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COMPRESSIVE SAMPLING FOR ENERGY SPECTRUM
ESTIMATION OF TURBULENT FLOWS∗
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Abstract. Recent results from compressive sampling (CS) have demonstrated that accurate
reconstruction of sparse signals often requires far fewer samples than suggested by the classical
Nyquist–Shannon sampling theorem. Typically, signal reconstruction errors are measured in the
�2 norm and the signal is assumed to be sparse or compressible. Our spectrum estimation by sparse
optimization (SpESO) method uses a priori information about isotropic homogeneous turbulent
flows with power law energy spectra and applies the methods of CS to one- and two-dimensional
turbulence signals to estimate their energy spectra with small logarithmic errors. SpESO is distinct
from existing energy spectrum estimation methods which are based on sparse support of the signal
in Fourier space. SpESO approximates energy spectra with an order of magnitude fewer samples
than needed with Shannon sampling. Our results demonstrate that SpESO performs much better
than lumped orthogonal matching pursuit, and as well as or better than wavelet-based best M -term
or M/2-term methods, even though these methods require complete sampling of the signal before
compression.
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1. Introduction. Sampling and storage of signals becomes challenging for high-
wavenumber or high-dimensional signals if the Nyquist–Shannon sampling theorem is
followed strictly. The theory of compressive sampling (CS) provides a rigorous frame-
work in which to accurately reconstruct a signal from a few nonadaptive (random)
projections, provided it is sufficiently sparse or compressible in some basis [9, 18, 11].
Other signal models considered in the CS literature are not directly relevant to the
methods in this paper.

Consider the discrete signal u ∈ R
nd

of length N = nd in d dimensions. The
traditional fixed-rate sampling, hereafter referred to as Shannon sampling, of u is
inefficient if the coefficients û of u in an orthogonal basis are sufficiently compressible.
Shannon sampling is especially wasteful if we are interested only in a particular low-
dimensional property of the signal, such as the one-dimensional (1-D) energy spectrum
of a two-dimensional (2-D) or three-dimensional (3-D) data set.

This paper focuses on the reconstruction of energy spectra of homogeneous iso-
tropic turbulent flows from a minimal number of samples. A turbulent flow is char-
acterized by a nondimensional number, the Reynolds number Re, which is the ratio
of inertial terms to viscous terms in the Navier–Stokes equations governing the flow.
Flows become turbulent when Re exceeds a certain threshold (typically ∼ 103), and
industrial and natural turbulent flows have very large Reynolds numbers (∼105–1012).
The minimum length scale of a turbulent flow, the Kolmogorov scale η, decreases with
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B453

increasing Reynolds number Re like η ∝ Re−3/4 [22], and the number of spatial sam-
ples required by the sampling theorem in d dimensions is N ∝ η−d. Therefore, the
total number of samples needed to characterize a turbulent flow increases very quickly
with Reynolds number: like Re9/4 in three dimensions and Re3/2 in two dimensions.
Thus, straightforward application of Shannon sampling requires huge amounts of reg-
ularly sampled data (∼ 1011–1027) to estimate the complete 1-D energy spectrum of
a 3-D turbulent flow.

Although they contain a wide and continuous range of scales, turbulence signals
are nevertheless moderately compressible in wavelet bases because they are intermit-
tent in space and time. This compressibility is the basis of several adaptive wavelet
techniques for simulating turbulence; see, e.g., [23, 20, 1, 16]. Turbulence researchers
are often interested in reconstructing Fourier energy spectra from spatial measure-
ments, but spectrum estimation is not a well-developed area of CS.

Since the range in wavenumber space of the 1-D energy spectrum of u is propor-
tional to η−1 ∝ Re3/4, there is definitely room for improved sampling strategies. Even
for 1-D signals, such as hot-wire measurements, it should be possible to accurately
characterize the energy spectrum using fewer samples than required for the usual
Shannon sampling.

In order to accurately estimate the 1-D energy spectra of signals with a very large
and continuous range of active length scales, we propose a new method that uses
a priori information about the signal, such as the structure and scaling of wavelet
coefficients, isotropy, and power law behavior of the energy spectrum. We show that
our method is able to approximate energy spectra with an order of magnitude fewer
samples than needed with Shannon sampling.

We introduce notation and give a brief introduction to CS in section 2 before
we define our problem and introduce two measurement matrix types used in our
experiments. In section 3.2 we introduce the relevant wavelet transforms and their
application to turbulence, and finally present our spectrum estimation by sparse op-
timization (SpESO) algorithm for estimating energy spectra. Section 5 verifies the
method by applying it to a set of representative test cases: 1-D hot-wire turbulence
data, 1-D synthetic power law data, 2-D numerical simulation turbulence data, and
2-D synthetic power law signals.

In related work, variants of CS have been developed to estimate spectra and other
properties of signals, but in different contexts which do not apply in our case. In [15]
linear functions of signals were estimated by fast operators. Energy spectra, however,
are nonlinear functions of signals. Sparse and locally supported 2-D spectra were
estimated in [38], but turbulence is not sparse in Fourier space. Similarly, [25, 4]
put some sparsity constraints on their power spectrum estimation. Bands of power
spectra are estimated on a linear scale from nonuniform samples in [26]. In [2] the
2-D spectrum itself is sampled and approximated to reduce computational time in
spectroscopy. General nonlinear optimization problems for CS are considered in [6].
However, the iterative algorithm proposed is impractical in our case as it requires
expensive high-dimensional gradients to be computed at each iteration.

2. Compressive sampling for large signals. In this paper we assume that
the turbulent flow is provided as a single component of a turbulent velocity vector field
as a discrete sequence u ∈ R

N . Mathematically, of course, the flow is more accurately
described as a vector field of velocity or vorticity defined on a 3-D spatial domain.
However, assuming the flow is band-limited in wavenumber, the Nyquist–Shannon
sampling theorem allows us to represent it as a sequence of discrete values. The
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B454 G. F. ADALSTEINSSON AND N. K.-R. KEVLAHAN

measurement matrices discussed later are discrete approximations of linear operators
in continuous space. We represent 2-D signals of dimension n×n as vectors of length
N = n2.

