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ABSTRACT: The dynamically adaptive WAVETRISK-OCEAN global model is used to solve one- and two-layer shal-
low water ocean models of wind-driven western boundary current (WBC) turbulence. When the submesoscale is resolved,
both the one-layer simulation and the barotropic mode of the two-layer simulations have an energy spectrum with a power
law of23, while the baroclinic mode has a power law of25/3 to22 for a Munk boundary layer. This is consistent with the
theoretical prediction for the power laws of the barotropic and baroclinic (buoyancy variance) cascades in surface quasi-
geostrophic turbulence. The baroclinic mode has about 20% of the energy of the barotropic mode in this case. When a
Munk–Stommel boundary layer dominates, both the baroclinic and barotropic modes have a power law of 23. Local en-
ergy spectrum analysis reveals that the midlatitude and equatorial jets have different energy spectra and contribute differ-
ently to the global energy spectrum. We have therefore shown that adding a single baroclinic mode qualitatively changes
WBC turbulence, introducing an energy spectrum component typical of what occurs in stratified three-dimensional ocean
flows. This suggests that the first baroclinic mode may be primarily responsible for the submesoscale turbulence energy
spectrum of the oceans. Adding more vertical layers, and therefore more baroclinic modes, could strengthen the first baro-
clinic mode, producing a dual cascade spectrum (25/3,23) or (23,25/3) similar to that predicted by quasigeostrophic and
surface quasigeostrophic models, respectively.

SIGNIFICANCE STATEMENT: This research investigates how wind energy is transferred from the largest ocean
scales (thousands of kilometers) to the small turbulence scales (a few kilometers or less). We do this by using an ideal-
ized model that includes the simplest representation of density stratification. Our main finding is that this simple model
captures an essential feature of the energy transfer process. Future work will compare our results to those obtained us-
ing ocean models with more realistic stratifications.

KEYWORDS: Barotropic flows; Turbulence; Energy budget/balance; Vorticity; Adaptive models;
Numerical analysis/modeling

1. Introduction

a. Energy dynamics in the ocean

The winds continually force the oceans from above, providing
much of the energy that drives the oceanic circulation (Wunsch
1998). The large-scale wind-driven gyres that develop are a hor-
izontal structure that arises because of the wind forcing. This is
in contrast to the meridional overturning circulation (MOC),
which is essentially a vertical structure (Vallis 2006) and is
driven by significant buoyancy fluxes. One of the central ques-
tions of ocean physics is how the barotropic two-dimensional
gyres generate and interact with the three-dimensional baro-
clinic vertical structure of the oceans. How is energy transferred
from the large-scale two-dimensional barotropic mode to the
small-scale three-dimensional baroclinic modes? This can hap-
pen in a variety of ways, and some of these mechanisms are
nonintuitive (Straub and Nadiga 2014). This energy transfer, in
turn, depends on differences between the barotropic energy at
the mesoscale and the baroclinic energy at smaller scales.

Our goal in this paper is to explore the effect of including
a single baroclinic component by comparing results from

numerical simulations of one- and two-layer global shallow
water ocean models with simplified western boundary geometry.
The simulations are performed using the dynamically adaptive
model WAVETRISK-OCEAN (Kevlahan 2021; Kevlahan and
Lemarié 2022). We are particularly interested in characterizing
the vorticity dynamics and energy spectrum of barotropic and
baroclinic turbulence in the western boundary currents (WBC).

Cox and Bryan (1984) made an early attempt to resolve the
three-dimensional dynamics arising from the atmospheric
winds. Since then, many others have worked to better under-
stand the structure and dynamics of both the horizontal and
vertical motions of wind-driven ocean circulation (e.g., Steele
et al. 2001; Jackson et al. 2006; Corre et al. 2020). The simplest
way to include baroclinicity is to use either a two-layer or
two-vertical mode system (Phillips 1954). Stewart et al. (2021)
is an example of recent work that uses a two-layer model to
investigate the importance of bottom topography on the de-
velopment of the gyre.

A two-layer model allows us to focus on the leading-order
physical effects associated with vertical density gradients. In
other words, it allows us to answer the question: which new
physical effects are introduced by adding a single baroclinic
mode? Which effects require more vertical structure?

Since the pioneering work of Stommel (1948) and Munk
(1950), it is well understood that wind-driven gyres generate
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western intensification in the form of WBC. WBC form be-
cause ocean gyres transport as much mass poleward as they
do equatorward, but part of this transport occurs in a very
narrow region along the western boundary. This is of great
interest because WBC are the most energetic large-scale fea-
tures of the ocean (Wunsch 1998) and contribute significantly
to the cross Atlantic transport of momentum, heat, and bio-
geochemistry (Flierl and Davis 1993). Their structure is char-
acterized by intense mesoscale coherent vortices (i.e., eddies)
and turbulence. WBC distribute energy across a wide range of
spatial scales, from laminar flow at the large barotropic basin
scales to turbulence at the submesoscales. Idealized two- and
three-dimensional turbulence theory has been used to better
understand the nature of the oceans in these rich and complex
flows. There are many such turbulence models, and different
models can yield very different behaviors. Conversely, differ-
ent turbulence models may yield the same inertial range
power law scaling.

The principal goal of this paper is to compare power law
scaling for the barotropic and baroclinic turbulence modes in
a two-layer shallow water WBC simulation in order to deter-
mine what kind of dynamics can occur with the addition of a
single baroclinic mode.

b. Review of geophysical turbulence models and
observations

Many current models of turbulence rely on Kolmogorov’s
(1991) description of homogeneous isotropic incompressible
three-dimensional turbulence at very high Reynolds numbers.
Kolmogorov’s insight was that at large Reynolds numbers there
should be an “inertial range” of wavenumbers larger than the
wavenumbers where energy is injected and smaller than the
wavenumbers where viscosity dissipates energy. In the inertial
range the dynamics are scale independent, and energy is trans-
ferred from small to large wavenumbers by the nonlinear term
of the Navier–Stokes equation. Dimensional analysis then
shows that the energy spectrum in the inertial range should fol-
low a power law E(k) ∝ kp, with p 5 25/3. This prediction was
verified to high accuracy from observations of a tidal channel

by Grant et al. (1962). Subsequent theories of turbulence in
other configurations (two-dimensional, quasigeostrophic, strati-
fied, etc.) rely on the same general approach of identifying iner-
tial ranges characterized by a conserved quantity, such as
kinetic energy or enstrophy.

Table 1 summarizes the spectral slopes associated with
different mathematical models, numerical simulations, and
observations. We conclude that, depending on the underlying
physics, turbulence is characterized by two types of spectral
slopes: a shallow 25/3 to 22.5 slope and a steeper slope of
23 to 24. Both slopes are observed in the oceans, depending
on local conditions.

Two-dimensional dissipative turbulence forced at an inter-
mediate scale has a dual cascade, where the inverse cascade
of energy has a 25/3 scaling at larger scales and the forward
cascade of enstrophy has a 23 at small scales. Numerical sim-
ulations typically find a small-scale slope between 23 and 24,
where 23 is believed to be the asymptotic limit for large Rey-
nolds numbers (Boffetta and Musacchio 2010). Decaying two-
dimensional turbulence has a single power law of about23.

Part of the motivation for studying two-dimensional turbu-
lence is that the large-scale dynamics of the ocean are approxi-
mately two-dimensional because of strong density stratification
and rapid rotation of Earth. However, even though the oceans
can sometimes be approximated by two-dimensional flows at
large scales, the smaller scales are three-dimensional, and these
give rise to very complicated features like the MOC (Vallis
2006) that cannot be represented in a simple barotropic, two-
dimensional model.

Geostrophic turbulence is turbulence that is close to geo-
strophic and hydrostatic balance, which requires small Froude,
Ekman, and Rossby numbers (Salmon 1998). The barotropic
(two-dimensional) quasigeostrophic (QG) model is often used
to study geostrophic turbulence, as it is computationally less ex-
pensive than studying primitive equation models. It has been
demonstrated that the spectral slopes obtained from a QG tur-
bulence model are essentially the same as what is observed in
the simpler case of two-dimensional turbulence (Salmon 1998).
This then suggests that the interior dynamics of large-scale

TABLE 1. Energy spectrum power laws for different models of forced turbulence. Note that p 5 22 is typical for near-surface
ocean turbulence, characterized by mixed layer instabilities (Callies and Ferrari 2013) and for wave turbulence (Garrett and Munk
1972, 1975).

