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Collaborative testing of eddy structure identification methods in free turbulent
shear flows

J. P. Bonnet, J. Delville, M. N. Glauser, R. A. Antonia, D. K. Bisset, D. R. Cole, H. E. Fiedler, J. H. Garem, D. Hilberg, J. Jeong,
N. K. R. Kevlahan, L. S. Ukeiley, E. Vincendeau

Abstract The thrust of this paper is to validate, test and
compare several Coherent Structure eduction methods utiliz-
ing the same data base. The flow chosen was that of an
experimental study of a plane, incompressible, fully developed
turbulent two-stream mixing layer. The mixing layer was
chosen as the data base because it has been studied extensively
from a coherent structures point of view. In addition, its
characteristics (similarity, convection velocities, etc.) are well
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documented. There are also no wall effects so that comparisons
between techniques are simplified. The data was collected from
hot wire rakes with good spatial resolution thus allowing the
contributors to apply and test different structure eduction
techniques. The techniques chosen for discussion and used
here have found wide utilization over the past decade, and all
hold forth the promise of extensive application in the future.
These include: Conditional Sampling (Vorticity-based and
other methods); Wavelets; Pattern Recognition Analysis;
Proper Orthogonal Decomposition; Stochastic Estimation;
Topological Concept-based methods; Full Field Methods (e.g.,
pseudo flow visualization). All are illustrated by application to
the mixing layer data base, and comparisons made between the
results. This common study has shown that direct comparisons
between results of several methods are now possible. Good
quantitive and qualitative agreement between the different
methods have been observed as well as some differences noted.
As an example, the size of the averaged structures computed
from the various methods compare to within 6 percent.

1
Introduction
The existence and crucial role played by large-scale, organized
motions in turbulent flows are now recognized by industrial,
applied and fundamental researchers alike. It has become
increasingly evident that coherent structures influence mixing,
noise, vibrations, heat transfer, drag, etc. Two tasks which
experimentalists or numerical analysts are faced with are: (1)
how can these structures be separated from the background
turbulence and (2) how can their averaged characteristics (in
the more probable or dominant role sense) be determined?
These tasks are non-trivial because the coherent structures are
generally embedded in a random field and the technique used
to determine when and where certain structures are passing or
present is directly related to the definition of the coherent
structures. Several methods for structure identification are
available and the choice of a particular one can be dependent
on the desired information. The choice depends not only on
the definition of the structure, but also on the experimental and
numerical capabilities available. For example, from an experi-
mental point of view, some approaches require multiple
sensors in order to obtain simultaneous instantaneous in-
formation at several spatial locations. Other approaches,
however, only require knowledge at one or at most a few spatial
locations. Moreover, it is necessary to choose the optimal
experimental configuration in order to characterize the struc-
tures. The problem is equivalent to trying to find the simplest
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(minimum) probe arrangement that gains maximum signifi-
cant information about the structures. It is also related to the
complexity of the organization of the flow and, in most cases,
requires simultaneous three-dimensional measurements of the
flow variables such as velocity. Certainly one can state, without
question, that the recent rapid advances in, for example, data
collection, flow simulation, instrumentation, digital data
processing, and increased computational, graphical and stor-
age capabilities of computers have resulted in an exponential
increase in the application of various methods.

Recently, it has become clear that the different techniques
available for the identification of eddy structures are in
a mature enough state to justify comparisons between them.
There is an obvious need for direct collaborative efforts to
identify common features of the various techniques and to
address some of the following questions:
z What is the state of the art of structure identification?
z How do these approaches work?
z What kind of information can be obtained from the various

methods: instantaneous results, vorticity, averages, statistics,
etc.?

z How do the results from different techniques compare with
one another?

z What are the new directions in detection methods, and,
correspondingly, what are their implications for turbulent
flow analysis and prediction methods?

Results of collaborative effort2 to address these issues are
presented in this paper. The bulk of the results included here
were obtained by the six participating laboratories before
the Poitiers workshop. However, additional studies had to
be performed to improve comparisons between results, the
reliability of the results, and, to a lesser extent, to provide
additional information. Hence, a post-workshop effort was
necessary to bring the material into publishable form.

The thrust of this paper is to validate, test and compare
several CS eduction methods utilizing the same data base. The
flow chosen was that of an experimental study of a plane,
incompressible, fully developed turbulent two-stream mixing
layer. The mixing layer was chosen as the data base because
it has been studied extensively from the coherent structures
point of view. In addition, its characteristics (similarity,
convection velocities, etc.) are well documented. There are also
no wall effects so that comparisons between techniques are
simplified. The data was collected from hot wire rakes with
good spatial resolution thus allowing the contributors to apply
and test several different structure eduction techniques. It is
necessary to have the rakes of probes with sufficient resolution
if the purpose of the experiment is not simply to facilitate
taking large quantities of single point data, but rather to
understand the flow’s large scale spatial and temporal
structure.

A variety of detection or analysis methods (both multi
and single-point) are now available or are in various stages

2The results presented here were initiated at a workshop held on
October 15 and 16, 1992 in Poitiers under the ERCOFTAC label
(European Research Community On Flow, Turbulence and Combus-
tion).

of development. The following list gives the main methods
discussed here: Conditional Sampling (Vorticity-based and
other methods); Wavelets; Pattern Recognition Analysis;
Proper Orthogonal Decomposition; Stochastic Estimation;
Topological Concept-based methods; Full Field Methods (e.g.,
pseudo flow visualization). Detailed descriptions of these
methods can be found in several reference papers (see for
example Adrian 1975; Antonia 1981; Glauser and George 1992;
Lesieur 1993; Berkooz et al. 1993; Hussain 1993; Kevlahan et al.
1993; Udine 1994) to appreciate the need for these techniques
one must understand the character of high Reynolds number,
often turbulent, motions. As modern full Navier-Stokes
computer simulations have made clear, knowing the data at
many points in the flow does little in and of itself to make clear
what is happening because of the chaotic nature of the flow.
The key to understanding usually lies in what is done to the
data to bring the underlying structure to the foreground. The
techniques chosen for discussion and use here have found wide
utilization over the past decade, and all hold forth the promise
of extensive application in the future. All will be illustrated by
application to the mixing layer data base, and comparisons will
be made between the results.

It is now well known that two main types of flow organiza-
tion exist in mixing layers, a quasi-2D spanwise aligned vortex
tube with streamwise aligned vortices superimposed on them.
It has been proposed (Pierrehumbert and Windall 1982)
that the same flow phenomena govern the turbulent mixing
layer as its laminar counter part (i.e., pairing, amalgamation,
tearing, etc2). The visualizations of Brown and Roshko
(1974) are widely recognized as being the first to identify the
large scale spanwise vortex structure in the plane mixing layer,
while Konrad (1976) and Breidenthal (1980) seem to have
shown the first strong evidence of the streamwise aligned
vortices. Several theories based on instabilities, such as Kelvin
Helmholtz, have been developed to explain the formation and
evolution of the primary (spanwise) and secondary (stream-
wise) vortical structures and are described in reviews by Ho
and Huerre (1984) and Liu (1989). It appears now that, at the
current level of understanding of the turbulent mixing layer, it
is necessary to study the dynamics of the streamwise structures
and their interactions with the better understood spanwise
structures.

Bernal and Roshko (1986) conducted a visualization study to
examine the streamwise aligned vorticity. In particular they
studied their origin, interaction with the spanwise vorticity
and their role in the development of the mixing layer. These
authors described the streamwise streaks as warped vortex
lines connecting two adjacent spanwise vortices. They found
that the streamwise structures originated from a Reynolds
number dependent instability of the spanwise vortices. The
mean spacing of the streamwise structures was found to be 0.67
when normalized by the local mean spacing of the spanwise
vortices and was also found to be independent of velocity ratio.
Bernal and Roshko postulated that the streamwise vorticity
plays a large role in the mixing process because it entrains
unmixed fluid into the cores of the spanwise vortex tubes. It
was also shown that the smaller scale secondary structures
embedded in the spanwise rollers did not destroy the ‘‘coher-
ence’’ of the spanwise rollers. They concluded that, although
the three-dimensionality of the structure plays an important
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role in the development of the mixing layer, the dynamics of
the large scale vortices are by and large two-dimensional.

The spanwise structure in the two-dimensional mixing layer
was examined by Browand and Troutt (1980). They used a rake
of 12 hot-wires across the span of the wind tunnel. Computer
visualizations of the instantaneous hot-wire outputs showed
that the large scale structures extended across the wind tunnel
and that there was some spanwise irregularity. They inferred
from this that the spanwise irregularity is related to interac-
tions between adjacent vortices. Browand (1986) sums up some
of the findings from several flow visualization experiments.
One of the conclusions presented was the need for theoretical
models. He proposed that the large scale motions behave as
a dynamical system with relatively few degrees of freedom. He
further speculated that the turbulent mixing layer exhibits
chaotic behavior in both space and time. This appears to be the
first suggestion that a dynamical system model may prove
fruitful in the turbulent mixing layer.

Lasheras et al. (1986, 1988) and Lasheras and Meiburg (1990)
experimentally studied the initial conditions which trigger the
instabilities that generate the streamwise aligned structures.
The shear layer examined was generated by a flat plate with
a small amplitude sinusoidal perturbation in the spanwise
direction. Lasheras et al. (1986) determined that streamwise
vortex tubes were formed from the stretching of weak
perturbed vorticity in the braids of the Kàrmàn vortices (i.e.
the two-dimensional spanwise vortical structures). The forma-
tion of these vortex tubes was determined to be uncoupled with
the formation of the spanwise tubes, yet further downstream
they coupled through convective instabilities to form ‘‘an array
of spanwise vortices tangled with the counter-rotating pairs
of axial vortices.’’ In Meiburg and Lasheras (1988), it was
found that the redistribution, reorientation and stretching
of the spanwise vorticity led to counter-rotating pairs of
three-dimensional streamwise vortex tubes consistent with
Lasheras’s earlier work. Strong streamwise vorticity was found
to form only in the downstream half of the braids due to the
free stagnation points forming close to the ‘‘downstream
roller’’.

Bell and Mehta (1992) conducted an experimental study to
establish ‘‘quantitatively’’ the presence and role of the second-
ary vortical structures in the mixing layer. They postulated that
the streamwise structure originated from streamwise vortices
in the upstream boundary layer. They found the circulation of
the streamwise vortices to be 10% of that of the spanwise
vortices. Also, they found that the vortices initially appeared in
groups of three, then unwrapped to form a row of alternating-
sign streamwise vortices consistent with the findings of
Meiburg and Lasheras (1988). They showed evidence of the
streamwise vortices in the self-similar region although their
strength was decaying. It was concluded that one of the major
effects of the streamwise vortices was to produce higher
Reynolds stress values.

Moser and Rogers (1993) studied a temporally evolving
simulated turbulent mixing layer for evidence of coherent
structures. They found that there is a fundamental difference
between the coherent structures found in the self-similar
(asymptotic) region and those found in the transitional region
or the laminar counterpart. They observed that in this region
there were neither pairings nor rib vortices. Their results

showed that the turbulence in the braid region is qualitatively
the same as that in the roller. These results strongly disagree
with the findings of the flow visualization results. They
proposed a possible explanation that the experiments have
stronger two-dimensional disturbances than those that would
arise from the receptivity of the splitter plate tip. Their findings
show that a model for the mixing should not be based on the
quasi two-dimensional structure, as has been done in the past,
since their only dynamical significance appears to be that they
create a strain and rotation-dominated region and do not
influence the growth rate of the mixing layer.

All of these studies clearly show that the mixing layer
provides a rich environment for the examination of coherent
structures. Moreover, they also indicate that much work is still
necessary to further our understanding of their role in this
flow. It is evident that the various structure identification
techniques utilized need to lead to an understanding of the
dynamics of the structures. This step is particularly important
if the ideas of coherent structures are to be implemented for
prediction and control.

A brief overview of the techniques implemented for this
collaborative study follows. The goal here is to articulate in an
integrated fashion what each technique requires for applica-
tion. In addition we wish to explain what can be gleaned
from their application to further our understanding of coher-
ent structures and their use for prediction and control.
Descriptions of the individual techniques are included in their
respective sections. Some of the techniques discussed require
vectorial information from multiple sensors; whereas others
may only require scalar (single velocity component for
example) information at one or, at most, a few positions.

The Pseudo Flow Visualization (PFV) techniques, developed
for quick and simple visual analysis of raw data from hot-
wire rakes, utilizes the instantaneous signal from all sensors.
Essentially, instantaneous velocity profiles at each time step are
plotted. Following the evolution of these profiles in time gives
a sense of the structure in the flow.

