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Abstract – A major difficulty in computing engineering flows at high Reynolds number is the need for non-uniform grids adapted to solid boundaries that
may be moving or changing shape. These non-uniform grids are expensive to calculate and cannot be used with the most accurate or efficient numerical
schemes. We present one solution to this problem: a Brinkman (volume) penalization of the obstacle which allows an efficient pseudo-spectral method
to be used to solve the Navier–Stokes equations on a Cartesian grid. Although this is the most severe test of the penalization (due to the global support
of the Fourier basis), it is shown that the method still yields reasonable results. We also present an analytical solution of Stokes flow calculated using the
penalization which illustrates the error and continuity properties of the approach. Work is currently underway to implement the penalization approach
in a wavelet basis. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The computation of moderate Reynolds number flow without subgrid-scale models is possible for simple
geometries (such as periodic boundary conditions or channel flow) due to the implementation of highly
efficient and accurate spectral methods. These simulations are useful to investigate the fundamental physics
of turbulence, but they are not able to calculate flows of engineering interest. For such flows (which may
include complex geometries and moving or deforming solid boundaries) spectral methods cannot be used since
the calculational grid must follow the shape of the obstacle (to implement the no-slip boundary condition) and
should be refined near the solid boundaries to resolve the boundary layer (whose thicknessδ decreases like
Re1/2). Such unstructured grids can only be used with less efficient and less accurate methods, such as finite
elements. In addition, the cost of recalculating the grid to follow the movement and deformation of the obstacle
is usually prohibitive.

An alternative approach to calculating flow around complex geometries is to retain the simple grid and
accurate numerical method and instead change the equation. This is the essence of the ‘penalization’ (or
fictitious domain) methods where an extra term is added to the Navier–Stokes equations which ‘penalizes’
flow in the solid region (volume penalization) or at the solid boundary (surface penalization). Such a method
(called the ‘immersed boundary approach’) was first used by Peskin [1] to model flow around heart valves,
and in modified form by Goldstein et al. to model flow two-dimensional flow around a cylinder [2] and by
Goldstein and Tuan to calculate three-dimensional channel flow over a ribbed surface [3]. Saiki and Biringen
[4] used Goldstein’s method to investigate the transition to turbulence of flow past a sphere in a boundary layer.
In this approach the presence of the solid boundary is simulated by adding an appropriate force field to the
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flow. The penalization approach appeared promising, but the precise form of the penalization was always ad
hoc, often based on a mechanical model to add a body force to cancel the flow at the solid boundary. Because
of the the ad hoc nature of the penalization, it was difficult to estimate the error of the method theoretically.
In addition, the penalization usually involved an iterative scheme that is conceptually complicated (although
relatively straightforward to implement numerically). For example, Goldstein’s method required solving an
iterative feedback scheme to enforce the no-slip boundary condition. Such iterative schemes make mathematical
analysis of the method difficult.

Other indirect ways of enforcing boundary conditions include: adding a force at the boundary at each time
step such that velocity is neutralized to second-order [5], and interpolating the velocity at the boundary using
Lagrange polynomials that satisfy the no-slip condition [6].

A new penalization has recently been introduced by Angot et al. [7] following Arquis and Caltagirone [8]
which is based on the Brinkman law for flow in a porous medium. Essentially, one models the flow as a porous
medium, where the permeability is infinite in the fluid part and tends to zero in the solid part. The porosity
is maintained constant in the solid. The permeabilityK of the ‘solid’ is then controlled by a small parameter
ε: K ∝ 1/ε � 1. The main advantage of this method is that Angot et al. [7] have rigorously shown using
asymptotic analysis that the solution of the penalized equationsuε converges to the solution of the Navier–
Stokes equations with the correct boundary conditionsu asε→ 0 with a well-controlled global error of O(ε3/4).
This means that the penalization can be used with confidence, and the error can be chosen as small as desired,
merely by using an appropriate value forε. This rigour (and the fact that it is a volume rather than a surface
penalization) distinguishes the Brinkman penalization from other penalization methods. The penalization term
is also extremely simple: one adds a term which is−1/εu in the solid and zero elsewhere.

In this paper our goal is to make a first step towards the use of spectral (and eventually wavelet) methods for
computing the solution of complex flows. More precisely, we would like to show that using the Brinkman
penalization method it is possible to perform stable and accurate computations of incompressible viscous
flow past an arbitrary obstacle using a classical pseudo-spectral method based on a Fourier decomposition.
Because of its global support, the Fourier basis is not well-adapted to non-smooth functions (e.g. discontinuous
functions produce Gibbs oscillations) and thus if the penalization produces reasonable results with the pseudo-
spectral method it should work well for any other method (e.g. a wavelet method with whose basis functions
have compact support). Apart from its exponential convergence properties (for smoothC∞ functions), the
pseudo-spectral method is interesting because of its ease of implementation in two or three dimensions and its
applicability to problems with periodic boundary conditions.