Model Power law p, E(k) ∝ kp Interpretation Reference

3D homogeneous isotropic 25/3 Forward energy cascade Kolmogorov (1991)
2D homogeneous isotropic 25/3 large scale Inverse energy cascade Batchelor (1969)

23 small scale Forward enstrophy cascade
Quasigeostrophy 25/3 large scale Inverse energy cascade Salmon (1998)

23 small scale Forward enstrophy cascade
Surface quasigeostrophy 23 large scale Inverse 2D barotropic energy cascade Tulloch and Smith (2009)

25/3 small scale Forward 3D buoyancy variance cascade
Internal wave turbulence 22 Wave turbulence Garrett and Munk (1975)

22.5 Long internal wave turbulence Lvov and Tabak (2001)
Numerical ocean 22 Dominant submesoscale Morvan et al. (2020)

24 Dominant mesoscale eddies
Real ocean 0 to 23 Jason-1/2 surface kinetic energy data Callies and Ferrari (2013)

Xu and Fu (2011, 2012)
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ocean flows should have the same spectra as two-dimensional
turbulence.

The surface quasigeostrophic (SQG) model is different
from the QG model in that it is designed to describe oceanic
flows at the surface, or possibly at the bottom. It is well known
that the SQG model has very different physical behavior
from QG model and, as a result, produces different spectra
(Tulloch and Smith 2009; Lapeyre 2017; Callies and Ferrari
2013). In particular, Tulloch and Smith (2009) have shown
that forced SQG turbulence can give rise to the opposite sce-
nario of 2D and QG turbulence: the large scales have a slope
of 23 and the small scales have a slope of 25/3. This is of
great physical interest because this spectrum has been ob-
served in the atmosphere (Nastrom and Gage 1985). In the
subtropical North Pacific, there is a strong surface buoyancy
gradient and even though one might expect SQG (surface)
turbulence dynamics, this was not found by Callies and
Ferrari (2013). To the best of our knowledge, this is an out-
standing issue that has yet to be resolved.

Observations in the Gulf Stream have demonstrated that
both QG and SQG models are appropriate models for
describing interior and near-surface dynamics, respectively
(Callies and Ferrari 2013). It was determined from observations
of the Gulf Stream that the QG (interior) turbulence domi-
nated the observations at length scales larger than 20 km. At
smaller scales internal waves became important and yielded a
slope closer to22, typical of a mixed layer instability.

There are far fewer investigations of turbulence in the one-
layer shallow water model, compared to the Boussinesq or
QG models. An early investigation is by Yuan and Hamilton
(1994), which explored equilibrium states in the context of a
one-layer forced-dissipative f-plane shallow water model. By
decomposing the flow into rotational and divergent compo-
nents, they determined that the rotational component is simi-
lar to the enstrophy cascade of two-dimensional turbulence,
where the energy spectrum has a power law of 23. The diver-
gent part, which consists of the inertia–gravity waves, has a
power law of 23 at large scales, but with a shallower tail at
smaller length scales, which is related to the mesoscale in the
atmosphere or submesoscale in the ocean. The authors con-
clude that the presence of inertia–gravity waves can give rise
to shallower slopes at small scales in the forced-dissipative
shallow water model. Afanasyev and Craig (2013) also found
slopes of 25/3 at large scales and 23 and smaller scales in the
total energy spectra (like 2D turbulence), which suggests that
inertia–gravity waves were very strong compared to the slower
balanced motions. This is different from previous observations,
which may be due to the fact that they use charged fluids.

Cho and Polvani (1996) investigated freely evolving one-
layer shallow water turbulence on a sphere with no conti-
nents. They confirmed previous results by Yoden and
Yamada (1993), that the flow tends to a vorticity quadrupole
when there is a rigid lid and a flat bottom. The presence of a
free surface (finite Rossby radius of deformation) gave rise to
a banded structure. This could occur in their model since no
continents were included. Many of their simulations had spec-
tral slopes of 23, but they did find some slopes close to 21.8
occurred at the large scales before the vorticity quadrupole

emerged. This study was extended to include forced-dissipative
turbulence in Scott and Polvani (2007). They found that for
large radii of deformation (compared to the radius of the
planet), the width of the zonal jets is well approximated by
the Rhines scale (Rhines 1975). As well, they find that prograde
and retrograde jets can occur at the equator with equal degree
of likelihood. For smaller radii of deformation, the equatorial
jets become consistently retrograde, which agrees with Theiss
(2004). Kitamura and Ishioka (2007) did similar experiments of
freely decaying one-layer, shallow water turbulence on a sphere
without any continents. They show that a Rossby wave packet
propagating toward the equator tends to include retrograde
acceleration of the equatorial jet.

c. Similar studies and physical models

Barotropic models of turbulence, such as the two-dimensional
turbulence model, are necessarily limited in the ocean phys-
ics they can describe. Stratification (i.e., baroclinicity and
three-dimensional structure) can be introduced in ocean
models in a variety of ways (Phillips 1963). Using the termi-
nology of Beron-Vera (2021), we can classify baroclinic
ocean models as

1) layered}horizontally homogeneous density layers (e.g.,
an n-HL0 model, which has homogeneous density layers
with no vertical variation within each layer);

2) levels}horizontally inhomogeneous density layers (e.g.,
an n-IL0 model, which has inhomogeneous density layers
with no vertical variation within each layer); and

3) modal}decomposition based on the vertical structure of
the normal modes.

Each of these models is different, but can yield similar results.
WAVETRISK-OCEAN is a hydrostatic n-IL0 level model,
but it is run here as a 2-HL0 model (i.e., with two, constant
density, layers). Modal models have been developed primarily
for idealized studies (Fu and Flierl 1980).

The hydrostatic approximation restricts the types of motions
that can be described accurately. In particular, they are restricted
to studying motions with a large aspect ratio, H/L ,, 1, i.e., the
motions must have a long horizontal length scale compared to
their vertical length scale. This restriction holds for all multilayer
shallow water models. In nonhydrostatic models it is often the
case that the aspect ratio is chosen such thatH/L ∼ f/N, the ratio
of the Coriolis and buoyancy frequencies. It has been shown in
Nadiga (2014) that when this is not done, spurious motions can
occur. This is not something that we need to address because of
the relative simplicity of our model, but it is a limitation shared
by all multilayer hydrostatic ocean models.

Lapeyre and Klein (2006) simulated the upper ocean using
a high-resolution three-dimensional numerical model. This
model allows strong restratification, which is not permitted in
either QG or SQG. They observed a shallow slope of 22 in
the velocity spectrum. Therefore, even though SQG should
not strictly be valid in this regime, it does yield results that are
consistent with the surface dynamics of the ocean. They state
that QG turbulence is characterized by
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1) a steep energy spectrum with power laws close to 23 or
24 at large wavenumbers,

2) a direct cascade of baroclinic (potential) energy, and
3) an inverse cascade of barotropic energy from scales close

to the Rossby radius of deformation to large scales with a
power law close to 25/3 at small wavenumbers.

Furthermore, Smith and Vallis (2001), who decomposed the
flow into vertical modes, show that surface-intensified stratifi-
cation slows the transition from the baroclinic to barotropic
mode, as a result of baroclinic instability. They suggested that
the first baroclinic mode includes these surface-intensified
motions typical of three-dimensional flows. Fu and Flierl
(1980) show an example where higher-order baroclinic modes
transfer some of their energy to the first baroclinic mode.

Favier et al. (2019) is quite close in goals and conception to
our two-layer model, but in a different physical context. They
studied the turbulence dynamics that develops in rotating
Rayleigh–Bénard convection. They computed the two- and
three-dimensional portions of the flow, which in our context
we call the barotropic and baroclinic components of the flow.
They found that the baroclinic (three-dimensional) and baro-
tropic (two-dimensional) components each had power law of
25/3 and 23, respectively, for the same range of wavenum-
bers. However, the baroclinic component was more energetic.
In our work we study a different physical problem, the spinup
of the wind driven gyres, using a very different physical ap-
proximation and numerical model. However, our barotropic–
baroclinic decomposition is similar to Favier et al.’s (2019)
two-dimensional/three-dimensional decomposition and we
also find that the baroclinic and the barotropic flows have
slopes of 25/3 and 23, respectively. One major difference is
that we consider a two-layer model, and therefore there is
only a single baroclinic mode, unlike Favier et al. (2019), who
have a much better resolved vertical coordinate, which is pre-
sumably what produces much more energy in the baroclinic
models. We speculate that with a fully three-dimensional
ocean model, we would find that the baroclinic modes still have
slopes of25/3, but with energy content similar to the barotropic
mode. However, a multilayer simulation is beyond the scope of
this paper (and complicates the interpretation of the results)
and therefore this question is reserved for future work.