We first decompose u as a linear combination of vectors in a basis Φ ∈ R
N×N ,

(2.1) u = Φû =
∑
i

ûiφi,

where û are the expansion coefficients and φi are the basis vectors. A signal u is said
to be B-sparse in basis Φ if | supp(û)| = B < N , where | · | denotes cardinality and
supp(x) = {i : xi �= 0} is the support.

The signal u is called compressible in the basis Φ if it has ordered coefficients
|û|(1) ≥ · · · ≥ |û|(N) that satisfy the inequality |û|(n) ≤ Cn−s for s > 0 and a
constant C [10]. The best B-term approximation in an orthonormal basis, uB, is an
approximation with all but the B largest terms of û zero. Many signals are highly
compressible in a wavelet basis [17] since wavelet basis functions are self-similar and
are localized in both position and scale. If the signal is compressible, then the error
in the best B-term approximation is ‖uB − u‖ = O(B−s+1/2).

The central idea of CS (see, e.g., [9, 18, 11, 12]) is that a few linear nonadaptive
(e.g., random) measurements of a signal are sufficient to accurately reconstruct a signal
if that signal is compressible in some basis. Note that the measurement scheme (e.g.,
random samples) and the sparsity system (e.g., a wavelet basis) must be mutually
incoherent in the sense of having a sufficiently small maximum inner product between
the basis vectors of the measurement scheme and the sparsity system.

Let A ∈ R
M×N be a measurement matrix , let g ∈ R

M be the compressed samples ,
and assume M < N . The measurement scheme is defined by the underdetermined
system

(2.2) g = Au.

In a slightly different form, with Ψ = AΦ, which we call the CS-matrix, we have

(2.3) g = Ψû,

where û is assumed to be sparse or compressible in the basis Φ. Under this framework,
the minimization problem [12]

(2.4) û� = argmin
ĥ∈R

N

‖ĥ‖�1 s.t. Ψĥ = g

is proved to accurately approximate, or exactly reconstruct, the original signal. For
û B-sparse and Ψ having a restricted isometry constant δ2B < 4/

√
41 (see (4.1)), the

reconstruction is exact [21]. (A star superscript, u�, denotes approximation.) This
method is called basis pursuit and can be solved via convex optimization. Unfortu-
nately, although they are moderately compressible in wavelet bases, turbulent signals
are not compressible enough at high wavenumbers for basis pursuit to give meaningful
results for the entire range of wavenumbers.

For problems that are compressible enough, so-called greedy methods can be faster
than basis pursuit methods for (2.4). We have found that basis pursuit methods
are very slow and produce poor quality spectrum estimates for turbulence signals,
and so we have focused on greedy methods. A popular greedy method is iterative
orthogonal matching pursuit (OMP) [36]. Our estimation algorithm relies heavily
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B455

on a multilevel modification of OMP called QOMOMP; see section 3.2. OMP can
be generalized easily to estimate more than one coefficient of the signal at a time
[39]. The experiments in section 5 use lumped OMP (LOMP) as a comparison to our
SpESO method, where the sparsity B0 is fixed and L0 coefficients are estimated in
each iteration, requiring a total of B0/L0 iterations.

The initial CS literature was largely concerned with full random measurement
matrices A, which requireO(NM) operations to apply to a vector. Many CS decoding
methods require frequent application of A and its transpose. For very large signals
the matrix–vector multiplications are very memory and CPU intensive [8], so a full
random matrix is not practical. In our method we consider two matrices with fast
matrix-free transforms requiring at most O(N logN) operations and O(N) memory
to apply.

The first matrix is intended for measurements of 1-D time-dependent signals—
such as hot-wire measurements—without requiring the whole signal for every com-
pressed sample: a random finite impulse response (FIR) filter [37]. Let the filter
coefficients h be compactly supported with support size K. We can then write

(2.5) A = RΓF
∗ΣF,

where Σ = diag(Fh) is a diagonal matrix where the diagonal elements are the Fourier
transform of h, and F is the Fourier transform matrix. Here RΓ restricts the result
to an evenly distributed set Γ of length M . This definition of A assumes periodicity,
but our implementation zero pads the signal before the convolution to account for
nonperiodic boundary conditions. For a downsampling fraction δ0 and with 1/δ0 ∈ N,
the number of samples is

(2.6) M = �(N +K − 3)δ0�,
and the complexity is O(KM).

A random convolution and subsampling is a universal sampling strategy [34] (also
known as partial random circulant matrix). Consider now a full vector h and a
diagonal matrix Σ = diag(h) which randomizes the phase, i.e., hk = eiθk , where
θk are independent and identically distributed (i.i.d.) uniformly on (0, 2π) such that
F ∗Σ ∈ R

N . We can again write

(2.7) A = RΓF
∗ΣF,

where R restricts the result to a random set Γ. The complexity of this approach
is O(N logN). Note that the random convolution matrix A has the property that
its right pseudoinverse is the transpose, AT (AAT )−1 = AT (i.e., AAT = I or A is
right-orthogonal). We use this matrix (or measurement scheme) for analyzing 2-D
data.

3. Energy spectrum estimation of turbulence data.

3.1. Problem formulation. Our problem is challenging because we seek to
estimate the energy spectrum E(k) from measurements of u, rather than estimating
u directly. This problem is challenging because the quantity to be estimated, E(k),
is a nonlinear function of the quantity that is sampled, u. In addition, u is not sparse
in Fourier space. Dropping the constant normalization factor, let us define E(k) as

E(k) =
∑

k≤|k′|<k+1

∣∣û[k′]
∣∣2,(3.1)

c© 2015 Gudmundur F. Adalsteinsson, Nicholas K.-R. Kevlahan
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B456 G. F. ADALSTEINSSON AND N. K.-R. KEVLAHAN

where û is the Fourier transform of u, and we use the convention that Ef is the
spectrum of signal f . Since we are interested in estimating a turbulence-like power
law energy spectrum over all scales, a logarithmic error norm is appropriate and the
problem is stated in general terms as

(3.2) min
u�∈U

‖ log(Eu)− log(Eu�)‖w,

where the logarithm is taken componentwise and the solution has properties specified
by U ⊆ R

N , and the �2 norm has weight w. Obviously, the term log(Eu) is an
unknown in (3.2). Since we have the samples g = Au we can project the signals and
recast the problem as

(3.3) min
u�∈U

‖ log(EATAu)− log(EATAu�)‖w,

which can be solved using available data. Assuming a sufficiently small coherence
[8] (or restricted isometry property (RIP)) of A, the matrix ATA is a reasonable
approximation of the identity matrix I. At the end of section 3.2 we discuss the case
when Au� is close to g and how the deviation of ATA from I can be dealt with.