The paper is organized as follows. Section 2 presents the theory of the penalization and an analytic solution
of Stokes flow. This calculation illustrates the error and smoothness of the penalization solution near a solid
boundary. Then in section 3 we describe how the penalization is implemented in a two-dimensional pseudo-
spectral numerical code. Some results of applying a spectral and second-order finite difference code to the
Stokes flow problem are also presented. The results of applying the penalized code to a selection of test
problems for cylinder arrays are presented in section 4. These problems are relevant to flow past tube bundles in
the heat exchangers of steam generators. Finally, the advantages and disadvantages of the method are discussed
and perspectives for future research are suggested in section 5.

2. Theory

2.1. Brinkman penalization

Let us consider a viscous incompressible fluid governed by the Navier–Stokes equations
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∂u

∂t
+ u · ∇u + ∇P = νu, (1)

∇ · u = 0. (2)

We focus here on the case where the fluid occupies the complement in the planeR2 of a periodic lattice of
obstaclesOi (seefigure 1). The boundary conditions associated with this problem are therefore:

u isQ-periodic, Q=]0,L1[× ]0,L2[, (3)

u = 0 on∂Oi,∀i. (4)

When a Fourier Galerkin method is used to compute the solution of (1)–(4), the solution is decomposed as

u(x1, x2, t)=
∑
k∈Z2

uk(t)exp
[
i2π

(
k1x1

L1
+ k2x2

L2

)]
, (5)

and the obstacles are defined by the boundary condition (4), which is impossible to implement for arbitrary
obstaclesOi .

In order to use the Fourier decomposition (5) for arbitrary obstacles we replace (1)–(4) by the following set
of penalized equations

∂uε

∂t
+ uε · ∇uε + ∇Pε = νuε − 1

ε
χ0uε, (6)

∇ · uε = 0, (7)

uε isQ-periodic, (8)

and now (6) and (7) are to be satisfied in the whole planeR2. Hereε > 0 is a penalization coefficient andχ0

denotes the characteristic (or mask) function

χ0(x, t)=
{

1 if x ∈Oi,
0 otherwise.

(9)

As ε→ 0, it was proved theoretically by Angot et al. [7] that the solutions of the penalized equations (6) to (8)
converge to that of the Navier–Stokes equations with the correct boundary conditions (1)–(4). More precisely,
the upper bound on the global error of the penalization for steady flow was shown to be [7]

‖u − uε‖ � Cε1/4. (10)

Figure 1. Periodic lattice of obstacles.
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This penalization has been implemented in a finite difference code by Khadra et al. [9] for flow around a
cylinder and was found to give very good results. In fact, the actual error was slightly better, O(ε). It is
important to note thatε is an arbitrary parameter, independent of the spatial or temporal discretization, and thus
the boundary conditions can be enforced to any desired accuracy by choosingε appropriately. This property
distinguishes the Brinkman method from other penalization schemes and allows the error to be controlled
precisely.

Another advantage of the Brinkman penalization is that the forceF i acting on an obstacleOi can be found
by simply integrating the penalization term over the volume of the obstacle (see [10,11] for details):

F i = 1

ε

∫
Oi

udx. (11)

Thus, the calculation of lift and drag on an obstacle can be made simply, accurately and at very low cost. (This
result can be found by integrating the penalized Navier–Stokes equations and noting thatu andu · ∇u are
negligible in the solid part.)

2.2. Penalization in two dimensions

Note that the penalization applies equally to one, two or three dimensions. In this paper, however, we focus on
two-dimensional flow, and hence we would like to use the efficient vorticity-stream function (ω−ψ) form of the
Navier–Stokes equations. We have chosen this formulation since it is more efficient than the primitive variables
formulation in two dimensions, and is thus the standard choice for two-dimensional turbulence simulations. It
is also a tough test for the penalization approach since the penalization term becomes the curl of a Heaviside
function (which is singular). If the method gives reasonable results in this case, it should work even better for the
primitive variable formulation in two and three dimensions. In addition, we plan to implement the penalization
in an adaptive wavelet code (which relies on a large compression of the vorticity field), so we need to ensure
the method works on the vorticity equation.

The penalized form of the vorticity equation is

∂ω

∂t
+ J (ψ,ω)= νω− 1

ε
curl(χ0curlψ) (12)

−ψ =ω, (13)

where we have set

J (ψ,ω)≡ ∂ψ

∂x1

∂ω

∂x2
− ∂ψ

∂x2

∂ω

∂x1
, (14)

curlψ ≡
(
∂ψ

∂x2
,− ∂ψ
∂x1

)
, (15)

curlv ≡
(
∂v

∂x2
− ∂v

∂x1

)
. (16)

Of course if(ψ,ω) solves (12) and (13) thenu = curlψ solves (1)–(4) for a suitable pressure functionPε.

This formulation is preferred for at least two reasons. First, the incompressibility equation (2) is
automatically satisfied, and we do not need to compute the pressure. Secondly, in the context of two-
dimensional flows, the vorticity is the physically relevant variable whose size and shape are directly related
to the physical phenomenon involved (instabilities, drag, lift, etc.).
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We have limited our investigations here to the Fourier decomposition and two-dimensional flows. Extensions
to (i) wavelet decomposition, and (ii) three-dimensional flow are currently under way and will be reported
elsewhere (see also section 5 of this paper).

