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Turbulence is characterized by its intermittency, which is defined classically as localized
bursts of small-scale activity in the observed quantity (e.g. velocity, vorticity, dissipation).
Consequently, the simultaneous space and scale localization of the wavelet representation
makes it a natural choice for studying intermittency. We propose different measures of
intermittency, based on orthogonal wavelets, which avoid some problems associated with
classical measures. We then apply them to study the intermittency of two-dimensional
turbulence computed by direct numerical simulation.

1. Introduction

Turbulence is called fully-developed when the nonlinear effects due to the advection
terms of the Navier—Stokes equation strongly dominate the linear effects due to the dissi-
pative terms. Intermittency, namely isolated bursts of activity in the measured quantity,
has long been recognized as an essential characteristic of fully-developed turbulent flows.
In the paper where he introduced the energy spectrum as the Fourier transform of the
two-point correlation, Taylor (1938) noted that dissipation is distributed unevenly:

... the fact that small quantities of very high frequency disturbances appear, and
increase as the speed increases, seems to confirm the view frequently put forward
by the author that the dissipation of energy is due chiefly to the formation of very
small regions where the vorticity is very high. Apart from these very small regions
the turbulence behind a grid is similar at all speeds.

Taylor already had the intuition that bursts of high frequency vorticity are responsible
for dissipation. This is what we now refer to as intermittency.

Soon afterwards Kolmogorov (1941) and Obukhov (1941) introduced their theory of
homogeneous isotropic turbulence, where energy is transferred inviscidly in the inertial
range from large to small scales until it is finally dissipated at the smallest scales of mo-
tion. In their theory Kolmogorov and Obukhov assumed that the dissipation of energy is
space-filling (i.e. non-intermittent). However, in 1944 Landau noticed that the spectral
energy transfer rate cannot be constant in space, and thus the fluctuation of energy dissi-
pation must be intermittent at small scales. This is consistent with the physical intuition
of Taylor (1938). To correct his original theory for intermittent dissipation, Kolmogorov
(1962) supposed that the dissipation at small scales is distributed log-normally in space.
This correction leads to a small increase in the slope of the energy spectrum in the inertial
range.
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The first quantitative estimation of intermittency was presented by Townsend (1948).
He pictured turbulence as a sequence of active bursts separated by quiescent regions. To
quantify this intermittency he introduced an ‘intermittency factor’ v which measures the
ratio of active regions to quiescent regions (v = 1 corresponds to an entirely active signal,
~ = 0 corresponds to an entirely quiescent signal). He showed that ~ is proportional to
flatness for an intermittent signal f,

4
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where (-) denotes the average. The flatness is now one of the standard measures of
intermittency. Batchelor & Townsend (1949) used this tool to study the intermittency of
the first three derivatives of the velocity, finding that flatness increases with the order of
derivatives for isotropic turbulence and also for the wake behind a cylinder. The increase
in flatness was attributed to the presence of coherent vortices created by the roll-up of
shear layers.

Because intermittency is associated with the small scales, there have been many studies
which involve filtering the signal to extract either the small scales, or a range of scales.
This filtering is done in Fourier space, and the filtered signal is transformed back to phys-
ical space before computing its flatness using (1.1). Sandborn (1959) employed a constant
relative band-width filter to measure flatness of the longitudinal velocity fluctuations as
a function of wavenumber in channel flow boundary layers. He found that the flatness
increases strongly with wavenumber, i.e. the smaller the scale the more intermittent the
flow, independently of the distance from the wall. Note that the constant relative band-
width filter (Ak/k constant) used by Sandborn has the same spectral properties as the
wavelet filters we consider later.

It is important at this point to mention that, although these experiments attempt to
study spatial intermittency, they use time series data (from a fixed probe in a mean flow)
which are interpreted in terms of spatial series using Taylor’s hypothesis Taylor (1938)
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where the mean velocity U is supposed to be much larger than the fluctuation velocity.
Note that this hypothesis is valid only on average, and the strong fluctuations typical
of turbulence imply that it often fails. In addition, Lin (1953) showed that Taylor’s
hypothesis is strictly not valid for flows with mean gradients (e.g. shear flows, boundary
layers). Thus, experimental measurements of intermittency may not be reliable estimates
of spatial intermittency. In the case of numerical simulations (as analyzed below), Taylor’s
hypothesis is not required to study spatial intermittency.

Following the method proposed by Sandborn (1959), Kennedy & Corrsin (1961) used
a band-pass filter with constant relative bandwidth to study intermittency in a free
jet. They compared the flatness of turbulent velocity fluctuations with the flatness of
a squared Gaussian process as a function of scale, in order to see whether nonlinear
processes might be responsible for turbulence intermittency. They found that squared
Gaussian noise is more intermittent at all scales than the turbulent fluctuations, although
flatness increases with decreasing scale in both cases. They also remarked that averaging
tends to make a non-Gaussian signal appear Gaussian (i.e. flatness converges to 3).