Identity (3.3) is a specific case of the general nonlinear minimization minx∈U f(x).
There exists a gradient method for this problem with an iterative solver [6]

(3.4) xk+1 = PU
(
xk − μ∇f(xk)) .

However, this method has the drawback that the computation of the gradient of f is
very expensive. In section 3.2 we introduce a more efficient method based on OMP
to solve this key problem in energy spectrum estimation.

3.2. Estimation algorithm. We now introduce our sparsity system, the or-
thogonal discrete wavelet transform (DWT) [14, 28]. We choose the DWT because
many signals are compressible in a wavelet basis, and the properties of the wavelet
transform of turbulence signals are well known [35, 19]. The following wavelet analysis
assumes a signal of size 2J , an integer power of two, with 0 ≤ j < J . A full wavelet
decomposition of a signal on J scales is

(3.5) u = ŝ00φ
0
0 +

J−1∑
j=0

2j−1∑
i=0

d̂jiψ
j
i ,

where φji and ψj
i are, respectively, the scaling and the wavelet functions, and ŝji

and d̂ji are the expansion coefficients. The level is j, the scale is 2−j , and i is the
translation. Without loss of generality, as long as levels j ≥ J0 (see Algorithm 1) have
detail coefficients, we assume a full transform with a single (coarse) scaling coefficient
ŝ00. Note that the basis of scaling functions {φj} spans the approximation subspace
V j , while the wavelet basis {ψj} spans the subspace W j , which is the orthogonal

complement of V j in V j+1, i.e., V j+1 = V j ⊕W j . Thus, a wavelet coefficient d̂ji
measures how big the signal variation is at a position i and level j.

The DWT has a fast transform for discrete signals, with complexity O(N).
The decay rate of the wavelet coefficients is determined by the local regularity of
the signal [29], and this decay rate can be used to estimate the strength of any

(quasi-)singularities in signal. The coefficients ŝji and d̂ji are stored in û in the stan-
dard manner.
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B457

Algorithm 1

Quasi-oracle multilevel orthogonal matching pursuit (QOMOMP). Approximates a sparse solu-
tion to g = Ψû, where g ∈ RM and û ∈ RN . It approximates all wavelet coefficients at level j < J0
and Lj coefficients at level j ≥ J0. Inputs: g, Ψ, J0, L. Output: û�.

Ω← ∪j<J0Γj � initial coefficient index set by oracle, Γj is the index set for level j

û� ← 0 � the decoded signal initial guess

û�
Ω ← argminx ‖ΨΩx− g‖2 � least squares, ΨΩ are columns of Ψ

for j = J0 to J − 1 do � for each level j ≥ J0
r ← g −Ψû� � update residual

a← ΨT r � project residual

i← supp
(| tree(a)|>Lj

)
� the largest Lj coefficients of tree(a) in Γj ; see Algorithm 2

Ω← Ω ∪ i � update current index set

x0 ← û�
Ω � initial guess for iterative methods

û�
Ω ← argminx0

‖ΨΩx0 − g‖2 � least squares solved using tfqmr (1-D) or symmlq (2-D)

end for

In two dimensions a separable multiresolution analysis (MRA) includes three
components of scale variation [29], decomposing a 2J × 2J signal similarly into

(3.6) u = ŝ0,0φ0,0 +

3∑
k=1

J−1∑
j=0

2j−1∑
i1,i2=0

d̂kj,iψ
k
j,i

with i = (i1, i2) and where k = 1, 2, 3 includes contributions from wavelets measuring
variation in the horizontal, vertical, and diagonal directions.

Turbulent flows have been analyzed and computed adaptively using wavelet meth-
ods for almost two decades [19]. Although homogeneous turbulence is not highly com-
pressible, wavelet coefficients approximate local structures much better than Fourier
modes due to the intermittent multiscale structure of turbulence. This multiscale
structure is characterized by a continuous range of active length scales which grows
like Re3/4 and has a power law energy spectrum like E(k) ∝ k−5/3 in three dimensions.

The multiscale structure of turbulence and the DWT leads us to propose a multi-
level version of OMP that uses our knowledge about the multiscale turbulent flows to
predict the typical space and scale structure of the wavelet coefficients. For example,
a priori we know that wavelet coefficients are relatively large above a certain scale
and, on average, the magnitude of wavelet coefficients decreases monotonically with
decreasing scale. We call this method quasi-oracle multilevel orthogonal matching
pursuit (QOMOMP); see Algorithm 1. QOMOMP will be used to efficiently solve
the minimization problem (2.4), which is the key computational step of our energy
spectrum estimation method.

Most of the steps in QOMOMP are equivalent to the standard OMP, except for
the following differences. QOMOMP estimates all coefficients at levels less than a
predefined coarsest level j < J0. The “initial coefficient index set by oracle” defined
by J0 is chosen such that almost all wavelet coefficients up to level J0 are large,
approximately large enough to be included in the best M/2-term approximation. At
each finer scale j ≥ J0 a predefined number of coefficients, Lj, is estimated. We will
see later that the choice of the sequence L = {Lj} is a key factor determining the
performance of the method.

Discrete wavelet coefficients have a tree-like structure, where (in one dimension)
the two child coefficients at a fine scale j are more likely to be large if their parent
coefficient at the coarse scale j − 1 is large. To enforce this tree-like structure of the
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B458 G. F. ADALSTEINSSON AND N. K.-R. KEVLAHAN

Algorithm 2

Description of the function tree(a). Returns adjusted elements of a = ΨT r at level j to enforce
tree-like structure of the estimated coefficients û�

Ω. The function depends on the parameter β ≥ 1

and a threshold defined by Λ : R|ω| → R+.

