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A B S T R A C T

The advantage of a smooth representation of bathymetry in terrain-following 𝜎-coordinate ocean models
is compromised by the need to avoid numerical errors on steep slopes associated with pressure gradient
discretization or spurious diapycnal diffusion. Geopotential 𝑧-coordinate models avoid these errors, but
greatly underrepresent the interaction of flow with a topographic slope, especially when the bathymetry
is underresolved. Hybrid coordinate models are also deficient because it is difficult to find a satisfactory
compromise between 𝑧 and 𝜎 coordinates. More general vertical coordinates (not just combinations of 𝑧
and 𝜎) can also be used, in particular for ocean interior, but without solving the problems associated with
the representation of bathymetry. With volume penalization, we do not seek a compromise, but rather a
correction to the usual coordinate systems that realistically recovers continuous and steep bathymetry. The
Brinkman volume penalization method studied here is a modified version of the one introduced in Debreu et
al.(2020) that simplifies the numerical implementation of the penalization, increases robustness and improves
its computational performance for realistic long-term simulations, while preserving accuracy. We apply this
penalization method to the Gulf Stream separation problem that has puzzled modelers for decades. The
method improves the representation of the flow-topography interaction and achieves realistic separation of
the Gulf Stream at resolutions as coarse as 1/8◦. In addition, it provides a tool to separate the effect of eddy
activity and topographic slope when changing grid resolution. This has never before been possible because at
coarse resolution none of the usual coordinate systems can properly represent a steep continental slope. Our
results show that realistic bathymetry is more important than eddy activity in ensuring realistic Gulf Stream
separation, even though many recent studies tend to focus on the eddy activity. A steep slope can exert a
stabilizing influence that promotes a strong mean slope current with strong inertia that helps it separate
from the coast at the topographic curvature of Cape Hatteras. We anticipate that a successful topographic
slope correction will be very valuable for climate models, as their current resolution is far from sufficient to
represent western boundary currents (WBCs) using traditional coordinate systems. Our results suggest that a
climate model with a 1/4◦ resolution using volume penalization — and perhaps also some parameterization
of the eddy-mean flow interaction to energize the WBCs — could represent ocean circulation much more
realistically than a model at the same resolution, but without volume penalization.
. Introduction

Vertical coordinate systems used in ocean models have shortcom-
ngs in how they represent bottom topography and treat the flow-
ottom interaction. Errors can arise through misrepresentation of the
ottom boundary condition, or from the coordinate transformation
rocedure. The separation of the Gulf stream from the coast is both an
mblematic and an acute example of the failure of vertical coordinate
ystems to correctly represent realistic ocean dynamics. Here, we revisit
his problem with a new method for representing the bottom topogra-
hy that largely corrects the limitations of existing methods. The Gulf
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Stream separation problem and the penalization method are introduced
below.

1.1. The conundrum of Gulf Stream separation

The Gulf Stream (GS), an example of a Western Boundary Cur-
rent (WBC), is one of the strongest ocean currents on Earth and a
major feature of the global ocean circulation that has control on the
Earth’s climate (Lee et al., 2018; Hewitt et al., 2017; Minobe et al.,
2008). There are iconic feature of WBCs, for which the mechanisms
and modeling capability are still highly debated. One of these is the
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GS separation from the coast, which was associated early on with
the curvature of the coast and the inertia required to overcome the
topographic steering (Dengo, 1993; Couvelard et al., 2008; Ezer, 2016;
Schoonover et al., 2016). More recently, the separation of WBCs have
been linked in ocean models to the resolution of mesoscale activity
through eddy-mean flow interaction (McWilliams, 2008; Bryan et al.,
2007; Chassignet and Marshall, 2008). A mechanistic description of
eddies interacting with bathymetry has also emerged (Gula et al.,
2015), showing that large isobath curvatures tend to maximize eddy
energy transfer, and thus flow–bathymetry interaction. The influence
of eddies is somewhat mitigated by dissipation mechanisms, especially
those provided by surface drag on the atmosphere in air-sea coupled
models (Renault et al., 2019). However, flow–bathymetry interaction
near isobath curvature remains the primary mechanism.

Failing to properly represent the effect of bottom bathymetry re-
sults, in many numerical models, in the GS overshooting Cape Hatteras,
i.e., separating from the coast further north than observed (Chassignet
and Marshall, 2008; Schoonover et al., 2016; Ezer, 2016). This is be-
cause the bottom pressure torque (not the wind-stress curl) is the main
component balancing the planetary vorticity advection (beta term) in
the local vorticity budget (e.g., Myers et al., 1996; Bell, 1999; Hughes
and de Cuevas, 2001; Couvelard et al., 2008; Schoonover et al., 2016).
Therefore, GS separation is related to local, rather than basin-scale,
wind-driven dynamics. The implication is that misrepresenting the local
interactions between flow and bathymetry can have an impact on the
entire basin and beyond. It is now accepted that GS separation is more
realistic in models using terrain-following 𝜎− or 𝑠−coordinates rather
than the geopotential 𝑧-coordinates (see the model intercomparison
tudy by Schoonover et al., 2016). However, topographic slopes are
imited in these models by numerical constraints and a resolution
iner than 1/10◦ is required to avoid excessively smooth bathymetry
hat results in an unrealistically low bottom pressure torque — high
esolution also allows for realistic generation of mesoscale eddies.
owever, resolutions as fine as 1/50◦ are recommended for a realistic

GS separation (Chassignet and Xu, 2017; Hurlburt and Hogan, 2000).
We will demonstrate that penalization permits a similar result at 1/8◦

esolution.
The advantage of a smooth representation of bathymetry in terrain-

ollowing models is impaired by the need to avoid numerical errors
ver steep bathymetry associated with the pressure gradient discretiza-
ion (Shchepetkin and McWilliams, 2003) and spurious diapycnal dif-
usion (Marchesiello et al., 2009; Lemarié et al., 2012). For this reason,
ome attempts have been made to use hybrid coordinates that transition
rom terrain following coordinates in shallow regions to 𝑧−coordinates
t depth (e.g., Ezer and Mellor, 2004; Chassignet and Xu, 2017).
owever, these models show the usual deficiencies in GS simulations.
rguably, it is difficult to find a satisfactory compromise that would get

he best of each coordinate system over their preferred regions, i.e., the
ontinental shelf, slope, or deep ocean. Here, we are not looking for a
ompromise, but rather a correction to the classical coordinate systems
hat realistically recovers a continuous, steep bathymetry (i.e., without
he step-like features that produce unrealistic vorticity perturbations).

more accurate and robust vertical coordinate system would be very
aluable for climate models, as their resolution is far from sufficient to
epresent WBCs using 𝑧-coordinates. The volume penalization method
hat performs such a correction is presented below.