Various conditional methods utilize a range of the informa-
tion given. These methods allow one to determine the average
structure (most dominant in some sense as dictated by the
particular approach). The Houston group describes an ap-
proach based on the Vorticity-Based Conditional Technique.
A simpler version of this approach has been applied by the
Newcastle group to detect small scale structures with intense
spanwise vorticity. The dominant large scale structures are
detected with the Window Average Gradient or WAG method
(Bisset et al. 1990). The Delocalized Condition Sampling
(Poitiers group) takes advantage of the multi-point data to
perform structure detection. This method allows the user to
automatically decide optimum detector placement, a distinct
advantage over single-point conditional techniques.

It is not obvious how to integrate most of these methods into
dynamical models for prediction and control. Perhaps one
exception is the vorticity-based education scheme used by the
Houston Group. It may be possible through a conditionally
averaged equation, derived from the Navier-Stokes equations,
to address the dynamics of physically occurring structures
in the flow although to date such an approach has not been
implemented. However, this concept can be directly related to
the results obtained from LES (Ha Minh 1994).

199



Data from a minimum of two points is necessary for various
applications of POD and LSE in turbulent flows. The POD has
the advantage that a basis set is provided from which equations
for the dynamics of coherent structures can be derived (see
Aubry et al. 1988). Such a POD based low-dimensional
dynamical systems approach for the mixing layer studied here
is presently under development jointly by the CEAT/LEA in
Poitiers (see Delville 1995) and by Clarkson University (see
Ukeiley 1995). Information from all the probes is typically
required if the phase (time dependence) of the POD structures
is desired. However, as demonstrated in this paper, by using
LSE in combination with POD (i.e., the Complementary
Technique), the phase is obtainable with only two-point
information. The Complementary Technique is possible since
LSE successfully uses the conditional information specified
about the flow (here the instantaneous velocity vector) at a few
locations in conjunction with the two-point velocity correla-
tions in order to estimate the instantaneous velocities through-
out the entire flow. The Complementary Technique also
provides a novel way for verification of POD based low-
dimensional models.

The Wavelet Transform as introduced by Grossman and
Morlet (1984) provides a mathematical tool which is capable of
providing simultaneously both a wave-number and a physical
space analysis. This is of particular importance when dealing
with homogeneous and/or stationary directions in flows.
Traditional Fourier analysis leads to basis functions (the
dilated sine waves) which are perfectly localized in wave-
number space but delocalized in physical space, a result which
is not consistent with our concept of coherent structures (see
Tennekes and Lumley 1972). The wavelet transform, on the
other hand, preserve some degree of localization in both
physical and wave-number space. The wavelet transform was
applied by the Cambridge group to single-point time series
from the multi-point data base. An interesting extension of this
would be to apply the wavelet transformation to several of the
cross-stream probes and examine the inhomogeneity from
a wavelet point of view. Recent work of Higuchi et al. (1994)
shows the utility of the wavelet transform for studying the
dynamics of structures although the dependence of the results
on the selection of the particular wavelet basis needs careful
study.

Although not directly used here, Pattern Recognition
Techniques (see Mumford 1982; Ferré et al. 1993) have been
used as part of some structure identification schemes. The
vorticity-based method and the conditional POD method
use the Pattern Recognition concept to guide the selection
of events. In addition, a topological analysis (see Perry and
Chong 1986) has been applied to the data base by the Berlin
group.

The remaining part of the paper is organized as follows.
We first provide a description of the data base and its
characterization by standard methods. The different ap-
proaches for structure eduction and/or analysis are then
presented, and the corresponding results are given and
discussed in their respective sections. A final section is
devoted to a critical and comparative examination of the
results and performances of the various techniques. Some
prospective suggestions are then made based on these
comparisons.

2
Description of the data bases and global characterization
A brief description of the flow and of the measurement
procedure is presented. Selected single point statistics are
provided. The Pseudo Flow Visualization technique, topologi-
cal analysis and conventional spectra are used to give some
sense of the structural character of the data base.

2.1
Experimental configuration

2.1.1
Measurement apparatus and experimental procedure
The measurements are performed using multi-probe hot wires.
Specially designed rakes of hot-wires have been built at the
C.E.A.T. by Delville et al. (1989). These rakes can be aligned
either in the inhomogeneous direction (Y) or in the spanwise
direction (Z). The hot wires (W-Pt) are 0.5 mm long and
2.5 lm in diameter. T.S.I. 1750 anemometers with band-
widths greater than 50 kHz are used. The probes are home-
made subminiature probes, with a control volume of
1]1 mm2, and are embedded in a probe holder built from
a printed circuit board. The resulting rakes have a frontal
area of 1.6 mm in thickness, which minimizes their perturba-
tions of the flow. The signals are simultaneously sampled
at a maximum rate of fs\100 kHz per channel with syn-
chronized 12 bit A/D converters (one ADC per channel). An
analog separation between mean and fluctuating voltages
is performed to minimize quantization. The adjustment of
the gains and the low-pass filtering frequency ff of the signals
is performed automatically under control of a micro-
computer. Details on the probes and associated electronics
are given in Bellin (1991) and Delville et al. (1993). Hot wire
calibration is performed in a separate jet facility. The wire
rake calibration takes into account temperature drift. An
extended King’s law: e(t)2\(Tw[Tf ) (a]bv(t)n) was used
(Bruun 1995), where e(t) is the anemometer output voltage,
Tw is the constant temperature of the wire and v(t) is the
instantaneous velocity. The coefficients a, b, n as well as Tw
were determined by a regression procedure. For the calibration
of the rake of X-wires, 9 yaw angles a were used over the range
of [30° to 30°. In this case, the coefficients a and b become
dependent on a(t) so that an iterative procedure is used for
each time step.

2.1.2
Flow configuration
The data are obtained from experiments performed in the fully
developed region of a two-dimensional subsonic plane mixing
layer with no streamwise pressure gradient. The two stream
with velocities of Ua\42.2 m s~1 and Ub\25.2 m s~1 merge
at the trailing edge of a splitter plate with a velocity ratio
r\Ua/Ub\0.59. An open loop wind tunnel is used. The veloc-
ity difference between the flows DU\Ua[Ub is created by
head-loss devices located upstream of the separating plate. The
turbulence level in the external parts of the mixing layer is less
than 0.3%. The two boundary layers at the trailing edge have
conventional thicknesses (d99) of 9.6 and 6.3 mm and are fully
turbulent. The test section is square (300]300 mm2) and
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Fig. 1. Experimental configuration for the
mixing layer experiment

1200 mm long. The reference frame in Fig. 1 is defined as
follows: y, the direction normal to the plate (y\0 on the
mixing layer axis and y\0 in the low velocity side); Z,
the direction parallel to the trailing edge of the plate. The
corresponding velocity components are u, v and w, respective-
ly. dw is the vorticity thickness.

The self-similar region for the mean values begins at
x\300 mm. Previous studies (Delville et al. 1987; Bellin 1991)
have shown that the mixing layer behaves as expected from the
literature, i.e., spreading rate p\43.15. Here the spreading rate
is introduced by considering the mean longitudinal velocity
profiles, in the self similar region:

uN (x, y)\Ub](Ua[Ub)(1[0.5 erf(py/x))

In Fig. 2a, the mean longitudinal velocity profiles, measured at
10 longitudinal locations, are presented normalized. This value
of p can be compared to the one corresponding to the step
flow:

p\p0
1]r
1[r

For the present velocity rate p0 is found to be 11.33, very close
to 11, the value given by Liepmann and Laufer (1947) for
example. The integral scales h (momentum thickness) and dw
(vorticity thickness), measured in the self similar region, are
plotted on Fig. 2b. The linear growth of the mixing layer is
evident. The ratio dw/h is around 4.88 and close to the value of
5 found by Browand and Ho (1983). Turbulent longitudinal,
normal and shear stress profiles measured at X\600 mm from
the trailing edge of the plate (where most testing has been
performed) are shown plotted in Fig. 3. In this plot, the
quantities measured by a single X-wire are compared with
those obtained by using the hot-wire rake.

2.1.3
Data set
The measurements are performed in the self-similar region of
the mixing layer. The data-base is collected from a rake of
Np\12 X-wire probes aligned in the Y direction at a down-
stream position of x\600 mm. A characteristic scale, about
the size of the large quasi two-dimensional vortices in the plane
mixing layer, can be defined from the inflectional mean
velocity profile uN (y) by the velocity thickness dw. In this case,
the rake extent is of the order of 2dw, where dw is the vorticity
thickness:

dw\DUNA
LuN
LyBy/0

and DU\Ua[Ub

Fig. 2. a Normalised mean longitudinal velocity profiles measured at
10 longitudinal locations in the self preserving region of the mixing
layer (300 mm\X\1000 mm from the trailing edge of the plate);
b Downstream evolution of momentum thickness h and vorticity
thickness dw

The vorticity thickness is of the order of 30 mm (five times the
probes separation DY). Probes 1, 2 and 3 are located in the
external low velocity part; and probes 10, 11 and 12 are in the
high velocity external part. Probes 4 to 9 are located in the
mixing zone of the flow.

Table 1 summarizes the main characteristics of the experi-
ments.

Two sampling frequencies were used, fs\10 kHz or
100 kHz, with corresponding low pass filtering frequencies
of ff\5 and 20 kHz, respectively. The time record lengths
of the data are 819 200 time steps (more than 80 s) for the
low sampling frequency and 10 240 time steps for the high
sampling frequency (about 0.1 s). These time record lengths
correspond to about 290 000 and 36 integral time scales,
respectively.
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Table 1. Main characteristics of
the experiments Probes Flow characteristics

Np Spacing (mm) Location (mm) x (mm) du(mm) Ru\DUdu/l

12 DY\6 y\[33, [27,2 , 33 600 27.8 34 000

Fig. 4. Example of pseudo-flow-visualization. Dark gray areas
matches to negative fluctuations and light gray areas to positive ones.

Raw v@ plots ( fs\100 kHz)

Fig. 3. Turbulent reynolds stress measured at X\600 mm from the
trailing edge. u@2, v@2 and u@v@. —Single X wire measurement d rake
measurement

In order to allow direct instantaneous comparisons to be
made, a short selected sample was chosen from the experiment
sampled at 10 kHz. The sample starts at a given time t0; and its
length is 128 time steps, corresponding roughly to about five
times the typical period Tp associated with the passage of
structures (see Sect. 2.4). In order to allow for comparison
between some of the applications of the different methods, we
arbitrarily define a convention velocity Uc as Uc\0.5(Ua]Ub).
The validity of this value can be disputed (Zaman and Hussain
1984); but, for the sake of uniformity, this value has been used
by each contributor. We will denote x* the spatial coordinate
corresponding to the application of Taylor’s hypothesis.

2.2
Pseudo Flow Visualizations (PFV)
The use of dense rakes of probes combined with high speed
simultaneous sampling is a way to determine accurately the

space—time evolution of the flow field (Glauser and George
1992), at least for the large scale organization of the flow. The
use of the instantaneous reconstruction to analyze the behavior
of the flow is not a new idea. Townsend (1979) and Browand
and Troutt (1985) applied this concept to the instantaneous
velocity profiles or time histories to help in analyzing the
behavior of the flow. Delville et al. (1989) applied this approach
to velocity signals in order to create ‘‘pictures’’ of the flow. The
Pseudo-Flow-Visualization (PFV) technique allows one to
simply handle a large amount of data, highlighting the large
scale organization of the flow by simply considering the raw
velocity signals. This approach can be compared with conven-
tional experimental visualization techniques but avoids the
problems due to seeding effects. Here the velocity field itself is
considered as a ‘‘marker’’ of the flow. To get information on
the spatial organization in the X direction, Taylor’s hypothesis
is used. Figure 4 gives some examples of such PFV’s obtained
from the Data Base. A more detailed description of the
potential of this technique can be found in Bellin et al. (1993).

2.2.1
Global organization of the flow
The large scale organization of the flow can be characterized
by the uz\[Lu/Ly]Lv/Lx component of the vorticity. The
footprint of this vorticity can be analyzed by considering the
distribution of this quantity in the (x*, y) plane. Simpler
analysis can be performed by looking only at the time histories
of the u or v component of the velocity in the (x*, y) plane.
Then considering variations in the y direction of the u com-
ponent or the variations in the x* direction of the v component
will provide information on the large scale organization. Such
a typical visualization is shown in Fig. 4, where the quantity
v(y, t) is taken from the experiment with a sampling frequency
( fs\100 kHz). This PFV is obtained by applying a very simple
coloration rule to the instantaneous velocities. The dark
grey colors represent negative fluctuations, and the light grey
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Fig. 5a–d. Pseudo-flow-visualizations for the selected sample. Dark
gray areas matches to negative fluctuations and light gray areas to
positive ones. a Iso-values of the ‘‘perturbations’’ of the longitudinal

velocity (from Hilberg); b iso-values of u@; c iso-values of v@;
d velocity vector plot

colors represent positive fluctuations. The picture obtained is
very similar to the one that might be obtained from conven-
tional smoke visualizations. The passage of quasi-periodic
large scale events are clearly evident. The period of occurrence
of these patterns closely matches the peak-frequency fp
measured from the velocity spectra, as will be discussed in Sect.
2.4. The presence of tiny slanted links between the patches is
evident. These links are very similar in shape and size to the
braids.