ω ← Ω ∩ Γj−1 � Ω is current coefficient index set, Γj−1 is index set for level j − 1

ω� ← {i ∈ ω : |û�
i | > Λ(û�

ω)} � locate large coefficients in Γj−1

Ω� ← children(ω�) � corresponding coefficients in Γj

aΓc
j
← 0 � coefficients outside Γj will not be selected

aΩ� ← βaΩ� � adjust elements of a with a large parent coefficient (in û�)

10
3

10
4

10
5

10
6

10
-1

10
0

10
1

10
2

C
P
U

ti
m
e
[s
]

N

QOMOMP N/M ≈ 16
QOMOMP N/M ≈ 4
C ·N
C ·N log3 N

Fig. 1. Computational cost of QOMOMP (measured by CPU time) versus signal length N ,
showing mean curves and standard deviation bars of 16 random simulations. The number of samples
is a fixed ratio of N , either N/M = 16 or N/M = 4, and the measurement matrix is a filter of length
K = 284. The number of coefficients L is a fixed ratio of N such that the sparsity is B/M ≈ 0.79.

nonzero wavelet coefficients û� we apply the function tree(a) (see Algorithm 2) to
modify the raw wavelet coefficients of the residual in the QOMOMP Algorithm 1.
This is similar to the method used in [24], but enforces the tree structure less strictly.

The tree algorithm, Algorithm 2, works as follows. Let Γj be the index set for
level j, and let Ω be the current support of wavelet coefficients û� at iteration j in
QOMOMP. The index set ω� identifies those coefficients at the coarse level j−1 above
a threshold defined by Λ. Then Ω� = children(ω�) are the child coefficients at level j
of the significant parent coefficients ω∗ at level j − 1. Finally, the tree function scales
the residuals a in Ω� by a constant, aΩ� ← βaΩ� . If β > 1, this makes the residuals
corresponding to children at scale j of significant wavelet coefficients at scale j − 1
more likely to be selected as the Lj largest coefficients. If β = 1, tree(a) returns a
unchanged, while in the limit β → ∞ it exactly enforces a tree structure; i.e., every
nonzero coefficient in the wavelet tree has a nonzero parent coefficient.

Isotropy of the signal is not of concern in one dimension. In two dimensions,
however, the diagonal wavelet coefficients, denoted by k = 3 in (3.6), of a best B-
term approximation of an isotropic signal become a smaller proportion of the total
for a particular level as the scale decreases. To account for this we let the operator
| · |>Lj

in QOMOMP in two dimensions choose the coefficients such that the diagonal
ones are a ratio qj of the total for level j.

The least squares problem in Algorithm 1 is solved using an iterative method
for the normal equation. The relative tolerances are fixed, except for the last level,
where we decrease the tolerance for higher accuracy. Numerical verification of the
computational cost of QOMOMP—Figure 1—confirms that it scales linearly with the
signal size N for typical parameters. Intermediate and final tolerances are set to
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B459

Algorithm 3

Spectrum estimation by sparse optimization (SpESO). The signal u�(L) is an estimate provided
by QOMOMP with input L. Inputs: L0, J , A, g (Au), h, w, nit. Output: energy spectrum estimate
E�

u.

L← L0 � initial guess for number of coefficients at each level

for i = 1 to nit do � iterate nit times

for each j ∈ J in increasing order do � at each level j, Lj in the sequence L

is adjusted to find an approximate minimization

ω ←
{ ∑

t wt if i = nit

wj else

(3.7) approx min
Lj

‖ log(EAT g)− log(EATAu�(L))‖ω, s.t. hj ≥ 0

end for
end for
E�

u ← Eu�(L) � estimate the energy spectrum of u

εi = 2× 10−2 and εf = 3.3× 10−6, respectively.

Now, let us return to the energy spectrum estimation problem stated in (3.3).
Algorithm 3 defines a low-dimensional optimization algorithm that approximates a
solution to (3.3), which we call spectrum estimation by sparse optimization1 (SpESO).
The sequence L0 is the initial sequence of the number of nonzero coefficients at each
level for QOMOMP, and the index set J specifies those levels for which we want to
optimize the sequence L. The weight wj = 1 for indices in 2j−1 < k ≤ 2j and is zero
elsewhere (essentially an index set). We put the constraints hj = Lj−1 − Lj in one
dimension and hj = 2Lj−1−Lj in two dimensions. This is a sort of bootstrapping from
large scales (small j, where the energy spectrum is likely most accurate) to smaller
scales (where the energy spectrum is initially less accurate). Since the computation
of u� is expensive and the optimization function is nonsmooth, we do not solve (3.7)
exactly. Instead, we search among 5 to 7 values uniformly distributed on a log scale
and narrow the search after each iteration of (3.7) over all levels J . The minimization
(3.7) over J is iterated a few times (nit) until L stabilizes or converges to a (probably)
local minimum.2 The overall error over all levels J is measured in the final iteration.
We estimate the overall computational complexity of SpESO to be O(N |J |nit).

Our experiments show that decoupling the matrix used in SpESO from the one
used in QOMOMP improves the convergence properties. By that we mean that the
measurement matrix is split horizontally into two parts, A and Ã, giving a set of
measurements g = Au and g̃ = Ãu. For QOMOMP we use Ψ = AΦ and g, and for
SpESO we use ÃT Ã, and vice versa. The two estimated spectra are then combined
proportionally to their relative errors. A simplistic argument for the decoupling is
that since QOMOMP minimizes the error Au�− g to a small or zero value regardless
of L, then the difference between ATAu and ATAu� will be small and (3.7) will not
converge to any meaningful minimum. By using two separate matrices this problem
disappears and results in a better correlation between a good choice of L and a
low energy spectrum error. The downside is that QOMOMP only uses half of the
measurements for each estimation.