2.3. Application to Stokes flow

To help understand what the penalized approximation to the solution of the Navier–Stokes equations looks
like near a solid boundary we consider the simple case of Stokes flow. Stokes solution describes a uni-
directional flow accelerated impulsively from rest and bounded by an infinite flat plate parallel to the flow.
The velocity of the flow must be zero at the surface of the plate, and thus the flow develops a typical ‘boundary
layer’ shear profile that progressively diffuses vorticity into the interior of the flow. In this case the Navier–
Stokes equations become

∂u

∂t
= ν ∂

2u

∂x2
2
, (17)

whereu = u1(x2, t), u(x2,0) = 1, u(0, t) = 0 andx2 � 0 (note that we consider the lower half-plane to be
solid). It is assumed that the flow remains uni-directional (i.e. that no instabilities develop). The above equations
can be easily solved, giving

u(x2, t)= erf
(
x2√
4νt

)
, (18)

where erf is the usual error function: erf(z)≡ 2√
π

∫ z
0 e−s2 ds.

The force on the wall is given by

(
∂u

∂x2

)∣∣∣∣
x2=0

= ∂

∂x2
erf

(
x2√
4νt

)∣∣∣∣
x2=0

= 1√
πνt

. (19)

Now, the penalized approximation to Stokes flow is given by

∂uε

∂t
= −1

ε
H(−x2)uε + ν ∂

2uε

∂x2
2
, (20)

whereH(x) is the Heaviside function,uε(x2,0)= 1 anduε(·, t) is defined on the entire planeR2 (see e.g. [12]).
We solve the penalized equation using the Laplace transform,

z(x2, α)=
∫ ∞

0
e−αt uε(x2, t)dt. (21)

Taking the Laplace transform of (20) (lettingν = 1/2 for simplicity) we obtain the following equations,

αz=




1

2
z′′ − βz+ 1, x2< 0,

1

2
z′′ + 1, x2> 0,

(22)
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with boundary conditionsz(0+)= z(0−), z′(0+)= z′(0−), where the prime indicates the derivative with respect
to x2 andβ = 1/ε. The solution of the above equations is

z=



Ae−|x|

√
2(α+β) + 1

α + β , x < 0,

Be−x√2α + 1

α
, x > 0,

(23)

with

A=
√
α+ β − √

α√
α(α+ β) , B = −√

α+ β + √
α

α
√
α+ β .

Taking the inverse Laplace transform of (23) and substitutingβ = 1/ε we find

uε(x2, t)= e−t/ε
[
erf

(−x2√
2t

)
+ 1

π

∫ 1

0

exp
(
ty/ε− 1

2t
x2

2
1−y

)
√
y
√

1− y dy
]
, x2< 0, (24)

uε(x2, t)= erf
(
x2√
2t

)
+ 1

π

∫ 1

0

exp
(−ty/ε− 1

2t
x2

2
1−y

)
√
y
√

1− y dy, x2> 0. (25)

Note that the first term on the right-hand side of (25) is the exact solutionu(x2, t), and therefore the second
term is the error.

We observe that forx2> 0, i.e. in the fluid, the error satisfies

0� uε(x2, t)− u(x2, t)�
1

π

∫ 1

0

1√
y
√

1− y dy = 1. (26)

Hence, ∫ ∞

0

∣∣uε(x2, t)− u(x2, t)
∣∣2 dx2 �

∫ ∞

0

∣∣uε(x2, t)− u(x2, t)
∣∣dx2 =

√
ε

2
erf

(√
t

ε

)
. (27)

Moreover, integrating the above expression with respect to time, we find,

1

T

∫ T

0

∫ ∞

0

∣∣uε(x2, t)− u(x2, t)
∣∣2 dx2 dt �

√
ε

2

[(
1− ε

2T

)
erf

(√
T

ε

)
+

√
ε

πT
e−T/ε

]
. (28)

This shows that the error between the exact and the approximate solutions in the fluid is of the order of
√
ε.

Angot et al. [7] (Theorem 4.2) have proved that in general this error is bounded byCε1/4, which is consistent
with our computations for the particular case of Stokes flow.

Concerning the asymptotic behaviour ofuε, asε→ 0 (as in the penalization approximation), whenx andt
are fixed, the integrals (24) and (25) can be estimated as

uε(x2, t)� ex2
√

2/ε
(√

ε

πt
+ e−t/ε

)
, x2< 0,

uε(x2, t)≈ erf
(
x2√
2t

)
+

√
ε

πt
e−x2

2/(2t ), x2> 0.
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The above results can be generalized to arbitrary viscosityν, giving

uε(x2, t)� ex2/
√
νε

(√
ε

πt
+ e−t/ε

)
, x2< 0,

uε(x2, t)≈ erf
(
x2√
4νt

)
+

√
ε

πt
e−x2

2/(4νt), x2> 0.
(29)

Equation (29)1 shows that the velocity decreases exponentially fast inside the solid and is thus evanescent. The
‘skin-depth’ inside the obstacle is O(ε1/2). This is consistent with the physical basis of the penalization since
the solid is modelled as a porous obstacle with permeabilityK ∝ 1/ε, and the thickness of the boundary layer
inside a porous obstacle is O(K1/2). Thus, to numerically compute the force on an obstacle, one need only
calculate the evanescent flow near its surface. This result has important implications since it means that an
adaptive method (e.g. wavelet-based) need not resolve the entire volume of the obstacle, only a thin shell near
its surface.