2.2.2
Results on the selected short sample
Figures 5a—d show several PFV’s applied to the selected
sample. Within these plots, time goes from left to right and x*
from right to left after using Taylor’s hypothesis. The colora-
tion rule used in these PFV’s is based on the same concept as in
the previous visualizations (light grey is positive, dark grey is
negative). However, in order to add information about the
intensity of the gradients, a saw-tooth rule is superimposed. In
Fig. 5a, due to Hilberg (Bonnet et al. 1993), the width of the

bins for the u component is selected to be very narrow in order
to visualize the perturbations mainly at large scale (Delville
et al. 1989). In the mixing zone, the variation in time and space
of the velocity makes it difficult to distinguish any pattern.
In the external irrotational parts of the mixing layer large
perturbations of fluid can be identified, suggesting the pres-
ence of braids. The PFV’s shown plotted in Figs. 5b and
c correspond to the u@ and v@ local fluctuations respectively,
while Fig. 5(d) shows vector-plots of the instantaneous velocity
field (uN ]u@, vN ]v@), with the convective velocity Uc subtracted.
In addition, the uz contours and the instantaneous sectional
streamlines are plotted for the selected sample, using the
approach of Bisset and Antonia (see Sect. 7).

From these various representations, the notion of large scale
structure convected by the mean flow is clearly evident.
The main organization of the flow can be thougt of as the
succession of quasi spanwise aligned vortices convected by
the mean flow. When structures are passing at fixed location,
the v component of the velocity tends to evolve in phase over
the mixing layer extent, introducing a global motion of fluid
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Fig. 6. Vortex areas determined by topology.
Dashed lines show approximately large
vortex regions

going alternatively towards the lower velocity side and towards
the upper velocity side. Moreover, even in the mixing zone, the
footprint of the passage of a structure remains clearly visible.
For the u component, the passage of these vortices can be
detected mostly in the external parts of the mixing layer. It
corresponds to a local increase of the velocity in the upper
part of the flow and to a decrease in the lower part. This feature
has been the basis of a large number of detection criteria
(Tso and Hussain 1989, Browand and Weidman 1976) or Sect.
4.3 in this paper. However, for the longitudinal velocity
component, the passage of the large scale structures is more
difficult to detect in the mixing zone because the change in
sign of u occurs somewhere within the structure’s life-cycle
and then is smeared by fluctuations over a wide range of
scales inside the structure itself. This general behavior is
illustrated by the results obtained for the u or v spectra
discussion in Sect. 2.4.

2.3
Topology structures
Topology theory investigates the flow field in the vicinity of
critical points, where the velocity vector c\Mu, v, wN vanishes.
At these singularities, the direction of the flow field is
indefinite. The vector field in the proximity of the singularity
with radius vector r(x, y, z) can be expressed by a Taylor series
(refer e.g. Kaplan 1958; Hunt et al. 1978; Pery and Chong 1986)
as

c\r grad(c),

where terms of higher order are neglected. The eigenvalues of
the gradient grad(c) are important for the classification of the
critical points assuming that the eigenvalues are non-zero.
Otherwise terms of higher order determine the local flow
characteristics. The non-trivial solution of the above linearized
formulation is an eigenvalue problem

(grad(c)[jdij)r\0 with rO0

where dij denotes the Kronecker symbol. For the two-dimen-
sional case, the eigenvalues are calculated by

det(grad(c)[jdij)\0 8 j2[pj]q\0

8 j1,2\12([p^Jp2[4p)

p\j1]j2\
Lu
Lx

]
Lv
Ly

and q\j1j2\
Lu
Lx

Lv
Ly

]
Lu
Ly

Lv
Lx

From the resulting eigenvalues the corresponding eigenvec-
tors, which determine the flow field in the vicinity of the critical

point, can be calculated. Classification of the topology struc-
tures is given by Hunt et al. (1978). For the plane flow, where
p\0, due to continuity, the region of a vortex point is
described by complex eigenvalues with q[0; and the domain
of a saddle point is given by the real eigenvalues with q\0. As
suggested by Dahlmann (1990), the area of a vortex structure is
encircled by the dividing line between both singularities as the
isoline, where the imaginary fractions of the eigenvalues are
vanishing. This isoline can be calculated from

p2[4q\0

so that, the enclosed region of negative argument of the root
indicates the vortex structure.

This criterion was used to determine the vortex regions in
the mixing layer. Although only the u- and v-components of
the velocity field were given, we recognized the three-dimen-
sional flow by also considering the trace p of the characteristic
matrix. All streamwise derivatives L/Lx were obtained by
application of Taylor’s hypothesis with constant convection
velocity. Figure 6 shows the results as hatched areas indicating
the vortex areas. We can see that these areas are almost
identical with the iso-vorticity planes displayed in Figure 15(a)
from Sect. 4.3. As the comparison with the vorticity plot shows,
regions of spatially correlated vorticity can be determined
better than from only the vorticity distribution since the braid
region, as a saddle point area, is not being viewed. These
so-called inner-structures are concentrated in the larger flow
patterns, or in other words, the coherent structures consist of
two or more vortex areas. Therefore, we can clearly distinguish
between vortex-free areas and regions of vortex concentration
to determine the large-scale flow patterns. In addition, the
criterion applied has the advantage that it is unequivocal in
contrast to an arbitrarily defined iso-vorticity line.

2.4
Results from spectral analysis
The footprint of the large scale vortices that are known to occur
quasi-periodically can, to some extent, be retrieved from the
temporal signals of the velocity. As seen in Sect. 2.2, this
foot-print is strongly related to the variations of the sign of the
local velocity fluctuation and will be retrieved, in a statistical
sense, from the frequency spectra distributions. The evolution
of the u and v velocity spectra across the mixing layer are
plotted on the axis and off the mixing layer axis in Fig. 7a.
Note the difference in the behavior of these spectra. For
the v component, a very well-defined narrow band peak of
frequency appears in the spectra regardless of the location
within the flow: i.e., this peak can be observed in the mixing
area as well as in the outer parts of the mixing layer. On the
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Fig. 7. a Fourier analysis of velocity components u@ and v@, on the axis
(y/dw\0) and on the middle of the mixing layer (y/dw\0.5);
b Strouhal numbers based on u and v velocity components

other hand, for the u component, a narrow band of peak
frequency can be retrieved only in the external parts of the
mixing layer. In the center of the mixing zone, the dominant
frequency is located at lower frequencies and is much more
broad band. This behavior is illustrated in Fig. 7b, in terms
of Strouhal number evolution across the mixing layer. The
Strouhal number is based on the dominant frequency fp
observed from each spectrum (corresponding to the maximum
of energy), the vorticity thickness and on the convective
velocity Uc\(Ua]Ub)/2. These frequencies, which are a priori
related to the same phenomenon, are strongly dependent on
whether the u and v velocity spectra are being observed.
Within the mixing zone (Dy/dw D\0.5) the Strouhal number
remains stable but can be quite different, depending on the
observed velocity component: 0.21 for the u component
and 0.33 for the v component. These Strouhal numbers are
comparable at the edges of the mixing layer (Dy/dwDK0.5)
where they have a value of 0.33. In the external part of the
flow (Dy/dw D[0.5), the typical frequencies for the u and
v components evolve in the same way, slowly decreasing the
farther one proceeds out from the axis of the mixing layer.
This decrease can be related to the fact that the farther one
probe out from the axis probe is from the axis, the more it
is statistically influenced by vortices of large size (smaller
Strouhal numbers).

These observations illustrate the difficulty in providing
a unique global definition of a characteristic time scale
describing the large scale behavior, particularly for the plane

mixing layer. The information obtained from spectral analysis
cannot be used for the analysis of the instantaneous behavior
of the flow due to the non-local character of Fourier analysis.
However, the evolution of the typical scales obtained in this
preliminary study shows that particular locations have to be
chosen within the flow in order to characterize the large-scale
behavior. Based on the typical frequencies obtained across the
mixing layer, a convenient and objective (in a statistical sense)
location for defining the structure’s passage could be the
mixing layer edge, where both the u and v spectra collapse.
This corresponds to the typical detection location used when
fixed detector schemes are implemented.

3
Wavelet analysis

3.1
The wavelet transform
The statistical picture of turbulence as ‘‘colored noise’’,
a collection of random velocity fluctuations with a particular
energy spectrum has been largely superseded. It is now
recognized that the phase-correlated vortical structures within
a single realization determine many properties of the turbu-
lence (e.g. peak concentrations of a pollutant spreading in
a turbulent flow). In order to understand the role of these
coherent structures in turbulence, one requires experimental
and mathematical tools capable of detecting and analyzing
such structures.

The Fourier transform analyzes the velocity signal into
delocalized sine waves of particular wavelengths, amplitudes
and phases and allows the definition of an energy spectrum;
and, by Fourier transforming the Navier-Stokes equations,
dynamical spectral quantities such as the exchange of energy
between wavenumbers may also be defined. The Fourier
transform is, however, not that well suited for analyzing the
coherent structures within a single turbulent flow because its
basis functions (the dilated sine waves) are perfectly localized
in wavenumber space; and, thus, by the uncertainty principle
they are completely delocalized in physical space. The Fourier
transform hides physical space information. In order to
understand the function of physical eddies in the energy
cascade and other turbulence processes, we require a way of
analyzing the velocity field that preserves some degree of
localization in both physical and wavenumber space.

The wavelet transformation is a mathematical tool which is
capable of providing simultaneously both a wavenumber and a
physical space analysis. Several applications of wavelet trans-
forms have been devoted to the analysis of turbulent flows (e.g.
Farge 1992, Lewalle 1994). In this section we show how the
wavelet transform may be used to detect and analyze coherent
structure in a turbulent flow. Grossman and Morlet introduced
the wavelet transform in 1984. In the wavelet transform a signal
is broken down into a family of localized ‘wavelets’ which are
obtained by translating and dilating a mother wavelet t(x) in
such a way that the wavelets remain self-similar. The parame-
ters of the wavelet transform are a location x0 for the trans-
lation and a scale a for the dilation. The wavelet is defined by

W(x, x0, a)\a~1/2tA
x[x0

a B (1)
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where the factor a~1/2 ensures that the wavelet energy
a~1:W(x, x0, a) dx0 is conserved at each scale. A function t(x)
can be a ‘mother’ wavelet if it is well localized in both physical
and wavenumber space and is admissible. The first require-
ment means that the wavelet’s spread in x-space is given by
a finite constant Dx\p, and its spread in k-space is given by
Dk\1/p (from the uncertainty principle Dx DkP1). Because
of its self-similarity, the wavelet’s spread in physical space is
pa; its spread in wavenumber space is 1/(pa); and its norm
scales like a~1. Thus, the wavelet transform resolves the small
scales finely and the larger scales more coarsely.

The admissibility requirement means that the wavelet must
satisfy

Ct\2n
=
:

~=

DtK (k) D2
dk
k

\R (2)

where tK (k) is the Fourier transform of t(x). This requirement
means that the wavelet must have zero mean and ensures that
a reconstruction formula exists for the wavelet transform.
Practically, these two conditions mean that one chooses
a mother wavelet which is an oscillating function (wavenumber
space localization) about zero with a rapidly decaying envelope
(physical space localization).

The one-dimensional continuous wavelet transform uJ (x0, a)
of a function u(x) is then defined as

uJ (x0, a)\a~1/2
=
:

~=

u(x)t*A
x[x0

a B dx (3)

Thus the wavelet transform allows one to investigate simulta-
neously the structure of a signal in both physical and wave-
number space. The wavelet transform acts like a mathematical
microscope in which the optical characteristics are determined
by t, and a~1 is the magnification at the focal point x0.

The wavelet transform is ideally suited to the investigation
of coherent structures in turbulence because it allows the
definition of the local ‘energy spectrum’

W(x0, a)\DuJ (x0, a) D2 (4)

By integrating the local energy spectrum W(x0, a) over
a coherent structure it is possible to find the energy spectrum
associated with that particular structure. The energy spectrum
of the coherent structure may then be compared with
the wavelet energy integrated over the whole flow Ew(a)

Ew(a)\
1
L

L
:
0
DuJ (x0, a) D2 dx0 (5)

(analogous to the Fourier energy spectrum) to determine how
that structure contributes to the energy spectrum of the flow
as a whole. This technique may help us to determine which
structures in the physical space (if any) are responsible for the
k~5/3 energy spectrum of the inertial range of turbulence.

The wavelet transform can also be used to detect coherent
structures in turbulent flows. Approximate singularities in the
flow (such as produced by spiral vortices, i.e. vortices made up
of wound-up vortex sheets) appear in the (x0, a) plane of the
wavelet transform as long, slender cones pointing towards
the location x0 of the structure. Strong, isolated cones in the

wavelet transform are, therefore, the signature of eddies
or other approximately singular structures in the flow. By
examining the rate of the decay of the wavelet transform with a,
it is also possible to determine the order of the structure’s
singularity (Bacry et al. 1990). Coherent structures in a turbu-
lent flow can thus be both detected (by looking for cones) and
characterized (by finding the order of singularity and local
energy spectrum) using the wavelet transform.