.2. Penalization of bathymetry in ocean models

Volume penalization is a simple and elegant way to implicitly im-
ose Neumann (no penetration) and Dirichlet (no slip) boundary con-
itions in numerical methods for partial differential equations (PDEs)
Arquis and Caltagirone, 1984). In a penalization approach the PDE
s solved on a computational domain with simple geometry (e.g., a
ectangular domain with a regular grid) and the boundary conditions

re imposed approximately by penalizing the solution outside the actual

2

Fig. 1. Smoothed bathymetry profile defining the computational domain (black) and
penalized area, defining small scale details in green.

solution domain. Fig. 1 illustrates the distinction between the computa-
tional and physical domains. In this figure, and more generally in this
paper, the computational domain is based on a smoothed version of
the physical domain and the penalization is applied (in the green area)
to reintroduce bathymetry details. Volume penalization has been par-
ticularly effective over the past two decades for approximating no-slip
boundary conditions in fluid–structure interaction problems (e.g. An-
got, 1999; Angot et al., 1999; Kevlahan and Ghidaglia, 2001; Kevlahan
and Vasilyev, 2005), but its application to realistic three-dimensional
oceanic problems is new.

In Debreu et al. (2020) we introduced a version of volume pe-
nalization based on the notion of flow through a porous medium to
approximate the complex multi-scale geometry of ocean bathymetry in
realistic ocean models. This method is an extension of a previous work
by Kevlahan et al. (2015) to approximate the no-slip lateral boundary
conditions in a global shallow water model. In this version, the accu-
racy of the penalization is controlled by two parameters: the porosity
𝛼 and the permeability 𝜖 (see Eqs. (2)–(5) and definition (6)). The
solid regions are defined by a (smoothed) mask. To approach no-slip
boundary conditions, both the porosity and permeability are set very
small in the solid regions. To approximate non-penetrating conditions,
only porosity is used and the friction term associated with permeability
(see Eq. (2)) is not included. Kevlahan et al. (2015) showed that the
error of the penalization approximation of no-slip boundary conditions
is 𝑂(𝛼𝜖1∕2).

Volume penalization has several advantages for representing the
ottom bathymetry in ocean models. First, because the penalized region
oes not suffer from the topographic slope limitations imposed by pres-
ure gradient errors, it is possible to use more realistic bathymetry at a
iven computational grid resolution than with the usual 𝜎-coordinates
errain-following grid. Secondly, because the solid regions are repre-
ented implicitly by a mask, it is not necessary to rely on the compu-
ational grid to describe the geometry of the solid–fluid interface in
etail. Finally, the permeability and porosity parameters can be tuned
o model the subgrid-scale structure of bathymetry (Adcroft, 2013), or
he composition of the seafloor substrate (e.g., deltas, marshes, flooded

urban areas Guinot et al., 2018). Penalization methods are also ideal for
dynamically adaptive codes (Hejazialhosseini et al., 2010), which was
the original motivation of Kevlahan and Vasilyev (2005) and Kevlahan
et al. (2015).

Section 2 introduces the Coastal and Regional Ocean COmmunity
model (CROCO; Shchepetkin and McWilliams, 2005; Debreu et al.,
2012) configuration and presents the realistic configuration for the Gulf
Stream simulation. In Section 3, we describe the penalization method
in detail, and propose several improvements to our previous approach,
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leading both to more robustness and better computational performance.
In Section 4, the penalization is then implemented in the CROCO model
and its performance is validated in realistic simulations of the GS.
Several simulations and diagnostics are performed to compare runs
with and without penalization. Conclusions are drawn in Section 5.

2. Standard model configuration

CROCO is a free-surface, terrain-following coordinate regional
ocean model with barotropic–baroclinic mode split-explicit time step-
ping (Shchepetkin and McWilliams, 2005; Debreu et al., 2012; Soufflet
et al., 2016). Here, we use the Boussinesq and hydrostatic approxima-
tions, and although a non-Boussinesq and non-hydrostatic solver is also
available (Hilt et al., 2020; Marchesiello et al., 2021), it is not required
for the mesoscale resolutions used in this paper.

The North Atlantic regional domain is a subset of that presented
in Renault et al. (2019). The grid encompasses the Florida and GS
currents in the western North Atlantic, from 82◦W to 45◦W and 22◦N to
7◦N, with three horizontal spatial resolutions: 1/4◦, 1/8◦ and 1/12◦.
e use 32 generalized 𝜎-coordinate vertical levels (Lemarié et al.,

012) with stretching parameters ℎ𝑐𝑙𝑖𝑛𝑒 = 200m, 𝜃𝑏 = 2, and 𝜃𝑠 = 7.
The bathymetry is constructed from the Shuttle Radar Topography
Mission (SRTM30 plus) dataset based on the 1-min (Sandwell and
Smith, 1997) global dataset and higher-resolution data where available.
To avoid aliasing at higher resolution than the computational grid and
to ensure the smoothness of topography at the grid scale, a Gaussian
smoothing kernel with a width four times the 1-min topographic grid
spacing is used. In the non-penalized 𝜎-coordinate (or 𝑠−coordinate)
configuration, pressure gradient errors caused by steep slopes are kept
at acceptable levels by applying a local smoothing to the bottom topog-
raphy 𝐻 (i.e. using a selective filter on log(𝐻) to reduce r = grad(𝐻)∕𝐻)
so that the r-factor (Beckmann and Haidvogel, 1993) does not exceed
the critical value of 0.25. In addition to the three spatial resolutions,
we present a 1/12◦ simulation with smoother bathymetry interpolated
from the 1/4◦ configuration. This test will allow us to evaluate the
effect of resolution that is not associated with a change in topography.

In each case, the model is run for 15 years, using a monthly clima-
tology of atmospheric surface fluxes from COADS (freshwater and heat
fluxes) and from QuikSCAT (momentum fluxes). Surface current feed-
back to the atmosphere (top drag) is applied using a stress correction
approach for momentum fluxes (Renault et al., 2020). Vertical mixing
of tracers and momentum is done with a K-profile parameterization
(KPP; Large et al., 1994). At oceanic open boundaries, boundary data
of temperature, salinity, surface elevation, and horizontal velocities are
taken from the year 2000 monthly-mean Simple Ocean Data Assimi-
lation (SODA) product (Carton and Giese, 2008). The open boundary
condition algorithms consist of an active-passive 2D radiation scheme
for the tracers and baroclinic mode and a modified Flather-type scheme
for the barotropic mode (Marchesiello et al., 2001). The bottom drag 𝜏𝑏
is computed assuming that the flow in the bottom boundary layer has
a vertical logarithmic profile, defined by a bottom roughness length
𝑧0𝑏 (m), which takes a constant value of 10−2 m in our simulations:

(𝜏𝑏𝑥, 𝜏𝑏𝑦) =
⎛

⎜

⎜

⎝

𝜅
log 𝑧

𝑧0𝑏

⎞

⎟

⎟

⎠

2
√

𝑢2𝑏 + 𝑣2𝑏 (𝑢𝑏, 𝑣𝑏), (1)

where 𝑢𝑏 and 𝑣𝑏 are the bottom currents in the log layer at a height
𝑧 above the ocean floor (here corresponding to the first vertical grid
level) and 𝜅 = 0.41 the von Karman constant. The formulation of the
bottom stress given here will be revisited in the penalization section.

3. Description of the penalization method

3.1. Penalization in the primitive equations of the ocean

The volume penalization method investigated here is a modified
version of the one introduced in Debreu et al. (2020). The improve-
ments simplify its numerical implementation, but do not affect its accu-
racy or theoretical basis. For simplicity, we consider a two-dimensional
 i

3

𝑥 − 𝑧 domain in Cartesian coordinates, bounded above by the free
surface 𝜂(𝑥, 𝑡) and below by the bathymetry 𝐻(𝑥). We also neglect vis-
ous/diffusive terms and the Coriolis force and the model is presented
n terms of density alone instead of temperature and salinity.