1The code for SpESO with QOMOMP is available at github.com as SpESO.
2One might think that an optimal solution to the minimization would be the maximum value

of Lj , but this not the case since the estimates provided by QOMOMP start to deteriorate for too
large values of L. No restriction is placed on

∑
j Lj .
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4. Analysis of the performance of SpESO for ideal signals. We now an-
alyze mathematically the convergence and accuracy of SpESO. Let us consider the
restricted isometry property (RIP) of the CS matrices that determines the accuracy
of reconstructions. The restricted isometry constant of a matrix Ψ is the smallest
number δB such that [13, 7]

(4.1) (1 − δB)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + δB)‖x‖2

holds for all x at most B-sparse. If the OMP algorithm is applied with a matrix Ψ
satisfying δ13B < 1

6 [21] or δB+1 < 1/(
√
B+1) [40], then it recovers a B-sparse signal

exactly. The proof in [40] is mainly concerned with showing that at each iteration the
index chosen is in the true support T . Given the true support at the final iteration,
the reconstruction is trivial.

Assume T is the true support of the best B-term approximation uB, where again
u = Φû. In the case of a perfect oracle where Ω = T in QOMOMP, the solution to
the final least squares problem is (ΨT are columns of Ψ index by T )

(4.2) û�T = Ψ+
TΨû = Ψ+

T (ΨT ûT +ΨT c ûT c),

where Ψ+
T is the Moore–Penrose pseudoinverse. With Ψ∗

TΨT nonsingular (δB < 1) we
get û�T = ûT +Ψ+

TΨT c ûT c , where Ψ∗
T is ΨT transposed. Therefore, the error is

(4.3) ‖ûT − û�T‖ = ‖Ψ+
TΨT c ûT c‖.

Now considering the case where Φ is orthonormal, we get

(4.4) ‖u− u�‖2 = ‖ûT c‖2 + ‖Ψ+
TΨT c ûT c‖2 ≤ ‖û− ûB‖2 + 1

1− δB ‖Ψ(û− ûB)‖2

(the inequality follows from RIP [30]). For a compressible signal u, the error depends
on the best B-term approximation error ‖ûT c‖ = ‖u−uB‖ and the least squares error
term, which depends on the RIP of the matrix Ψ. Given u is B-sparse (u = uB), the
error vanishes.

Now consider our QOMOMP method in a very simple 1-D setting to obtain some
quantitative performance estimates. Let QOMOMP be applied to a signal u with a
power law energy spectrum E(k) � k−α, where the number of vanishing moments
n of the wavelet used in the sparsity system is limited by 0 < α ≤ 2n + 1. The
variance of the wavelet coefficients at each level then scales like Var(d̂ji )i ∼ 2−jα [33].

Assuming u is a Fourier synthetic signal like those considered in section 5, then d̂ji for
each level is well approximated as i.i.d. with a Gaussian distribution and zero mean.
If ΩJ0 = ∪j<J0Γj is the initial QOMOMP setup, the probability that the true support
TB of the best B-term approximation contains ΩJ0 is

(4.5) PJ0 = Pr(ΩJ0 ⊂ TB) =
∏
j<J0

Pr(|d̂ji | ≥ εB)2
j

,

where the threshold εB is the best B-term threshold such that

(4.6) B/N =
1

N

∑
j<J

∑
i

Pr(|d̂ji | ≥ εB) =
1

N

∑
j<J

2j
[
2− 2F (εB2

jα/2)
]
,

where F is the standard cumulative distribution.
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B461

Assume now, as in the 1-D experiments in section 5, that N = 215 and B = N/8.
If J0 = 5, then P5 = 82% for energy spectrum slope α = 5/3 and P5 = 99.5% for
energy spectrum slope α = 3. There is a reasonable probability that every coefficient
in ΩJ0 is in the true support. We can also consider how many coefficients Lj should
be estimated at finer levels j ≥ J0. At the single level j = 7, 94.9% of the coefficients
are included in uB for α = 5/3, and 99.4% are included for α = 3. Thus, the exact
value for the number of coefficients to estimate at this level is L7 = 0.95 × 27 for
α = 5/3. Recall that in practice the initial sequence guess L0 = {Lj} must be
estimated a priori, but this sort of analysis gives us a good ansatz for determining it.
Note that adding some excess coefficients that are not in the true support is not a
serious problem; the algorithm in [39] defines an iteration as successful if at least one
coefficient is correctly chosen.

A full theoretical analysis of SpESO is beyond the scope of the present paper,
i.e., a proof of concept of an experimental algorithm. In addition, since CS algorithm
estimates are usually conservative, they are not a good indicator of the actual per-
formance of the method. Therefore, in the next section we rely instead on a wide
range of representative computational experiments to assess the actual performance
of SpESO.

5. Numerical tests of SpESO.

5.1. Turbulence test signals and computational parameters. To test the
effectiveness of SpESO we need signals with energy spectra and arbitrary power law
scaling. For this purpose, synthetic turbulence signals with power law energy spec-
tra are particularly appropriate, in addition to experimental signals and data from
numerical simulations of turbulence.

In our results, synthetic signal type (x, y) denotes a signal with two energy spec-
trum power laws −x and −y, i.e., E(k) ∼ k−x and E(k) ∼ k−y, split at k = N/32 in
one dimension (unless specified otherwise) and k = N/8 in two dimensions. Signal (x)
denotes a signal with a single power law. F (x, y) denotes a synthetic Fourier signal,
and W (x, y) denotes a synthetic wavelet signal. The Fourier and wavelet synthetic
signals are described below. Note that signals with a change in slope are particularly
challenging for energy spectrum estimation when this change occurs at wavenumbers
larger than the Nyquist wavenumber corresponding to the Shannon sampling rate
since the second slope would not be resolvable using a standing Shannon sampling
technique.

The first method constructs a synthetic signal in Fourier space. The Fourier
coefficients of the signal u are determined by the desired energy spectrum but with
random complex phases,

(5.1) ûk =
√
E(k)eiθk ,

where θk are i.i.d. uniformly on [0, 2π) and E(k) is the specified spectrum. In higher
dimensions, the coefficients û[k] for which |k| = k have variance proportional to
E(k). The resulting signal is homogeneous Gaussian statistics. Shown in Figure 2 are
typical realizations of the Fourier-based synthetic 1-D test signal (top left) and 2-D
data (bottom left).