These results suggest that the first baroclinic mode, which
we include in our two-layer model, is the most important of
all the baroclinic modes for understanding ocean turbulence.

d. Outline of the paper and its contributions

In this manuscript, we study the evolution of wind-driven
gyre flows in a two-layer shallow water model. We solve the
two-layer shallow water model on the sphere with an idealized
Drake Passage topography using the WAVETRISK-OCEAN
code. The dynamic adaptivity of this code permits very high lo-
cal resolutions where required to resolve the submesoscale dy-
namics. To further maximize resolution, we consider a small
planet, 1/6 Earth’s diameter. To the best of our knowledge,
this is the first investigation of a wind-driven shallow water
ocean model that includes idealized continents.

We decompose the flow into its barotropic and baroclinic com-
ponents, as described in section 2c. The barotropic and baroclinic
components of the results are diagnosed to understand how they
differ. This is done by comparing their respective vorticity fields
in physical space, as well as by computing their spherical har-
monic energy spectra (and extracting their associated inertial
range power laws). This barotropic–baroclinic decomposition is
commonly used for rotating convection (Julien et al. 2012; Rubio
et al. 2014; Julien et al. 2018; Favier et al. 2019).

In section 2 we present the model equations, the equations
for the evolution of energy, the barotropic–baroclinic decom-
position, the numerical method used to simulate the flow, the
tools used for the spectral analysis, and the details of the
model configuration. Details of the setup and different scenar-
ios are given in section 2g. In section 3 we discuss the vorticity
plots obtained from our simulations obtained for the various
simulations (one-layer/two-layer, fast/normal/slow rotation,
weak/strong baroclinic mode). Section 4 presents the energy
spectra computed for the cases shown in section 3. Finally, in
section 5 we summarize and interpret our main results.

Our results show that both the one-layer simulation and the
barotropic component of the two-layer simulation have an en-
ergy spectrum with a power law of 23, while the weaker three-
dimensional baroclinic flow has a power law of25/3 to22 in the
presence of a Munk boundary layer. These results are similar to
those found for rotating stratified flows. We therefore demon-
strate that adding a single baroclinic mode qualitatively changes
the turbulence, introducing a spectral component observed in
three-dimensional ocean flows. Large bottom friction, which pro-
duces a Munk–Stommel boundary layer, generates a dominant
baroclinic mode and steepens the baroclinic energy spectrum
compared to the weak baroclinic mode cases. The terms “Munk
layer” and “Munk–Stommel layer” are defined in section 2g. We
interpret the spectral results in terms of different types of vortical
structures (i.e., coherent eddies and filamentary turbulence) by
computing local energy spectra in different parts of the ocean
(e.g., in the midlatitude current and equatorial jet of theWBC).

2. Idealized ocean model

a. Model equations

In this investigation we focus on the two-layer shallow
water model with a free surface and a flat bottom. As is well
known, the dynamics of the free surface and the layer interfa-
ces are strongly coupled to the barotropic and baroclinic
dynamics, respectively. The governing equations for the mul-
tilayer shallow water model can be found in Vallis (2006) for
cases with and without a free surface. The dynamical equa-
tions in our two-layer case with a free surface are

­tu1 1 ∇ 1
2
|u1|2 1 q1h1u

⊥
1 5 2 (g 2 g′)∇h 1

t

r0h1

2 r1(u1 2 u2) 1 nDu1, (1)

­tu2 1 ∇ 1
2
|u2|2 1 q2h2u

⊥
2 5 2g∇h 1 g′∇h1 2 rb

u2
h2

2 r2(u2 2 u1) 1 nDu2, (2)
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­th1 1 ∇ · (h1u1) 5 0, (3)

­th2 1 ∇ · (h2u2) 5 0, (4)

where ui(x, t) and hi(x, t) are the horizontal velocities and
thicknesses of layer i, for i 5 1, 2 (top and bottom layers, re-
spectively) with total depth h 5 h1 1 h2. The mean layer
depths are Hi, with H 5 H1 1 H2 the total mean depth.
The Coriolis term f is included in the potential vorticity
qi 5 (ẑ · ∇3 ui 1 f )/hi, where ẑ is the local unit normal to the
sphere, and the rotated horizontal velocity u⊥i 5 ẑ 3 ui. The
term t is the wind stress, g is the gravitational acceleration,
g′ 5 g(r2 2 r1)/r0 is the reduced gravity, rb is the bottom fric-
tion coefficient, ri is internal wave friction, and n is the lateral
viscosity. We set r0 5 r2. As explained in section 2c, the wind
stress, bottom drag, and internal drag are incorporated in the
discretization of the Laplacian vertical diffusion. The horizon-
tal Laplacian diffusion terms can be thought of as a simple
model for horizontal turbulence with a constant turbulent vis-
cosity nmuch larger than the molecular viscosity of water.

We compare the two-layer results with results from a simu-
lation of the single layer shallow water equations

­tu 1 ∇ 1
2
|u|2 1 qhu⊥ 5 2g∇h 1

t

r0h
2 rb

u

h
1 nDu, (5)

­th 1 ∇ · (hu) 5 0: (6)

Note that, in general, the solution of the single layer equations
is not the same as the barotropic mode of the two-layer system.

Energy is added to the system via wind stress at the free sur-
face (i.e., distributed over the top layer) and is then diffused
horizontally due to lateral viscosity in both layers. Bottom fric-
tion removes energy from the system and redistributes energy
between the barotropic and baroclinic modes. The internal drag
transfers momentum from the faster layer (typically the top) to
the slower layer (typically the bottom) and is a two-layer ver-
sion of Laplacian vertical diffusion of momentum [see Eqs. (11)
and (12)]. Furthermore, the pressure gradients are an important
means through which energy can be transferred between the
two layers. Both horizontal layers evolve due to nonlinear ad-
vection, Coriolis pseudoforce, hydrostatic pressure gradient, in-
terior drag, and lateral viscosity. Mass is conserved separately in
each layer and the density is constant in each layer.

b. Energetics

We can use standard approaches, as explained in Vallis
(2006), to obtain an evolution equation for the total energy
density of the two-layer system and it yields the following:

­t
1
2
r0h1u

2
1 1

1
2
r0h2u

2
2 1

1
2
gr1h

2
1 1

1
2
gr2h

2
2 1 gr1h1h2

( )
5 2∇ · u2

1
2
r0h2u

2
2 1 gr2h

2
2 1 gr1h1h2

( )[

1 u1
1
2
r0h1u

2
1 1 gr1h

2
1 1 gr2h1h2

( )]
1 r1h1u1 · F1 1 r2h2u2 · F2, (7)

where Fi are the terms arising from the vertical diffusion and
lateral diffusion. The terms in the bracket following the time
derivative are the kinetic and potential energy densities for
layer one, then the same terms for layer two, and finally there
is a potential energy density due to the coupling of the two
layers. The term that contains a divergence is due to the flux
of energy due to advection, and these terms make no net con-
tribution to the change in energy if there is no energy added
through the boundaries. The final two terms describe how the
total energy density changes in time due to the nonconserva-
tive forces included in the model, mentioned above.

The energetics is slightly different from that used in Vallis
(2006) and other textbooks because we have not approxi-
mated one of the densities with the other, and instead used
the densities as they appear in the original dynamical equations.
Making the approximation in Vallis (2006) only conserves en-
ergy to leading order. The resulting error is proportional to the
difference in the densities of the two layers.

c. Barotropic–baroclinic decomposition

A principal goal of this work is to investigate the additional
dynamics that arise in a two-layer system compared to a sin-
gle-layer shallow water model. A two-layer system is one of

the simplest models that includes some baroclinic effects (i.e.,
a single baroclinic mode). What sort of new dynamics does
this simple model permit? How is the energy spectrum af-
fected? To aid our analysis we decompose the velocity into its
barotropic and baroclinic components, where the former is
for the whole system and the latter is layer dependent.

The barotropic (BT) velocity u is defined as the vertical,
weighted average of the velocity field,

hu 5 h1u1 1 h2u2, (8)

where h5 h1 1 h2 is the total depth. The barotropic velocity ap-
proximates the velocity field in a single layer shallow water system
(although it will not be identical to a true single layer model).