Both uε andu′
ε are continuous atx2 = 0, while u′′

ε is discontinuous. At the boundary the velocity and its
gradient take on (at leading order) the following values,

uε(0, t)=
√
ε

πt
+ O(ε),

∂uε

∂x
(0, t)= 1√

πνt

(
1− e−t/ε

)
. (30)

Note that the error in the gradient at the surface of the obstacle is exponentially small. The fact that the solution
has continuityC1 at the boundary (but is smooth elsewhere) should help in choosing an appropriate numerical
method.

In the penalization method the force on an obstacle is calculated by an integration over its volume. We
calculate the force by integrating (20) from−∞ to 0 (i.e. over the solid) which leads to:

d

dt
Fε + 1

ε
Fε = 1

ε

∂uε

∂x
(0, t)= 1

ε

1√
πνt

(
1− e−t/ε

)
.

This equation has the solution

Fε(t)= Ce−t/ε + e−t/ε
∫ t

0
es/ε

1

ε

1√
πνs

(
1− e−s/ε)ds, (31)

whereC is a constant. Since we are interested in the limitε→ 0 with t fixed, we neglect the first term. The
integral in (31) can be evaluated, giving

Fε(t)= e−t/ε
(

1√
εν

erfi
(√

t

ε

)
− 2

ε

√
t

πν

)
,

where erfi(x)= −ierf(ix). Again, we neglect the second term and approximate the first term for larget/ε using

erfi(x)= ex
2

√
π x

(
1− 1

2

1

x2
+ O

(
1

x4

))
,

which gives the following expression for the penalized approximation to the force,

Fε(t)= 1√
πνt

(
1− ε

2t
+ O

(
ε2)). (32)
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Note that the error in the force compared with the exact result (19) is O(ε), i.e. much smaller than the error in
the boundary condition (which is is O(ε1/2)).

Although Stokes flow is linear and uni-directional, it generates a solution to the three-dimensional Navier–
Stokes equation. One might naturally ask whether the situation described above is exceptional or gives some
indication of the general solution to the Navier–Stokes equations. It can be argued that in the evanescent layer
of thickness O(

√
ε) near a smooth boundary, the flow is approximately linear (since the convective terms

become negligible with respect to the diffusive and penalized terms) and parallel to the boundary. Thus the
results obtained above for the error and behaviour of the penalized solution should also hold for most three-
dimensional flows.

An important result of this section is that even though the boundary condition is enforced to O(ε1/2) by
the penalization method, the error in the force on the obstacle is only O(ε) (see (32)). The shear stress at the
boundary is perhaps the most physically important quantity, and (30) shows that its error is exponentially
small. Furthermore, the error in the velocity decreases rapidly away from the boundary (see (29)). Taken
together, these results suggest that overall the Brinkman penalization may be expected to give better than
O(ε1/2) accuracy (indeed Khadra et al. [9] found numerical evidence for O(ε) accuracy in two-dimensional
flows). Finally, we concluded that an adaptive numerical method need only calculate the fictitious flow inside
the obstacle to a skin-depth of O(ε1/2).

3. Numerical method

3.1. Pseudo-spectral scheme

We use a standard pseudo-spectral method on a rectangular domain with periodic boundary conditions to
discretize (12) (see, e.g. [13] for details). This means that derivatives are calculated in Fourier space, while
products are calculated by returning to physical space. The diffusion term∂2ω/∂x2 is integrated exactly in
time (by solving the diffusion equation in Fourier space), while a 2nd-order Adams–Bashforth scheme is used
for the rest of the right-hand side. The resulting scheme is

ω̂n+1 = ω̂ne−νk2t + 3

2
tĝne

−νk2t − 1

2
tĝn−1e−νk22t, (33)

wherek = (k1, k2) is the wavenumber,k = |k|,t is the time step and

ĝ(k)= −Ĵ (ψ,ω)+ i

ε

(
k1

̂
χ0
∂ψ

∂x1
+ k2

̂
χ0
∂ψ

∂x2

)
. (34)

Note that the first term on the right-hand side is the Fourier transform of the Jacobian, while the second is the
Fourier transform of the penalization. Thus the maskχ0 is applied to derivatives of the stream function (the
velocity) in physical space and the product is then transformed back to Fourier space.

