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bathymetry reconstruction. Part I: algorithm and
test cases
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ABSTRACT
Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami
prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves
accurately, and collection of accurate data is logistically challenging. As an alternative, in this study we
develop and evaluate a variational data assimilation scheme for the one-dimensional nonlinear shallow water
equations that estimates bathymetry using a finite set of observations of surface wave height. We
demonstrate that convergence to exact bathymetry is improved by including more observation locations and
by implementing a low-pass filter in the data assimilation algorithm to remove small-scale noise. A necessary
condition for convergence of the bathymetry reconstruction is that the amplitude of the initial conditions is
less than 1% of the bathymetry height. We use density-based global sensitivity analysis (GSA) to assess the
sensitivity of the surface wave and reconstruction error to model parameters. By demonstrating low
sensitivity of the surface wave to the reconstruction error, we show that reconstructing the bathymetry with a
relative error of about 10% is sufficiently accurate for surface wave modelling in most cases. These results
can be used to guide the development of similar assimilation schemes in higher dimensions and more

realistic geometries.

Keywords: bathymetry estimation, density-based sensitivity analysis (DBSA), global sensitivity analysis

(GSA), shallow water equations, tsunami modelling

1. Introduction

The process of mapping ocean bathymetry from measure-
ments of surface waves is ill-posed: it is characterized by
sensitivity to small amounts of noise in the system and is
susceptible to the instability inherent in the inversion pro-
cess (Ozisik and Orlande, 2000). Data assimilation is one
such inversion process, where observations of a true state
are combined with a mathematical model in order to
recover missing data governing the system evolution. The
verification of a variational adjoint-based scheme of the
kind developed in this paper is challenging, especially
since there is no general analytical solution available for
the nonlinear shallow water equations, even in the case of
flat bathymetry. Despite this, accurate representation of
bathymetry data is essential when predicting tsunamis,
since bathymetry variation modifies speed, direction, and
stability of the propagating wave (Craig and Sulem,
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2009). Bathymetry data can be either static or dynamic,
where the latter includes shifts in the ocean floor due to
seismic activity.

The high number of degrees of freedom in this prob-
lem makes it difficult to determine the criteria for optimal
bathymetry reconstruction. We must consider the shallow
water system governing tsunami propagation, as well as
parameters such as the amplitude and shape of the
bathymetry, and the initial conditions of the surface
waves. This is in addition to calibration of the optimiza-
tion scheme, and deriving optimal configurations of the

observation network.
In this study we address two complementary questions:
(1) How accurately can bathymetry data be

reconstructed from surface wave measurements, and

what determines the accuracy?
(2) How accurate does the bathymetry data need to be

in order to model the surface waves accurately?
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We attempt to address these questions for an idealised
1-D case, as a first step towards more realistic models.
We quantify the key relationships between the initial con-
ditions and the bathymetry amplitude relative to the aver-
age fluid depth. We also analyse the effect of the number
and locations of the observations on the convergence
properties of the assimilation. We implement a Sobolev
gradient smoothing technique (effectively a low-pass fil-
ter) within our optimization scheme, and illustrate its
ability to reduce the small-scale noise present in the
bathymetry reconstruction. We then investigate the conse-
quences of errors in the bathymetry data on the resulting
surface wave by observing trends in the surface wave
propagation error as the amplitude of the initial condi-
tion, the amplitude of the bathymetry, and the number of
observation points is varied.

Section 2 provides a review of the effect of bathymetry
on surface waves, and efforts to map ocean bathymetry,
highlighting empirical, numerical and theoretical
approaches. In Sec. 3, we provide a concise overview of
the shallow water system and derive the first order
adjoint data assimilation scheme using optimal control
theory, and summarise the algorithm. Section 4 presents
preliminary results for different choices of initial condi-
tions and exact bathymetry for the data assimilation
scheme. This investigation reveals small-scale noise in the
optimal reconstruction. To reduce this noise, Sec. 5 pro-
poses a low pass filter, which effectively removes higher
frequencies in our reconstruction by increasing the regu-
larity of our estimate at each iteration, raising it from the
space L*(R) to H?*(R). We discuss results of the
smoothed optimisation scheme and illustrate the removal
of noise in the reconstructed bathymetry in several test
cases. Section 6 analyses the relationships between the
amplitudes of the initial conditions and bathymetry rela-
tive to the average depth, and attempts to formulate a
relationship summarising certain necessary conditions for
convergence. We also analyse the effect of number of
observation points on the optimal reconstruction. Finally,
we provide a sensitivity analysis of the surface wave to
errors in the bathymetry reconstruction.