The baroclinic (BC) velocity in each layer u′i is then defined
as the difference between the layer velocity and the BT veloc-
ity. Using the above equation, the two fields can be written as

hu′1 5 h2(u1 2 u2), (9)

hu′2 5 h1(u2 2 u1): (10)

We make extensive use of the decomposition (8) and (10)
to analyze the results of the simulations. The barotropic
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velocity u of the two-layer equations (1) and (4) is not the
same as the solution u of the single layer shallow water equa-
tions (5) and (6), although we will see that its qualitative fea-
tures are similar.

d. Numerical method

The two-layer model described in the previous section is solved
on the sphere using WAVETRISK-OCEAN (Kevlahan and
Lemarié 2022), which is a dynamically adaptive multiscale
wavelet-based code. WAVETRISK-OCEAN is an incompress-
ible version of the atmosphere model WAVETRISK (Dubos and
Kevlahan 2013; Aechtner et al. 2015; Kevlahan and Dubos 2019).
WAVETRISK itself is based on the mimetic climate model
DYNAMICO (Dubos et al. 2015). WAVETRISK uses a
wavelet-based multiresolution grid structure, which permits ar-
bitrary refinement of the local grid based on indicators of the
relative approximation error (or other criteria). The discretiza-
tion uses an icosahedral staggered C-grid approximation to
spherical geometry.

WAVETRISK-OCEAN uses a Lagrangian vertical coordi-
nate, which is highly accurate for ocean models. In general,
the vertical grid must be remapped periodically to the initial
grid or another target grid (e.g., isopycnal). However, in the
two-layer cases considered here vertical remapping is not re-
quired, provided the vertical diffusion is sufficiently large to
prevent layer collapse.

Vertical diffusion is approximated using a standard second-
order finite difference-finite volume discretization of Lapla-
cian diffusion ­z(Ay­zu), where Ay is the vertical viscosity.
The flux boundary conditions at the top and bottom layer in-
terfaces are provided by the wind stress and bottom stress, re-
spectively. The discrete approximations for vertical diffusion
of velocity for the two-layer system are

­tu1 5 · · · 2 Ay

h1h/2
(u1 2 u2) 1

t

r0h1
, (11)

­tu2 5 · · · 2 Ay

h2h/2
(u2 2 u1) 2 rb

u2
h2

: (12)

The equivalent internal wave friction values in Eqs. (1) and
(2) are therefore ri 5 Ay /(hih/2). The internal wave friction
does not change the total linear momentum of the two-layer
system r0(h1u1 1 h2u2).

No-slip boundary conditions at coastlines are approximated
using Brinkman volume penalization (Kevlahan et al. 2015).
This method is derived from flow through a porous medium
and controls the approximation error of the boundary condi-
tion by setting appropriately small values for the porosity and
permeability in the solid regions. All cases considered here
have uniform depth (i.e., no bathymetry features).

The multilayer ocean model uses barotropic–baroclinic
mode time splitting via an implicit free surface to avoid the
small time step imposed by the Courant–Friedrichs–Lewy
(CFL) stability limit for the external mode. The method is sta-
ble for very large barotropic CFL numbers and accurate for
barotropic CFL numbers of up to about 30. Implicit free

surface time splitting is commonly used ocean models and one
popular example is the MITgcm model (Marshall et al. 1997).

The implicit free surface effectively damps the fast free sur-
face wave motions and does not require an extremely accurate
solution of the associated elliptic equation (unlike the rigid lid
approach). We are interested in the slower geostrophic modes
(i.e., turbulence) that determine the dynamics of WBCs. Since
it has previously been found in the context of the shallow wa-
ter model (Ford 1994) that this interaction is weak, we can
safely damp the fast free surface waves. We have verified that
the implicit free surface simulations give results for the vortic-
ity field essentially identical to the non-time-splitting case run
at the small barotropic time step Dt5 1:2x/

����
gh

√
.

The combination of local grid adaptation and barotropic–
baroclinic mode time splitting allows efficient numerical simula-
tions at very high local resolution. In this paper we report re-
sults for a 1/6-scale Earth with finest grid size Dxmin ≈ 1.25 km
and coarsest grid size Dxmax ≈ 20 km.

e. Spectral analysis

Investigation of turbulence dynamics requires accurate com-
putation of energy spectra on the sphere. In addition, since we
are particularly interested in turbulence generated by the WBC,
we require local energy spectra associated with different regions
of the boundary layer (e.g., equatorial and midlatitude).

The energy spectra are computed from saved vorticity data
interpolated to the finest level of resolution Dx ≈ 1.25 km and
then projected onto a uniform longitude–latitude grid of
equivalent resolution. This means that we present energy spec-
tra for the div-free, i.e., rotational, part of the velocity field.
The curl-free, i.e., divergent, component is much weaker and
is not relevant for the analysis of the geostrophic eddy dynam-
ics we are interested in here. The spherical harmonics energy
spectrum is then computed from the latitude–longitude data
using the spherical harmonics toolbox SHTOOLS (Wieczorek
and Meschede 2018).

In addition to global energy spectra, SHTOOLS can also
compute the local energy spectrum corresponding to a specified
spherical cap region of the sphere. This is done by “tapering”:
multiplying the data by suitable windowing functions and ex-
panding the resulting field in spherical harmonics. Wieczorek
and Meschede (2018) give details of the tapering process used to
compute local energy spectra in specified regions, as well as an
explanation of how to choose the various parameters. Our local
spectra are computed with 6 tapers, an angular order of 2, and
ensure that 99% of the total energy of the local energy spectrum
is from the local region. The angular radius of the spherical cap
localization domain is 208 (about 3% of the area of the sphere).
We term the usual energy spectra computed over the entire
sphere “global spectra” to distinguish them from the “local
spectra” computed over subregions of the sphere.

f. Physical parameters

The basic physical parameters of our model are V (the angu-
lar rotation rate), a (the radius of the sphere), rb (bottom fric-
tion), wind stress magnitude t0, lateral viscosity n, total depth
H, mean layer depthsH1 andH2, and reduced gravity g′.
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As was established by Stommel (1948), if bottom friction
dominates the dynamics, the width of the WBC is the Stom-
mel layer thickness,

dS 5
rb
Hb

, (13)

b 5 2V cos(f)/a is the b parameter and f is the latitude. Note
that, because we use spherical geometry, dS is not constant.

Alternatively, if lateral viscosity n dominates the dynamics,
then the width of the WBC is the Munk layer thickness
(Munk 1950)

dM 5
n

b

( )1/3
:

We set n to ensure that the Munk layer is reasonably well re-
solved and then set rb to ensure that

dM 5 4HdS, (14)

so that lateral viscosity is the dominant effect as V is varied. The
vertical viscosityAy is set just large enough to avoid layer collapse
(4 m2 s21) and is similar in magnitude to the lateral viscosity n.

The mesoscale is estimated as the internal (i.e., baroclinic)
Rossby radius of deformation,

k1 5
c1
f0
,

where c1 5
����������������
g′(H1H2)/H

√
is the speed of the baroclinic mode

and f5 2V sinf is the Coriolis parameter. We are particularly in-
terested in small values of V that ensure the mesoscale is large
enough that the mesoscale motions are very well resolved. This
means that the external (i.e., barotropic) Rossby radius k0 5 c0/f,
where c0 5

�����
gH

√
is the speed of external waves, is large and not

of physical importance. Table 2 summarizes the physical parame-
ters for each of the four test cases.

There are different ways to define the submesoscale length
scale dSM. We have chosen to define it as the length scale
where the local Rossby number Ro5 1 in the WBC, based on
the velocity of the western boundary current observed in the
simulation,Uwbc, normalized by the local Coriolis parameter f0
at 458 (B. Fox-Kemper 2011, personal communication),

dSM 5
Uwbc

f0
:

In the slow and normal rotation simulations k1/dSM ≈ 4 and
14, respectively, and therefore there is a reasonable large gap
between the two length scales (see Table 2).

The Rossby number

Ro 5
Uwbc

dMV
:

Ro . 1 in our simulations (except for the fast test case). The
local Rossby number (local relative vorticity divided by 2V)
in the vicinity of the WBCs is O(1), which suggests that sub-
mesoscale dynamics should be important there.

The model configuration and values of the physical parame-
ters for our simulations our summarized in the following
section.

g. Model configuration and test case parameters

We consider global simulations (i.e., spherical geometry) on
a small 1/6-scale Earth. The small Earth and dynamically adap-
tive grid make very high resolutions feasible: Dxmin ≈ 1.25 km
for the results presented here. The gravitational acceleration
g 5 9.80616 m s22, the reference density r0 5 1028 kg m23,
and the reference rotation rate VE 5 7.292 113 1025 s21

(Earth value). The density difference between the two layers
is dr 5 r2 2 r1 5 4 kg m23, or g′ 5 0.038 16 m s22. The total
mean depth H 5 4 km in all cases and the mean layer depths
areH1 5 1 km andH2 5 3 km in the two-layer simulations.