Because the Fourier series is truncated, the wavenumbers are bounded as−N1/2 � k1 �N1/2 = k1 max and
−N2/2 � k2 � N2/2 = k2 max whereN1 andN2 are the numbers of grid points in thex1 andx2 directions.
Note that the grid is uniform. In order to avoid the creation of scales too small to be resolved on the grid (i.e.
wavenumbersnkmax, n= 2,3,4, . . .) by terms involving products, the vorticity is de-aliased at each time step
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by truncating in wavenumber space using the 2/3-rule,

ω̂(k, t)=



0 if
( k2

1
2/3N1

)2 + ( k2
2

2/3N2

)2 � 1,

ω̂(k, t) if
( k2

1
2/3N1

)2 + ( k2
2

2/3N2

)2
< 1.

(35)

Working in theω–ψ formulation is computationally efficient in two dimensions. However, the vorticity is
less smooth than the velocity (in fact we expect thatω ∈ C0). Thus, this application is an extreme test of the
general applicability of the penalization method, since spectral methods are poorly adapted to functions with
strong gradients (although they have been used to calculate shocks, usually with some form of high wavenumber
filtering [14]).

The explicit time scheme used here has the drawback of linking the time stept and the penalization
parameterε. Since the problem is stiff and we use an explicit method, we requiret ∼ ε to ensure numerical
stability. This is a drawback, although in practise we are able to use a sufficiently small value,ε ≈ 10−3. In
the following section we use a Krylov sub-space method (which allowsε to be chosen independently oft) to
investigate the convergence properties of the pseudo-spectral method in the case of one-dimensional channel
flow (similar to the case discussed in section 2.3).

3.2. Analysis of pseudo-spectral method for channel flow

In this section we investigate the numerical properties of the pseudo-spectral method for the Brinkman
penalizationby applying it to the one-dimensional primitive equation(20) for uni-directional channel flow.
Because of the simplicity of the equation, and the availability of analytic solutions for both the penalized
equations and the physical equations, this is an ideal problem for studying the convergence properties of the
numerical method. So thatε may be varied independently oft we employ a GMRES Krylov sub-space
method in time (see [15] for a discussion of the Krylov method). The Krylov method has the advantage that it
is stiffly stable for linear problems and the order of the method can be easily changed by changing the dimension
of the Krylov subspace.

The physical problem is similar to the Stokes flow considered in section 2.3, except that the flow is now
bounded by two parallel walls. If the flow is assumed to remain uni-directional the velocity can be easily
calculated (see [16]),

u(x2, t)= 2u0

π

∞∑
n=1

1

n
exp

(
−n2π2 νt

d2

)
sin

(
nπx2

d

)(
1− (−1)n

)
, (36)

whereu= u1, u0 is the initial velocity, andd is the width of the channel. (Note that this flow can be calculated
on a periodic domain.) For short times and near the walls (while the velocity is close tou0 in the centre of the
flow) the solution of the associated penalized equations is given by (29) appropriately shifted and scaled.

Because we are using the penalized equations, rather than the Navier–Stokes equations there are in fact two
types of error. The first type of error is the pure numerical error associated with solving the penalized equation
numerically. The second error is the ‘net’ physical error which is a combination of the numerical error and the
penalization error. Because we know both the exact solution of the penalized equations (given by (29) for small
times) and the exact solution of the physical problem (given by (36)) we can quantify both sources of error
separately.
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Figure 2. Error as a function of number of grid-pointsN for optimum choice ofε = xp . — pseudo-spectral,− · − 2nd-order finite difference,
- - - N−2.

We found that the convergence ofL1 error of the pseudo-spectral method compared to the solution (36) was
only linear withx, except for a special relation betweenε andx (ε=x2.3 for the pseudo-spectral method
andε=x3 for the finite difference method) which lowered the error to O(x2). However, the convergence of
the error compared to the exact solution of the penalized equations was always linear. Although the convergence
of the physical error is only linear in general (consistent with theC1 continuity of the penalized solution) the
actual error is quite small (10−3 for 128 points), and there is no sign of Gibbs oscillations.

A second-order finite difference method was also applied to the same problem, and showed similar
convergence properties. The main difference was that the actual physical error was approximately twice as
small as for the pseudo-spectral method. The error results for spectral and finite differences are shown in
figure 2for the optimal relation betweenx andε.

These results suggest that in general the overall error of the pseudo-spectral method should be between linear
and quadratic, and that Gibbs oscillations should not be important. Of course, in two dimensions we use the
ω−ψ formulation which might be expected to have some Gibbs oscillations and a slightly higher error (since
vorticity is less smooth than velocity). The nonlinear term might make some difference, although it should
not be important in the boundary layer near the surface of the obstacle. In the following section the numerical
results for the two-dimensional simulation are compared with results from laboratory experiments.