The wavelet transform can generate statistics showing how
the energy spectrum (or transfer of energy) varies from place
to place in the flow (e.g. Meneveau 1991). A useful quantity
measuring the spatial fluctuation of wavelet energy is its
standard deviation

Sw(a)\C
L
:
0

(uJ 2(x0 ,a)[Ew(a))2 dx0D
1/2

(6)

The spatial fluctuation of the wavelet energy is related to
intermittency (high intermittency will produce a high fluctu-
ation, but the converse is not necessarily true) and measures
how spatially homogeneous the energy is at different length
scales. By plotting the percentage standard deviation of wavelet
energy, Iw(a)\Sw(a)/Ew(a)]100, as a function of 2n/a one can
get an idea of how evenly the energy is distributed at different
wavenumbers.

We analyze the mixing layer data using the complex-values
Morlet wavelet

t(x)\exp(ik0x) exp([12 Dx D2) (7)

(where k0\6 to make the wavelet admissible within computer
round-off error). The Morlet wavelet is selected because the
resulting spatially averaged wavelet energy spectrum is usually
very close to the Fourier energy spectrum (e.g. same power-
law) making comparison with traditional methods straight-
forward.

The continuous wavelet transform is actually computed in
Fourier space using the relation

uJK (k, a)\a~1/2atK (ak)uL (k) (8)

were ( 4 ) indicates a Fourier transformed quantity, and the
Fourier Transform of the Morlet wavelet is

tK (k)\Jn exp([(k[k0)2/4). (9)

The Fourier space version of the wavelet transform at each
scale is then transformed to physical space using the FFT. This
method of computing the wavelet transform brings out the role
of the wavelet as a sort of Fourier-space filter and is much more
efficient than carrying out the convolution in physical space.
This method is ideal for a structural analysis since an arbitrary
number and distribution of scales can be chosen (unlike the
discrete wavelet transform of Mallat (1989) in which the scales
and positions are arranged in a fixed, dyadic hierarchy).

In the next section, the cones in the one-dimensional wavelet
transform are used to detect structures in the low resolution
y-aligned rake mixing layer velocity data. The percentage
standard deviation as a function of a~1 is measured at various
transverse positions to investigate how energy inhomogeneity
changes across the mixing layer.
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Fig. 8. a Modulus of the wavelet transform
of transverse velocity at y\[3 mm (only the
smaller length scales are shown). Arrows
show the location of strong cones which are
associated with eddies in the mixing layer.
b Velocity vectors in mixing layer from
y-aligned rake (time runs from right to left)

3.2
Structure detection and spatial fluctuation of energy
In this section, data from the y-aligned hot-wire rake is
analyzed using the one-dimensional wavelet transform to show
how structure may be detected and how the spatial fluctuation
of wavelet energy as a function of inverse length scale varies
across the mixing layer.

Figure 8a shows a contour plot of the modulus of the wave-
let transform of 128 points of the v (transverse) velocity at
y\[3 mm. By comparing Fig. 8a with the plot of the velocity
vectors in Fig. 8b one can see that the strong ‘cones’ in the
wavelet transform (indicated by arrows) point to the location
of the centres of the eddies or (less commonly) to the
saddle-points (irrotational straining regions) between eddies.
The fact that cones in the modulus of the wavelet transform are
associated with eddies in the mixing layer indicates that eddies
are flow structures whose activity extends down to very small
length scales. Because cones in a wavelet transform are
associated with singularities in the original signal, one may
consider the large eddies of the mixing layer to be approxi-
mate singularities of the flow. These results indicate that
the appearance of strong cones in the wavelet transform of
a turbulent velocity signal may indicate the location of strong
coherent structures. Since we have only taken a one-dimen-
sional slice through the mixing layer, it is difficult to distin-
guish between eddy and saddle -point type coherent structures,
both of which create cones because of their strong gradients
and large range of length scales.

Another question that may be asked is: how does the
presence of the large mixing layer eddies affect the way
inhomogeneity of energy varies with length scale? In Fig. 9(a)
the average wavelet energy spectra at y\33, 15 and 3 mm is
plotted (note the roughly k~5/3 range at y\15 and 3 mm and
the much more rapid decay at y\33 mm); and in Fig. 9b the
percentage standard deviation as a function of inverse length
scale is plotted at the same three transverse locations. Note that
in all three cases the level of fluctuation increases monotoni-
cally with a~1 (energy at the small scales is more unevenly

Fig. 9. a Spatially averaged wavelet spectra of transverse velocity at
— y\3 mm, — — y\15 mm and — )— y\33 mm compared with a k~5/3
spectrum. b Percent standard deviation of wavelet energy at the same
transverse positions as (a). Note the lower energy fluctuation at small
scales near the axis of the mixing layer

distributed), but that this increase is slower for probe positions
closer to the axis of the mixing layer. The increase in Iw at the
smaller length scales may be the result of an increasingly
intermittent distribution of kinetic energy at these scales.
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Qualitatively similar behaviour of the energy fluctuation is seen
for the low-velocity side and for the streamwise velocity
component.

Note that the averaged wavelet spectra are much smoother
than the equivalent Fourier spectra would be. This smoothness
comes from the averaging in physical space over many
locations and from an effective averaging in wavenumber
space because of the finite width of the Fourier transform of the
Morlet wavelet. The smoothness of the spatially averaged
wavelet energy spectrum is an advantage over the Fourier
energy spectrum for analyzing individual realizations of
the flow (to investigate the role of coherent structures one
must look at individual flow realizations and not ensemble
averages).

The energy fluctuation at small scales is lowest near the
axis of the mixing layer because that is where the coherent
structures (eddies and straining regions) responsible for the
small scale energy are the most dense. Note from Fig. 9b that
there is little change in the level of fluctuation at the large
scales, indicating that the coherent structures of the mixing
layer have a spatially uniform distribution of energy at the
small scales. The large scale eddies of the mixing layer are thus
seen to smooth out the energy of the small scales. This is in
contrast to the small (approximately Taylor scale) ‘worms’
observed in DNS turbulence which are thought to be at least
partially responsible for the small scale intermittency of
turbulent (Jiménez et al. 1993).

The efficiency of the Wavelet method in educing coherent
structures from this flow will be discussed later. However, from
this application, it can be inferred that the method in its
present form is not efficient, mainly because it only uses the
information obtained at a single location so that the results are
strongly dependent on the location of the detector. More recent
work in progress involves a global use of Wavelet analysis
which takes advantage of the knowledge of the entire flow
information (Bonnet et al. 1996). It is clear from these results
that additional work is needed for the application of the
Wavelet transform for coherent structure eduction from real
data.

4
Proper orthogonal decomposition

4.1
The proper orthogonal decomposition
The POD was proposed by Lumley (1967) as an unbiased way
for extracting structures from turbulent flows. He suggested
that the coherent structure be the structure that has the largest
mean square projection on the velocity field. This maximiza-
tion leads to a Fredholm integral value problem, where the
kernel is the two-point correlation tensor.

In the present study, only the y (mean gradient or in-
homogeneous) direction is considered. Of course this ap-
proach is limited by the fact that the three-dimensional aspects
of the flow cannot be accessed since only one slice of the flow
is viewed here. However, useful information on the global
organization of the flow can be outlined.

Following the approach of Lumley (1967), the dominant
structures of the flow can be determined from the following

equation:

nc
+
j/1

:
D

Wij(y, y@; f )U(n)
j (y@; f )dy@\j(n)( f )U(n)i (y; f ), (10)

where nc is the number of velocity components on which the
POD is performed and where the cross-spectral tensor (ij( f ) is
the temporal Fourier transform of the two-point space-time
correlation Rij(y, y@; q)\Su@i(y, t)u@j (y@, t]q)T(ST corresponds
to conventional average). In the present study, the number of
components nc is 2 and a vectorial approach is used. This
application of the POD will be noted PODf.

A simpler approach is also performed in the present section;
in this case, the time dependency is not taken into account. The
kernel of the Fredholm equation is the spatial correlation
tensor; and the equation to be solved is

nc
+
j/1

:
D

Rij(y, y@; q\0)/(n)j (y@) dy@\K(n)/(n)i (y) (11)

This application of the POD will be noted PODn.
The eigenvectors /(n)i (y), solutions of Eq. (11), can be used

to reconstruct the velocities:

ui(y, t)\+
n

an(t)/(n)i (y) (12)

where

an(t)\
nc
+
i/1

un(y, t)/(n)i (y) dy (13)

With the first Eq. (10) the eigenvectors U(n)i are frequency
dependent and cannot be retrieved in the physical space (y, t)
because of the loss of temporal phase due to the non-local
character of the Fourier transform in the physical space.
However by using rakes of hot-wires, the instantaneous
contribution of each mode of the PODf can be retrieved by
considering the following equations in Fourier space:

uiY (y, f )\+
n

An( f )U(n)i (y, f ) (14)

An( f )\
nc
+
i/1

uiY (y, f )U(n)i (y, f ) dy (15)

where ui(y, t) can then be obtained from the inverse Fourier
transform.

The numerical procedure for solving the POD can be found
in Glauser and George (1987). This procedure leads to the
search for the eigenvalues and eigenvectors of a matrix of size
Nm\nc]Ny, where Ny is the number of spatial points in the
Y direction. In these applications of the POD, the number of
modes obtained is Nm\24. For PODf , the solution is per-
formed for each frequency f independently, and the matrices
are complex Hermitian. In the case of the PODn, there is only
one real symmetric matrix to deal with.

The kernel of Eq. (11) is in general a statistical quantity; and
typically it is defined as a time, space or ensemble average.
However, it is possible to define a kernel which is based on
conditional averages. An application of the first definition
is described in the Conventional POD section below. This is
followed by a section which is devoted to an application of
a Conditional POD.
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4.2
Conventional POD
In the first application, the POD takes into account only the
spatial correlations. Later, the frequency dependency is added
to the problem to be solved. The rates of convergence of these
POD modes and the shapes of the dominant modes are
analyzed. Finally, it is shown that both approaches give, for the
dominant mode, a realistic description of the instantaneous
temporal evolution of the flow.

4.2.1
Convergence of POD modes
The eigenvalues are representative of the turbulent energy
contained within the whole spatial domain on which the
POD is performed. The energy contained in each mode
of the POD is presented in Fig. 10. For the case of PODf,
E(i)\:j(i)( f ) df is the energy contained in the entire flow field
for mode (i), integrated over all frequencies. For the case of
PODn E(i) is the eigenvalue K(i). The energy contained in the
first modes of the POD is given in Table 2. When considering
these modes, the PODf application provides a better recon-
struction of the energy than the PODn does. This is due to the
fact that the PODf is able to take into account the frequency
behavior of the velocity and is more physically representative
than the PODn which takes only the spatial character of the flow
into account.

The frequency distribution of the eigen-spectra j(n)( f ) for
the first three modes of the PODf are plotted in Fig. 11. The
rapid convergence of the POD is clearly evident here. The
eigenspectrum corresponding to the first mode shows a max-
imum located near a typical Strouhal number fdu/Uc of the
order of 0.3, which is characteristic of the typical large scale
vortices passage frequency as seen in Sect. 2. At this frequency,
the ratio between the first and second mode is about 4; and the
first mode contains more than 70% of the energy in this band
of frequency. This shows that the application of PODf is quite
efficient in representing the large scale characteristics of the
flow.

4.2.2
Reconstructions of the selected sample
In terms of structure identification, the role of any mode in the
instantaneous flow field can be reconstructed by using Eqs.
(14) and (15) for PODf or Eqs. (12) and (13) for PODn. Figure
12 shows, for the selected sample, the instantaneous velocity
field plotted in a frame moving with the convective velocity Uc
and using the Taylor hypothesis based on Uc. The sample size is
qUc/duK20 and corresponds to about five structures with
a separation based on the typical Strouhal number Stu\0.3.
We apply here only the reconstruction obtained with the PODf.
The global characteristics of the organization which can be
visually found from the original velocities (Fig. 12a) is relative-
ly well reconstructed by the first mode (Fig. 12b). However the
spatial extent of the events is generally underestimated and
other modes are needed to improve this spatial estimation.
This can be evidenced by comparing Fig. 12c, where a four
mode representation is given, with the original result plotted in
Fig. 12a.