The prognostic equations are written in a conservative form using
he generalized vertical coordinate system 𝑠(𝑥, 𝑧, 𝑡), with ℎ = 𝜕𝑧∕𝜕𝑠, as

𝜕ℎ̃𝑢
𝜕𝑡

+ 𝜕ℎ̃𝑢2

𝜕𝑥
+ 𝜕ℎ̃𝑢𝛺

𝜕𝑠
= −ℎ̃

(

𝑔
𝜕𝜂
𝜕𝑥

+ 1
𝜌0

𝜕𝑝ℎ
𝜕𝑥

+
𝜌
𝜌0

𝑔 𝜕𝑧
𝜕𝑥

)

−1
𝜖
1(𝑥, 𝑧)ℎ̃𝑢, (2)

𝜕ℎ̃
𝜕𝑡

+ 𝜕ℎ̃𝑢
𝜕𝑥

+ 𝜕ℎ̃𝛺
𝜕𝑠

= 0, (3)
𝜕𝑝ℎ
𝜕𝑠

= −ℎ𝜌𝑔, (4)

𝜕ℎ̃𝜌
𝜕𝑡

+
𝜕ℎ̃𝑢𝜌
𝜕𝑥

+
𝜕ℎ̃𝛺𝜌
𝜕𝑠

= 0, (5)

where the penalized height ℎ̃ = 𝜙ℎ, and 𝜙 is the porosity

𝜙(𝑥, 𝑧) =
{

𝛼 in the penalized solid regions,
1 in the fluid regions. (6)

The last term on the right hand side of Eq. (2) is the drag due to
the finite permeability 𝜖 of the porous medium. The mask function 1

defining the penalized solid regions is

1(𝑥, 𝑧) =
{

1 in the interior of the penalized solid regions,
0 in the interior of the fluid regions. (7)

Neglecting the drag term and setting the porosity 𝛼 ≪ 1 approximates
a Neumann no-penetration boundary condition at solid horizontal and
vertical boundaries. Adding the drag term with small permeability
𝜖 ≪ 1 approximates a no-slip Dirichlet boundary condition1 at solid
horizontal and vertical boundaries.

To avoid numerical oscillations, a smoothed mask is defined starting
from a hyperbolic tangent profile in the vertical direction (see (15)).

The volume penalization can therefore approximate either a Neu-
mann no-penetration boundary condition (if the drag term is not in-
cluded), or a no-slip Dirichlet boundary condition (using both the
porosity and permeability terms). When a no-penetration boundary
condition is desired, it is sufficient to take 𝛼 = 𝑂(10−6) since the accu-
racy of the approximation is 𝑂(𝛼). In this case the penalization scheme
imposes no stability constraint on the time step. In contrast, when a
no-slip boundary condition is implemented, the boundary condition is
imposed with an accuracy 𝑂(𝛼𝜖1∕2). Therefore, both parameters 𝛼 and 𝜖
can be varied to control the accuracy of the penalization. However, the
permeability penalization term is stiff and therefore imposes a stability
constraint 𝛥𝑡 ≤ 𝜖 for an explicit Euler method in time. The temporal
discretization of the penalization term is discussed in Section 3.2.2.

3.2. Improvements to the original algorithm

In this section we propose some modifications of the discrete im-
plementation of the penalization method to simplify it and improve
computational performance compared with the original implementa-
tion described in Debreu et al. (2020). The principal changes concern
the computation of layer thicknesses and the temporal discretization
of the penalization term. In addition, we describe a modification to
the traditional barotropic–baroclinic mode splitting that accounts for
variable porosity 𝜙. In practice, these modifications allow the penal-
ized simulations to run nearly as fast as the original model without
penalization.

1 Formally, this condition applies only to the viscous/diffusive system used
n practice in numerical simulations.



L. Debreu, N.K.-R. Kevlahan and P. Marchesiello Ocean Modelling 179 (2022) 102121

w
t

a

A

(

A

3.2.1. Computation of layer thicknesses
In Debreu et al. (2020), we showed that in order for the method

to conserve total energy and, more importantly, to represent cor-
rectly the transfer between kinetic and potential energy, the following
commutation property must be satisfied,
𝜕
𝜕𝑡

(

𝜙(𝑥, 𝑠, 𝑡) 𝜕𝑧
𝜕𝑠

)

= 𝜕
𝜕𝑠

(

𝜙(𝑥, 𝑠, 𝑡) 𝜕𝑧
𝜕𝑡

)

, (8)

here 𝑠 is the generalized vertical coordinate. Eq. (8) can be rewritten
o give an equation for the change in porous layer thicknesses,

𝜕ℎ̃
𝜕𝑡

= 𝜕
𝜕𝑠

(

𝜙(𝑥, 𝑠, 𝑡) 𝜕𝑧
𝜕𝑡

)

. (9)

As shown in Debreu et al. (2020), property (8) simply expresses the
fact that the porosity 𝜙 at a fixed 𝑧 is assumed to not depend on time:
𝜕𝜙(𝑥, 𝑧, 𝑡)∕𝜕𝑡|𝑧 = 0 or 𝜙(𝑥, 𝑧, 𝑡) = 𝜙0(𝑥, 𝑧). At the discrete level, the
thickness of layer 𝑘, between two 𝑠 levels, (𝑠𝑘−1∕2, 𝑠𝑘+1∕2) is given by

ℎ̃𝑘(𝑥, 𝑡) = ∫

𝑠𝑘+1∕2

𝑠𝑘−1∕2
𝜙(𝑥, 𝑠, 𝑡)ℎ(𝑥, 𝑠, 𝑡)d𝑠 = ∫

𝑠𝑘+1∕2

𝑠𝑘−1∕2
𝜙(𝑥, 𝑠, 𝑡) 𝜕𝑧

𝜕𝑠
d𝑠

= ∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2
𝜙(𝑥, 𝑧, 𝑡)d𝑧.

This naturally leads to a prognostic equation:

𝜕ℎ̃𝑘(𝑥, 𝑡)
𝜕𝑡

= 𝜙0(𝑥, 𝑧𝑘+1∕2(𝑥, 𝑡))
𝜕𝑧𝑘+1∕2(𝑥, 𝑡)

𝜕𝑡
− 𝜙0(𝑥, 𝑧𝑘−1∕2(𝑥, 𝑡))

𝜕𝑧𝑘−1∕2(𝑥, 𝑡)
𝜕𝑡

(10)

which is the discrete version of (9). As in Debreu et al. (2020), the
following two important relations follow.

𝐻̃(𝑥, 𝑡) =
𝑁
∑

𝑘=1
ℎ̃𝑘(𝑥) = ∫

𝜂(𝑥,𝑡)

−𝐻(𝑥)
𝜙0(𝑥, 𝑧)d𝑧,

nd
𝜕𝐻̃(𝑥, 𝑡)

𝜕𝑡
= 𝜙0(𝑥, 𝜂(𝑥, 𝑡))

𝜕𝜂(𝑥, 𝑡)
𝜕𝑡

=
𝜕𝜂(𝑥, 𝑡)

𝜕𝑡
,

where at the free surface 𝑧 = 𝜂, we have 𝜙0(𝑥, 𝜂(𝑥, 𝑡)) = 1.
However, this discrete implementation imposes a computational

overhead by requiring:

(a) Computation of a new porosity function 𝜙(𝑥, 𝑠, 𝑡) at each time
step (since in (9), the vertical coordinate 𝑠 depends on time).