As mentioned above, the fact that turbulence is intermittent has consequences for
other turbulent quantities:

e the slope of the inertial range energy spectrum is steepened,

(1.2)
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e the exponent (;, of the p—th order structure function,
(Ju(z +1) = u(z)|P) < %, (1.3)

increases more slowly than linearly with p,

e ratios of subsequent moments grow with the order of the moments, i.e. My/Mj; <
Mg/M3 < ..., where the moment of order p is defined as M, = (uP). This implies that
the probability density function (PDF) decays slower than a Gaussian at large values
(this characteristic is often called ‘heavy tails’),

e as suggested by Batchelor & Townsend (1949) and others, intermittency is linked to

the presence of coherent vortices in the flow.
Hence, any physically sound model of turbulence must take into account intermittency.
Currently, the most physically accurate model is large eddy simulation (LES), but it
takes into account only a weak intermittency limited to the resolved scales of the flow,
namely the large eddies. Let us mention here that from our point of view large eddies
are not the same as coherent vortices. We have shown (Farge & Rabreau (1988), Farge,
Schneider & N. Kevlahan (1999), Farge, Pellegrino & Schneider (2001)) that coherent
vortices, i.e. localized concentrations of energy and enstrophy which survive on times
much longer than the eddy turn-over time, are multiscale. Consequently, the low-pass
filters used in LES remove the small-scale part of coherent vortices.

The goal of this paper is to point out the limitations of classical measures of intermit-
tency, and to present a unified set of wavelet-based alternatives (many of which have been
introduced separately elsewhere). We show how the classical measures can be thought
of as a special case of wavelet filtering using an extremely non-smooth wavelet. It is this
lack of regularity that limits the usefulness of classical measures for sufficiently smooth
signals.

In the following section we review classical methods for studying intermittency and
note their drawbacks which lead to incorrect results in certain cases. In §3 we present
wavelet-based methods that overcome these limitations, and produce accurate results
in all cases. We also show precisely how the wavelet methods relate to the classical
methods reviewed in §2. The differences between the two approaches are then illustrated
by applying them to a direct numerical simulation (DNS) of two-dimensional turbulence
in §4. In particular, we see that the classical structure function gives the wrong result
when applied to the velocity field, whereas the appropriate wavelet equivalent works
correctly. Finally, in §5 we summarize the main results of the article.

2. Classical methods for studying intermittency

As we noted in the introduction, intermittency is defined as localized bursts of high
frequency activity. This means that intermittency is a phenomenon localized in both
physical space and spectral space, and thus a suitable basis for representing intermittency
should reflect this dual localization. The Fourier basis is perfectly localized in spectral
space, but completely delocalized in physical space. Therefore when a turbulence signal
is filtered using a high-pass Fourier transform and then reconstructed in physical space,
e.g. to calculate the flatness, some spatial information is lost. This leads to smoothing of
strong gradients and spurious oscillations in the background, which come from the fact
that the modulus and phase of the discarded high wavenumber Fourier modes have been
lost. The spatial errors introduced by such a filtering lead to errors in estimating the
flatness, and hence intermittency, of the signal.

When a quantity (e.g. velocity derivative) is intermittent it contains rare but strong
events (i.e. bursts of intense activity), which correspond to large deviations reflected in
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the ‘heavy tails’ of the PDF. Second-order statistics (e.g. energy spectrum, second-order
structure function) are relatively insensitive to such rare events because their time or
space support is very small and thus do not dominate the integral. However, these events
become increasingly important for higher-order statistics, and finally come to dominate.
High-order statistics therefore characterize intermittency. Of course, intermittency is not
essential for all problems: second-order statistics will suffice to measure dispersion (dom-
inated by energy-containing scales), but not to calculate drag (dominated by vorticity
production in thin boundary layers).

Classical examples of high-order statistics are the pth-order structure functions. In §3.5
we will see that structure functions correspond to the LP-norm of the wavelet coeflicients
using the wavelet difference of Diracs (DOD) wavelet (Chainais, Abry, & Pinton (1999)),
which has only a single zero moment (the minimum required for a wavelet). We show
that this limits the usefulness of the structure functions for analyzing sufficiently smooth
fields. The drawback of higher-order statistics, however, is that the number of data points
required for an accurate estimation increases with order p. For instance, the number of
points required for moments of order 12 is about 10°, and thus estimation of high-order
moments quickly becomes impractical.

To circumvent this difficulty we have proposed a different approach: namely to sepa-
rate the rare and extreme events from the dense and weak events and then calculate the
statistics for each independently. A major difficulty in turbulence theory is that there is
no clear scale separation between the two kinds of events. This lack of a ‘spectral gap’
excludes Fourier filtering. Since the rare events are well localized in physical space one
might try using an on-off filter in physical space to extract them. However, this approach
changes the spectral properties by introducing spurious discontinuities (adding an arti-
ficial k~2 component to the energy spectrum). To avoid these two problems we propose
using the wavelet representation, which combines both physical and spectral localiza-
tion (bounded from below by Heisenberg’s uncertainty principle). In turbulent flows the
relevant rare events are the coherent vortices and the dense events correspond to the
background flow. We have shown (Farge, Schneider & N. Kevlahan (1999)) that nonlin-
ear wavelet filtering can be used to separate the coherent vortices from the background
flow. Since we have extensively discussed the use of wavelets for conditional averaging in
previous work (e.g. Farge, Schneider & N. Kevlahan (1999)), in this paper we focus on
the use of wavelets in the context of LP-norms.

The most basic LP-norms are the pth-order moments. They are defined for a quantity
f with PDF P(f) as

(0= [ PO (2.1
One can then calculate the ratios of moments of different orders
M, (f)
P,q = A\ \nla " 2.2

The Qp,q(f) measure the shape of the distribution P(f). For example, if ¢ = 2 we can
define the following quantities:

o skewness S = Qs.2(f),

e flatness F' = Q42(f),

e hyperskewness Sy, = Q5 2(f),

o hyperflatness Fj, = Q¢,2(f).
The departure of the PDF from Gaussianity can then be measured by comparing the
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above quantities to their values in the Gaussian case (e.g. S = 0, F = 3 for a Gaussian
distribution).