Fig. 10. Distribution of modes in the PODf and PODn . For the
PODf the energy is integrated over all frequencies

Table 2. Energy contained in the first modes of the PODf and PODn

POD Mode 1 Mode 2 Mode 3 First 3 modes

PODf 44% 17% 10% 71%
PODn 37% 14% 12% 63%

Fig. 11. First 3 Eigen-spectra frequency distribution for the vectorial
PODf

4.2.3
Shape of the eigenvectors
Due to the loss of temporal phase related to the use of the PODf,
the corresponding eigenvectors cannot be retrieved in the
physical space (y, t) and can be described only in the Fourier
space (y, f ). However, for each frequency the organization in
the y direction remains meaningful. Hence, information on the
organization of the flow can be obtained from the spectral
distribution of U(1)u and U(1)v which are plotted in Fig. 13 for the
first mode. On this plot, the modulus of the U (which are
complex functions) are shown. This modulus is weighted by
the square root of the corresponding eigenvalue which results
in units of velocity/Hz.

For all the frequencies, the eigenvectors exhibit some
well-defined symmetries relative to the axis of the mixing layer
(y\0), as can be inferred from the symmetry of the energy
profile. On the axis, the eigenvector Uu has two maxima located
at the frequencies fdu/Uc\0.16 (A) and 0.5 (B), respectively.
For the frequency fdu/Uc\0.32, two other maxima can be
found for Dy D/duK0.5 (C and C@). The eigenvector Uv has only
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Fig. 12a–c. Contribution of first modes
of the PODf to the selected sample.
a Original; b first model; c sum of the
first four modes (same scales as for
Fig. 5)

Fig. 13a, b. Shapes of the eigenvector for the PODf.
a Jj(1)( f )U(1)u (y, f ); b Jj(1)( f )U(1)v (y, f )

one maximum, located on the axis of the mixing layer and
at the frequency fdu/Uc\0.32(D). For the Uv, whatever the
frequency, the order of magnitude of the imaginary part was
found to be small when compared to the real part. This implies
that the v component of the structure remains in phase over
the y direction. The behavior of Uu is quite different. For
this last eigenvector, the order of magnitude of the real and
imaginary parts are comparable. The real part of Uu remains
globally symmetric relative to y\0 while the imaginary part is
antisymmetric for the range of frequency around the location
of the extrema (C) and (C @). This behavior implies that, for
these frequencies, the eigenvectors are in phase opposition
from side to side of the mixing layer axis. This behavior of the
eigenvectors can be related to the ‘‘large scale’’ behavior of the
flow.

From a conventional description of frozen convective 2D
vortical structure, the passage of a structure can be associated

with an increase of the velocity in the rapid part of the M.L.
which in turn is associated with a decrease of velocity in
the slow part. This passage can then be related to a phase
opposition between the two external parts of the mixing layer.
This behavior expressed in terms of the eigenvectors can
be translated into antisymmetrical behavior (odd function
in y). In complex space this behavior is related to a domina-
ting odd imaginary part (in the y direction). The primary
maximum at fdu/UcK0.15 corresponds to symmmetric real
parts of the eigenvectors. This symmetry is related to the
maximum of energy located on the axis of the M.L. is discussed
in Sect. 2.

The first three eigenvectors /(n) obtained from the PODn
are plotted in Fig. 14. For this application of the POD, the
/ are defined only in the y domain; and their analysis is
easier to perform. A symmetric trend relative to y\0 appears
as was the case for PODf . For both components u and v,
the first and third mode of PODn are even functions of y
while the second mode is an odd function. Hence, the first
mode of the PODn can only translate velocity profiles which
are even, and the second mode is necessary to be able to
translate odd organization. This result may explain why the
first mode of the PODn is less representative than the first one
from PODf .

We have presented two applications of the POD to the data
acquired in the plane mixing layer. The first application uses
the cross-spectral tensor as the kernel for the Fredholm
equation while the second application uses only the spatial
correlation tensor. The use of the cross-spectral tensor for the
kernel is more efficient at representing the large scale structure
of the flow than the use of the spatial correlation tensor.
Examination of the eigenvectors for the first POD model shows
that the dominant mode is representative of the major flow
characteristics known to exist in this flow.

4.3
Further applications of the POD
This section presents an additional application of the conven-
tional POD which examines the contributions of the POD
modes to the vorticity. This particular application is then used
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Fig. 15a–c. Isolines of the derived vorticity
field. Dashed lines show approximately large
vortex areas labeled by roman digits.
a Original data; b derived vorticity field
from the reconstructed flow field of the first
three velocity based POD-modes;
c Reconstructed by use of the first three
vorticity based POD-modes

Fig. 14a, b. Shapes of the first eigenvectors for the PODn. a First
modes of Uu(y); b first modes of Uv(y)

as a guide in implementing the conditional approach as
described below.

4.3.1
Additional applications of conventional POD
Figure 15(a) shows isolines of the vorticity component
Xz\Lv/Lx[Lu/Ly derived from the velocity field. In order to
obtain the spanwise gradient Lv/Lx, Taylor’s hypothesis with
a spatially constant transport velocity was used. In general, the
large vortices consist of two or more areas of encircled isolines.

The enclosing isoline of the large structure usually has low
values in comparison with maxima found in the inner region.
Therefore, areas of vorticity correlated with the large structures
found by the detection method described below are approxim-
ately indicated by dashed lines. The vorticity field calculated
from the reconstructed velocity field of the first three POD
modes is shown in Fig. 15b. Significant peaks are smudged, but
the global behaviour is clearly evident, indicating that the
principal flow field is included in the energy containing modes.
If the POD is applied directly to the vorticity data, the
reconstruction of the vorticity field (Fig. 15c) is not as well
reconstructed by the lower modes. The reconstructed field of
the first three modes, which contains about 60% of the total
quadratic enstrophy, also embodies the maxima of the vorticity
but only in the inner area of the shear layer. The outer field
is not defined by these modes because in this region the
components of the correspondent eigenvectors are close to
zero. The decomposition scheme maximizes the spatially
correlated quadratic enstrophy which is represented in the first
modes. Since most of the enstrophy is concentrated in the
inner region of the mixing layer, large areas of relatively weak
but correlated vorticity — as a loose definition of coherent
structures — are represented by the higher modes. Therefore,
the first few modes from the application of POD to the velocity
field contain the major characteristics of the large structures
since the energy is spread over a wider area in the mixing layer.

4.3.2
Conditional POD
Selected structures of the flow can be understood as so called
snapshots of flow patterns. The usual way to extract their mean
behaviour is the average of the ensemble. The POD allows one
to decompose the snapshots into a number of energy contain-
ing modes and to calculate typical eigenflows.

A simple method was used to extract the snapshots. It is well
known that large structures in the shear layer leave a footprint
as potential fluctuation in the outer flow. By plotting the
absolute velocity Dc@ D measured by the first probe in the low
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Fig. 17. a Ensemble average of detected
‘‘snapshots’’; b first eigenflow showing single
vortex structures; c example of double
structure (eigenflow no. 8)

Fig. 18. Individual snapshot reconstruction.
a First local energy containing mode of low
pattern no. V (identical with first eigenflow);
b reconstruction by use of first ten local
energy containing modes provides an energy
content of 73%; c original vortex no. V

Fig. 16. a Absolute value of the velocity measured by probe no. 12
(y\33 mm) in the irrotational high speed flow, whereas transport
velocity was subtracted. Roman digits denote typical expirations.
A typical event was selected (no. II) and correlated with the total
signal; b The correlation function shows high maxima

velocity stream, one can identify typical fluctuations of this
footprint (Fig. 16a). By scanning a selected representative
distribution as correlation trigger over the entire signal, the
resulting correlation shows typical maxima in the range
0.65\Rcc\1.0 (Fig. 16b). The respective maximum indicates
the center of the individual flow pattern. If the flow patterns
can be seen as frozen snapshots, the time-coordinate can be
transformed into the streamwise direction. The interval of the
snapshots is selected to be ^16 time steps off the center. The
method detected 320, 296 and 243 structures by using the

boundaries Rcc\0.7, 0.8 and 0.9. Since the mean velocity field
is not a typical feature of the individual snapshot, it was
subtracted from the detected patterns. In order to draw the
vector plots in the following, the mean velocity was added
in each case. Choosing as threshold Rcc\0.9, the obtained
243 structures were averaged (Fig. 17a). This ensemble aver-
age shows a smeared single-vortex structure caused by the
different types of structures sampled by the applied recogni-
tion method.

Application of POD onto the extracted flow patterns yields
so-called eigenflows. They are almost identical with the
coefficients an, but normalized with the largest component of
the corresponding eigenvector. Here, the eigenvectors define
the occurrence and participation of the correspondent eigen-
flows in the individual snapshot. The eigenflow with the largest
energy content of about 18% is a single vortex (Fig. 17b).
Eigenflows with decreasing eigenvalues exhibit a similar
flow-field but with different spatial extensions and shifts. But
also double-vortex structures within the first eight modes can
be found (Fig. 17c). Considerably higher, less important modes
have eigenflows with a larger number of vorticities.

By classifying the eigenflows into classes of single-, double-
and multi-vortex structures, we found a total energy content of
44.4% for the single-vortex and 13.8% for the double-vortex
type. A closer inspection of the eigenvectors shows that
only the first mode has positive components without excep-
tion. All others exhibit stochastic fluctuations of relatively high
amplitude in comparison to the first eigenvector. This reflects
the meaning of the first eigenflow. In this case; the largest mode
determines the outer shape of the structures — where the local
influence is given by its particular component — while the less
important eigenflows define the inner structure.

Individual snapshots can be reconstructed by POD modes.
Figures 18a, b show the vortex no. V (ref. Fig. 17a) reassembled
by use of the first local energy containing modes in comparison
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to the original snapshot (Fig. 18c). Hereby, the local prime
modes might not be identical to the first POD-modes. Obvious-
ly only structures with typical single vortex shape have as
local prime modes the first POD-modes. In comparison,
especially the pattern III (ref. Fig. 15a) consists of a double
structure, and, consequently has as first modes the double
structure eigenflow. Summation over the first 10 local modes
allows an individual reconstructive quality for all 243 snap-
shots in the range from 48% up to 73%.

5
Stochastic estimation and its usefulness in the
complementary technique
In this section we will present an application of the Linear
Stochastic Estimation (LSE) (Adrian 1975) to the mixing layer
data base. We will then focus on a complementary technique
which employs the LSE method to extract phase information
from application of the Proper Orthogonal Decomposition
(POD) (Lumley 1967) to the same mixing layer.

Stochastic estimation uses the conditional information
specified about the flow at one or more locations in conjunc-
tion with its statistical properties (the two-point correlation
tensor) to estimate the information at the remaining locations.
Here the thrust will be to utilize the instantaneous velocity at
select y locations in the mixing layer to estimate the instan-
taneous velocity for all y locations. For the mixing layer data
base, the instantaneous velocity is available at all y locations
(where there are probes). In many other experiments, this is
not the case due to a lack of a sufficient number of channels of
hot-wire anemometry data acquisition and A/D conversion.
Hence, it is advantageous to use the rake data base since it
allows us to check the validity of the approach by comparison
between estimated and measured time series. Note that
a minimum of two probes and associated hardware are
necessary to apply the following ideas to any experiment
because of the need for the two-point statistics.

Adrian (1975) studied conditional flow structures in iso-
tropic turbulence by computing estimates of the velocity
u(y]r, t) given that the velocity at (y, t) assume some
specified value u(y, t). It was found that this simple flow, when
sampled in a statistical sense, shows the existence of organized
structures. Tung and Adrian (1980) studied the influence of the
second, third and fourth order terms on the estimate. Their
results indicated that the contribution from higher order terms
to the overall estimate was insignificant, hence the use of the
linear stochastic estimate in this study.

A one-dimensional (in y) linear stochastic estimation yields
an estimate

uJ i(y@, t)\Aij(y@)uj(y, t) (16)

with Aik computed from

uj(y)uk(y)Aik(y@)\uj(y)ui(y@) (17)

where uj(y)uk(y) and uj(y)ui(y@) are the Reynolds stress and
two-point correlation tensors, respectively. It should be noted,
for these systems of equations, only the two-point space (in y)
correlation data is utilized. These systems are not a function of
the condition being investigated. For further discussion on the
Stochastic Estimation theory see Adrian and Moin (1988), Cole
et al. (1992) and Guezennec (1989).

As mentioned earlier, in this work we estimate the velocity
components across the mixing layer from the expansion of
Eq. (16) utilizing the actual velocity components at select
positions in y. Here, it is not the intent to present a detailed
discussion on what number of probes or their respective
positions are the most appropriate to obtain the best estimate
of the velocity field. These issues are discussed in Delville et al.
(1993) for the present mixing layer data base and in Cole et al.
(1992) for a jet mixing layer.

Figure 19a presents the vector plot of the measured velocity
field. This replot of Fig. 5d is included here to ease comparison
to the estimates. Figures 19b—d show various linear stochastic
estimates of the vector field where the condition points are
indicated by the arrows. Figure 19b presents a one-point
estimate, whereas Fig. 19c and d present two-point estimates.
For the two-point cases, the probes which supply the condition
are equally spaced on either side of the centerline. Comparison
of Fig. 19b—d with Fig. 19a indicates the quality of each
respective estimate. It is clear that the estimate shown in
Fig. 19d provides the best comparison. Note, in particular, how
both the amplitude and phase of the velocity vector field are
reasonably preserved with this estimate.