(b) Storage of layer thicknesses for diagnostic purposes.

In the proposed simplification of the penalization method, at each
time step, once the layer interfaces 𝑧𝑘+1∕2 have been computed in
the generalized vertical coordinate system, the layer thicknesses are
diagnosed using

ℎ̃𝑘(𝑥, 𝑡) = ∫

𝑧𝑘+1∕2(𝑥,𝑡)

𝑧𝑘−1∕2(𝑥,𝑡)
𝜙0(𝑥, 𝑧)d𝑧. (11)

This avoids having to integrate the discrete time evolution equa-
tion (10). The new kinematic relation (11) simply requires the specifica-
tion of the time-independent porosity 𝜙0(𝑥, 𝑧) defining the solid regions
(which is based on the mask 1(𝑥, 𝑧) and the porosity parameter 𝛼).

As in Guinot et al. (2018), the porosity 𝜙0(𝑥, 𝑧) is first tabulated on a
vertical grid 𝐺0(𝑧0𝑘+1∕2(𝑥)) with a much higher vertical resolution than
the actual computational grid (see Fig. 2). Then, the model porosity
is found by integrating the high resolution porosity conservatively
between two interfaces of coarser computational grid. In this paper,
for simplicity we assume that 𝜙0 is constant over each layer of the high
resolution vertical grid 𝐺0: 𝜙0(𝑥, 𝑧) = 𝜙0

𝑘(𝑥), 𝑧0𝑘−1∕2(𝑥) < 𝑧 < 𝑧0𝑘+1∕2(𝑥).
The details of computation of 𝜙0 are given in Appendix. Note that the
porosity on the computational grid includes information about subgrid
scale bathymetry encoded as an intermediate value of the porosity
0 < 𝛼 < 1 near the fluid–structure interface. This is a kind of homog-
enization of fine-scale bathymetry on the scale of the computational
4

grid. Note, however, that in this paper, the representation of subgrid
bathymetry is not fully exploited. In particular, at the discrete level, the
porosity and permeability at the cell interfaces are deduced (by simple
averaging) from their cell-averaged values. It would be interesting to
consider the ideas of Guinot (2012) and Adcroft (2013) in future work.

3.2.2. Temporal discretization of the penalization term
In Debreu et al. (2020), a simple explicit formulation of the pe-

nalization term was used. For simplicity, barotropic–baroclinic mode
splitting was avoided (see Section 3.2.4) which required using a small
time step to satisfy the stability condition based on the external wave
propagation speed 𝑐 =

√

𝑔𝐻 . This small time step allowed the use
of a similarly small (and highly accurate) penalization coefficient in
comparison with the time scale of other physical processes.

Considering only the vertical direction in the variation of the mask
1(𝑧), the one-dimensional penalized equation is
𝜕𝑢
𝜕𝑡

= 𝐹 (𝑢) − 1
𝜖
1(𝑧)𝑢. (12)

splitting method can be used to integrate (12) in two steps,

1) 𝜕𝑢
𝜕𝑡

= 𝐹 (𝑢), (2) 𝜕𝑢
𝜕𝑡

= −1
𝜖
1(𝑧)𝑢.

provisional value of 𝑢 at time (𝑛 + 1) is first obtained:

𝑢𝑛+1,⋆ = 𝑢𝑛 + 𝛥𝑡𝐹 (𝑢),

and then the penalization term is included, either explicitly,

𝑢𝑛+1 = (1 − 𝛥𝑡
𝜖
1(𝑧))𝑢𝑛+1,⋆, (13)

or implicitly,

𝑢𝑛+1 = 1
1 + 𝛥𝑡

𝜖 1(𝑧)
𝑢𝑛+1,⋆,

or with exact time integration,

𝑢𝑛+1 = 𝑒−
𝛥𝑡
𝜖 1(𝑧)𝑢𝑛+1,⋆.

The interpolating penalization (Rasmussen et al., 2011) consists in
starting from the explicit version (13) with the specific choice of 𝜖 such
that 𝜇 = 𝛥𝑡∕𝜖 = 1 (i.e. the minimum stable 𝜖) which simply leads to,

𝑢𝑛+1 = (1 − 1(𝑧))𝑢𝑛+1,⋆. (14)

This implementation choice will be made in the following.
In practice, the smoothed version of the mask function is defined as

a function of 𝑟, the signed distance to the solid–fluid interface scaled by
the local grid size. 𝑟 is defined by 𝑟 = −(𝑧 − 𝑧bottom)∕𝛥𝑧 and is positive
in the solid region and negative in the fluid region. As an example,
in Debreu et al. (2020), the smoothed mask function 1𝑆 (𝑟) was given
by a hyperbolic tangent:

1𝑆 (𝑟) =
1
2
(

1 + tanh 𝜆(𝑟 − 𝑟0)
)

, (15)

where the values of 𝜆 and 𝑟0 were such that 1𝑆 (−1∕2) = 1∕25 and
1𝑆 (1∕2) = 2∕5. Following Rasmussen et al. (2011), Fig. 3 shows
𝑢𝑛+1∕𝑢𝑛+1,⋆ for different values of 𝜇 and for different temporal dis-
cretizations (explicit, implicit, interpolating). The main advantage of an
explicit scheme with 𝜇 = 1 (i.e. the above interpolating penalization)
is direct control of the profile of the penalized velocity near the fluid–
solid boundary, which is directly linked to the shape of the smoothed
mask function. On the contrary, an implicit scheme requires adjusting
both the value of 𝜇 and the shape of the original mask function in
order to obtain the desired velocity profile. In Fig. 3, large values
of 𝜇 are required for the solid region to be fully penalized (i.e. zero
velocity). This advantage, however, comes at the price of an extension
of the penalized domain to the fluid region (i.e. the effective position
of the boundary is shifted slightly inwards). This could be corrected
by increasing the value of 𝜆 in the definition of the smooth mask
function (15).
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Fig. 2. Porosity 𝜙0(𝑥, 𝑧) defining a higher resolution of the bathymetry. The red lines indicate the high resolution vertical grid 𝐺0, the blue lines indicate the actual computational
vertical grid. The reference bathymetry is smooth enough to ensure an acceptable pressure gradient error, while penalization is used to provide a more accurate representation of
the true bathymetry. Note that we impose the constraint that the penalized area must always lie above the reference bathymetry.
Fig. 3. Different time discretizations of the penalization term for various values of the parameter 𝜇 = 𝛥𝑡∕𝜖. 𝑟 = 1 corresponds to only one vertical grid spacing 𝛥𝑧. The exact
solution 𝑢𝑛+1 would be a Heaviside (step) function 𝐻(−𝑟).
3.2.3. Penalization and bottom stress parameterization
With the interpolating penalization given by (14), choosing the

shape of smoothed mask function is identical to the choice of the
penalization itself. Therefore, in the following, we do not differentiate
between the two. The shape of the smoothed mask function (15) and its
coefficients 𝜆, 𝑟0 are somewhat arbitrary. This is particularly true for the
associated penalization value in the first cell above the ocean bottom.
For realistic applications, a reasonable choice could be for this value
to coincide with the one given by the vertical logarithmic profile and
associated bottom stress (see Section 2). Doing this, we ensure that in
the limiting case where the penalization domain is empty (the bottom
of the discrete domain matches the true ocean bottom), we recover the
solution of the unpenalized equations.