The top layer is forced by a latitude-dependent zonal wind
stress

tu(f) 5 21:2 t0 exp 2
|f| 2 358

208

( )2[ ]
sin|6f| 2 t1 exp 2

f

108

( )2[ ]
,

(15)

where f is the latitude in degrees, where t0 5 0.4 N m22 is the
maximum wind stress magnitude and t1 5 53 1023 N m22.
This profile, shown in Fig. 1, is chosen to model the observed
mean zonal wind stress (Ferreira et al. 2011). The meridional
wind stress ty is zero for all simulations. There are no external
sources of buoyancy or mass. Wind stress acts only on the top
layer, bottom friction acts only on the bottom layer, and inter-
nal drag acts only in the two-layer cases.

There is a single slab-like landmass with boundaries at lati-
tudes 2358 and 608 and longitudes 2158 and 158 (see Fig. 2).

TABLE 2. Parameters for the simulations at three different rotation rates, where VE 5 7.292 113 1025 rad s21 is Earth’s rotation
rate and the reference latitude is 458. All simulations use a 1/6-scale small Earth with radius a 5 aE/6 5 1062 km; Uwbc is the
observed maximum total velocity in the top layer, rb is the bottom friction, Ay is the vertical viscosity, Uwbc is the speed of the
western boundary current, dM is the Munk scale, dS is the Stommel scale, k0 is the external Rossby radius, k1 is the internal Rossby
radius, dSM is the submesoscale, and Ro is the Rossby number. The slow test case has the best resolution of the mesoscale and
submesoscale, and hence of the baroclinic effects. The Munk–Stommel test case has a dominant baroclinic mode due to its much
larger bottom friction and smaller vertical viscosity. The finest grid size is Dx ≈ 1.25 km.

Test case V/VE rb (m s21) Ay (m
2 s21) Uwbc (m s21) dM (km) dS (km) k0 (km) k1 (km) dSM (km) Ro

Slow Munk 1/6 1.6 3 1028 4 1.5 3.1 2.5 3 1024 11 000 310 87 23
Normal Munk 1 4.2 3 1028 4 0.7 1.7 1.7 3 1024 1920 52 3.2 2.8
Fast Munk 6 1.4 3 1027 4 0.1 0.95 6.0 3 1025 320 8.6 0.043 0.12
Munk–Stommel 1/6 4.0 3 1024 1.2 3 1024 3.5 3.1 6.2 11 000 310 203 53
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This is the so-called “Drake Passage” test case (Ferreira et al.
2010) and is a good geometry for investigating turbulence
generated by a western boundary current.

In all cases the initial conditions are zero displacement of
the layer depths (i.e., zero initial displacement of the free sur-
face and internal surface) and the ocean is at rest. All configu-
rations use a flat bottom.

We investigate the sensitivity of turbulence dynamics and
energy spectra to the rotation rate and the strength of the bar-
oclinic mode. The four two-layer test cases and their associ-
ated physical parameters are summarized in Table 2. The first
three all have a dominant Munk boundary layer, and hence
are referred to as Munk layer cases. They differ mainly in their
rotation rates. We focus on the slow rotation test case, since it
has the best resolution of the submesoscale and mesoscale, but
also present normal and fast rotation test cases for compari-
son. The slow test case exhibits the best-defined mesoscale
eddy structure in all currents. The fourth case has Munk and
Stommel boundary layers that are comparable in scale, and we
therefore refer to it as a Munk–Stommel layer case.

We compare the slow Munk layer test case with a similar
single layer test case with a total depth H 5 4 km. This allows
us to directly compare the barotropic mode in the two-layer
configuration with the (barotropic) solution of a similar one-
layer configuration. It is not clear a priori how the baroclinic

mode modifies the barotropic mode in the two-layer case
compared to the one-layer solution.

The three different Munk layer rotation cases all use very
small bottom friction rb 5 O(1027) m s21 to satisfy the relation
(14) and a correspondingly large vertical viscosity Ay 5 4 m2 s21

to avoid layer collapse (Bleck et al. 2010; Kevlahan 2021). These
values differ from the typical values of rb 5 4 3 1024 m s21 and
Ay 5 1.2 3 1024 m2 s21 used in ocean models such as NEMO
(Madec and NEMO Team 2016). The small bottom friction pro-
duces a relatively weak baroclinic mode (Rivière et al. 2004),
containing only about 20% of the energy of barotropic mode
at the submesoscale. We therefore complete our simulations
with a “realistic” test case with a Munk–Stommel layer using
the NEMO values for bottom friction and vertical viscosity.
The test case produces a dominant baroclinic mode, with
energy about 7 times that of the barotropic mode at the
submesoscale.

3. Vorticity diagnostics

In this section we present vorticity field results for the one-
and two-layer global shallow water ocean models. We focus
on qualitative descriptions of the vorticity fields, as this pro-
vides insights into the nature of the WBCs that develop, as
well as the resulting eddying and turbulent fields. Barotropic

FIG. 1. (left) Plot of the zonal wind stress profile corresponding to the model wind stress (15) (the meridional wind
stress is zero) (N m22) and the curl of the wind stress as a function of latitude. (right) Plot of an idealization of the
Munk solution for this particular wind stress. The Munk solution shows the expected location of the western boundary
currents (WBC). The solid black line on the left denotes meridional extent of the continent. Latitude and longitude
are in degrees.
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and baroclinic processes in the WBC generate eddies and tur-
bulence. The dynamics of eddies and turbulence in the WBC
and associate jets are the central themes of this paper.

All vorticity results are shown at 450 days when the cur-
rents and eddy structure are well developed and the simula-
tions have reached an approximate statistical equilibrium. We
use the term “eddies” for isolated coherent vortices and
“turbulence” for complex regions of vorticity that include vor-
tices of different sizes together with intense filamentary struc-
tures. The minimum grid size is Dx ≈ 1.25 km and the
maximum grid size is Dx ≈ 20 km for all simulations. In
section 4, we complement the physical space analysis with a
discussion of the power law scaling of the energy spectra.

a. One-layer case and the basic gyre structure

We begin our discussion of the numerical simulations by
making some qualitative observations about the vorticity and
zonal velocity in the one layer (slow rotation Munk layer)
simulation compared with multigyre structure predicted by
the idealized Munk theory. This basic structure is maintained
in the equivalent two-layer slow rotation Munk layer case.

The model simulations are initialized with the ocean at rest
with constant zonal winds above, as shown in Fig. 1, which act
to spin up the oceans. If there were no landmass, this configu-
ration would be an “aquaplanet” simulation (e.g., Marshall
et al. 2007) and the spinup of the ocean would not generate
any WBC. In the aquaplanet scenario, the winds would drive
the oceans and create mostly zonal currents, but not exactly
since they would be deflected by the Coriolis force. However,
in our case there is a landmass which strongly deflects the
zonal flows and produces vorticity to generate meridional
flow and subsequently WBC. This continent mimics the effect
that the American continent has on the Atlantic Ocean.

Given the model wind stress in Fig. 1 (left) and Eq. (15),
Munk’s theory (Munk 1950) suggests that five gyres should
form: three in the Northern Hemisphere and two in the
Southern Hemisphere.

As predicted by theory, Fig. 2 shows that the imposed wind
stress forcing generates three regions of strong mesoscale ac-
tivity: at the equator and northern and southern subtropical
gyres (Talley 2011). If we interpret our configuration as an
idealized Atlantic Ocean, we observe analogs of the Gulf
Stream (Stommel 2020) (in the northern midlatitudes) and
the Brazilian Current (Dossa et al. 2021) (in the Southern
Hemisphere). In the tropics we reproduce the Equatorial
Current (Philander 2001).

Because the mesoscale is very well resolved in this slow ro-
tation simulation, Fig. 2 (left) shows intense eddy generation
and transport into the interior of the gyres. Turbulent regions
form at the southern boundary of the continent and at the
northern midlatitude current near the coast. Since the Coriolis
force vanishes at the equator, the motion is much less bal-
anced in the tropics and therefore the barotropic dynamics is
significantly different compared to the midlatitudes.