As a result of the above, the estimated time series shown in
Fig. 19d will be used in conjunction with the POD to imple-
ment the complementary technique. This complementary
technique consists of three main steps. First, the eigenvectors
and eigenvalues are obtained from direct application of the
POD to a two-point spectral tensor as discussed in Sect. 4
of this manuscript. Second, the LSE is applied to the cross
correlation tensor, and multipoint estimates of the random
vector field are computed as presented above for the mixing
layer. Third, the eigenvectors obtained from step one are
projected onto the estimated velocity field obtained from step
two to obtain estimated random coefficients. These estimated
random coefficients are then used in conjunction with the POD
eigenvectors to reconstruct the estimated random velocity
field.

Mathematically the stochastic estimates of the random
coefficient are calculated from:

aestn ( f )\: uL esti (y, f )t(n)*i (y, f ) dy (18)

where in this case uL esti (y, f ) is the two-point linear stochastic
estimate of the velocity field and t(n)*i (y, f ) is obtained from
the original POD eigenvalue problem. The estimated stream-
wise velocity can be reproduced in Fourier space by

uL esti (y, f )\
=
+
n/1

aestn ( f )t(n)i (y, f ) (19)

and then inverse transformed to obtain uL esti (y, t). For further
details on this technique refer to Bonnet et al. (1994), Glauser
et al. (1993) and Ukeiley et al. (1993).

Figure 20a shows the contribution from the first POD mode
using the measured instantaneous velocity field, Fig. 19a, in the
projection as presented in the previous section. The first POD
mode retain most of the large scale features exhibited
in the original field. The application of the complementary
technique is shown in Fig. 20b. Here the eigenvectors, obtained
from the direct application of the POD, are projected onto the
estimated field using the estimated data presented in Fig. 19d.
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Fig. 19a–d. Examples of Linear Stochastic
Estimation. For several conditions.
a Original instantaneous velocity vector
plot; b LSE with 1 condition; c and d with
2 conditions. The reference signals are
indicated by the arrows on each example
(same scale as for Fig. 5)

Fig. 20a, b. Complementary technique.
a First POD mode from full measured
field; b reconstructed using the
stochastic estimated field (same scales
as for Fig. 5)

Reasonable estimates of the large scale structure are obtained,
even though only 17% of the measured instantaneous data has
been used. In fact, one see that Fig. 20b compares quite well to
Fig. 20a which was computed using the full measured instan-
taneous velocity field.

In order to quantitatively assess the technique, the stream-
wise root mean square (RMS) velocities are computed from the
estimated and original velocity fields and comparisons are
made, see Fig. 21. The percentage of the streamwise RMS
velocity captured using the complementary technique is very
close to that obtained from the direct application of the POD
for the first mode. These results show that the complementary
technique, which combines LSE and POD, allows one to obtain
time dependent information from the POD while greatly
reducing the amount of instantaneous data required. Hence, it
may not be necessary to measure the instantaneous velocity
field at all points in space simultaneously to obtain the phase of
the structures, but only at a few select spatial position. Fig. 21. RMS Comparisons
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6
Vorticity-based identification methods

6.1
Overview of the method
Although the eduction approach in principle applies to the 3D
vorticity field, limitation of experimental data to data forced us
to use one vorticity component in a 2D plane, namely uz in the
x—y plane. The eduction process strictly corresponds to the
method introduced by Hussain and Hayakawa (1987) and used
by several authors. In principle, it consists of the following
steps: (i) choose smoothed spanwise vorticity as a feature
that denotes passage of large-scale structures, (ii) select the
most dominant structures based on their vorticity magnitude
and size, (iii) phase align the accepted structures and obtain
their ensemble average, (iv) refine the phase average by an
iterative procedure that is based on the cross-correlation of
individual realizations and their ensemble average (this step
only rejects structures which are too far from the average), and
(v) compute by ensemble averaging relevant coherent and
incoherent quantities that are important to the dynamics of the
flow from the unsmoothed data. Thus, smoothing, used only
for identification of structures in the random vorticity field,
does not affect any of the educed quantities: coherent or
incoherent.

One advantage of such an eduction scheme is its potential
use to study the dynamics of CS in any flow. This is possible
through a conditionally averaged equation derived from the
Navier—Stokes equation after decomposing the instantaneous
field into coherent and incoherent parts (see Hussain 1983).
Another advantage is that the educed incoherent quantities
provide information about the dynamics of the small-scale
motions.

In the present application of this method to the mixing layer
data base, we intentionally made no attempts to improve or
adapt the method as it can be considered ‘‘classical’’ since it
has been applied extensively by several groups. Particularly,
the rejection criteria used in step (iv) and the smoothing
process introduced at the end of the eduction process (after
step (v)) were the same than those originally introduced by
Hussain and Hayakawa (1987) and used for several other flows
applications (see for example Jeong et al. 1993). The use of this
method in this context should therefore be considered as
a comparative test case for less widely used conditional
methods, such as the ones described in the next two sections.
In addition, the results of the application of the vorticity-based
method can be considered as a blind test since all the original
components of the method have been implemented. This
clearly will be born out when the efficiency of the method will
be discussed in Sect. 9.

6.2
Application of the method to the data base
Since vorticity cannot be directly measured from u, v signals
from hot wires, we have to depend on Taylor’s hypothesis
to identify structures in the instantaneous flow field. For
the convection velocity in Taylor’s hypothesis, we used the
convection velocity Uc.

Since our primary interest is in large-scale events, the
determination of the ensemble averages was performed on the

smoothed instantaneous spanwise vorticity data which were
obtained by local spatial smoothing. In the present case, a nine
point averaging (3]3 in an x—y plane) was used; this opera-
tion smoothes out the fine-scale fluctuations but retains the
underlying large-scale vorticity. Once again, note that all
structure properties are finally educed from the unsmoothed
data, then the smoothing process is not essential, as it has been
shown in other comparable applications of the Hussain and
Hayakawa’s eduction method (see for example Jeong et al.
1993).

The first condition employed by the present eduction
scheme is for the structure strength. Based on that, realization
(distributions in the streamwise-transverse plane) with
maximum smoothed uz exceeding 2S

M
(where S

M
is the

maximum mean shear) are detected at each spanwise plane.
The choice of the local S

M
for specifying the threshold is

justified by the fact that both S
M

and the structure strength
evolve in x. The second condition is for the structure size. In
order to specify this, uz is required to be higher than 0.3S

M
within distance of 0.25d (here d is the size of spanwise
structure, which was obtained from the structure boundary of
the ensemble averaged vorticity after the first condition was
applied) from its peak in the x—y plane.

Each realization is then aligned with respect to the peak of uz
and averaged to obtain the zeroth-order ensemble average.
Each realization is then shifted in both the x and y directions to
maximize its cross-correlation with the zeroth-order ensemble
average in order to obtain sharper structure boundaries. This
process is iterated until convergence in structure shape is
achieved. The purpose of the iteration is to find the underlying,
true center of each realization necessary for its optimal
alignment before its inclusion in the ensemble average. Note
that the location of maximum spanwise vorticity can only give
a local peak and not the center of the overall structure, which
can be obtained from the location of maximum cross-
correlation in this study. Realizations that produce a weak
cross-correlation coefficient, here below 0.8, or require shifts of
more than 0.5d, were discarded because they are significantly
different from the ensemble-averaged structure. Note that this
iteration process is similar to the pattern recognition tech-
nique, provided that the zeroth iteration ensemble-average is
considered as the trial pattern. Here, the trial pattern is not
guessed but derived from the signals themselves. After a new
alignment of the realizations through the modified peak
locations, the smoothed data are discarded and only the
unsmoothed data are used to obtain the final ensemble average.
Whatever survives the ensemble average is the coherent
structure; the departure of each accepted realization from
the average is the incoherent turbulence in that realization.
Incoherent turbulence is then rms ensemble averaged to
extract its statistical measures over the structure cross-section.
The final ensemble averages were obtained after initially
accepting about 1000 realizations and discarding about 200
realizations during the iteration.

Coherent vertical velocity (normal to the mixing layer plane,
v Fig. 22a) and vorticity distributions (Fig. 22b) show that
spanwise structures are the dominant features of this flow.
Coherent vorticity contains a significant value even outside the
spanwise structure unlike those in numerically simulated
mixing layers (see Metcalfe et al. 1987). This is because this
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Fig. 22a–c. Ensemble average of the vorticity based conditional
sampling. a Isocontour of SvT; b isocontours of SuzT; c isocontours
of Pt

flow is initially turbulent, and the shear layer is initially
diffused. From these results, several quantities can be cal-
culated, such as Su[UTSvT and turbulence production:

Pt\[T
Lu
Ly

]
Lv
LxUSurvrT[T

Lu
LxUSu2rT[T

Lv
LyUSv2rT

where the subscript r stands for the random part of the signal.
Pt indicates production of incoherent turbulence by coherent
motion, i.e. the stretching of ribs by adjacent rolls.

It is known from the literature that, in plane turbulent
mixing layers, the intermediate-scale structures such as ribs
are oriented in the streamwise direction, and hence cannot be
seen in the present ensemble averages of velocity and vorticity.
This scenario is consistent with the spatial distribution of the
coherent production Pt plotted in Fig. 22c). This corresponds
to the dominance of ribs away from the structure between two
successive spanwise structures, implying that ribs occur,
even in this initially turbulent flow, due to vortex stretching
by successive structures and are still dynamically dominant.

7
WAG, filtering and vorticity peaks methods
Several complementary methods to investigate the structure of
turbulent shear flows have been developed at the University of
Newcastle. Generally, they are applied in a three-stage process.
Firstly, the available data from a particular flow are examined
(with as little bias as possible) for evidence of organized
structure. The second stage is to apply the most appropriate
methods to detect and analyze the identified type(s) of

structure. The final (and ultimately most important) stage
is to determine the extent to which, and in what manner,
the organized structure(s) contribute to flow dynamics. The
particular detection methods such as WAG or peak vorticity
are regarded as subservient to the main process of flow
analysis. In this section, the three-stage approach is applied
to the low sampling frequency samples of the database. Stage
one (examination of data) includes: (i) direct inspection of
continuous data records by means of sectional streamlines,
contour plots of velocity fluctuations, contours of instan-
taneous spanwise vorticity uz, etc., and (ii) conventional
Fourier transform power- and cross-spectra, contours of auto-
and cross-correlations, and so on. Stage two comprises: (i)
detection of structures that have intense, fairly small-scale
concentrations of uz; (ii) WAG-detection (Window Average
Gradient) of larger scale structures in terms of their character-
istic signatures in u and v signals; (iii) probability analysis of
the time delays between detection instants; (iv) selection of
detection subsets based on specified time delays, equivalent to
a high-Q (very selective) band-pass filtering process in the time
domain; and (v) conventional conditional averaging based on
detection sets of selected subsets. The main purpose of subset
selection (filtering) is to reduce smearing of conditional
averages. Stage three involves a study of the proportions of
momentum transfer (uv) and turbulent energy (u2 and v2)
that are contributed by the organized structures.

7.1
Stage 1
Fourier analysis of the mixing layer gives a strong indication of
dominant structures with a period of about 2.7 ms. However,
cross-spectral and cross-correlations imply that the effects of
these structures are rather different in the middle or at the
edges of the mixing layer. For the middle six probes, cross-
spectra are negative at all frequencies, and the correlation
coefficient Ruv peaks at about [0.4 at zero time delay. For the
outer probes, cross spectra have very low magnitude while Ruv
is alternately positive and negative with high magnitude ([0.6)
at ^0.7 ms time delay. Thus the middle part of the flow is
typical of fully turbulent shear flow, while the upper and lower
edges behave like irrotational flow around a series of structures
between them.

Simultaneous records of (u, v) from the 12 X-probes allow
plenty of scope for study of instantaneous flow structure. Some
samples of sectional streamlines and contours of spanwise
vorticity uz are shown in Fig. 23. Sectional streamlines, which
are lines parallel to the measured two-dimensional velocity
vectors, are not true streamlines because they assume that the
flow is steady and two-dimensional, but they seem to be better
suited to the human eye than ordinary vector plots as a form of
pseudo-visualization. The sectional streamlines of Fig. 23 give
a very strong impression that a mixing layer is dominated by
spanwise vortex-like structures. Their longitudinal scale is
quite variable, but the structure at x\100 mm in Fig. 23c
is most typical, and corresponds to the scale inferred from
Fourier analysis. The larger structure at the middle of Fig. 23a
could well be composed of two smaller structures that are in
the process of pairing, as discussed later.