4. Results

4.1. Widely separated cylinders

In order to check that the pseudo-spectral method applied to the Brinkman penalization gives reasonable
results we first apply it to the case of widely separated cylinders in long rectangular domains. This configuration
was chosen because it approximates an isolated cylinder for moderate times (until shed vortices exit and re-
enter the domain). The two-dimensional flow past a circular cylinder has also been calculated recently using
a formally second-order accurate immersed boundary technique by Lai and Peskin [17]. The resolution used
for the simulation is 512× 128 grid points and the physical dimensions are 20× 5 cylinder diameters. The
transition to vortex shedding atRe= 200 (based on cylinder diameter and mean flow velocity) is shown in
figure 3. The simulation shows clearly the growth of the instability and the establishment of a regular vortex
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Figure 3. Development of vortex shedding around a single cylinder atRe= 200. Resolution is 512× 128 and positive vorticity is red, negative vorticity
is blue. Note that some Gibbs oscillations are present, but they do not appear to grow in time or perturb the flow.

shedding regime. Note that some Gibbs oscillations are present around the cylinder, but these are small in
amplitude and do not grow or perturb the rest of the flow. It appears that the oscillations are benign, as was
observed by Goldstein et al. [2] who used a different penalization method with a pseudo-spectral scheme to
calculate flow around a cylinder. The Strouhal vortex shedding frequency calculated from the oscillating lift
force isSt= fD/U∞ = 0.218, which is within 10% of the value ofSt= 0.195 found by Williamson [18] for
a truly isolated cylinder.
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Figure 4. Forces on single cylinder as a function of time: — without smoothing, - - - with smoothing: (a) dragCd ; (b) lift Cl . Note that smoothing the
edge of the cylinder significantly increases the drag and lift, although the vortex shedding frequency is not affected greatly.

The Gibbs oscillations, although benign, are unphysical and it would be better to eliminate them. To do this
we tried smoothing the edge of the maskχ0 over seven grid points. The smoothed cylinder generated much
smaller oscillations, but also had increased drag and lift (and a slightly smaller Strouhal number) than the non-
smoothed case, seefigure 4. This suggests that smoothing the edge of the cylinder changes the physics of the
flow–obstacle interaction significantly. We are, in effect, calculating the flow around a slightly ‘fuzzy’ cylinder
(a tennis ball?). In any case, we will see in the following section that at higher Reynolds numbers the Gibbs
oscillations become completely negligible.

In this section we have seen that the combination of Brinkman penalization with the pseudo-spectral method
gives reasonable results for the well-understood case of an isolated cylinder. In the following section we
investigate the industrially important, but more complicated case of closely spaced periodic arrays of cylinders.

4.2. Closely spaced square cylinder arrays

The case of flow through closely spaced periodic cylinder arrays is important for many industrial
applications, e.g. flow around nuclear fuel rods, flow past heat exchange coils in steam generators. At moderate
to high Reynolds numbers the flow past cylinder arrays can generate strong oscillating forces that can destroy a
heat exchanger if these forces are close to the resonant frequency of the tubes. It is thus important to understand
how such forces arise, and how they vary in different tube configurations. One important question is how the
flow regime changes as a function of the angle of incidence of the mean flow with respect to the axis of the tube
array. Because of its periodic boundary conditions, the pseudo-spectral method is ideally suited to investigating
flow in tube bundles. Although this flow is important industrially, it has received little attention from the fluid
dynamics community.

We consider only the simplest case of a single fixed cylinder per period in two-dimensional flow. The case of
elastic cylinders is under investigation, and is particularly easy to implement with the penalization scheme (the
mask changes in position and form in response to the flow forces). Note that it is generally believed that the
flow in tube bundles remains largely two-dimensional (even at high Reynolds numbers) because of the close
packing of the tubes and because cylinder oscillations tend to correlate the fluid motion along the array axis.
For this reason a two-dimensional simulation should give useful results in this case.

The cylinder array considered here is a square array where the pitch to diameter ratio is fixed atP/D = 1.5
(seefigure 5). The cylinder is fixed and there is one cylinder per periodic cell (which limits the largest flow
structures). Two cases are considered: in-line (mean flow along the axis of the cylinder array) and rotated
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Figure 5. Configuration of periodic cylinder arrays.

(mean flow along a diagonal of the array). To apply the mean flow a uniform velocity (i.e. a nonzerok = 0
Fourier mode) is added at the desired angle. These two cases were chosen because experimental results suggest
they produce very different flow regimes [19], and there is some controversy over the precise nature of vortex
generation in each regime.

The flow through the two cylinder arrays (in-line and rotated) were calculated at 23 Reynolds numbers (based
on cylinder diameter and mean flow velocity) in the range 10� Re� 4000. At eachRe� 1000 the de-aliased
resolution was adjusted so that there are at least 4 points across the boundary layer (Re−1/2/(3/2x)� 4) and
from 1000< Re� 4000 we ensured the thatRe−1/2/(3/2x) � 2. This criterion was checked using a grid
refinement study at low Reynolds number, and ensuring the error in the RMS (root mean square) drag was less
than 2.5%. The maximum resolution used was 288× 288 and the minimum resolution was 128× 128. In all
simulations we setε = 10−3. To save computer time the instability was triggered by slightly oscillating the
cylinder at the beginning of the simulation. Drag, lift, vorticity and Strouhal number were measured for each
flow. Since there are many different shedding frequencies at higher Reynolds numbers, the Strouhal number is
defined using the peak of the lift force frequency spectrum.