At the discrete level, assuming a basic Euler time stepping, the
bottom friction is implemented in the numerical model as

(ℎ̃𝑢)𝑛+1 = (ℎ̃𝑢)𝑛 − 𝛥𝑡 𝜏 , (16)
𝑏𝑥

5

while the penalization term is implemented as described above by

(ℎ̃𝑢)𝑛+1 = (ℎ̃𝑢)𝑛(1 − 1(𝑧)). (17)

The procedure is then as follows: the bottom stress 𝜏𝑏𝑥 is computed
using the velocity at the last ocean level and at an altitude 𝑧 = 𝑧𝑏 (or
𝑟 = 𝑟𝑏) corresponding to this last ocean level. Then, in order for the two
formulations (16) and (17) to match, we impose

1𝑆 (𝑟𝑏) = min
(

𝛥𝑡
(ℎ̃𝑢)𝑛

𝜏𝑏𝑥, 1
)

, (18)

where 𝜏𝑏𝑥 is given by (1). Note that this includes a clipping of the
penalization coefficient to ensure that its value is less than one. In
the original unpenalized equations, the same clipping is applied to the
bottom stress 𝜏𝑏𝑥. The general expression of the penalization is then
given by:

1𝑆 (𝑟) = 1𝑆 (𝑟𝑏) + (1 − 1𝑆 (𝑟𝑏)) tanh(𝜆(𝑟 − 𝑟𝑏)) for 𝑟 ≥ 𝑟𝑏 (19)

= 0 for 𝑟 < 𝑟𝑏
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where, by construction, 𝑟𝑏 = −(𝑧𝑏 − 𝑧bottom)∕𝛥𝑧 ∈ [−1, 0]. The
penalization coefficient thus changes from 1(𝑧𝑏) at the last ocean level
to 1 inside the solid region. The maximum slope of the smooth mask
function is given by 𝜆(1 − 1(𝑟𝑏)), and naturally decreases when the
bottom stress (and thus the penalization term) is already large (close
to 1) at the last ocean level. In the realistic experiments of Section 4 𝜆
will be taken as in Debreu et al. (2020), 𝜆 ≈ 1.38629.

3.2.4. Mode splitting and barotropic–baroclinic correction with porosity
In contrast to the initial idealized experiments of Debreu et al.

(2020), the present realistic numerical experiments take advantage
of barotropic–baroclinic mode splitting. We first recall the natural
definition of the penalized barotropic velocity component

𝑢(𝑥, 𝑡) = 1
𝐻̃(𝑥, 𝑡) ∫

𝑧=𝜂(𝑥,𝑡)

𝑧=−𝐻(𝑥)
𝜙(𝑥, 𝑧)𝑢(𝑥, 𝑧, 𝑡) d𝑧,

𝐻̃(𝑥, 𝑡) = ∫

𝑧=𝜂(𝑥,𝑡)

𝑧=−𝐻(𝑥)
𝜙(𝑥, 𝑧) d𝑧,

or in 𝑠 coordinates by

𝑢(𝑥, 𝑡) = 1
𝐻̃(𝑥, 𝑡) ∫

𝑠=0

𝑠=−1
ℎ̃(𝑥, 𝑠, 𝑡)𝑢(𝑥, 𝑠, 𝑡) d𝑠, 𝐻̃(𝑥, 𝑡) = ∫

𝑠=0

𝑠=−1
ℎ̃(𝑥, 𝑠, 𝑡) d𝑠.

In discrete form, the penalized barotropic velocity is

𝑢(𝑥, 𝑡) = 1
𝐻̃(𝑥, 𝑡)

𝑁
∑

𝑘=1
ℎ̃𝑘(𝑥, 𝑡)𝑢𝑘(𝑥, 𝑡), 𝐻̃(𝑥, 𝑡) =

𝑁
∑

𝑘=1
ℎ̃𝑘(𝑥, 𝑡).

In a standard primitive equation implementation of barotropic–
baroclinic mode splitting, the two-dimensional barotropic velocity field,
which is derived from the time integration of the depth averaged equa-
tions, is used to correct the three-dimensional baroclinic velocity field.
Because the vertical dependence of the error between the barotropic
velocity and the vertically integrated baroclinic velocities is not known,
this is usually done by adding a vertically constant correction to the
three-dimensional velocity. The corrected velocity 𝑢𝑛+1𝑘 is then derived
from the provisional velocity 𝑢𝑛+1,⋆𝑘 as

𝑢𝑛+1𝑘 = 𝑢𝑛+1,⋆𝑘 +

[

𝑢𝑛+1 − 1
𝐻̃

∑

𝑘
ℎ̃𝑘𝑢

𝑛+1,⋆
𝑘

]

.

When a volume penalization method is used, this is of course not
efficient since the correction is applied even in the fully penalized solid
regions (where the mask is equal to one), leading to spurious non-
zero velocities. We therefore propose to take into account the mask
of the penalized domain by modifying the correction according to the
following relation

𝑢𝑛+1𝑘 = 𝑢𝑛+1,⋆𝑘 + 𝛽𝑘(1 − 1𝑘)

[

𝑢𝑛+1 − 1
𝐻̃

𝑁
∑

𝑘=1
ℎ̃𝑘𝑢

𝑛+1,⋆
𝑘

]

.

The coefficient 𝛽𝑘 is chosen to ensure that the corrected depth-
integrated three-dimensional velocity is, as required, equal to the
barotropic velocity 𝑢𝑛+1. This leads to the following constraint

1
𝐻̃

𝑁
∑

𝑘=1
𝛽𝑘(1 − 1𝑘)ℎ̃𝑘 = 1. (20)

e then simply compute a set of weights 𝛽𝑘 which minimizes ∑

𝑘(𝛽𝑘 −
)2 under the constraint (20). This leads to the following computation
f 𝛽𝑘:

𝑘 = 1 +
∑𝑁

𝑘=1 1𝑘ℎ̃𝑘
∑𝑁

𝑘=1
[

(1 − 1𝑘)ℎ̃𝑘
]2
(1 − 1𝑘)ℎ̃𝑘. (21)

In practice, this method slightly enhances the barotropic–baroclinic
correction in the fluid region (1 − 1𝑘)𝛽𝑘 = 1 + 𝜖, 𝜖 ≪ 1, but does not
alter the 3D velocities in the solid region (1 − 1 )𝛽 ≈ 0.
𝑘 𝑘

6

4. Results: comparing 𝝈-coordinates and penalized simulations

In this section we assess the qualitative and quantitative accuracy
of the penalization algorithm by comparing simulations of the GS
using penalized (denoted 𝜎p in the following) and 𝜎 vertical coordi-
nates at resolutions 1/4◦, 1/8◦ and 1/12◦. We also present results
computed at resolution 1/12◦ using smoother bathymetry interpolated
from the 1/4◦ standard configuration. This provides a basis for dis-
cussing the sensitivity of the penalization method to the choice of
reference bathymetry, independent of grid resolution. When available,
observational AVISO satellite data products are also included.