The p—th order structure function is used extensively to study homogeneous turbulence
since it is translation invariant, characterizes the self-similar structure of the flow and is
easy to measure experimentally. The p—th order structure function of a random scalar
field f is defined as

Sps() = (f(@+1) = F(@)P) - (2.3)
Note that under assumptions of self-similarity and using the (exact) Karman-Howarth
expression for the third-order structure function Sp(l) ~ 1P/3 however experimental
measurements fall below this straight line prediction.
A related second-order statistic is the spectrum

A~

E(k)=%|f(k)|2 with  f(k / (@) exp(—ikz)ds (2.4)

which is related to the second order structure function Ss ¢(I) and the autocorrelation
function R(!) in the following way,

R() = (f(z+1)f() = 2 / " cos(kl) E(k)dk, (2.5)
0
and hence we get
Sa,;(1) = {|f(x +1) = f(x)[*) = 2R(0) — 2R(1) (2:6)
—9 / (1 — cos(kl)) E (k)dk. (2.7)
0

The above relation shows that the structure function corresponds to a high pass filtered
spectrum, and the corresponding filter is not sensitive to sufficiently smooth fields. In
§3.5 we will propose wavelet tools to improve the filter selectivity.

3. Wavelet methods for studying intermittency
3.1. Orthogonal wavelet transform

In this section we describe some statistical tools based on the orthogonal wavelet trans-
form. The wavelet approach avoids the limitations of structure functions and allows
moment ratios to be defined as a function of scale. We present them considering, as
example, a one-dimensional scalar field f(z) which has vanishing mean and is periodic
(the extension to higher dimensions and vector fields is straightforward). Hence we em-
ploy a periodic multi-resolution analysis (MRA) (Daubechies (1992), Farge (1992)) and
develop the signal f, sampled on N = 27 points, as an orthonormal wavelet series from
the largest scale lyq, = 2° to the smallest scale I, = 277:

S 5
1=0

where 1); ; is the 27-periodic wavelet. Due to orthogonality the coeflicients are given by
fj,i = (f,%;;) where (--) denotes the L? inner product. The wavelet coefficients contain
scale, position and direction (in higher dimensions) information. We now exploit this
wealth of information to develop wavelet tools to study intermittency.

'M'

<
Il
o
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3.2. Wawvelet spectra
We define the scale distribution of energy, also called scalogram, as

291

B =Y |fil* (3.2)
1=0

To be able to relate the scale distribution to the Fourier spectrum, we introduce the
mean wavenumber kg of the wavelet 1, defined by

_ S5 KR ak
Jo I(k)|dk
Thus each scale 277 of the wavelet 1); is inversely proportional to the mean wavenumber

k; = ko2’. The discrete local wavelet spectrum (Do-Khac, Basdevant, Perrier & Dang-
Tran (1994), Perrier, Philipovitch & Basdevant (1995)) is then defined as

ko (3.3)

~ - 2
E(kj,zi) = | fiil” 5 (3.4)
J J Akj

where Ak; = \/kjkji1 — \/kjkj_1, is the mean wavenumber.

By measuring E’(kj, x;) at different positions z; in a turbulent flow one can study how
the energy spectrum depends on local flow conditions and estimate the contribution to the
overall Fourier energy spectrum of different components of the flow. For example, one can
determine the scaling of the energy spectrum contributed by coherent structures, such as
isolated vortices, and the scaling of the energy spectrum contributed by the unorganized
part of the flow. _

The spatial variability of the local energy spectrum E(k;,z;) measures the flow’s in-
termittency. This quantity also allows us to study the global spectral behaviour of f by
summing the local energy spectrum over all positions,

Bk = 3 B(ky, ). (3.5)

i=0

The relationship between the global wavelet spectrum E (k;) and the usual Fourier energy
spectrum E(k) is described in the following section.

3.3. Relation between wavelet and Fourier spectra

First note that due to the orthogonality of the wavelet decomposition, the total energy
is preserved and we have E = ) i Ej- The global wavelet spectrum is related with the
Fourier energy spectrum according to Perrier, Philipovitch & Basdevant (1995), Farge
(1992)

Ew=aﬁémmm@%wmwm (3.6)
where R
Cy = /0 "’b(:)' dk. (3.7)

The wavelet spectrum is therefore a smoothed Fourier spectrum weighted by the modulus
of the Fourier transform of the analyzing wavelet (Perrier, Philipovitch & Basdevant
(1995)). Note that as the wavenumber increases the smoothing interval becomes larger
(Farge (1992)). A sufficient condition guaranteeing that the global wavelet spectrum is
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able to detect the same power-law behaviour £k~ as the Fourier spectrum is that v has
enough vanishing moments (Perrier, Philipovitch & Basdevant (1995)), i.e.

+oo a—1
/ z"P(r)der =0 for 0<n<——. (3.8)
o 2
If this condition is not satisfied the global wavelet spectrum saturates at the critical
cancellation order n. In this case it only shows a power-law behaviour with a slope not
steeper than a = 2(n + 1). Since large a corresponds to smooth functions, as the func-
tion analyzed is smoother we require ¢(z) to have more vanishing moments in order to
correctly detect the signal’s spectrum. If the wavelet does not have enough zero moments
we simply measure the wavelet’s own spectral scaling!

