k0 = 10 and kν = 80.

The constant c has been chosen such that the total kinetic energy was equal
to 1/2. The maximal resolution was 2562 numbers of degrees of freedom,
with ν = 10−3. Using a classical pseudo–spectral method we calculated
the solution up to t = 4 corresponding to 12 initial eddy turn-over times.
The resulting vorticity field, exhibiting coherent structures and a smooth
spectrum with an inertial range, was then taken as initial condition for the
adaptive wavelet calculation and therefore we assigned the time t = 0. The
threshold for the wavelet coefficients was ε = 5 10−5. In figure 1.10 we give
an example of the vorticity field at t = 2 for the pseudo–spectral method
and the adaptive wavelet method with the corresponding wavelet coefficients
which have been computed. As observed in the case of the three vortices
the wavelet solution does not exhibit a visible difference with respect to the
spectral method. However, out of the total 2562 wavelet coefficients, only
about 20 % have been used during the calculation of the solution. The en-
ergy spectrum also does not deviate significantly from the reference, thus
we may conclude that all scales are well-resolved with only 1/5th of the
possible degrees of freedom. We should mention that the resolution of the
present calculations with 2562 is fairly small. Since for higher resolutions,
larger Reynolds number flows can be computed the compression rate of the
wavelet representation will increase due to the greater intermittency of the
flow. Therefore the impact of adaptive wavelet methods will become partic-
ularly attractive for high Reynolds number flows.

1.6.4.3 Wavelet-forced turbulence

The numerical simulation of turbulent flows has been performed considering
two different regimes: either the decaying regime, where the flow is excited
initially and its evolution is computed without any forcing, or the forced
regime, where the flow is excited in such a way that it reaches a statisti-
cally steady state for which the dissipation must be compensated by the
forcing. The advantage of the decaying regime is that it depends only on
the flow’s intrinsic nonlinear dynamics, with the hope of thus observing a
universal behaviour. The problem with this method is that it never reaches
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Fig. 1.10. (a) Vorticity field of the decaying turbulence simulation at time t = 2
for the reference pseudo–spectral method. (b) The vorticity field at t = 2 for the
adaptive wavelet method. (c) The Fourier energy and enstrophy spectra for the two
methods. (d) The corresponding wavelet coefficients used by the adaptive wavelet
method.
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a statistically steady state because energy or enstrophy tends to decay in
time. The advantage of the forced regime is that the turbulent flow reaches
a statistically steady state, but this state depends on the kind of forcing
performed [13], which precludes a universal turbulent behaviour.

Classically, two forcing schemes are used [13] which both operate in Fourier
space. Either a negative dissipation within a given wavenumber band, with
a complex amplification coefficient which depends on the wavenumber, or a
white or coloured noise in time with a prescribed isotropic spectral distribu-
tion, strongly peaked in the vicinity of a given wavenumber, with random
phases. For both schemes the choice of the wavenumber band represents that
part of the energy spectrum where the baroclinic instability has a significant
growth rate. Neither of the two schemes is a satisfactory model because they
inject energy and enstrophy locally in Fourier space and therefore non-locally
in physical space. This forcing mechanism is neither intrinsically related to
the flow’s chaotic dynamics, nor simulates the production of enstrophy in
shear layers, which is local in physical space and therefore broad-band in
Fourier space. Another drawback of such a forcing is that the scale of the
coherent vortices produced by the nonlinear dynamics of the flow is imposed
by the scale at which the forcing is done. We have designed [74] a forcing
scheme able to excite vortices locally in physical space and as smoothly
as possible in order to avoid creating any unphysical discontinuities in the
vorticity field.

Here we apply a new nonlinear wavelet–based forcing approach, which
is triggered directly by the intrinsic nonlinear dynamics of the flow. It
has been shown that vortices produced in two-dimensional turbulent flows
correspond to the strongest wavelet coefficients of the vorticity field while
the remaining weaker coefficients correspond to the residual background
flow [73, 64, 65, 71]. Furthermore we include an artificial dissipative term
λΨ, a so-called Rayleigh friction [13], to provide an energy sink at large
scales. This is necessary because the energy injected by external forcing
tends to accumulate in the large scales due to the inverse energy cascade
characteristic of two-dimensional turbulent flows and should therefore be
dissipated there in order to reach a statistically stationary regime. Therefore
the forcing scheme we propose injects enstrophy only into the strongest
wavelet coefficients, hence in an inhomogeneous way, in order to excite the
vortices without affecting the background flow. This procedure does not
interfere with the emergence of vortices and does not impose them a scale
on them, contrarily to the Fourier forcing. The distribution and size of the
vortices depend only on the intrinsic nonlinear dynamics of the flow.