4.1. Penalized configurations

To construct the penalization we need to define the base (or refer-
ence) bathymetry (hbase) and ‘‘true’’ bathymetry (htrue). At a given res-
olution, the base bathymetry is the smooth 𝜎−coordinate bathymetry
(𝑟max = 0.25), while the ‘‘true’’ bathymetry is the base bathymetry, but
without smoothing. (To avoid aliasing and ensure smoothness at the
grid scale, Gaussian smoothing is applied to the true bathymetry to
obtain the base bathymetry used in the 𝜎-coordinate simulations.) The
penalized area is the difference between the true and base bathyme-
tries. We impose the constraint that hbase ≥ htrue. This is ensured by
increasing hbase where needed.

4.2. Sensitivity to resolution

Figs. 4 and 5 present the 5-year mean sea surface height (SSH) and
sea surface temperature (SST) for simulations at different resolutions
in the standard 𝜎-coordinate and penalized cases. In the standard 𝜎-
oordinate case, an overshooting of the GS is clearly evident at 1/4◦

esolution, but improves with resolution 1/8◦ and is accurate only at
/12◦. The 1/12◦ solution is similar to observations, and correctly
hows the separation at Cape Hatteras (Renault et al., 2019). We note
lso a loop over the Charleston Bump in the upstream region between
he Florida Strait and Cape Hatteras. This loop is described in the
iterature (Gula et al., 2015), but not represented in the AVISO product,
hich is too coarse. The GS path is realistic at this resolution, although

he recirculation seems a bit weak.
The above results are typical for terrain-following coordinate mod-

ls applied to the GS system (Schoonover et al., 2016). An important
uestion raised by the present study is whether penalization can im-
rove the solution at a resolution coarser than 1/12◦. Penalization does
ndeed appear to improve realism at lower resolutions since the 1/4◦

enalized run is significantly closer to the 1/12◦ 𝜎-coordinate run than
he 1/4◦ 𝜎-coordinate run. The 1/8◦ penalized run is very close to the
/12◦ 𝜎-coordinate run, with a realistic GS separation. On the other
and, the 1/12◦ penalized run is similar to the 1/12◦ 𝜎-coordinate
un, which is expected if resolution convergence has been achieved.
evertheless, the penalized run produces a more realistic GS: thinner
nd stronger than the 𝜎-coordinate run, with stronger recirculation on
he north and south sides.

The results for the mean SST are consistent with those of the mean
SH. In the 1/4◦ penalized run, the GS appears to have two temperature
ignatures, one of which overshoots, while the other separates at Cape
atteras. The separation is not present at all in the 1/8◦ 𝜎-coordinate

un. The 1/12◦ 𝜎-coordinate run appears to have converged, although
he penalized run again produces a better defined SST signature in the
ean (and better preserved cold-water pool north of the GS), which

an be attributed to a more stable GS trajectory after separation (see
elow).

Fig. 6 shows the resolution sensitivity of the model for the mean
ddy kinetic energy (EKE) with respect to a gridded EKE Drifter AVISO
roduct (Laurindo et al., 2017). Since mesoscale eddies arise from the
ixed barotropic and baroclinic instability of the mean flow (Gula

t al., 2015), it is not surprising to find maximum EKE values along the
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Fig. 4. Mean sea surface height in CROCO simulations at different resolutions for the standard case with terrain-following (𝜎) coordinates (top) and penalization (𝜎p) (below).
The third row shows the observational AVISO product for comparison.
mean GS path. At 1/4◦ the 𝜎-coordinate shows a weak overshooting of
the GS. It provides very little EKE and the EKE maximum is located too
far north. The solution is improved at 1/8◦ and, in particular, at 1/12◦

where a relatively narrow region of EKE extends from Cape Hatteras.
The penalized simulations already demonstrate clear improvement at
1/4◦. The offshore EKE patch is still weak, but stronger and much better
positioned than in the 1/4◦ 𝜎-coordinates run. The 1/8◦ penalized run
is close to the 1/12◦ 𝜎-coordinate run, while the 1/12◦ penalized run
shows an interesting narrowing of the EKE patch off Cape Hatteras. This
is consistent with the well-known high stability of the GS trajectory
at this location (Renault et al., 2019), and thus appears to be an
improvement over the 1/12◦ 𝜎-coordinate run.

Of particular interest is that, in the 1/8◦ 𝜎-coordinate run, the
GS overshoot is associated with a narrow ribbon of increased energy
next to the coast. This energy patch is reduced in the 1/12◦ run and
in the 1/8◦ and 1/12◦ penalized runs. Our interpretation is that the
smoothing of the continental slope in the 𝜎-coordinate runs reduces
the steering effect of bathymetry on the slope current, which can then
more easily develop instabilities. Therefore, the steep slope has the
effect of trapping a strong, but more stable, current which retains more
inertia when it reaches the Cape Hatteras curvature. Gula et al. (2015)
showed that submesoscale eddies can increase the sensitivity of the GS
to topographic curvature, but this effect may not be strong enough to

compensate for the loss of topographic constraint. Therefore, smooth t

7

bathymetry produces a weaker mean current that can still produce
excess EKE, but will overshoot due to lack of inertia. Penalization can
effectively correct the process unless the resolution is too coarse for an
effective interaction between the eddies and the mean flow to produce
a strong GS.

Fig. 7 shows the model sensitivity to resolution for surface cur-
rents past the separation point, compared with a 20-year climatology
(1993–2012) along the Oleander transect (Rossby et al., 2014). This
comparison with observational climate data underlines the alternating
currents between the north-eastward GS and the south-westward slope
current. In the 𝜎-coordinate model, only the 1/12◦ run can reproduce
the transect structure. In contrast, the position of the GS is already
realistic in the penalized run at 1/4◦. At this resolution in the 𝜎-
coordinate run (and to a large extent also at 1/8◦), the GS is stuck to
the coastal margin.

4.3. Sensitivity to bathymetry smoothing

In this section we attempt to separate the effect of resolution on
eddy-mean flow interaction from its effect on flow–bathymetry inter-
action. We compare results for the 𝜎-coordinate and penalized runs
using standard 1/12◦ bathymetry and bathymetry interpolated from the
1/4◦ 𝜎-coordinate configuration. For the penalized run, the reference
bathymetry hbase is interpolated from the 1/4◦ 𝜎-coordinate configura-
ion, while h remains the same as in the standard 1/12◦ simulation.
true
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Fig. 5. Mean sea surface temperature for the standard case with standard 𝜎-coordinates (top) and penalization (𝜎p) (below). The bottom figure shows the Satellite-based 5-km
climatology (1985–2013) from NOAA Coral Reef Watch (https://coralreefwatch.noaa.gov).
In this way we separate the effect of simulation resolution from the
effect of bathymetry resolution. At the same time, this experiment
illustrates the sensitivity of the penalization procedure to the reference
bathymetry. Note that since ℎbase is constrained to be deeper than ℎtrue
(see 4.1), the size of the penalized area (i.e. the proportion of the
computational domain which is penalized) is necessarily larger in the
smoother 1/4◦ run than in the 1/12◦ run.