3.4. Wavelet intermittency measures

In this section we use the space-scale information contained in the wavelet coefficients to
define scale-dependent moments and moment ratios. Useful diagnostics to quantify the
intermittency of a field are the moments of its wavelet coeflicients at different scales j
(Schneider & Farge(1998)),

271
1 -
Mys(f) = 55 3 |Fial” (39)
i=0
Note that Ej = 2jM2’j.
The sparsity of the wavelet coefficients at each scale is a measure of intermittency, and
it can be quantified using ratios of moments at different scales,

Mp,j (f)
(Mg, (f))p/e 7

which may be interpreted as quotient norms between different LP— and L?—spaces.
Classically, one chooses ¢ = 2 to define typical statistical quantities as a function of
scale. Recall that for p = 4 we obtain the scale dependent flatness F; = Q42 ;. It is
equal to 3 for a Gaussian white noise at all scales j, which proves that this signal is
not intermittent. The scale dependent skewness, hyperflatness and hyperskewness are
obtained for p = 3,5 and 6, respectively. For intermittent signals @p, 4,; increases with j.

@p.a.i(f) = (3.10)

3.5. Relation to structure functions

In this section we link the scale dependent moments of wavelet coefficients, structure
functions and Besov norms (which are typically used in nonlinear approximation theory
(DeVore (1999))). In the case of second order statistics, we show that global wavelet
spectra correspond to second order structure functions. Furthermore, we give a rigor-
ous bound for the maximum exponent of the structure functions and propose a way to
overcome this limitation.

The increments of a signal, also called the modulus of continuity, can be seen as its
wavelet coeflicients using the DOD wavelet mentioned earlier, i.e.

P(x) =6(x + 1) — (z). (3.11)
We thus obtain
u(z +1) —u(x) = gy = (U, Py ) (3.12)

with ¥z (y) = 1/1[6((y—2z)/l+1)—d((y—=)/1)]. Note that the wavelet is normalized with
respect to the L' norm. The p-th order structure function S,(l) therefore corresponds to
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the p-th order moment of the wavelet coefficients at scale [,

S, (1) = / i P (3.13)

As the DOD wavelet has only one vanishing moment (its mean), the exponent of the
p-th order structure function in the case of a self-similar behaviour is limited by p, i.e.
if S,(1) oc 1P then ((p) < p. This ‘saturation’ behaviour was originally observed by
Babiano, Basdevant & Sadourny (1985) for DNS of two-dimensional flows. To be able to
detect larger exponents one has to use increments with a larger stencil, or wavelets with
more vanishing moments, i.e. [ z"y)(z)dz =0 for n =0,1,..., M — 1. This will become
clearer below in the context of Besov regularity of functions.

We now concentrate on the case p = 2, i.e. the energy norm. Equation (3.6) gives the
relation between the global wavelet spectrum E(k) and the Fourier spectrum E(k) for an
arbitrary wavelet ¢. For the DOD wavelet we find, since (k) = etf — 1 = eik/2(gik/2 —
e’*/2) and hence |¢p(k)|?> = 2(1 — cos k), that

B(k) = ﬁ /0 T B2 — zcos(’“‘;f'))dk'. (3.14)

Setting | = ko/k and comparing with (2.6) we see that the wavelet spectrum corresponds
to the second order structure function, i.e.

~ 1
E(k) = — S2(1). 3.15
() = gz 50 (315)
’Ehe above results show that, if the Fourier spectrum behaves like k=% (for &k — o),
E(k) x k~*if @« < 2M +1, where M is the number of vanishing moments of the wavelets.

Consequently we find for Sy (1) that S () o< I$(P) = (’%’)C(p) (for I — 0) if ((2) < 2M.In
the present case we have M =1, i.e. the second order structure function can only detect
slopes smaller than 2, corresponding to an energy spectrum with slopes shallower than
—3. Thus we find that the usual structure function gives spurious results for sufficiently
smooth signals. In the appendix we generalize the relation between structure functions
and wavelet coefficients by introducing Besov spaces.

4. Application to two-dimensional turbulence
4.1. Classical statistical analysis

We now analyze quantitatively the emergence of intermittency in a two-dimensional
homogeneous isotropic decaying flow computed using pseudo-spectral DNS at resolution
2562. The Navier-Stokes equations rapidly organize the initial homogeneous flow into
isolated coherent vortices which contain most of the vorticity, this process results in
an intermittent distribution of vorticity (figure 1). The idea that intermittency arises
from instabilities which generate coherent vortices was already inferred by Batchelor &
Townsend (1949) from experimental data, when they wrote:
It is suggested that the spatial inhomogeneity is produced early in the history
of the turbulence by an intrinsic instability, in the way that a vortex sheet quickly
rolls up into a number of strong discrete vortices.

Note that in our case the initial vorticity field, although homogeneous, contains extreme
values associated with the tails of the Gaussian PDF (cf. figure 2) which act as seeds for
the formation of coherent vortices.
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FIGURE 1. Vorticity field at t = 0,4, 100. Note the emergence of coherent vortices from an
initially homogeneous vorticity distribution.