A typical snap-shot of the flow through the in-line array atRe= 1000 is shown infigure 6(a). The flow has
a characteristic jet shear-layer structure, and there is no sign of vortex shedding behind the cylinders. However,
it appears that vortices are generated by a shear-layer instability at the edge of the shear-layer between the
cylinders. The overall form of the flow and the generation of vorticity via a shear-layer instability is also
seen in the laboratory experiment of Ziada and Oengören [20] reproduced infigure 6(b). In contrast, the flow
past the rotated array (seefigure 6(c)) exhibits a completely different flow regime. The flow is characterized
by the periodic generation and shedding of vortices from the cylinders, and the region between the cylinders
resembles two-dimensional turbulence (with strong vortex–vortex interactions). The production of vorticity
in the rotated array is the same as in an isolated cylinder. The vortex shedding observed here is qualitatively
similar to that seen in laboratory experiment of Weaver et al. [21] shown infigure 6(d). It is clear that the flow
regimes are completely different for the in-line and rotated square arrays, even though the Reynolds numbers
are identical. Thus, our numerical results confirm the experimental observations of different mechanisms of
vortex generation in in-line and rotated square arrays made by Ziada and Weaver. The precise nature of vortex
generation mechanisms in cylinder arrays was previously unclear.

The plots of vorticity in the in-line and rotated arrays showed very different mechanisms of vorticity
generation at the same Reynolds number. Since vortex shedding is the main source of force on the cylinder
one would expect different values of drag, lift, and Strouhal frequency for in-line and rotated arrays. The RMS
drag, RMS lift, RMS vorticity (spatially and temporally averaged) and the Strouhal frequency are shown as a
function ofRe in figure 7. As expected, the RMS drag is significantly higher in the rotated square array after
aboutRe= 40. Not much data is available on RMS drag in closely spaced cylinder arrays, but the value 2.3
quoted by Price et al. [22] for an in-line array in the range 1.7 × 103 � Re� 105 is in reasonable agreement
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Figure 6. Vorticity in closely-spaced square cylinder arrays (copied four times for clarity): (a) Vorticity in in-line square array atRe= 1000. Note
the presence of jet-like structures and the apparent absence of vortex shedding. Vortices appear to be generated by shear instability along the jet shear
layer. (b) Laboratory photograph of jet shear layer in in-line array withP/D = 1.75 andRe= 730 [20]. (c) Vorticity in rotated square array (copied
four times for clarity) atRe= 1000. The vorticity structure is completely different from that of the in-line array: many small vortices are produced in
the boundary layer and shed downstream. The flow between the cylinders is reminiscent of two-dimensional turbulence. (d) Laboratory photograph of
vortex shedding in a rotated square array withP/D = 1.5 andRe= 967 from Weaver et al. [21]. The vortex shedding mechanism and vortex scale are

similar to that observed in (c).

(note that the drag does not appear to depend on Reynolds number in this range). The RMS lift is also higher,
and lift develops earlier in the rotated array (atRe= 60 compared toRe= 100). The plots of vorticity suggest
that more vorticity is produced in the rotated array, and this is indeed borne out byfigure 7(c). The Strouhal
frequency as a function of Reynolds number is shown for the in-line and and rotated arrays infigure 7(d).
The Strouhal frequency for the rotated array is higher than that of the in-line array until aboutRe= 500. The
shaded region indicates the range of values found experimentally for different tube rows by Price et al. [22] for
a rotated square array. Note that the numerical results are within the experimental range untilRe= 500. This
may indicate that the three-dimensional effects become important atRe= 500 (note that this is much later than
for an isolated cylinder where three-dimensional effects become important aroundRe= 180).
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Figure 7. Forces and Strouhal number as a function of Reynolds number for the in-line (squares) and rotated square (triangles) arrays: (a) RMS drag
compared with laboratory value stated for the range 1.7 × 103 � Re� 105 by Price et al. [22]; (b) RMS lift; (c) RMS vorticityω; (d) Strouhal vortex

shedding frequencySt= fD/U∞ compared with laboratory values (region indicated by dotted line) for an rotated square array [22].

In summary, in-line arrays produce vorticity as a shear-layer and vortices are generated by a shear-layer
instability, whereas rotated square arrays produce vorticity by vortex shedding as in the case of an isolated
cylinder. The unsteady forces on the cylinder are much stronger for the rotated array. The numerical results
compare well with available quantitative and qualitative experimental data.