Fig. 8 (top rows) compares SSH from a standard 1/12◦ 𝜎-coordinate
run with a similar 1/12◦ run using bathymetry interpolated from the
1/4◦ configuration. The difference between the two 1/12◦ simulations
is due to bathymetry smoothing, while the difference between the
1/12◦ run using interpolated 1/4◦ bathymetry and the 1/4◦ resolution
run (Fig. 4) is due to the effect of better mesoscale resolution. Com-
paring the 1/12◦ run using interpolated 1/4◦ bathymetry and the 1/4◦

run, we see that better mesoscale resolution considerably improves the
GS path, but is not sufficient to prevent overshooting. In other words,
the flow–bathymetry interaction is improved by the feedback of eddies
on the mean flow, but using smooth 1/4◦ bathymetry in a 1/12◦ run
still leads to an underestimation of the topographic strain.

We now consider similar results for penalized runs with smoother
reference bathymetry interpolated from the 1/4◦ configuration. The
results compare well with the penalized run using steeper 1/12◦

bathymetry. The GS is a bit stronger past the separation point, but

no other difference is visible for the mean SSH. This suggests that

8

the penalized results are relatively insensitive to the size of the pe-
nalized area. This result increases our confidence in the accuracy and
performance of the penalization.

A similar analysis of EKE (not shown) confirms the previous results.
The 1/12◦ runs using interpolated 1/4◦ bathymetry are closer to the
standard 1/8◦ runs. Therefore, the improvement generally observed in
the models when increasing the resolution is not due only to stronger
eddy activity, but at least equally to a more realistic representation of
the continental slope. This is true for both the 𝜎-coordinate and penal-
ized runs, but for the penalized run a resolution of 1/8◦ is sufficient for
a realistic GS separation.

4.4. Vorticity diagnostics

WBC dynamics can be diagnosed by the barotropic vorticity budget,
which is an extension of Sverdrup balance. Following, e.g., Couvelard
et al. (2008) and Schoonover et al. (2016), the barotropic vorticity
budget is computed by taking the curl of the vertically integrated lateral
momentum equations

𝜕𝜁
𝜕𝑡

=
𝐽 (𝑃𝑏, ℎ)

𝜌0
− 𝐴 − ∇.(𝑓𝐔) + ∇ × 𝜏

𝜌0
−

∇ × 𝜏𝐛
𝜌0

+𝐷, (22)

where 𝜁 = (∇ × 𝐔).𝑧̂ is the barotropic vorticity, 𝐔 the barotropic
current, 𝐽 is the Jacobian operator, 𝑃 is the bottom pressure, ℎ the
𝑏

https://coralreefwatch.noaa.gov
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Fig. 6. Mean eddy kinetic energy (EKE) in CROCO simulations at different resolutions for the standard case with terrain-following (𝜎) coordinates (top) and penalization (𝜎p)
(below). The bottom row shows the observational Drifter EKE product for comparison.
bathymetry, 𝐴 the advection torque, 𝑓 is the Coriolis parameter, 𝜏𝑏 is
the bottom stress, and 𝐷 is the viscous torque. In the following, the
ight-hand-side terms of Eq. (22) are referred to as the bottom pressure
orque (𝐽 (𝑃𝑏, ℎ)∕𝜌0), the advection torque (−𝐴), the planetary vorticity

advection (−∇.(𝑓𝐔)), the wind stress curl (∇× 𝜏∕𝜌0), the bottom stress
url (−∇ × 𝜏𝐛∕𝜌0), and the viscous torque (𝐷). The bottom pressure
orque is a measure of the topographic steering of the flow (Couvelard
t al., 2008). The nonlinear torque represents the advection of vorticity
y the mean and eddy flow. The planetary vorticity advection is due to
he combined effects of the earth’s curvature and rotation (𝛽 term in
he Sverdrup balance). The surface wind stress curl is a top drag curl
nd can either generate or dissipate vorticity. The bottom stress curl is
he effect of bottom drag associated with the effective roughness length
0𝑏. Finally, the viscous torque represents the vorticity dissipation due
o turbulent viscosity. In the regional simulations presented here it has
arge values only within the numerical sponge layers that implement
he open boundaries.

The terms on the right hand side of the barotropic vorticity budget
Eq. (22)) are the bottom pressure torque (BPT), nonlinear torque
ADV), planetary vorticity advection (BETA), wind stress curl (WSC),
ottom drag curl (BSC), and viscous torque (D). The latter is zero
utside of sponge layers in CROCO.

In the ocean interior, away from steep slopes, the Sverdrup vorticity
alance between the wind stress curl and BETA term would prevail.
owever, with steep bathymetry near coastal margins or elsewhere,

opographic stretching expressed by BPT becomes dominant in balanc-
ng BETA (Couvelard et al., 2008) — The Munk viscous torque is an
vatar of BPT in simple models for closing the basin-scale vorticity
udget. This balance between BPT and BETA is particularly appropriate
n the GS region and the vorticity budget presented in Table 1 confirms
thers (Schoonover et al., 2016; Ezer, 2016).
9

Table 1
The GS barotropic vorticity budget (1012 m3∕s2) averaged over the GS region, defined
between the 1- and 30-Sv contours, upstream of the separation.

BPT BETA WSC BSC ADV

𝜎, 1∕8◦ 0.93 −1.78 0.05 0.24 0.54
𝜎, 1∕12◦ 1.83 −2.48 0.09 0.27 0.29
𝜎, 1∕12◦ smooth 1.13 −2.44 0.05 0.30 0.96
Penalized, 1∕8◦ 1.77 −2.65 0.08 0.48 0.26
Penalized, 1∕12◦ 2.24 −2.75 0.08 0.45 0.04
Penalized, 1∕12◦ smooth 2.16 −2.90 0.07 0.34 0.09

The budget terms are integrated over the GS region, defined as
in Schoonover et al. (2016) between the 1- and 30-Sv contours, up-
stream of the separation. It shows that the wind stress curl and the
bottom stress curl play only a minor role, while the nonlinear torque
is a secondary, but significant, player. The sensitivity to resolution is
particularly interesting (we do not present the 1/4◦ results as the GS
region is more difficult to define in this case). The topographic effect
grows with increasing numerical resolution from 1/8◦ to 1/12◦. There
is no sign of convergence at 1/12◦, but the topographic slope is steep
enough at this resolution to drive a realistic GS separation.

When penalization is used, the vorticity budget is generally similar,
but BPT is boosted. At 1/8◦, BPT is already very close to the 1/12◦

standard model budget. Also, the rate of increase in BPT between 1/8◦

and 1/12◦ is lower than for the 𝜎-coordinates run. This suggests the
topographic effect converges faster with decreasing resolution when
using penalization. These numbers confirm quantitatively the interpre-
tation drawn from the SSH maps: penalization produces a physically
correct GS separation at lower resolutions than 𝜎-coordinates. With
penalization, only a slight overshoot is observed at a 1/4◦ resolution,
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Fig. 7. Mean surface velocity across the Oleander transect for the standard case with terrain-following (𝜎) coordinates (top) and penalization (𝜎p) (middle). The bottom (middle)
figure shows the mean near-surface velocity as measured by the Oleander (1993–2012) with shipboard ADCP (from Rossby et al., 2014). The location of the transect is indicated
by the yellow line of the bottom right figure.
and this is entirely corrected at 1/8◦. Ocean circulation is less sensitive
to resolution when using penalization for vertical coordinates than
when using 𝜎-coordinates. The remaining sensitivity is due to more
active mesoscale activity at higher resolutions.