We now analyze quantitatively the emergence of intermittency in a homogeneous two-
dimensional turbulent flow at Reynolds number Re = 1000. This evolution may be
divided into three different stages:

e At early times, from ¢t = 0 to t = 4, the vorticity dynamics are dominated by
strong dissipation of enstrophy Z and palinstrophy P (with P =1/2 [ |Vw|?dz): 89%Z
and 98%P, are dissipated between ¢t = 0 to t = 4 (cf. table 1). This stage corresponds
to the formation of coherent vortices which emerge from the random initial vorticity
distribution.

o At intermediate times, from ¢ = 4 to ¢t = 10, both enstrophy and palinstrophy decay
more slowly: 60%Z and 88%P are dissipated between t = 4 and ¢t = 10 (cf. table 1).
During this stage the flow dynamics is dominated by strong nonlinear vortex interactions.

e At late times, from ¢ = 10 to ¢ = 100, the energy decreases very slowly (cf. table 1).
This stage is a slow evolution towards a quasi-stationary state where only two opposite-
sign coherent vortices remain.

After the last stage the turbulence is effectively dead, because the nonlinear dynamics
are zero, i.e. - Vw = 0 because the vorticity and streamfunction ¥ satisfy the functional
relationship w = F(¥), and the flow evolves exclusively by the diffusion of vorticity.

We now analyze these three stages in more detail using the measures introduced earlier.
The random initial distribution of vorticity (figure 1 a) is characterized by a Gaussian
PDF (figure 2 a) and a large scale correlation (figure 4 a). At early times (from ¢t = 0 to
t = 4) the Navier—Stokes nonlinear dynamics leads to a self-organization of the vorticity
field into isolated coherent vortices (figure 1 b). The formation of coherent vortices is
reflected in the following quantities:

(i) Vorticity in physical space changes from homogeneous at ¢t = 0 (figure 1la) to
inhomogeneous (figure 1b).

(ii) The PDF of vorticity changes from a Gaussian at ¢t = 0 (figure 2a) to a stretched
exponential (figure 2b).

(iii) The scatter-plot of w versus ¥ changes from decorrelated at ¢ = 0 (figure 3a) to
correlated as a superposition of several functional relationships w = F(¢) (figure 3b),
each corresponding to a coherent vortex.

(iv) Wavelet coefficients of vorticity & change from dense for the Gaussian distribution
at t = 0 (not shown here) to sparse (figure 5d).
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F1GURE 2. PDF of vorticity field at ¢ = 0,4, 100. The PDF is initially Gaussian and changes to a
Cauchy distribution via a stretched exponential. The dotted curves show the ideal distribution
(Gaussian, stretched exponential or Cauchy).

At the intermediate and late stages for ¢t = 4 to ¢ = 100 the flow dynamics is domi-
nated by the nonlinear interactions between isolated coherent vortices. Each vortex is
advected and strained by the velocity resulting from all vortex motions; this is conser-
vative (without dissipation) as long as the vortices are far apart. If two vortices of the
same sign move close together the interaction is no longer conservative and leads to the
fusion of the two vortices accompanied by a strong (although very intermittent in space
and time) dissipation of enstrophy and palinstrophy. By ¢ = 100 the flow has reached a
quasi-stationary state where all same-sign vortices have merged and only two opposite-
sign vortices remain. This final stage is characterized by two distributions predicted by
analytical theories.

As shown in figure 2, the initial Gaussian distribution evolves via a stretched exponen-
tial to a quasi-stationary final state approximating a Cauchy distribution. This Cauchy
distribution agrees with the prediction of Min, Mezié & Leonard (1996) based on a sys-
tem of point vortices. For such a distribution the variance and all higher order moments
diverge, showing that the Navier—Stokes equation can generate extremely non-Gaussian
distributions with coherent vortices. This evolution of the PDF from Gaussian to Cauchy
can be explained dynamically. Due to the Biot—Savart law the flow organizes itself around
initial extreme values of the vorticity. The gradients formed between the coherent vor-
tices by this process tend to dissipate weak vorticity and therefore isolate the vortices.
The coherent vortices then merge, which results in further dissipation of weaker vorticity.
As a result, the strong values of the vorticity decay more slowly than the weak values,
which results in a steepening of the PDF. Note that, as is the case for three-dimensional
turbulence, the velocity remains Gaussian for all times.

The coherence scatter plot (pointwise correlation between vorticity and stream func-
tion) nicely illustrates the self-organization of the flow (see figure 3). Initially there is no
correlation between stream function 1 and vorticity w, while in the final state a functional
relation w = F(1) with F () = asinh(|f]y) with a = 1/5 and 8 = —2 has emerged. The
functional relationship between w and v implies that the nonlinearity has been depleted,
and that the flow has reached a quasi-stationary state. This sinh functional relationship
was predicted by Joyce & Montgomery (1973) and verified numerically by Montgomery,
Matthaeus, Stribling, Martinez, & Oughton (1992). At intermediate times the coherence
scatter plot appears to be a superposition of many sinh curves with different o and 8
corresponding to the many individual coherent vortices (the thickening of the curves is
due to the relative motion of the vortices). The coherence plot measures the organization
of the flow, and shows that as the flow becomes more organized the statistics become
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F1GURE 3. Coherence scatter plot at t = 0,4, 100. Note the transition from an uncorrelated state
towards a functional relationship w = F'(¢), characteristic of quasi-stationary coherent vortices.

t E z P Ms/MZ? My/MZ Ms/M/*> Me/M3

0 0.5000 37.38 28312.6 -0.01028 3.061 -0.1926 15.83
4 0.3949 4.146  529.2 0.3436 5.676 8.325 76.36
10 0.3453 1.739  61.97 0.8891 8.147 21.81 150.4
100 0.2546 0.3076 0.5831  0.04206 5.766 0.4563 46.23

TABLE 1. Characteristics of decaying turbulence simulation, where E denotes the energy, Z
the enstrophy, P the palinstrophy and M, the p-th oder moments of vorticity.

less Gaussian. We consider the conjunction of these two effects to be characteristic of
intermittency in incompressible turbulent flows.