In addition to the random phase Fourier synthetic signal described above, we also
consider a synthetic multiscale signal, generated by a random process in wavelet space.
This allows us to generate a synthetic signal that is closer to a true turbulent signal.
Kolmogorov’s original statistical theory of turbulence [22] predicts a structure function
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Fourier (linear ζp) Wavelet (concave ζp) Hot-Wire

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Fourier (linear ζp) Wavelet (concave ζp) DNS (Johns Hopkins)

Fig. 2. 1-D and 2-D turbulence test signals. The Fourier and wavelet synthetic signals both
have (5/3, 3) energy spectra typical of a 2-D flow, while the experimental hot-wire signal and the
direct numerical simulation (DNS) data have a signal power law scaling (5/3) typical of 3-D flow.
Note that the Fourier signal is nonintermittent (with linear ζp), while the wavelet signal has been
designed to have more realistic intermittent statistics (with concave ζp).

scaling Sp(r) =
1
L

∫ L

0 |u(x)− u(x+ r)|pdx ∼ rζp with ζp = p/3, in the limit of infinite
inertial subrange, and this is approximately the scaling produced by the Fourier-based
synthetic signal process described above. However, actual experimental measurements
show that as a result of intermittency ζp increases more slowly than linearly with p; i.e.,
it is concave. The lack of intermittency in the Fourier synthetic signal means that the
resulting data sequence is more homogeneous locally than real turbulence. In order to
assess the ability of SpESO to cope with intermittency, we have also used the wavelet-
based method of [5] to synthesize a signal with a more realistic concave function ζp.
The wavelet-based signal has a realistic concave, intermittent scaling of structure
function exponents ζp, while the Fourier signal has a nonphysical slightly convex
scaling, in contradiction to experimental measurements [3]. The scaling of the energy
spectrum is then defined implicitly by the second-order structure function. Typical
realizations of the wavelet synthetic 1-D test signal W (5/3, 3) (top middle) and 2-D
data (bottom middle) are shown in Figure 2. Note that we generate this wavelet-based
synthetic data using symlet 12 wavelets with six vanishing moments, rather than the
coiflet wavelets used for the energy spectrum estimation algorithm, to ensure that the
data are independent of the sparsity system used in the compressive sampling.

Finally, we consider two realistic turbulence data sets: a 1-D times series measure-
ment of a single velocity component of an axisymmetric jet [31], and a 2-D slice of a
3-D direct numerical simulation (DNS) of homogeneous isotropic turbulence [27, 32].
The 1-D data are from hot-wire measurements at 20kHz and Re = 4 × 104, and a
typical section is shown in Figure 2 (top right). Note that the energy spectrum of
this data has a signal power law scaling k−5/3. The second data set is from a high
Reynolds number 3-D pseudospectral turbulence simulation stored in the Johns Hop-
kins University (JHU) turbulence database cluster [27, 32]. The Taylor scale Reynolds
number of this flow is Rλ ∼ 433 (corresponding to Re ≈ 2 × 105) . This simulation
has a resolution of 10243, and therefore the 2-D slice has a resolution of 10242. To
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COMPRESSIVE SAMPLING FOR SPECTRUM ESTIMATION B463

simplify the analysis, we consider a single velocity component. A typical example of
this data is shown Figure 2 (bottom right).

The results are computed using the coiflet 18 wavelet basis with six vanishing
moments for 1-D signals and coiflet 12 wavelet basis with four vanishing moments for
2-D signals. The random filter is i.i.d. uniform in {±1}, and the length for all 1-D cases
is K = 284. For the tree function, the threshold function is Λ : a → 1

2

√
Var(a), and

β = 3 (β = 2 in two dimensions). The set of levels to optimize over is approximately
J = {j : j > log2(M/2)}. The a priori-based initial guess of coefficients L0 is set
approximately to the number of coefficients of each level in a typical best M -term
approximation, obtained by analyzing turbulence signals of similar parameters, and
the level J0 = 5 in one dimension and J0 = 4 in two dimensions. Logarithmic scale
averages of spectra are essentially geometric means of spectra.

Dashed lines in the figures show the theoretical slope of the power law parts of
the spectrum. In each case, we compare SpESO with the original signal, bestM -term
wavelet approximation, and the usual fixed rate Shannon sampling. In many cases we
also compare results with the best M/2-term approximation and the LOMP method.

The differences between each of the spectrum estimation methods are as follows.
The best M -term approximation first takes the wavelet transform of the entire signal
and then selects the largest M wavelet coefficients for the estimation. It is therefore
not a sampling scheme, but rather an ideal benchmark to which the CS methods are
compared. We expect that the M -best term approximation to be the best possible
estimate using M samples. The Shannon scheme subsamples u at a uniform rate
(without low-pass filtering), followed by a Fourier interpolation. LOMP is an iterative
CS method like the well-known OMP that estimates a few (L0 ≥ 1; we use a moderate
value of 20 from computational evidence) coefficients at a time, without using any
a priori information or the tree structure of the wavelet coefficients. Finally, SpESO is
a CS optimization method that uses a priori information to minimize the logarithmic
scale error of the energy spectra. It also enforces a realistic tree structure for the
estimated wavelet coefficients.

5.2. Results for 1-D Signals. The performance of SpESO compared to other
methods is tested numerically for a range of signal length to measurement length
ratios N/M (i.e., sampling ratios). The other methods are fixed-rate Shannon sam-
pling, best M/2 and M -term wavelet approximations in the coiflet 12 basis, and the
CS reconstruction method LOMP. For the tested N/M ratios 4, 8, 16, 32, SpESO
and LOMP have the nearest ratio satisfying (2.6), namely, 3.97, 7.93, 15.86, 31.72,
respectively. The results for the Fourier (F) and wavelet (W) synthetic 1-D signals
are shown in Figures 3, 4, 5, 6, 7 and Table 1. The results for hot-wire signals are
shown in Figure 8.