The planetary vorticity advection (BETA) term in the penalized runs
is almost as strong at 1/8◦ as it is at 1/12◦. This is consistent with the
fact that the mean slope current has more inertia at 1/8◦ than in the
standard case, which favors its separation from the coast. The increased
inertia of the slope current probably results from the steering and
stabilizing effect of steeper bathymetry. This stabilizing effect, already
suggested by the EKE maps (Section 4.2), is confirmed by the ADV
term (mostly representing mean eddy advection over the slope region),
which tends to decrease with resolution and is similar in the penalized
1/8◦ run and the 𝜎-coordinate 1/12◦ run.

When using interpolated 1/4◦ bathymetry in the 1/12◦ 𝜎-coordinate
run, the result is largely degraded, with BPT losing about 40% of its
value. In addition, the GS overshoots even more than in the 1/4◦ pe-
nalized run, despite stronger mesoscale activity. On the contrary, using
a smoother base bathymetry hbase in the penalized 1/12◦ simulation
does not significantly change the value of BPT, the structure of GS, or
its separation.
10
Note that the bottom friction appears higher in the penalized run
than in the standard run. This may be an artefact, as the value of the
bottom friction term is particularly sensitive to the definition of the
penalized solid region using smooth mask functions (see Section 3.2.2).
The exact diagnosis of bottom friction is not essential to the purpose of
this paper, but it should be addressed in the future.

5. Conclusion

The volume penalization method studied here is a modified version
of the one introduced in Debreu et al. (2020). The main changes con-
cern the calculation of the sublayer thicknesses in the penalized region
and the temporal discretization of the penalization term in the momen-
tum equations. In addition, the traditional splitting of barotropic and
baroclinic modes is modified to account for the variable porosity. These
modifications generally simplify the numerical implementation of the
penalization, bring more robustness and improve its computational
performance for a realistic long-term simulation, while preserving its
accuracy.

In this study we applied the volume penalization method to the Gulf
Stream (GS) separation problem that has perplexed ocean modelers
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Fig. 8. Mean SSH for the for terrain-following (𝜎) coordinates (top) and penalization
𝜎p) (bottom). The left column shows results using the usual 1/12◦ bathymetry for each
ase and the right column shows results using smooth bathymetry interpolated from
he respective 1/4◦ configurations.

or decades. Penalization improves the representation of the flow–
athymetry interaction, allowing realistic separation of the GS even at
elatively coarse resolutions. In addition, it provides a tool to separate
he effects of eddy activity and topographic slope when changing grid
esolution. This has never before been possible, because at coarse
esolution none of the usual coordinate systems can properly represent
steep continental slope (e.g., neither 𝑧-level systems nor the terrain

ollowing 𝜎-coordinates). Our results show that realistic bathymetry is
ore important than eddy activity in ensuring a realistic GS separation

t the intermediate resolutions (1/4◦, 1/8◦ and 1/12◦) employed. This
s in contrast to many recent studies, which tend to focus on eddy ac-
ivity as the most important factor. A steep slope can exert a stabilizing
nfluence that promotes a strong mean slope current with strong inertia
hat helps its separation from the coast at the topographic curvature
f Cape Hatteras. Therefore, with penalization, the resolution required
or a correct representation of the GS trajectory can be coarser than
he usual recommendation for resolutions as fine as 1/50◦ (Chassignet
nd Xu, 2017). We present penalized results that show a realistic GS
tructure at 1/8◦ and a separation that already occurs at 1/4◦.

We anticipate that a successful topographic slope correction will
e especially valuable to climate models, as their current resolution
s far from sufficient to represent western boundary currents using
-level coordinate systems. The error of climate models in the Gulf
tream separation and its path plays an important role in affecting
he atmospheric circulation in the North Atlantic (Keeley et al., 2012;
inobe et al., 2008), and also in remote regions via a planetary Rossby
ave response (Lee et al., 2018). Our results suggest that a climate
odel with a 1/4◦ or 1/8◦ resolution using volume penalization — and
erhaps also some parameterization of the eddy-mean flow interaction
o energize the WBCs — would produce much more realistic simula-
ions of ocean circulation. This would thus improve the atmospheric
irculation as well as the poleward oceanic heat transport and the
tlantic Meridional Overturning Circulation (AMOC), which are also
ritical to the large-scale climate response (Hewitt et al., 2017).

Currently, most if not all climate models are written in vertical

-level coordinates. The extension of the penalization method to this

11
ype of models is a work in progress. Preliminary experiments with
EMO show very convincing results in idealized configurations. In
articular, numerical simulations of the overflow test case (Ilıcak et al.,
012) show the possibility of making the solutions of a penalized 𝑧-
oordinate model close to those of a 𝜎-coordinate model. In this case,
he penalization method is used to mitigate the staircase effect of 𝑧
evels (these results will be the subject of an upcoming publication). In
he future, it may be interesting to explore two alternative penalization
pproaches for climate models: (1) starting from 𝜎 coordinates that are
mooth enough to limit pressure gradient error and diapycnal diffusion,
nd then recovering bathymetry details by penalization (as in this
aper); (2) starting from 𝑧 coordinates and limiting staircase effects by
he penalization method.

Another area of application in the coastal ocean is a more realistic
epresentation of the seafloor substrate, for example, the vegetation
n deltas and marshes, or the structures of roads and buildings in
looded urban areas. This could be achieved by carefully optimizing
he porosity and permeability parameters of the penalization model.
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ppendix. Computation of high resolution discrete porosity 𝝓𝟎
𝒌𝒑

We first define a high resolution vertical grid with 𝑁poro ≫ 𝑁
ayers, between 𝑧 = −ℎ and 𝑧 = 0.
poro
𝑘𝑝

= −ℎ + ℎ 𝑝

𝑁poro .

Then for each high resolution level 𝑘𝑝 ∈ [1,… , 𝑁poro], we find the layer
𝑘 of the computational grid which includes 𝑧poro𝑘𝑝

(see Fig. A.9), and
compute its thickness 𝛥𝑧𝑘𝑝 . We can then compute the smoothed mask
unction associated with the high resolution layer 𝑘𝑝 as

𝑘𝑝 = 1 − 1
2

(

1 + tanh
( 1
2
𝜆(𝑟𝑘𝑝 − 𝑟0)

))

,

where

𝑟𝑘𝑝 = −
1
2 (𝑧𝑘𝑝−1 + 𝑧𝑘𝑝 ) + ℎtrue

𝛥𝑧𝑘𝑝
.

ote that the smoothing scale is the thickness of the computational grid
𝑧𝑘𝑝 . Finally, the porosity of layer 𝑘𝑝 is

0 = 1 + 1 (𝛼 − 1).
𝑘𝑝 𝑘𝑝
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Fig. A.9. The computational level 𝑘 containing the high resolution interface 𝑧poro𝑘𝑝
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mask function associated with high resolution level 𝑘𝑝 is smoothed on the scale of
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