In figure 4(a), we show the time evolution of the energy spectrum at ¢t = 0,4 and 100.
It follows a power law in the inertial range, namely from &k = 1 up to the dissipative
wavenumbers larger than k = 64, where the slope changes from —3 at ¢t = 0, to —4 at
t = 4 and finally —6 at ¢t = 100. These negative slopes reveal the long range dependence of
the energy spectrum which increases in time, i.e. the velocity field becomes increasingly
correlated and smooth. Note that the statistical theory of two—dimensional homogeneous
turbulence (Kraichnan (1967)) predicts a k~2 power-law behaviour. The steepening of
the slope we observe as time evolves is attributed to the intermittency resulting from the
emergence of coherent vortices (McWilliams (1984)).

In table 1, we show the time evolution of the ratio between the subsequent moments of
vorticity M,/M¥ /2 At time ¢ = 0 the behaviour of M,/ My /% Versus p is consistent with
the Gaussianity of the initial vorticity distribution. At later times the ratio increases with
p faster than for the Gaussian distribution, which confirms the fact that the vorticity
field becomes intermittent, as we have already seen from the vorticity PDF.

4.2. Wawvelet statistical analysis

We now apply the wavelet diagnostics introduced in §3 to analyze the intermittency of
the freely decaying two-dimensional turbulent flow described in the previous section.

In figure 4 (b) we show the scale dependence of enstrophy (3.5) at early, intermediate
and late times. The scale of maximum enstrophy increases from 275 at t = 0 to 272 at
t = 100. Therefore the correlation scale of the vorticity field increases in time, which is
due to the formation and subsequent merging of coherent vortices, as illustrated in figure
1.
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FIGURE 4. (a) Energy spectra E(k). (b) Scale distribution of enstrophy Z;. (c) Scale
dependent flatness F; at t = 0,4, 100 for the decaying case.

The scale dependent flatness of vorticity F} is shown in figure 4(c). It evolves from
Gaussian (i.e. Fj = 3 for all j) at ¢ = 0 to non-Gaussian (characterized by the fact that
F; strongly increases with j) as time increases.

In the following we focus on the instant ¢ = 4 (cf. figure 1b), which is typical of the
regime where coherent vortices have already formed and are interacting strongly. To study
the dynamics of this flow regime we analyze the vorticity field w, the linear dissipation
term L = vV?w (where v denotes kinematic viscosity) and the nonlinear advection term
N = —@ - Vw of the governing vorticity transport equation

dw=L+N (4.1)

at time ¢ = 4. We recall that, since V - @ = 0, the velocity can be reconstructed from
the vorticity by @ = V1V 2w, where V+ = (-9,,8,) and V2 denotes the Green’s
function of the Laplacian (from Biot—Savart’s relation). We plot vorticity, dissipation and
advection at t = 4 in both physical and wavelet space in figure 5. Figure 5b shows that
dissipation is localized in the sheared regions between interacting vortices. The advection
term (figure 5¢) is also well-localized in sheet-like regions. The wavelet coefficients of the
three fields have similar intermittent structure. Note that the wavelet coeflicients become
increasingly intermittent at smaller scales (figure 5d, e, f). It is interesting to note that
the wavelet coefficients that are active for vorticity are also active for dissipation and
advection, i.e. the same wavelet coefficients represent all three quantities.

The wavelet coefficients @, L and N reveal that vorticity, dissipation and advection are
strongly intermittent, i.e. for these 3 fields the spatial support decreases with the scale,
likewise their wavelet coeflicients become sparser when scale decreases. This intermittency
is quantified by computing the scale dependent flatness F}; (c.f. figure 6¢). The moments
M, and the flatness Fj strongly increase with p and j, respectively, with the same scaling
law for the three fields w, L and N. This confirms the fact that they have the same type
of intermittency.

In figure 6a we display the scale distribution (in L2-norm) of vorticity, dissipation and
advection. They all are multiscale but have different distributions: vorticity is most active
around scale 2725, dissipation around scale 276 and advection around scale 275. The fact
that dissipation has a maximum at small scales agrees with the classical phenomenol-
ogy. However, its multiscale distribution contradicts the assumption of a non-dissipative
inertial range (assumed by the statistical theory of turbulence), but agrees with the hy-
pothesis of progressive dissipation throughout the inertial range as proposed by Castaing
(1989), and Frisch & Vergassola (1991), for three-dimensional turbulence.
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FIGURE 5. Top: vorticity field w, dissipation term —vV>2w and advection term u - Vw at ¢ = 4.
Bottom: corresponding wavelet coefficients @, —vV?w and % - Vw.
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FIGURE 6. Scale distribution of enstrophy Z;, normalized PDFs p(f») for fn = f/||fllcc and
scale-dependent flatness F} for vorticity, dissipation and advection terms at ¢ = 4.