The energy spectrum errors for each level shown in Figure 3 behave as expected for
Shannon sampling: they increase dramatically at the Nyquist wavenumber. The best-
term approximations are the most accurate method at large scales, but have a steeply
rising error at smaller scales. The performance of SpESO is almost independent
of level j, except for the highest level j = 14. The figures show that SpESO has
lower errors than the best M/2-term approximation at levels 11 to 14. Compared
to the other methods, LOMP is clearly not competitive at large scales, but at small
scales it is similar. It is important to remember that the good relative performance
of SpESO is especially significant since the best M/2-term approximation requires
full sampling of the signal (the nonlinear wavelet filtering is based on the full set of
wavelet coefficients).
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Fig. 3. Logarithmic scale errors of spectrum estimations versus level j, on a logarithmic scale,
with N = 215 and N/M = 8 (Nyquist wavenumber at dash-dot vertical line). The support of the norm
weight wj is compact and centered at a wave number corresponding to level j and

∑
k wj(k) = 1.

The plots show mean curves and standard deviation bars of 64 random simulations. The signals are
1-D with spectrum slopes splitting at k = N/32 (j = 10.5). Fewer samples at large scales (small j)
result in larger error bars.

Table 1

Errors in spectrum slopes of averaged estimations, s − s�, where s is the slope of the original
signal, i.e., a k−s power law. Slopes are computed by least squares fits in the range of the second
slope, from k = 1024 to k = 8192, except for the Shannon slope, which is fitted in its nonzero range
only. The 1-D signal lengths are N = 215, and the number of simulations is 64.

Signal N/M SpESO Shannon M/2-best M -best LOMP

4 −0.06 0.58 −0.78 −0.29 1.46

W(3, 5/3) 8 −0.50 1.27 −1.92 −0.78 2.23

16 −1.06 n/a n/a −1.92 2.14

4 −0.09 0.49 −0.86 −0.26 1.45

F(3, 5/3) 8 −0.26 0.90 −4.10 −0.86 2.23

16 −0.75 n/a n/a −4.10 2.26

4 0.93 0.54 −1.30 −0.33 2.42

W(5/3, 3) 8 0.76 1.65 −4.84 −1.30 3.33

16 0.25 n/a n/a −4.84 3.28

4 0.95 0.35 −1.87 −0.27 2.27

F(5/3, 3) 8 0.85 0.87 −4.76 −1.87 3.23

16 0.46 n/a n/a −4.76 3.29

Table 1 gives the error of the estimates of the power law scaling of the energy
spectrum over the small scale power law range (i.e., large wavenumber range). These
slopes are computed for averages of estimations. This is a crucial quantity character-
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Fig. 4. Representative energy spectrum estimations of 1-D signals, with N = 215 and N/M = 8,
out of the 16 simulations. The slope of the energy spectrum changes at k = N/32 = 1024, smaller
than the Nyquist wavenumber k = N/16 = 2048. The best and worst cases of SpESO reveal the
variation of its approximations.

izing turbulent flows and other experimental signals. Those cases that are too bad for
a reasonable fit are indicated by “n/a”. SpESO performs better than the M/2-best
term approximation in all cases, and better than the M -best term approximation and
Shannon sampling (where it is valid) in all but two cases shown in Table 1, namely,
both (5/3, 3) cases with sampling ratio N/M = 4. LOMP is again noticeably worse
than all other methods. Even for the power law scaling at small wavenumbers (not
shown), which is well resolved by the Shannon sampling, SpESO still gives results
similar to the bestM/2-term approximation at high sampling ratios and much better
than LOMP.

It is important to note that there is significant stochastic variation in the SpESO
energy spectrum estimates. Figure 4 shows the best and worst cases of SpESO as
measured by the �2 norm on a logarithmic scale when the energy spectrum slope
changes at a wavenumber two times smaller than the Nyquist wavenumber. Even the
worst cases are not much different from the ideal case of Shannon sampling in the low
wavenumbers, although they significantly overestimate the energy at high wavenum-
bers. In addition, the worst SpESO cases seem unable to track the steepening slope at
high wavenumber in the (5/3, 3) cases, although they do estimate approximately the
correct high wavenumber slope for the (3, 5/3) cases (but at incorrectly high energy
levels). In contrast, at all wavenumbers the best SpESO cases estimate the spec-
tra better than even the best M -term estimates. This suggests there is potential to
greatly improve the reliability and accuracy of the method if acceptable trials could
be determined a priori. Figure 5 shows the variation of the SpESO estimates in two
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Fig. 5. Representative energy spectrum estimations similar to Figure 4 (upper right), but with
the slope changing at k = N/8 = 4096 (left) and k = N/4 = 8192 (right).

cases where the slope of the energy spectrum changes at wavenumbers four and eight
times larger than the Nyquist wavenumber. In this case, the worst SpESO estimate is
similar in accuracy to the best M -term approximation (both methods underestimate
the energy in the second power law range), while the best SpESO result gives an
excellent estimate. The averaged spectra are, however, not as responsive as the best
cases.

The averages of estimated energy spectra corresponding to Table 1 are shown in
Figure 6. Comparing SpESO to Shannon, SpESO somewhat more accurately esti-
mates the spectra beyond the Nyquist wavenumber, although performance is signal-
dependent. For the (5/3, 3) cases, it is unclear to us why the higher ratios of N/M
are more accurate than the lower ratios. On average, SpESO is not worse than the
best M/2-term approximation.

A more severe test is to apply SpESO to signals where the change in slope is
at a wavenumber higher than the equivalent Nyquist wavenumber for the sampling
ratio used. Results for this test are shown in Figure 7 when the slope changes at
k = N/32 = 1024, while the equivalent Nyquist sampling wavenumber is only k = 512.
These results show SpESO is still able to estimate the spectra for low wavenumbers,
but it is not always reliable for high wavenumbers. At these relatively large sampling
ratios SpESO performs very well for the W (3, 5/3) cases (i.e., for intermittent cases
when the slope becomes shallower at higher wavenumbers). SpESO performs worst
for the F (5/3, 3) cases (not shown but similar to the W (5/3, 3) cases) when the data
are statistically nonintermittent.