5. Summary and conclusions

The suitability of simulating flow through an array of solid obstacles at moderate Reynolds number using
a pseudo-spectral code with Brinkman penalization has been investigated. The Brinkman penalization was
introduced by Angot et al. [7] based on the Brinkman equation for flow through a porous medium. Angot et
al. [7] have shown analytically that the solution of the penalized equation converges to that of the Navier–
Stokes equations with the correct boundary conditions when the penalization parameterε→ 0. The advantage
of penalization methods is that the way of introducing solid boundaries is independent of the numerical method
and grid used. To test the limits of this method we applied it to pseudo-spectral simulation of flow through a
periodic array of cylinders in two dimensions using theω−ψ formulation. This is perhaps the most extreme test
of the penalization since the Fourier basis has global support (which means it is poorly adapted to non-smooth
functions) and the vorticity is a derivative of the velocity (and is therefore less smooth). If the penalization
method works reasonably well in this application, then we would expect it to perform acceptably with any
numerical method.
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To understand analytically the properties of the penalized solution we considered the problem of impulsively
started uni-directional flow over a flat plate (Stokes flow). In this case the penalized equations can be solved
analytically. It was determined that the velocity isC1 at the solid boundary (the velocity and its gradient
continuous, but its second derivative is discontinuous). The error in satisfying the boundary condition is O(ε1/2),
but the error compared to the exact solution is very small at a finite distance from the boundary. In addition,
the velocity inside the solid decreases exponentially away from the boundary (it is evanescent) and is only
significant to a skin-depth O(ε1/2). The error in the force on the obstacle is only O(ε) and, surprisingly, the
error in the shear stress at the wall is exponentially small, O(exp(−t/ε)). The properties of the solution near the
boundary in general three-dimensional flows is expected to be similar. These results suggest that the Brinkman
penalization should give very accurate simulations of the flow around obstacles. Numerical solution of the
equations for uni-directional channel flow (the periodic equivalent of Stokes flow) showed linear convergence of
theL1 error withx for both 2nd-order finite difference and pseudo-spectral methods. However, we observed
a form of quadratic ‘super-convergence’ for the particular relationε ≈ x2.5−−3. Although the order of the
pseudo-spectral method is in general only linear, the absolute value of the error is quite small (10−3 for 128
points) and there is no sign of Gibbs oscillations.

The penalization method was then applied to a pseudo-spectral simulation of two-dimensional flow through
cylinder arrays. This problem was chosen because it is well-adapted to the pseudo-spectral method (due to its
periodic boundary conditions) and because it is technologically relevant (to heat exchangers). The physics of
periodic cylinder arrays have also not been extensively studied by the fluid mechanics community. The first
configuration considered was widely separated cylinders in long domains. This configurations approximates
isolated cylinders for moderates times and allows comparison with well-established results. The periodic
shedding of vortices atRe= 200 was observed an the Strouhal number was within 10% of that observed
for a truly isolated cylinder in a laboratory experiment.

The next configuration considered was a closely spaced square array of cylinders with a pitch to diameter
ratio of 1.5. This configuration is similar to that of heat exchanger tubes in steam generators, and has been
extensively studied by mechanical engineers [19]. We considered the case where the tubes are fixed (they do
not deform or move in response to the fluid forces). Two different cases were considered: in-line (mean flow
along the array axis) and rotated (mean flow along the array diagonal). Experiments have suggested that these
two cases have very different flow regimes. The penalized two-dimensional vorticity–stream function pseudo-
spectral code was solved at a Reynolds numbers in the range 10� Re� 4000 for both cases. We confirmed
that the in-line and rotated arrays have different flow regimes at the same Reynolds number. In particular, the
form of vortex generation is different. In the in-line array vorticity is present in the form of jet shear-layers,
and vortices are generated through a shear instability at the inner edge of the shear layer. In the rotated array,
however, vortices are generated by periodic shedding off the cylinder boundary (as in the case of an isolated
cylinder). Consequently, the rotated array has significantly higher lift and drag at the same Reynolds number
and the flow becomes turbulent (i.e. characterized by coherent vortices and vorticity filaments) at a lower
Reynolds number. RMS drag for the in-line array agrees well with high Reynolds number experiments, while
the Strouhal frequency for the rotated array agrees well up toRe= 500. These results suggest (as commonly
believed) that the forces generated in closely spaced cylinder arrays are largely two-dimensional in origin.

The penalization method allows the obstacles to move or deform over time with no additional complication
of the code. This property should allow us to truly model fluid–structure interaction by allowing the cylinders
to move or deform in response to fluid forces. This addition to the code is now under investigation.

In the two-dimensional calculations we used a Adams–Bashforth method in time for the nonlinear term, and
this enforced the relationε ∼t . Ideally,ε should be varied independently oft (that is one of the advantages
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of the penalization), and the stiffly stable Krylov method used for the one-dimensional flow allows this. We are
currently implementing the Krylov method in the two-dimensional code.

A major advantage of the pseudo-spectral method is that it is easy to implement in three dimensions. The
passage from two to three dimensions is straightforward and will be undertaken soon.

The fact that the penalization method has proved useful, even when applied to such a poorly adapted
numerical method, indicates that Brinkman penalization should be useful for a wide variety of flows and
numerical methods. In particular, this study is seen as the first step in developing a wavelet-based method
for the calculation of high Reynolds number flows in complex geometries. Wavelets have the advantage of
compact support (and are thus better suited to functions with strong gradients), and adaptivity in space and
scale (one uses a uniform grid, but only calculates wavelet coefficients at the positions and scales that are
active). The implementation of the Brinkman penalization to wavelet simulations is currently being studied.

The present investigation has shown the potential of the Brinkman penalization for accurate simulation of
flow through complex geometries, and has suggested many directions for further work. The combination of
penalization with wavelet methods have the potential to allow high Reynolds number simulation of turbulent
flow in actual engineering configurations without turbulence modelling.
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