Now we take the vorticity field at ¢ = 4 and randomize the phase of its Fourier
coefficients, in order to construct a fractal field corresponding to a Gaussian PDF, with
the same spatial correlation as the original vorticity field. The phase-scrambled vorticity
field w, is defined as

we(®) = Y [(R)|e0ei2R 7 (4.2)
k

-

where W(k) = [ w(&)exp(—i2rk - )dZ denotes the Fourier transform of the original
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FIGURE 7. Top: vorticity with randomized phases, wyrqnd at t = 4. Corresponding energy spectra
E(k) and scale distribution of enstrophy Z;. Bottom: corresponding wavelet coefficients @rqnd,
PDF of vorticity wrqna and flatness Fj.

vorticity field and € are uniformly distributed random numbers, i.e. § € U(0,1). Although
the resulting field has the same spectral behaviour (cf. figure 7b) and the same scale
distribution (cf. figure 7¢) as vorticity w, it has neither coherent vortices in physical
space (figure 7a), nor intermittency, i.e. no sparsity of its wavelet coefficients (figure 7d).
The phase-scrambled field also has no significant increase of flatness F; with scale (figure
7f) and the PDF is Gaussian with flatness F' = 2.9 (cf. figure 7e) compared with F' = 5.7
and stretched exponential PDF for the original field (figure 2b). We have thus shown that
a fractal field with the same long-range dependence as a turbulent field (i.e. same energy
spectrum), is not necessarily intermittent. This also demonstrates that intermittency in
turbulence is due the presence of coherent vortices.

To illustrate the relation between structure functions and scale dependent moments
of the wavelet coefficients we consider a typical statistically stationary two-dimensional
turbulent flow field at resolution N = 2562, extensively studied in Farge, Schneider
& N. Kevlahan (1999). In fig. 8 (top, left) we plotted its energy and enstrophy spectra
exhibiting a k=5 and a k2 power law behaviour, respectively. Figure 8 (top, right) shows
the enstrophy Fourier spectrum together with the global wavelet spectrum using quintic
spline wavelets. We find perfect agreement between both Fourier and wavelet spectra as
predicted by the theory since the wavelet used has 5 vanishing moments. Furthermore
we plot the global wavelet spectrum, plus its standard deviation at the different scales,
to illustrate the fact that the fluctuations of the spectrum in physical space increase with
the wavenumber. These diagnostics all indicate the presence of intermittency.

In figure 8 (middle) we plot the longitudinal structure functions S| ,(1) of the velocity
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FIGURE 8. Top: Isotropic Fourier energy and enstrophy spectra (left). Fourier and global wavelet
enstrophy spectra and the standard deviation of the wavelet spectrum in physical space. Middle:
Classical longitudinal structure functions S| ,(I) for p = 2, ..., 6 of velocity (left) and correspond-
ing wavelet based longitudinal structure functions (right), both averaged over 256 lines. Bottom:
Structure functions versus third order structure function, left classical case, right wavelet case.
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for p = 1 to 6. On figure 8 (middle, left) we use the DOD wavelet, i.e. the classical
structure function, and on figure 8 (middle, right) we use quintic spline wavelets. For the
classical structure functions (figure 8 (middle, left)) we observe that the slope is limited
by the number of vanishing moments of the wavelet. For example at p = 2 we observe that
S5(1) o 12, whereas one should find for S (1) o I* since E(k) o k—°. This limitation is due
to the fact that the DOD wavelet has vanishing mean only, and therefore the structure
functions show the scaling of the wavelet ({(p) = p) and not that of the velocity! Using
the quintic spline wavelets instead of the DOD wavelets, we find the correct slope of I*
for S since the quintic spline wavelets have 5 vanishing moments. For the higher order
structure functions we find ((p) =~ 2p, which is the expected property of the signal.

Finally, in figure 8 (bottom) we plot the structure functions versus the third order
structure function, as used in the ESS approach. In both cases we observe that the func-
tions are less curved than without using ESS. Using classical structure functions (figure 8
bottom, left) we find slopes of 2/3,4/3,5/3 and 2 for p = 2, 4,5 and 6 respectively. When
we use the wavelet structure function based on quintic splines, we find the same slopes
of 2/3,4/3,5/3 and 2 for p = 2,4,5 and 6 respectively. This is due to the fact the we
plot the structure functions versus the third order structure function and hence only an
information about the relative slope is yield.

The above results show clearly that the slope of the classical structure functions is
limited by the regularity of the underlying wavelet. The scaling behaviour of smoother
fields can only be detected using structure functions based on wavelets with a sufficient
number of vanishing moments. We have also shown that the ESS approach may be
misleading as it only yields information about the relative slopes. These might be the
same, even if the slope of the original structure functions are wrong.

5. Conclusion

In this paper we have reviewed the usual ways of quantifying turbulence itermittency
and its effects. In particular, we emphasised the fact that structure functions can be
interpreted as wavelet transformed quantities using a difference of Diracs (DOD) wavelet.
Because this wavelet is not smooth it is insensitive to sufficiently smooth signals. This
means that for signals with an energy spectrum steeper than —3 the usual structure
function approach gives spurious results. In order to overcome this limitation we simply
have to use a sufficiently smooth wavelet (i.e. one with more zero moments). This point
is illustrated using the velocity field from a two-dimensional DNS which has an energy
spectrum with slope —5. We find that the usual structure functions merely measure the
properties of the DOD wavelet, whereas structure functions based on a smoother (quintic
spline) wavelet give accurate results.