It is clear from these results that single layer (barotropic)
dynamics can produce WBCs with strong eddy and turbulence
generation. In the following section we compare the one-layer
results with a similar two-layer simulation which includes a
single baroclinic mode.

b. Comparison of one- and two-layer slow rotation Munk
layer simulations

The baroclinic field (Fig. 3, right) is a new feature of the
two-layer simulation that is absent in the one-layer simula-
tion. Comparing the one- and two-layer simulation is there-
fore a clean way of understanding the additional dynamics

FIG. 2. One-layer simulation results at 450 days. (left) Vorticity (s21) and (right) zonal velocity (m s21) showing cur-
rents at midlatitudes, at the equator, and at the southern boundary of the landmass. The currents are characterized by
intense eddy production and turbulence close to the western boundary of the ocean and southern solid boundaries.
The eddies are then transported into the interior.
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introduced by the first baroclinic mode. We note that this
mode can produce both balanced and unbalanced motions.

The barotropic part of the two-layer vorticity fields in Fig. 3
(left) is qualitatively similar to the one-layer vorticity (baro-
tropic) in Fig. 2 (left). The locations of the bands of vorticity
coincide and the magnitudes of the velocity and vorticity are
similar. Both vorticity fields are dominated by eddies (i.e., co-
herent vortices) that are transported into the ocean interior.
However, there are some interesting differences.

All barotropic currents meander over a broader area in the
one-layer case. There is also more turbulence near the west-
ern boundary at the equator in the two-layer case, but much
less turbulence at the southern solid boundary. This is pre-
sumably because the continent does not extend as far south as
it does north. The turbulent region associated with the south-
ern subtropical WBC is shifted to the eastern boundary of the
continent, just north of the corner. More significantly, there is
a pronounced boundary layer on the western boundary of the
continent in the Southern Hemisphere (although this not
highlighted in the standard view shown in the figures). This
boundary layer is almost entirely absent in the one-layer sim-
ulation and has vorticity of the opposite sign.

The baroclinic vorticity is qualitatively different from the
barotropic vorticity, although their magnitudes are similar.
The baroclinic vorticity has much stronger gradients and a
more filamentary turbulent structure. This is not surprising
since the internal Rossby radius is narrower than the external
Rossby radius. Most significantly, the baroclinic vorticity has
additional eddies of both signs compared with the barotropic
field. These qualitative differences are due to the baroclinic
vorticity generation that is only possible in the two-layer case.
The results shown in section 4 reveal that this difference is re-
flected in a shallower25/3 power law energy spectrum for the
baroclinic field compared to the 23 power law energy spec-
trum of the barotropic field.

The baroclinic vorticity structure is important as it signifies
that energy is being transferred from the horizontal to the ver-
tical, and this generates potential energy in the basic state.
Furthermore, baroclinic vorticity production is active, even
though the two-layer case adds only a single baroclinic mode
(i.e., the vertical motion of the internal free surface).

Studying the same physical problem with more vertical
layers could determine whether this process contributes to the
MOC (Marshall et al. 1997), but such a study is beyond the
scope of this paper. Our two-layer model does not allow for
the sinking of dense water or the rising of light water so it can-
not address those aspects of the MOC. However, it can de-
scribe the horizontal transport either at the surface or at
depth.

c. Vorticity structure: Effect of rotation rate

As shown in Table 2, the main effect of increasing the rota-
tion rate in the normal and fast rotation cases is to decrease
the mesoscale k1 and the submesoscale dSM. This, in turn, sig-
nificantly decreases the resolution of the turbulent mesoscale
dynamics. These scales are well resolved in the slow rotation
Munk layer case: the mesoscale with 248 grid points and the
submesoscale with 70 grid points. However, in the normal ro-
tation case they are resolved with only 42 and 3 grid points,
respectively. In the fast rotation case, the mesoscale resolved
with only 7 grid points and the submesoscale is not resolved
at all. The Rossby number is also proportionally smaller for
the faster rotation cases. These differences lead to clear quali-
tative differences in the corresponding barotropic and baro-
clinic vorticity fields.

Figure 4 shows the vorticity for the normal rotation Munk
layer case. The three currents are strikingly different in the
normal rotation case compared with the slow rotation case.
The currents are all far more turbulent and mostly lack the
well-defined isolated eddies that characterize the slow rotation

FIG. 3. Two-layer slow rotation simulation at 450 days. (left) Barotropic vorticity (s21) and (right) baroclinic vorticity (s21)
in the top layer.
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case. In addition, the subtropical currents in the north and
south do not extend very far into the midocean (i.e., the jet is
less energetic). The equatorial current has a striking turbulent
jet structure and is the strongest of the three in the normal ro-
tation case. These subtropical and equatorial jets are com-
pared in detail in the following section. In contrast to the slow
rotation case, there is no eddy activity at the southern bound-
ary of the continent. A case of reduced rotation was run (not
shown here) and it gave rise to much less vortex shedding as a
result of the jet being wider and therefore more stable.

Clearly, a slower rotation rate inhibits the formation of ed-
dies and favors the development of turbulence and eddy
transport into the interior has been reduced.

Figure 5 shows the vorticity for the fast rotation Munk layer
case. The unresolved submesoscale and the much smaller
Rossby number have completely eliminated the three cur-
rents in the fast rotation case. Isolated eddies are unable to
form, and the vorticity is primarily filamentary. Intense vortic-
ity is limited to a narrow band close to the western boundary.
The baroclinic vorticity is simply the barotropic vorticity with
the sign reversed.

These results show that changing the rotation rate funda-
mentally modifies the WBC and the vorticity structure and
dynamics. Slow rotation favors the formation of isolated ed-
dies, while normal rotation favors the formation of turbu-
lence. In the fast rotation simulation, where the submesoscale

FIG. 4. Two-layer normal rotation simulation at 450 days. (left) Barotropic vorticity (s21) and (right) baroclinic vortic-
ity (s21) in the top layer.

FIG. 5. Two-layer fast rotation simulation at 450 days. (left) Barotropic vorticity (s21) and (right) baroclinic vorticity (s21)
in the top layer.
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is not resolved, the eddies and turbulence both disappear.
These differences are likely due to the fact that the dynamics
are not sufficiently well resolved in the fast rotation case.

d. Equatorial current compared to midlatitude current in
the normal rotation test case

In Fig. 6 we compare in detail the local barotropic vorticity
in the Northern Hemisphere and at the equator in the normal
rotation case. The dynamics of these two meandering currents
are quite different. The midlatitude current shown in Fig. 6
(left) is turbulent, remains close to the boundary, and has
some well-defined eddies. In contrast, the equatorial current
shown in Fig. 6 (right) strongly resembles a turbulent jet, with
less intense vortices and much greater penetration into the in-
terior of the ocean. The zonal velocity of the equatorial cur-
rent is 40% stronger than that of the midlatitude current:
0.7 m s21 compared to 0.5 m s21.

While the midlatitude current is in near-geostrophic bal-
ance, this is not the case at the equator since the Coriolis force
is close to zero. We suspect that this fundamental difference
in physics is what leads to a much more turbulent current at
the equator, as it is well known that more types of instabilities
can occur in unbalanced motions (Molemaker et al. 2005),
e.g., the inertial instability. Even though the Rossby number
is about 8 times smaller in this case than in the previous slow
rotation case, the WBCs are much more turbulent.

In section 4d we use local spectra to investigate whether
these qualitative differences lead to differences in their re-
spective barotropic and baroclinic energy spectra.

e. Munk–Stommel boundary layers

The previous simulations all use relatively small bottom fric-
tion and large vertical viscosity compared with the values used
in ocean models. The small bottom friction leads to a relatively
weak baroclinic mode (Rivière et al. 2004) with about 20% of
the energy of the barotropic mode at the submesoscale.

In this section we present results for the Munk–Stommel
test case where larger bottom drag and smaller vertical dif-
fusion (see Table 2) produce a dominant baroclinic mode.
Note that the much larger bottom friction produces a corre-
spondingly larger Stommel thickness, ds 5 6.2 km. This is
equal to the Munk layer thickness, which is unchanged. In
contrast to the other test cases, vertical diffusion of momen-
tum is much stronger.

Figure 7 confirms that increasing the bottom friction and
decreasing the vertical viscosity produces a dominant baro-
clinic mode. In the next section we will see that the baroclinic
mode is about 7 times stronger than the barotropic mode at
the submesoscale. Although the vorticity is still dominated by
mesoscale eddies, they are now scattered over the entire
sphere and do not form clearly defined currents. There is
much less filamentary turbulence compared to the equivalent
(slow rotation) small bottom friction case. The midlatitude
current has shifted sharply northward and the strong equato-
rial current present in Fig. 3 has vanished entirely.