Contours of uz in Fig. 23b and d imply that vorticity is
concentrated into regions that are actually much smaller than
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Fig. 23a–d. Two patches of instantaneous data: a, c sectional stream-
lines and b, d spanwise vorticity uz. Contours (s~1): [1000, [1500,
[2000,2

the dominant vortex-like structures. Smaller scales are to be
expected for longitudinal braid vortices, but they have mainly
ux and uy components. It is possible that uz on this scale
is associated not only with braid vortices but also with the
dominant spanwise structures from further upstream where all
scales are smaller, and which are merging and being stretched
and distorted at the present measurement station.

7.2
Stage 2
Detection of locations of uz negative peaks was based on the
approximation uz+Dv/Dx[Du/Dy, where Dx\[Uc Dt and
Dt\0.2 ms (two sampling intervals) making Dx+6.8 mm,
and Dy\6 mm, the spacing between adjacent probes. (Note
that Dt\0.1 ms for uz contours in Figs. 23, 25 and 26). Each
detection point is the position of most negative uz within each
patch of data for which uz is continuously less than [1000 s~1
(same for all y positions). The present small-scale vorticity
approach is much simpler than that used by Hussain and
co-workers (e.g. Hussain and Hayakawa 1987) for large-scale
detections inasmuch as there is no need to smooth the velocity
or vorticity data over the much larger area of a large scale
structure, and there is no need for an iteration process either.
For pairs of probes near the edges of the mixing layer there
were very few detections, but the detection frequency around
the middle was 700—900 Hz, at least double the frequency of
dominant large scale structures and consistent with Fig. 23b
and d.

Velocity components from all probes were conditioned
on a set of 900uz detections from the probes nearest to the
centreline and the corresponding sectional streamlines and
contours of uz are shown in Fig. 26a and b. It is clear that this is
fairly small structure without a well-defined period. The level
of uz is quite strong, however, being almost [1500 s~1 at the
center.

Detection of the dominant large scale structures was carried
out with the single-point WAG method, described in Bisset

Fig. 24. Percentage contributions to u2 (h), v2 (s) and uv (n) made
by large scale structures (WAG v detections)

Fig. 25a, b. Conditional averages of structures possibly undergoing
pairing. a Sectional stream-lines and b uz. Contours (s~1): [500,
[600, [700,2

Fig. 26a–d. Conditional averaging of small and large scale structures.
a sectional streamlines and b contours of uz based on vorticity
detections at y\0; c sectional streamlines and d contours of uz based
on pair of WAG v detections at y\[3 mm separated by 2.4 ms.
Contours (s~1): [500, [600, [700,2

et al. (1990). WAG was designed as a more effective replace-
ment for VITA (e.g. Blackwelder and Kaplan 1976). The
essence of the method is to move a window through the data,
and find the difference between the average data value in the
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second half of the window and the average in the first
half. Local maxima in this difference of correct sign and
sufficient magnitude are accepted as detection points.
Window length controls the scale of structure that can be
detected.

Although WAG is capable of detecting structure centers, it
is generally used to detect the rather sharper u or v gradients
that occur in the vicinity of saddle points between structures,
or (in the case of wall-bounded flows) in connection with
d-scale discontinuities or near-wall shear layers. Previous
practice was followed here, and independent sets of detections
were obtained for positive jumps in u and negative jumps in
v from all X-probes. The detection window length was 1.9 ms
(optimum for events of period 2.7 ms), and the threshold was
0.4 (normalised by the rms value). The resulting detection
frequency was a little over 300 Hz independent of y, except
slightly lower for u detections in the central region. Initially,
velocities from all probes were conditioned on several separate
detection sets from different probes. The corresponding
sectional streamlines, which all show large vortex-like struc-
tures on both sides of the detection point, were given in Bonnet
et al. (1993). The detection point itself appears as a saddle
point.

Relationships between different sets of detections (including
uz detections) were explored through time delay analysis.
Firstly, the probabilities of given time delays between success-
ive WAG v detections (from the same set) were obtained; the
probability was maximum at Dt\2.4 ms in nearly all cases.
Figure 26c and d show sectional streamlines and contours of uz
based on a subset of v detections from the probe at y\[3 mm
that were selected only if the previous detection occurred
2.4^0.1 ms earlier (about 18% of all detections). This selective
filtering process reduced smearing of the second of the three
structures shown and ensures that it has the most typical
length. The level of uz is lowest in the vicinity of saddle points
between structures, but it is not especially strong anywhere.
Time delay analysis also shows that: (i) WAG v detections tend
to occur simultaneously on all probes; (ii) WAG u detections
are fairly close to WAG v detections in the central region, but
on the high speed side WAG u detections lag v by about 0.6 ms,
and on the low speed side u detections lead v by about 0.7 ms
(consistent with results for Ruv); (iii) uz detections are not
strongly correlated with the larger WAG detected structures,
but they have some tendency to collect in the middle of the
larger structures and avoid the saddle regions; (iv) WAG
u detections from the four probes nearest to the centreplane
tend to fall along a line at about 40° to the x-axis, i.e. there is
a type of longitudinal velocity interface here; and (v) there is no
distinct relationship between u detections in the central and
outer regions, unlike v.

7.3
Stage 3
Up to this point, the results mainly concern flow kinematics,
but it is important to try to quantify the contributions that the
detected structures make to flow dynamics. In this case the
contributions to turbulent energy and momentum transfer
were determined. The quantities SuT2, Su2T, SvT2, Sv2T, SuT,
SvT and SuvT (where angle brackets denote the usual condi-
tional averaging procedure) were calculated for ^1.2 ms

relative to WAG detection points (i.e. ^half a typical structure
length) and then averaged over that length. Around 80% of all
data points were used in forming the averages; and, therefore,

Su2T+u2, Sv2T+v2 and SuvT+uv (where the double
overbar indicates the structure-length average). The ratio of

SuT to Su2T (or u2) indicates the contribution that the detected
structure makes to the u component of turbulent energy, and

similarly for v2. The ratio of SuTSvT to uv quantifies the
contribution of the structures to momentum transfer across
the mixing layer. These ratios are plotted for WAG v detec-
tions from all y positions in Fig. 24, except that the con-
tribution to uv the outer regions tends to be zero divided by
zero and is therefore omitted. The contributions to v2 and uv in
the central fully turbulent zone are quite substantial at more
than 40%; whereas the contribution to u2 is around 10%.
When detection is based on u, the contribution percentages
to u2 and v2 are more-or-less reversed; but the percentage
for uv changes little. The values here are similar or slightly
higher than those found for a plane far-wake (Antonia et al.
1987); values for boundary layers (Antonia et al. 1990)
are generally somewhat lower (except perhaps at low Rh).
Results near the edges of the mixing layer are unusual, not
only for the large percentage contributions but also because
the values for both detection and non-detection signals are
similar. It is much more difficult to estimate the contributions
from the smaller uz detected structures because there is no
probe passing through the structure centre, but initial esti-
mates put the contributions at about 10% for v2 and uv, and
even less for u2.

7.4
Selective filtering to show pairing
Given that pairing of structures is an important aspect of
the downstream development of mixing layers (e.g. Winant
and Browand 1974), it seemed worthwhile to follow up the
inference that instantaneous data show structures in the
process of merging (e.g., Fig. 23a). Unlike the results above,
which show the predominant structure in its most typical
conditionally averaged form, the results that follow are
intended to show the versatility and selectivity of WAG and
selective filtering. Assuming that the structures undergoing
pairing are smaller than the ‘‘standard’’ large scale structures,
a new set of WAG v detections was obtained with the averaging
window reduced to 0.9 ms. Many of these were the same as
the ‘‘standard’’ detections, but some fell in between. A small
subset was selected on three criteria: (i) no ‘‘standard’’
WAG v detection within ^0.2 ms; (ii) a ‘‘standard’’ detection
present at [1.4^0.5 ms; and (iii) a ‘‘standard’’ detection at
1.4^0.5 ms. About 512% of the original small-scale detections
satisfied all three criteria, including one at x\10 mm in
Fig. 23a. Figure 25 shows sectional streamlines and uz contours
corresponding to the selected detections. The appearance of
two smaller structures bound up in a larger structure seems
quite convincing, but with one fixed set of probes it is not
possible to study the actual process of pairing through all
stages. It should also be noted that many pairs of structures
would be offset in the y direction instead of x as they pass the
probes and would, therefore, not be captured by the present
type of detection/filtering process.
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Fig. 27. Schematic description of the
Delocalized Conditional Sampling Method.
a Raw frontier; b smoothed frontier; c fitted
ellipses; d I\1 time stamps

8
Delocalized conditional sampling method

8.1
Description of the method
Conditional sampling based on one or two point mea-
surements has been extensively used in free shear flows by
several authors, see for example Browand and Weidman
(1976), Antonia (1981), Zaman and Hussain (1984). When the
information is available from a rake of sensors simultaneously
in several locations in space, it is possible to automatically
select the two optimal probes that will serve for the detection.
With this technique each probe plays a role in the detection
procedure and is used to compute the ensemble averages. The
advantage of this method lies in its ability to detect structures
of any size appearing at any transverse position and with any
phase shift inside the structure.

The DCS algorithm follows a two-step procedure. The first
step determines a ‘‘pre-partitioning’’ of the flow which allows
the time of observation to be split into two parts, correspond-
ing respectively to the instants when CS are present and when
they are not. The second step identifies the location of the CS
within the pre-determined time periods. The corresponding
statistics of these events can then be built as usual. The
following sections described the two steps of the detection
procedure.

8.1.1
First step: pre-partitioning
The simplest and, in some sense, the least ambiguous approach
to select the different phases of the flow is to examine the
instantaneous velocity field. This is performed according to
the procedure illustrated in Fig. 27. First of all, low and high
threshold values are applied to the longitudinal (u) velocity
signal. The instantaneous, external ‘‘boundaries’’ of the flow
are then determined for both the low and high speed sides of
the mixing layer. These boundaries are then smoothed: a low
pass frequency filtering is applied, where the cut-off frequency
is of the order 1.25 fp and fp is the Strouhal frequency (see
Fig. 7b). It has been demonstrated that the extracted edges
remain basically unchanged for a cut-off frequency varying
in the range fc/fp\1—2, see Bellin (1991). A correspondence
between the two sides of the boundaries is established by fitting
ellipses which link the closest local extrema. These ellipses are
chosen automatically, by using a least square procedure, to fit
both edges over a time duration of the order of Tp/8. Some

additional checks are performed in order to retain only
relevant events (e.g., the y extent of the ellipses has to be
greater than dw, the ellipses must not overlap, etc). These
checks have been selected by analyzing probability distribu-
tions of characteristic parameters.

The choice of ellipses is, at this stage, arbitrary; but this
choice is only a secondary importance because the ellipses are
only used to build a pre-detection function. We will demon-
strate later on that, for the present configuration, this function
is 0 when CS are present. The conditional sampling itself
can then be applied during these periods of better efficien-
cy. This pre-partitioning procedure is rather insensitive to
the threshold selected for the partition. Bellin et al. (1993)
show that a significant variation of this threshold (from 4 to
10% of the external velocities) does not strongly modify the
puff edges locations and, therefore, the detector function I(t).
More precisely, the main consequence of a threshold level
which is too low is only to miss some I\1 events. Hence the
time period of the application of the DCS is increased without
any benefit.

Conventional ensemble averages can be directly obtained
from this detector function as well. Figure 28 shows the
iso-contours of the vorticity obtained when the reference time
is centered on I\0 (Fig. 28a) or on I\1 (Fig. 28b). From the
topology of the iso-contours, it clearly appears that the results
obtained when I\0 correspond to the presence of Coherent
Structures. The criterion I\0 can be associated, therefore, with
the probable presence of CS, justifying the above-mentioned
criterion.

8.1.2
Second step: DCS
The conditional procedure itself can be applied during the
pre-determined periods of time that correspond to high
probable occurrence of CS selected from the first step (I\0).

Fig. 28. Ensemble averages centered on I\0 time stamps a and
I\1 b
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During each selected period, the algorithm selects the location
(Y1, t1) where the fluctuating velocity (longitudinal component)
reaches its maximum value on the high speed side. It also
determines the (Y2, t2) location of minimum value on the low
speed side. According to the conventional concept of coherent
structure in plane mixing layers, these two locations corres-
pond to the upper and lower edges of the CS. This procedure is
equivalent to automatically selecting optimal detector place-
ments from the available measurements locations instead of
a priori positioning which is the case for conventional detector
use. The DCS results in lower rejection rates than conventional
techniques and allows new statistics for several characteristics
of the CS to be computed. Indeed, DY1]Y2 D/2 represents an
estimation of the location of the CS center. In addition, the
time shift between the two detections, t1[t2, contains informa-
tion on the stage of the evolution of the CS. This can be related
to the different phases of the life of the structures as will
be illustrated later. It is then possible to build conditional
ensemble averages taking into account three independent
parameters or CS characteristics: the thickness, center location
(relative to the mixing layer axis), and phase shift (between the
two opposite sides of the CS).