For the numerical results presented here both energy and enstrophy are
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kept steady during more than 60 eddy turn over times. Figure 1.11(a) dis-
plays the vorticity field in a stationary regime at t = 0, 6and 12, namely
neither the energy spectrum (figure 1.11c) nor the PDF of vorticity (fig-
ure 1.11d) change significantly in time. The vortices present in the initial
condition become more circular and well isolated during the flow evolution
because they are better able to withstand the mutual strain due to the ad-
ditional enstrophy injected into them. We observe that the slopes of the
spectra (see figure 1.11c) are much steeper (close to k−6) than the k−3 law
predicted by the statistical theory of homogeneous turbulence. This dis-
crepancy, as observed for other types of forcing [13], confirms the fact that
the spectral behaviour of two-dimensional turbulent flows is not universal,
but instead depends on the forcing. In figure 1.11(b) we observe that the
spatial support of the active wavelet coefficients decreases with the scale,
which reveals a strong intermittency of the flow. Consequently the vorticity
field is efficiently compressed in a wavelet basis, because only about 20 %
of the 1282 coefficients are needed to represent the flow dynamics. We also
show that the PDF of vorticity (figure 1.11b) is Gaussian for the weak val-
ues, corresponding to the background flow, and presents non-Gaussian tails
for the strong values, corresponding to the vortices.

In the work presented here, we only excite the vortices produced by the
flow’s nonlinear dynamics. We can also use the same wavelet forcing to
create new vortices by injecting enstrophy locally in the regions of the back-
ground flow where the strain becomes weaker than the vorticity, in order
to simulate the formation of new vortices by instabilities, such as Kelvin–
Helmholtz instability.

1.7 Conclusion

The main factor limiting our understanding of turbulent flows is that we
have not yet identified the structures responsible for its chaotic and therefore
unpredictable behaviour. Based on laboratory and numerical experiments,
we think that vortices (or coherent structures) are these elementary objects,
from which we may be able to construct a new statistical mechanics and
define equations appropriate for computing fully developed turbulent flows.

The quasi-singular vortices encountered in turbulent flows are, by their
nature, very rare. In fact, the Cafarelli, Kohn and Nirenberg theorem shows
that singular structures, if they exist, must be of Hausdorff measure one
in space–time. The present statistical diagnostics are low order and thus
insensitive to rare events, but the effect of coherent structures appears only
in the higher order statistics. An example of this is the fact that the low
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Fig. 1.11. Temporal evolution of the wavelet-forced turbulence simulation. (a) The
vorticity field at t =0, 60, 120. (b) The wavelet coefficients used at t =0, 60, 120.
(c) The Fourier energy and enstrophy spectra at t =0, 60, 120. (d) The PDF of
vorticity at t = 0, 60, 120.
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order structure functions follow Kolmogorov’s 1941 law (which assumes a
homogeneous structureless and non-intermittent flow), while the higher or-
der structure functions depart strongly from this law (because turbulent
flows are actually highly intermittent). To efficiently analyse the coherent
structures of turbulence one requires either a high order statistical method
or some conditional averaging.

Using a wavelet representation instead of a Fourier representation min-
imizes the restrictions on the basis functions enlarging them to Sobolev,
Hölder and Besov spaces. Moreover, the Fourier basis used by the present
statistical theory of turbulence is not the appropriate functional representa-
tion space for analysing the physical structure of a flow because it averages
over space and thus loses all spatial information. Furthermore, the Fourier
energy spectrum is sensitive to only the strongest isolated singularity in the
flow, and even then can give no information about the form or location of
this singularity. In short, Fourier space analysis is unable to disentangle
coherent structures from the rest of the flow.

The complementary simultaneous space and scale information provided
by the wavelet representation makes it an appropriate tool for identifying
and analysing coherent structures in turbulent flows. The wavelet trans-
form can be used to segment the vorticity field into coherent and incoherent
components as the first stage in a conditional sampling algorithm. Such a
segmentation method respects Galilean invariance because it is performed
on the vorticity field and not on the velocity field, which loses Galilean in-
variance. A local wavelet analysis can also give the strength and form of any
quasi-singular isolated structures, which correspond to the coherent compo-
nents, and separate them from the background flow, which corresponds to
the incoherent components.