4. Energy spectra diagnostics

The vorticity fields discussed in the previous section give a
good qualitative picture of where eddies are generated and
which WBCs are most turbulent. They also reveal the effects
of rotation rate and resolution of the mesoscale and submeso-
scale on barotropic and baroclinic vorticity production and
transport.

However, a more precise and quantitative understanding of
eddy and turbulence structure is given by energy spectra. In
particular, fully developed turbulence is characterized by the
presence of one or more scale-free inertial ranges with a
power law scaling in each inertial range. Different turbulent
regimes (2D, 3D, QG, SQG, etc.) are characterized by differ-
ent energy spectra and power laws.

Our goal in this section is to compare the inertial range
scaling of the barotropic and baroclinic modes for the

FIG. 6. Local barotropic vorticity (left) in the Northern Hemisphere and (right) at the equator in the normal rota-
tion case. Latitude and longitude are in degrees. The equatorial jet is more turbulent, while the midlatitude jet has
more clearly defined eddies. This figure shows the regions that are used for computing local spectra in section 4d.
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configurations discussed in section 3. We are particularly in-
terested in using the energy spectra to characterize the eddy
or turbulence vorticity structures generated in each case.

We plot the energy spectra in terms of the spherical har-
monic wavelength k, i.e., the equivalent wavelength on the
sphere based on the Jeans relation k5 2pa/

����������
l(l1 1)√

, where l
is the degree of the spherical harmonic and a is the radius of
the sphere. The wavenumber k 5 1/k, which is the inverted
horizontal axis used in the energy spectra figures makes it is
easy to identify the length scales while preserving the usual
presentation of energy spectra in terms of wavenumber.

Different regions of the WBC may have different energy
spectra because of their different vorticity structure and local
conditions (e.g., strength of Coriolis force). To investigate
how the energy spectra vary locally, we use SHTOOLS to
compute local energy spectra in selected spherical cap regions
(e.g., midlatitude or equatorial jets), as explained in section 2e.

All spectra presented are averages of 10 spectra computed for
the top layer at 5-day intervals from 405 to 450 days. We
checked that the averaged spectra are indeed stationary by
modifying the window over which we take the average. In fact,
the slopes do not change if we compare spectra of single times
to the average: they are just noisier.

a. One- and two-layer slow rotation Munk layer
energy spectra

In Fig. 8 we plot the global energy spectra for the one-layer
(left), barotropic component of the two-layer simulation (cen-
ter), and the baroclinic component of the two-layer simulation
(right). The inertial range is approximately the planetary scale
since that is the scale of the forcing by the wind stress. It is
about twice as large as k1.

For intermediate wavenumbers, we see that both the one-
layer and two-layer barotropic spectra have power laws of 23.

FIG. 7. Two-layer slow rotation simulation with Munk–Stommel bottom friction and vertical viscosity at 450 days.
(left) Barotropic vorticity and (right) baroclinic vorticity in the top layer. We use different scales for the barotropic
and baroclinic vorticity because the baroclinic vorticity is about 3 times stronger than in the other test cases. Note the
very different eddy structure compared to the equivalent small bottom friction and large vertical diffusion case shown
in Fig. 3.

FIG. 8. Global spherical harmonic energy spectra of the slow rotation case. The term k is the wavelength and k5 1/k is the wavenumber;
k0 and k1 are the external and internal deformation radii, respectively, and dSM is the submesoscale. (left) One-layer and (center) two-layer
barotropic. (right) Two-layer baroclinic. The baroclinic mode has about 20% of the energy of the barotropic mode at the submesoscale.
The energy spectrum of the total velocity field also has a power law scaling of23.
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This slope is consistent with a forward enstrophy cascade,
which is what is typically observed when studying turbulent
flows in the QG model away from the boundaries (Salmon
1998).

In contrast, the baroclinic spectrum is characterized by an iner-
tial range with much shallower slope, with a power law close to
25/3, as for the inverse energy cascade in two-dimensional turbu-
lence. However, this slope has also been found in studies of sur-
face quasigeostrophic (SQG) turbulence, which models the flows
near the surface of the ocean (Sukhatme and Pierrehumbert
2002; Lapeyre 2017; Perruche et al. 2011).

It is interesting that we observe slopes of both23 and25/3 in
the same model, but in two different fields (barotropic and baro-
clinic). For SQG, Tulloch and Smith (2009) find a 23 energy
spectrum power law associated with an inverse two-dimensional
cascade of barotropic energy and a 25/3 energy spectrum
power law associated with a forward three-dimensional
cascade of buoyancy variance (see Table 1). It is also note-
worthy that a single baroclinic mode is sufficient to pro-
duce the 25/3 scaling.

However, it should be noted that at the submesoscale the
baroclinic field is about 5 times weaker than the barotropic
field, and therefore the energy spectrum of the total field is
dominated by the barotropic dynamics and has a slope of23.

Notice that in all the energy spectra shown in Fig. 8, the 23
or 25/3 inertial range ends at about 20 km. This length scale
is not significantly affected by rotation and is much smaller
than the external and internal radii of deformation.

b. Normal and fast rotation Munk layer energy spectra

Figure 9 shows the barotropic and baroclinic energy spectra
for the normal rotation test case. The results are broadly simi-
lar to the slow rotation case, but with a smaller power law
range and a slightly steeper 22 power law for the baroclinic
energy spectrum (still typical of observed and modeled three-
dimensional ocean flow, see Table 1). The smaller inertial
ranges are likely due to the less-well-resolved mesoscale and
submesoscale.

Figure 10 shows the barotropic and baroclinic energy spec-
tra for the fast rotation test case. The results are qualitatively
different from the slow and normal rotation cases and illus-
trate how the distinct vorticity dynamics of the fast case
shown in the previous section affect the energy spectrum.
There is a flat power law region at intermediate scales and a
steep and well-defined 24 or 23.5 power law at small scales.
These qualitatively different results are likely due to the fact
that the submesoscale is completely unresolved in this case.
Indeed, Morvan et al. (2020) find that a 24 slope is associated
with dominant mesoscale eddy dynamics, while a 22 slope is
associated with dominant submesoscale dynamics. The flat
power law may not be significant, although a similar energy
spectrum has been observed in the ocean (see Table 1).

c. Munk–Stommel layer test case energy spectra

Figure 11 shows the barotropic and baroclinic energy spec-
tra for the realistic (Munk–Stommel layer) test case. The bar-
oclinic mode strongly dominates in this case, with about
7 times the energy of the barotropic mode at the submeso-
scale. Both spectra have power laws of 23. It seems that the
baroclinic mode has extracted energy from the barotropic
mode, leading both spectra to converge to a 23 power law.
Since the23 spectrum is typical of one-layer two-dimensional
dynamics, the 25/3 or 22 scaling observed with small bottom
friction may be due to the baroclinic mode being weakly cou-
pled to the barotropic mode in those cases. The absence of a
distinct 25/3 power law suggests there is no longer a forward
baroclinic energy cascade in this case.

d. Local spectra at midlatitude and equator

One of strengths of the SHTOOLS spherical harmonics
toolbox is that it can compute spectra over localized regions,
and thus we can analyze the contributions to the global spec-
tra from specific currents (e.g., midlatitude and equatorial).
Fourier analysis tells us that in a signal containing regions of
different regularity the global energy spectrum is set by the
most singular region (i.e., the one with the shallowest power

FIG. 9. Global spherical harmonic energy spectra of the two-layer normal rotation case. The term k is the wave-
length and k5 1/k is the wavenumber; k0 and k1 are the external and internal deformation radii, respectively, and dSM
is the submesoscale. (left) Barotropic energy spectrum. (right) Baroclinic energy spectrum. The power law of the bar-
oclinic spectrum is slightly steeper than in the slow rotation case:22 compared to25/3.
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law spectrum). We therefore expect that some regions of the
WBC could have local energy spectra with power law slopes
steeper than that of the global energy spectrum.

We focus here on comparing the local spectra in the sub-
tropical and equatorial currents shown in Fig. 6) with the
global spectra in Fig. 9. We picked this case since the vorticity
structure in the two currents is distinct: eddies at midlatitude
and turbulent jet at the equator. The vortical parts of the cur-
rents are also more localized than in the slow rotation case,
making local analysis feasible. Both the midlatitude and equato-
rial local regions are spherical caps with angular radius of 208.