We have also presented several other wavelet-based diagnostics to quantify inter-
mittency. Each of these diagnostics exploits the space—scale localization properties of
wavelets, which reflects the space—scale localization of intermittency itself. The charac-
teristics of intermittent fields were highlighted by applying these wavelet tools to both
decaying two-dimensional turbulence, and to a non-intermittent Gaussian random field
with the same energy spectrum. These wavelet diagnostics also showed that the non-
linear advection term and the linear dissipation term of Navier—Stokes equations are
highly intermittent. This justifies the use of adaptive wavelet-based algorithms Schnei-
der, Kevlahan & Farge (1997), which exploit this intermittency to reduce the number of
degrees of freedom necessary to compute the flow at each time step.

Another question regarding turbulence intermittency is its development from initial
conditions that are not intermittent. We investigated this question by computing the evo-
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lution of an initial random vorticity distribution until it reaches a final quasi-stationary
state. We showed how the nonlinear dynamics of the Navier—Stokes equations produces
a highly intermittent vorticity distribution due to the formation of coherent vortices.

Finally, we would like to emphasize that the wavelet measures of intermittency pre-
sented here are not specific to turbulence, and can be applied to other intermittent
signals.
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Appendix

The relation between structure functions and wavelet coeflicients can be generalized by
using appropriate function spaces. For this we introduce Besov spaces (cf. Stein (1970),
DeVore (1999)), which can be characterized using wavelet coefficients and are related to
structure functions (Perrier & Basdevant (1996)).

For ¢ < oo we define the Besov space

B, , = {f € ILP(R) ; l_s(/|f($+l) — f(z)[Pdz)'/? € LI( *+, %)} (5.1)

with0<s<1, p,g>1.
This means that f € B, , if and only if f € L?, and

( / i [ 15 +0  f@)pazere #) < oo. (5.2

Using the p-th order structure function S,() this is equivalent to

(/0+°°z—sq sp(z)%%)% < co. (5.3)

This means that the p-th order structure function is related to Besov norms via the
modulus of continuity.
The corresponding norm is given by

W lls , = 11 fllze + 1155, (5.4)

where the semi-norm |f|gs , s defined as:

5y = (/ 1= /|f (@ +1) ~ (@) dn)"?)" %)% (5.5)
= ([Tirs0l %) (56)
~([7 [ ifa )||Lp][’d§)%. 6.1
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This shows that the Besov norms (g < o) are intimately related to the structure func-

tions S, (1) and the wavelet coefficients f(a,-) = (f(), Yo (x)).
In the case ¢ = 0o, we obtain

By = {f e @) 17([ U@+ ) - @Pd)? € (R} (59)

and for the semi-norm we get

|flss . = ||lfs(/ |[f@+1) = f(@)[Pdz) 7|00 = 117 Sp(1)7[co- (5.9)
In the case of a self-similar behaviour of the type
S, (1) ~ 18P (5.10)
it follows that
feBir/r. (5.11)

This implies that £(p) < p as we restricted ourself to the case s < 1. To overcome this
limitation the Besov spaces can be generalized for s > 1, where s is not an integer. For
s > 1, s not an integer, we decompose s into s = [s] + o, ([s] being the integer part of s)
and we introduce

B () ={f e ’(R) ; f™ € By (IR), 0 <m < [s]} (5.12)
where f(™) denotes the m-th derivative of f. The corresponding norm is defined as
[s]
11155, = D [1F™lsg,- (5.13)
m=0

In order to have norm equivalence with the wavelet coefficients the wavelet ¢ has to have
at least [s] + 1 vanishing moments.

Let us mention that in the case where s is an integer, the modulus of continuity should
be modified to || f(z+1)—2f(z) — f(x —1)||L» (Stein (1970)). Note that this second-order
stencil is no longer equivalent to the structure function. Finally, when p = ¢ = 2 we
obtain the Sobolev space H?® and for p = ¢ = oo the Holder space C?® (Stein (1970)).

To summarize, structure functions of order p correspond to Besov norms of functions
which can be characterized by means of weighted sums of wavelet coefficients due to
norm equivalences. This remark completes the link between structure functions, wavelet
coefficients and Besov norms. It also suggests that the limitations of classical structure
functions may be overcome by using structure functions based on wavelets with more
vanishing moments than the DOD wavelet.

Ezxtended self-similarity and quotients of Besov norms

To extend the scaling behaviour of structure functions one typically uses rescaled struc-
ture functions (Benzi, Ciliberto, Tripicione, Baudet & Massaioli (1993)), i.e. one considers
ratios of structure functions of different order S,(1)/S,(1). One then studies the scaling
behaviour of the p-th order structure function as a function of the g-th order structure
function, i.e.

S, (1) o< S, (1)SP? (5.14)
with S, (1) oc I1¢(@). Typically, ¢ = 3 due to the fact that S3() is known exactly from
the Karman—Howarth equation (Frisch (1995)). This approach is called extended self-

similarity (ESS), and greatly increases the range over which one observes a well-defined
power-law, even at moderate Reynolds numbers.
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Because the scale-dependent moments of the wavelet coefficients are equivalent to
the structure functions using the L' normalization of the wavelets, i.e. S}VF(277) =

2P/2 0, S(f) = 207/2/28 57 1| f [P, the ratios of the moments at different scales
Qp,q.;(f) (3.10) correspond to a generalized extended self similarity in wavelet space.
This allows us to detect self-similar behaviour of functions with steeper slopes: if ¥ has
m vanishing moments then ((p) is bounded from above by mp.

The relations summarized in this section have been presented for the one-dimensional
case only, but they can be generalized easily to higher dimensions using tensor product
constructions of wavelets (Daubechies (1992)) and Besov spaces in IR™ (Stein (1970)).
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