Different wavelet techniques must be used depending on whether the flow
contains oscillating (e.g. spiral) or non-oscillating (e.g. cusp) type singu-
larities, and whether it contains isolated (e.g. a single cusp or spiral) or
dense (e.g. fractal) distributions of singularities. For example, the current
wavelet-based methods for determining the singularity spectrum of a mul-
tifractal work only if the signal does not contain oscillating singularities.
Turbulence may contain both types of singularities in either dense or iso-
lated distributions. It is therefore important to determine from the begin-
ning whether a given turbulence signal contains oscillating singularities and
how these singularities are distributed. This classification is possible using
a wavelet-based diagnostic.

In section 1.3 we reviewed the wavelet-based methods for detecting and
analysing the singular structure of a signal. We saw that these methods



66

are useful, not only because they provide new information which cannot be
obtained using other methods, but also because they formally unify a wide
range of previously disparate approaches. For instance the wavelet-based
method of calculating the structure functions unifies their analysis with the
calculation of energy spectra and the strength of local singularities. Fur-
thermore, wavelets play the role of ‘generalized boxes’ in a new form of
the standard box-counting algorithm used to estimate fractal dimensions.
This algorithm brings out the intimate relationship between structure func-
tions and multifractals. The application of these methods to turbulence is
still in its first stages, although they have already produced interesting and
stimulating new results.

In section 1.4 we showed that wavelet analysis has been an essential tool
for identifying coherent structures as phase-space regions correlated in both
space and scale, and for studying their scaling properties. Wavelet analysis
has helped to relate the intermittency of turbulent flows to the presence
of organized coherent structures, and explained why the predictions of the
statistical theory of turbulence are not verified for high-order statistics. The
wavelet representation may also be used to compute the transfers of energy
and of enstrophy between coherent and incoherent components of turbulent
flows.

In section 1.5 we reviewed several applications of wavelets and wavelet
packets to turbulence modelling. In particular, we showed that the wavelet
packet representation, associated with a maximum entropy statistical method
and a nonlinear filtering procedure, extracts the coherent structures in a
computationally efficient way. Turbulent motions are non-separable in the
Fourier representation, while a wavelet representation may be able to pro-
vide such separability. We have reasons to expect a gap in wavelet coordi-
nates between organized structures to be explicitly computed and random
background flow to be modelled by an appropriate stochastic process. This
decomposition may be the basis of a new way of numerically simulating
turbulent flows and possibly other kind of intermittent behaviour having
similar statistics.

In section 1.6 we summarized the progresses that has been made in ac-
tually computing partial differential equations in wavelet space. Numerous
promising experiments have been carried out using wavelets on Burgers’
equation in one or two dimensions, heat equation or Stokes equation in
two dimensions and Navier–Stokes equations in two dimensions. All these
experiments have shown that wavelet approaches are valid and sometimes
superior to existing numerical methods.

In conclusion, we think that the wavelet functional representation may be
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the proper tool for building a statistical mechanics of turbulence based on
the identification of elementary dynamical structures from the observational
data we have. This theory will replace the present Fourier-space statistical
theory of turbulence which is based on the symmetries of the Navier–Stokes
equations. We are now convinced that the Navier–Stokes equations are not
the practical model equations to compute large Reynolds number flows. In-
deed in this limit, there is probably some symmetry breaking associated with
the production of coherent structures out of the random background flow.
This is precisely the difference between a statistical theory and statistical
mechanics!

Turbulence research is a kind of tragi-comedy—tragic due to its military
(atomic bomb, missiles, reentry vehicles) applications—and comic because
at each generation we seem fated to rediscover old ideas. For instance,
our understanding of dissipation and turbulence modeling is the same as
what Richardson was suggesting 66 years ago when he wrote ‘Diffusion
is a compensation for neglect of detail. By an arbitrary choice we try to
divide motions into two classes: (a) Those which we treat in detail. (b)
Those which we smooth away by some process of averaging’ [160], and the
program we develop corresponds to the prescription for turbulence research
proposed 48 years ago by Dryden when he wrote: ‘It is necessary to separate
the random processes from the non-random element’ [54].

Wavelets, as a new mathematical tool, will certainly bring new insights
to evaluate current methods and we hope that they will lead to a better
understanding of turbulent flows. But, knowing the past difficulties encoun-
tered in this field, we should not be overly optimistic, nor should we over-sell
wavelets. As Robert Sadourny likes to say ironically: ‘Wavelets? You mean
this new approach which will waste another 20 years of turbulence research!’.
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