Figure 12 shows the local energy spectra for the midlatitude
and equatorial regions shown in Fig. 6. The barotropic power
law of the local energy spectrum for the midlatitude current is
about 23, while that of the equatorial jet is steeper: 24. This

suggests that the 23 power law of the barotropic global spec-
trum is set by the midlatitude current.

In contrast, the 25/3 power law of the local baroclinic en-
ergy spectrum of the equatorial turbulent jet is shallower than
the 22.5 power law of the midlatitude eddy. This suggests
that it is possible that the equatorial jet that determines the
global power law, which is close to 22. These results also sug-
gest that the Coriolis force has the effect of steepening the
baroclinic spectrum, increasing its power law from 25/3 to
22.5. If the long internal wave turbulence analysis of Lvov
and Tabak (2001) is valid, this could suggest that wave turbu-
lence is more active at midlatitudes.

These local energy spectrum results are perhaps not sur-
prising given the more turbulent structure of the equatorial
turbulent jet (more like forced turbulence) and the eddy

FIG. 11. Global spherical harmonic energy spectra of the Munk–Stommel layer case. The term k is the wavelength
and k 5 1/k is the wavenumber; k0 and k1 are the external and internal deformation radii, respectively, and dSM is the
submesoscale. (left) Barotropic energy spectrum. (right) Baroclinic energy spectrum. The baroclinic mode dominates
in this case, with about 7 times the energy of the barotropic mode at the submesoscale, and both spectra have power
laws of23.

FIG. 10. Global spherical harmonic energy spectra of the two-layer fast rotation case. The term k is the wavelength
and k 5 1/k is the wavenumber; k0 and k1 are the external and internal deformation radii, respectively (the submeso-
scale is not resolved in this case). (left) Barotropic energy spectrum. (right) Baroclinic energy spectrum. The unre-
solved submesoscale leads to a very different spectrum, with a flat energy spectrum at intermediate scales and power
laws steeper than23 at small scales for both modes.
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dominated structure of the subtropical WBC midlatitude cur-
rent (more similar to decaying two-dimensional turbulence).

5. Conclusions

We have used the global dynamically adaptive WAVETRISK-
OCEAN code to compare the properties of barotropic and
single-mode baroclinic turbulence in a two-layer shallow water
ocean model. The base configuration uses a 1/6-scale “small”
Earth with layer depths H1 5 1 km, H2 5 3 km, and density dif-
ference dr 5 r2 2 r1 5 4 kg m23. The maximum magnitude of
the wind stress is t0 5 0.4 N m22. We compare results for simula-
tions with a dominant Munk boundary layer at different rotation

rates with one that has Munk and Stommel layers of essentially
the same size.

The power law scaling for the various configurations is sum-
marized in Table 3. The result for the power law of the baro-
tropic component is robust: it is 23 for all one- and two-layer
configurations. The most interesting result is that the energy
spectrum power law of the single baroclinic mode is between
25/3 and 22 for all small bottom friction cases that resolve
the submesoscale. These results are similar to Tulloch
and Smith’s (2009) theory for SQG turbulence, who find a
23 energy spectrum power law associated with an inverse
two-dimensional cascade of barotropic energy and a 25/3 en-
ergy spectrum power law associated with a forward three-

FIG. 12. Local spherical harmonic energy spectra for two-layer normal rotation case in the midlatitude and equato-
rial regions shown in Fig. 6. The terms k0 and k1 are the external and internal deformation radii, respectively; dSM is
the submesoscale. (top) The midlatitude region centered at (458N, 358E) with an angular radius of 208. (bottom) The
equatorial region centered at (08N, 358E) with an angular radius of 208. Note that there is much less energy in these lo-
cal regions than for global energy spectra integrated over the entire sphere.

TABLE 3. Global energy spectrum results. Note that the submesoscale is not resolved in the fast rotation case and the baroclinic
energy dominates in the large bottom friction case. These results are the same for the top and bottom layers. Full details of the
parameters for each test case are given in Table 2.

Test case Component Power law p, E(k) ∝ kp

One layer, slow rotation Barotropic 23
Slow and normal rotation Barotropic 23
Fast rotation Barotropic 24
Slow rotation Baroclinic 25/3
Normal rotation Baroclinic 22.5
Fast rotation Baroclinic 23.5
Large bottom friction Barotropic and baroclinic 23
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dimensional cascade of buoyancy variance (see Table 1). The
shallow slope of the baroclinic mode is similar to what is ob-
served in oceanic turbulence, and this suggests that the first baro-
clinic mode could play an important role in producing the slopes
that are observed.

In the fast rotation Munk layer case, where the submeso-
scale is not resolved, the barotropic and baroclinic energy
spectra have steeper slopes of approximately24 and23.5, re-
spectively. This is consistent with the observations of Morvan
et al. (2020), who find that a 24 power law is associated with
dominant mesoscale motions, while a shallower22 power law
is associated with an active submesoscale.

However, in the two-layer case with a dominant Munk
layer, the baroclinic mode only has about 20% of the energy
of the barotropic mode and therefore the spectrum of the
power law of the total kinetic energy spectrum is 23. We also
ran a simulation with Munk and Stommel layers of compara-
ble sizes and this case produced a baroclinic mode with 7 times
the energy of the barotropic mode. However, the power law of
both the baroclinic and barotropic modes is 23 in this case.
This is in contrast to the SQG results of Tulloch and Smith
(2009), which suggests that only the two-dimensional baro-
tropic cascade is active in this case. This Munk–Stommel layer
case did not produce an equatorial jet, which is unrealistic.

The local energy spectra results in Fig. 12 confirmed that the
global energy spectra are indeed controlled by the vorticity in
the WBC. Comparing local spectra in the midlatitude and
equatorial regions for the normal rotation case suggests that
the Coriolis effect steepens the spectrum slightly: changing it
from 25/3 to 22.5. It is interesting that the long internal wave
turbulence analysis of Lvov and Tabak (2001) predicts a
22.5 power law.

Salmon’s (1998) model of two-layer geostrophic turbulence
forces the system by adding energy to the baroclinic mode at
large scales, which then cascades to smaller scales. The baro-
clinic energy is converted to barotropic energy at the internal
Rossby radius of deformation and, subsequently, the baro-
tropic energy cascades to both larger and smaller scales. This
is consistent with what we find and also what is found by Tulloch
and Smith (2009), since there appears to be both an inverse cas-
cade of barotropic energy at the large scales and a direct cascade
of baroclinic energy at the small scales. Since the Munk layer
cases can produce shallow energy spectra of 25/3, they must
be generating submesoscale dynamics. In contrast, the Munk–
Stommel case has energy spectra with a much steeper slope and
therefore does not generate submesoscale dynamics. We attri-
bute the differences between these two results to the fact that the
bottom boundary layer is in the form of a Rayleigh drag, and
therefore dissipates all length scales equally. This seems to pre-
vent the generation of submesoscale dynamics in the large bot-
tom friction Munk–Stommel layer case.

No configuration produced a dual cascade with two well-
defined power laws, like the 23 and 25/3 combination pre-
dicted by QG or SQG. However, since we found that the bar-
otropic component has a power law of 23 and the baroclinic
component has a power law of about 25/3 it is possible that
adding more vertical layers (i.e., more baroclinic modes) may
amplify the first baroclinic mode by allowing transfer of

energy from the higher-order baroclinic modes to produce a
dual power-law energy spectrum. Such a mechanism has been
proposed by Fu and Flierl (1980). In other words, we have the
ingredients to produce either the (25/3, 23) QG or (23, 25/3)
SQG spectra, depending on the relative amounts of energy in
the barotropic and baroclinic modes at each wavenumber. This
conjecture is a subject for future investigation.

Focusing on the simple case of two-layer shallow water tur-
bulence has revealed that a fundamental characteristic of sub-
mesoscale turbulence can be captured by the first baroclinic
mode. Two-layer models can be used to help understand the
transfer of energy in the global ocean by allowing extremely
high-resolution simulations that are impractical with realistic
three-dimensional models that typically contain 60 or 80 layers.

Future research, comparing two-layer and multilayer mod-
els, will help us further understand the effect of adding more
baroclinic modes: Which important turbulence physics is ab-
sent in a two-layer model? Which physics is simply masked by
the much stronger barotropic mode? Since WAVETRISK-
OCEAN (Kevlahan and Lemarié 2022) is a multilayer ocean
model that allows inhomogeneous density layers, we can con-
tinue to use it to investigate turbulent energy cascades in
more realistic scenarios.
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