The experiments for the hot-wire data (see Figure 8) show the ability of SpESO
to estimate the spectra beyond the capabilities of the Shannon sampling. However,
the estimates are not accurate in the range of the high wavenumber exponential decay
of E.

5.3. Results for 2-D Signals. We shall now examine 2-D signals of length
N = n × n. For indicated ratio N/M = 64, SpESO actually has the ratio 63.3 due
to the computational setup. We note that individual 2-D estimates vary much less
and are much smoother than the 1-D estimates. The results for Fourier and wavelet
synthetic signals are shown in Figures 9 and 10, and the results for signals from the
JHU DNS database are shown in Figure 11.

Results for single (5/3) slope synthetic signals are in Figure 9. Clearly, SpESO is
able to estimate the spectra accurately for the mid and high wavenumbers much better
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Fig. 6. Logarithmic scale averages of spectrum estimates for 1-D signals and various sampling
ratios. Corresponds to Table 1.
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Fig. 7. Logarithmic scale averages of spectrum estimates for 1-D signals for a high sampling
ratio where the slope of the energy spectrum changes at a wavenumber higher than the Nyquist
wavenumber. The signal lengths are N = 215, the sampling ratio is N/M = 32, and the number of
simulations is 64. The slope changes at k = N/32 = 1024, which is larger than the Nyquist sampling
wavenumber k = 512 corresponding to the sampling ratio 32.
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Fig. 8. Logarithmic scale averages of spectrum estimates for a 1-D hot-wire measurement. The
signal length is N = 215, and the number of simulations is 64.
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Fig. 9. Logarithmic scale averages of spectrum estimates for single-slope 2-D signals. The
signal lengths are N = 10242 = 220, and the number of simulations is 16.

than Shannon sampling. The SpESO estimates are closer overall to the exact results
than the best M -term approximations. This is surprising because the best M -term
approximation is expected to give the upper bound on the accuracy of SpESO since it
uses all data, and then reconstructs with the bestM largest wavelet coefficients. This
suggests that best M -term approximations are not necessarily optimal for estimating
nonlinear functions of the data and that carefully designed CS methods may be a
better choice even if all data are available for analysis.

As in one dimension, we test our method for synthetic signals with a change in
slope (Figure 10). Apart from the wavelet (5/3, 3) case, the SpESO slope estimates
are at least on a par with the M/2-best. SpESO can predict a change in a spectrum
slope at the Nyquist wavenumber, which is not possible using Shannon sampling.

A significant range of the energy spectra for the JHU DNS data has an exponential
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Fig. 10. Logarithmic scale averages of spectrum estimates for 2-D signals. The signal lengths
are N = 10242 = 220, the sampling ratio is N/M = 16, and the number of simulations is 16.
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Fig. 11. Logarithmic scale averages of spectrum estimates for 2-D DNS signals. The signal
lengths are N = 10242, the sampling ratio is N/M = 16, and the number of simulations is 16.

decay (see Figure 11), and in this range the best-term approximations are indeed
better than SpESO—but are not far from each other in the velocity case. However,
when applied to an equivalent vorticity field with a positive power law slope at small
wavenumbers, SpESO captures the correct scaling, but overestimates the energy by a
significant amount.

6. Conclusions. The compressive sampling spectrum estimation by sparse opti-
mization (SpESO) method proposed in this paper shows potential for energy spectrum
estimation of signals with power law decay. At this stage SpESO is experimental, a
proof of concept, without rigorous proofs of convergence or error bounds. Neverthe-
less, we have derived mathematical estimates for the performance of parts of SpESO
for “good” initial guesses and ideal signals in section 4 and tested it numerically on
a wide variety of representative synthetic, experimental, and DNS turbulence signals
in one and two dimensions in section 5.

The 2-D cases appear more promising than the 1-D cases, probably due to the
dimensionality reduction, or to different measurement matrix, or both. The results
show that the estimates generated by SpESO distribute errors more evenly over the
full range of wavenumbers than traditional Shannon sampling or best-term wavelet
approximations. They also correctly predict the power law scaling of the energy
spectrum at wavenumbers higher than those that can be captured with Shannon
sampling (which is limited by the Nyquist frequency).

Most interestingly, SpESO typically performs better than a best-term wavelet
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approximation using the same number of coefficients. This is surprising because best-
term wavelet approximations require the wavelet transform of the entire data set and
then select the largestM terms (i.e., it uses complete information about the signal to
build its approximation from a nonlinear filter of the wavelet coefficients of the data).
In contrast, the SpESO method samples only M data points, between 4 and 64 times
fewer samples than with the best-term wavelet approximations.

Both SpESO and QOMOMP have several tunable parameters and many possible
variations. We do not suggest the method, as it is, should be immediately used in
applications. However, by tuning of parameters and estimation of errors, it might
be a practically useful method in those cases where high accuracy is less important
than minimizing the number of samples, or where obtaining a complete set of evenly
spaced measurements at the Nyquist rate is not possible. In particular, it could be
used for estimating the energy spectrum of 3-D or 2-D turbulent flows at very high
Reynolds numbers where sampling at the Nyquist rate is impossible. For example,
energy spectrum estimation of atmospheric flow at a Reynolds number Re ∼ 1010

would require ∼ 1022 samples to fully characterize its energy spectrum if sampled in
three dimensions at the Nyquist rate. Even a 1-D measurement would require ∼107

samples, which may be impractical in some cases.

It should be straightforward to extend SpESO to three dimensions, and it could
be tested with measurement matrices more appropriate for field or laboratory exper-
iments. The same approach could be used to estimate other nonlinear functions of
compressively sampled data, such as the scaling of high order exponents of turbulence
structure functions ζp, which require extremely large data sets to characterize prop-
erly for p > 10. SpESO could be optimized further by improving the performance
of the sparsity system, for example, by using wavelet packets instead of orthogonal
wavelets.

This paper has shown that it is possible to design a CS-based energy spectrum
estimation method that performs much better than the existing LOMP or Shannon
sampling approaches, even in the case where the signal is not sparse in Fourier space.
In fact, a CS-based method can perform at least as well as, and often better than, a
best-term wavelet approximation that requires full sampling of the signal.
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