8.2
Typical results
The method has been applied to the database. The typical
detection times obtained for the reference sample are given in
Sect. 9 (Fig. 32). Clearly each detection time visually corres-
ponds to each large scale event. Figure 29 shows typical
statistics that can be obtained from the data base. In this case,
the joint probability density of thickness and phase can be
computed. For the present data base, the most probable value
of the thickness is 1.12du and the most probable phase is zero
degrees.

It is also possible to analyze the time interval between two
successive structures. By implementing Taylor’s hypothesis,
the most probable distance between structures is evaluated to
be of the order of 3dw. This value is in agreement with the
results of other authors in comparable configurations (Bernal
1988). A more detailed analysis of the statistics that can be
derived from this DCS can be found in Bellin et al. (1993).

With this method, it is possible to select a given class of size,
position, and phase shift and then build the corresponding
conditional averages. Figure 30 illustrates the influence of the
time shifts on the resulting ensemble average of the structures
detected. The sectional streamlines, after Bisset et al. (1990) are
plotted on the figure. Zero time shift (Fig. 30a) corresponds
to centered, one-core CS while, with no zero phase ([20°,
Fig. 30b), two cores can be observed, in particular on the vector
plot. This last case corresponds to a period of pre-pairing
processes, for example. Intermediate time shifts (not given
here) show the successive stages of the evolution. The time
shift between the two detection times t1 and t2 is translated in
terms of phase according to the relation:

Ud\arctan(Uc](t2[t1)/(y2[y1)).

Some scatter can be observed when large time shifts are
imposed, but this scatter never surpasses the observable shape
of the CS. This procedure can be systematically used for

Fig. 29. Joint PDF of thickness-phase from DCS. N\number of
events

Fig. 30a, b. Ensemble average from DCS. Sectional streamlines.
a Average pattern, all events cumulated; b average structure with
a phase shift corresponding to a pairing stage (same scales as for
Fig. 28)

any available turbulent quantity. Moreover, marginal statistics
can be more convenient for the analysis of these character-
istics.

8.3
Triple decomposition
As with any conditional sampling, a double or triple decompo-
sition can be applied as introduced by Reynolds and Hussain
(1972). The efficiency of the DCS process and the capability to
select different characteristics of the CS (size and/or shift,2)
permits a more detailed analysis than normal techniques.
Details on the results obtained from the data base can be found
in Bellin (1991). A particular illustration is given in Fig. 31
which shows the iso contours of the production term
[SurvrTSLu/Ly]Lvc/LxT. In the same manner as that used
previously to analyze the influence of the phase shift on the
ensemble average of velocity and vorticity, we can analyze the
behavior of the production term during the different stages of
the CS evolution.
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Fig. 31a–e. Influence of the phase shift on the coherent production:
[SurvrTSLu/Ly]Lv/LxT Phase shifts. a [14°; b [7°; c 0°; d ]7°;

e ]14°. (same scale as for Fig. 28)

Figure 31 shows that influence of the phase shift, as
expected, is not symmetrical. Positive phase shifts correspond
to a greater self-induced rotation of positive and negative
coherent production when compared to the effects of negative
phase shifts. These effects closely correspond to a simple
description of an isolated coherent eddy.

It should be noted that the iso-contours presented in the
Fig. 31 are obtained by considering all the detected events
regardless of their size or time shift. For the present results,
11,000 events have been used for the averaging process. The
statistics can then be considered to be quite significant and
reliable.

9
Concluding remarks
In the previous sections, the results obtained from each
method were presented. Some of these results can be con-
sidered to be unique to each method and, hence, cannot be
directly compared. Such is the case for the spectra calculated
from wavelets analysis, from direct time series, or from POD
analysis, as well as for different statistics. However, these
results can be used in a complementary fashion to characterize
the flow. In contrast, several results obtained from the different
methods have common features that can be used to identify
similarities as well as differences between the different tests,
and as much can be used to give reasonable information
on the origin of discrepancies and similarities between the
techniques. For these purposes, two types of comparisons will
be made. First, the instantaneous information that is obtained

from the different methods will be compared and examples for
the same time samples will be presented. The purpose of this
step is to directly compare the local characteristics that can be
obtained from each method: localization of the detection,
visual representation associated, for example, with the mode
decomposition via the POD, conditional instantaneous charac-
teristics, etc. As a second step, conditional statistics will be
used for more quantitative comparisons.

9.1
Instantaneous information

9.1.1
Instantaneous information from conditional sampling
The results of the application of the different detection criteria
are presented in Fig. 32. The arrows indicate the detection
times associated with the eddies in the mixing layer for the
various techniques.

The velocity-based detection methods (wavelets, DCS,
Correlation, WAG) result in detection times which are not too
different from one another and exhibit frequencies which are
consistent with the measured spectra. The wavelet detection of
structures based on the branching of the wavelet transform
obtained at y\[3 mm, (arrows presented in Fig. 32a) is
generally in good agreement with the visual inspection of
the instantaneous vector plot although some differences are
evident. The location of cones in the modulus of the wavelet
transform may be used to detect vortical structure in the
flow, and spatial statistics of the wavelet transform can give
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Fig. 32. Comparison of detection point
from different methods. a Wavelets (Sect.
3); b correlation (Sect. 4.3); c vorticity-
based detection (Sect. 6); d WAG method;
C: detection based on v@ at y\[3 mm; B:
detection based on wz at y\0; * pairing
(Sect. 7); e delocalized detection (Sect. 8)
(same scale as for Fig. 5)

information about how energy is distributed as a function of
physical location and length scale. It is found that strong cones
in the modulus of the wavelet transform, as the length scales
a tend towards 0, point to the location of eddies and that the
spatial fluctuation of wavelet energy increases with wavenum-
ber and decreases towards the axis of the mixing layer.

The Delocalized Conditional Sampling and Correlation
based detections are shown in Fig. 32e and b respectively. Both
of these methods show excellent agreement with the visual
inspection of the instantaneous vector plot. This is perhaphs
somewhat surprising since the DCS is a global technique while
the correlation-based scheme is local in nature. Typical v-based
WAG technique results are presented in Fig. 32d. The v-based
WAG detections show the saddle points or interstructure
occurrences and not the center of the structures, hence the
difference in phase when compared to the other three velocity
based techniques. Note that the WAG scheme misses the saddle
point between 100 and 50 mm.

The results obtained from the application of the two
different Vorticity-based Conditional Sampling schemes are
shown in Fig. 32c (Houston group) and Fig. 32d (Newcastle
group). As seen from Fig. 32c, only one structure is detected in
this 0.0128 s sample. This results in a frequency of detection
consistent with what was obtained when the entire data base
was utilized (80 detections/10240 ensembles) as discussed in
Sect. 6. The vorticity-based method from the Newcastle group,
on the other hand, results in many detections (around 12) for
this same sample as can be seen upon examination of Fig. 32e.
This frequency of detection (940 Hz) is close to the band of
frequencies of 700—900 Hz found when the one-second time
records were utilized as discussed in Sect. 7. These significant
differences between the two vorticity-based schemes are
related to the differences in their makeup. The application of
the Houston scheme is much more involved than that of the
Newcastle group. The Houston scheme requires smoothing the
velocity and vorticity data over a large spatial window as well
as an iteration process. In addition, the Newcastle scheme is
based solely on levels of vorticity whereas the Houston scheme
requires an additional constraint related to the spatial scale of
the structure.

Note that all the methods at least partially detect the second
(from left to right) structure. This structure corresponds to the

maximum of uz at xK100 mm as shown in Fig. 4e. Also note,
as mentioned above, that the WAG detection based on
v catches the saddle point between x\150 and 100 mm but not
between 100 and 50 mm. Hence the WAG method misses one
side of the structure. The last structure on the right part of the
time series is not properly detected by all of the methods. In
this case the WAG method does detect the ‘‘roller’’ in the sense
that the v-detection identifies the saddle point to its left and
will also detect the saddle point to its right (not in the figure)
if it is well defined. Also note, however, that the Newcastle
uz-based scheme roughly detects both of these structures.
Hence, by comparing these two examples, we can conjecture
that a combination of the WAG detection scheme and the
simpler Newcastle vorticity-based approach may prove (to be
fruitful) to enhance structure eduction.

The influence of the reference location in the y direction can
explain why the wavelet method misses the timing on the far
right structure. In the application given here, the reference
signal is located below the axis (y\[3 mm) so that the far
right structure is not captured properly. This would also
explain the difference in phase between the other structures
obtained from the wavelets when compared to the correlation
and Delocalized detection schemes as shown in Fig. 32b and e,
respectively.

For the vorticity-based detection presented in Fig. 32c, the
fact that only one structure is captured is most likely related to
the multiplicity of steps involved in this eduction scheme and
the additional constraints invoked. It is interesting to note that
the second step of this method corresponds to a pattern-
recognition method and is similar to that used to generate the
results presented in Fig. 32b. For these results, a correlation
threshold of 0.9 was used while the Houston vorticity-based
approach is less critical with only 0.8. Hence we must conclude
that the combination of several different selection criteria
(vorticity vs velocity for detection, constraints on spatial scale,
etc.) leads to a more severe filter, and as a result, fewer
structures are detected. This also indicates that eduction
schemes based on multiple-sensor data are in general more
reliable.

Note how the test of the pairing processes (positions
noted in Fig. 32) is in good agreement with the visual analysis
of the PFV (Fig. 4) and the sectional streamline (Fig. 23). As
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discussed above, the structure detection frequency is typically
the same (within a reasonable band) for the velocity-based
schemes and is comparable to spectra results. The vorticity-
based schemes, on the other hand, differ a great deal. The
Houston scheme, for example, detects substantially fewer
structures (about 14[13 of the above average) while the New-
castle scheme detects substantially more (between two and
three times the number of structure detection obtained from
the velocity-based schemes). Typical numbers are presented
below in the Ensemble Average section.

9.1.2
Instantaneous information from correlation-based
techniques
Some salient common features between the conditional
sampling results and the POD can be identified by examining
the first POD mode representation of the sample time series as
shown in Fig. 12b. Note that the second structure from the left
is clearly identifiable by the first mode of the POD. Recall that
this particular structure was at least partially detected by all
the conditional methods and was the only one detected by
the vorticity-based scheme. Therefore, it can be argued that
detection methods based on the maximum of local vorticity
agree with the structure of largest spatial extent detected by the
first POD mode. This suggests that the dominant uz structures
are buried in the two-point statistics and, hence, in the POD
eigenfunctions as well.

9.2
Ensemble average
It is important to obtain ensemble averages from the different
identification techniques because of their potential application
in closure schemes and physical interpretation. Some very
useful quantitative comparisons can be made between the
various techniques from this point of view. Such examples
are the size of the ensemble averaged structure, denoted K1 ,
and the distance between braids (or between saddle points),
denote K2 . Both of these can be estimated from the various
figures.

The number of detected events used to build the ensemble
averages are different, depending on the method employed. For
the common study presented here, the order of magnitude
of the detected events corresponding to 1 s of signal were
typically: 400 for the WAG method (‘‘v’’ detections), 900 for
the Newcastle Vorticity-based scheme, 100 for the Houston
Vorticity-based detection scheme, 300 for the Delocalized
Conditional Sampling method and 240 for the Correlation
technique. (Of course, these numbers depend to some degree
on the threshold levels).

Table 3 summarizes the estimates of these two parameters
for the various applications. References are made to the
appropriate figures from which these values are extracted.

Note that the above values agree to within roughly ^6%.
This is quite remarkable considering the major differences
between the techniques. Also note that the mean size of the
ensemble averaged structure lies between 2.8 and 3.2dw. This
corresponds well to established results for this type of flow,
which typically exhibits an equivalent Strouhal number of 0.33.
It is interesting to note that for the schemes which permit the
extraction of both K1 & K2 that these length scales are more

Table 3

Method Figure K1 (mm) K2 (mm)

POD 1st mode 17b 94 —
Vorticity 22b, 22c — 85
WAG 26 84 80
DCS 28a 90 91

or less the same. This indicates that the distance between
structures and their length scales are similar and suggests that
the individual structures should interact and influence one
other.

9.3
Conclusion
This common study has shown that direct comparisons
between results of several methods are now possible. Good
quantitative and qualitative agreement between the different
methods have been observed as well as some differences noted.
For the first time, both instantaneous and ensemble averaged
results were discussed utilizing the same sample. Some new
opportunities for improving the techniques have been identi-
fied which involve taking advantage of the strengths of each
method through combined applications. A particular example
that comes to mind would be to apply the POD to obtain
a global time-dependent coefficient to which wavelet analysis
can be applied. Note that this may eliminate the sensitivity to
spatial dependence and allow the conditional efficiency of the
wavelet method to apply.

Several issues remain to be resolved. In particular, it is
clear that the 3D character of CS should be taken into
consideration. Experiments to obtain 3D information are
complex and care must be taken to select the optimal
experimental arrangements involving Hot Wire rakes, for
example. The use of complementary techniques can also help
to increase the possibilities of experimental studies. This is
particularly important in view of the need for experiments
which characterize the 3D structure by utilizing one or more
eduction techniques.
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