We observe that the low pass filter effectively reduces
small-scale noise in the bathymetry reconstruction for dif-
ferent bathymetry shapes. Additionally, a necessary con-
dition for convergence is that the amplitude of the initial
conditions be at least two orders of magnitudes smaller
than the amplitude of the bathymetry. Convergence is sig-
nificantly improved by increasing the number of observa-
tion points, however this is not a sufficient condition for
convergence. Finally, we show qualitatively that the sur-
face wave exhibits low sensitivity to bathymetry recon-
struction error, motivating further insight into the
sensitivity of the reconstruction error and resulting

surface wave error to model parameters. In Sec. 7 we use
global sensitivity analysis (GSA) to derive sensitivity indi-
ces quantifying the influence of (i) bathymetry position
relative to the observations, and (ii) the amplitudes of the
initial condition and bathymetry, on the error in bathym-
etry reconstruction and the surface wave. We focus our
analysis on a localised surface wave propagating over a
compact bathymetry. Using density-based GSA, we quan-
tify and subsequently rank the influence of these input
factors on the bathymetry and surface wave errors,
respectively.

We summarise our conclusions in Sec. 8, and provide
insights that motivate further analyses for the full 2-D
model and more realistic settings for tsunami models.

2. Review of bathymetry effects and
previous work

Bathymetry can have a significant impact on propagating
shallow water waves, by altering the depth-dependent
gh(x,t), where h(x,t)=H +n(x,1) —
B(x) is the total fluid depth as a function of mean depth
H, free surface perturbation #(x,¢) bathymetry f(x). A
demonstration of bathymetry effects is given in Fig. 1,
where we show the surface wave with and without
bathymetry. The speed and height of the surface wave are
modified by the bathymetry. This is because a tsunami’s
energy flux remains relatively constant, and so as the tsu-
nami’s speed varies, so does its height (shoaling). In two
dimensions the direction of propagation is also changed,
since the characteristics are no longer straight lines. Thus
bathymetry can significantly impact the arrival time of
tsunami waves, and coastal communities can receive dif-
ferent amounts of tsunami energy based on local bathym-
etry effects. An accurate and detailed map of the
bathymetry is therefore an essential component of accur-
ate tsunami models.

Attempts to create an accurate map of oceanic
bathymetry have been made by direct measurements, and
indirectly by using information from propagating surface
waves. Direct measurement includes platforms like ship-
based high frequency sonar. However many of these
methods are often either too costly or have poor spatial
resolution. Often it is easier to measure waves propagat-
ing on the free surface, and use this information to create
a map of the bottom topography from classical wave the-
ory. This is an inverse problem. With improvements in
high resolution satellite imagery in recent years, there is
increasing interest in using inverse methods to provide
accurate reconstructions of bathymetry information.

Wunsch (1996) provides a detailed review of inverse
methods for ocean circulation models, describing methods
for both deep and shallow water. In coastal regions,

wave-speed ¢ =
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Fig. 1.

(e) Case II surface wave

(f) Case III surface wave

(a—c) Three test cases for bathymetry f(z) and free surface perturbation initial conditions #(z,0) for the data assimilation

scheme. The green circles represent the locations of the observations, with N,,, = 5 and ylo) =0.1L. Note that while the spatial
distribution is correct, amplitude of the initial conditions #, amplitude of the bathymetry [3, and average depth H are not to scale in
these diagrams, as ) was restricted to 1% of fi across most of the numerical tests. Plots (d—f) show the propagating free surface wave at
t=1.95 with flat bottom (blue) and bathymetry (red) for each Cases I, II and III, respectively, to highlight the effect of bathymetry on

surface wave propagation.

depth-inversion methods have been refined to account for
observational data in areas with large interference from
human activities and muddy water (Ge et al., 2020).
Additionally, inverse methods are also routinely used in
open channel flow modelling, where bed topography is
approximated using surface measurements (Gessese and
Sellier, 2012).

A longstanding approach to solving this inverse prob-
lem uses the dispersion relation of surface waves. Earlier
works such Lubard et al. (1980) used measurements of
the frequency-wavenumber spectrum made via optical
images, obtained using cameras mounted on an oceano-
graphic research tower. Since then, various methods using

dispersion relations have been investigated, where
bathymetry is measured by fitting the theoretical disper-
sion relation for gravity waves (where depth is a system
parameter), and derived using inversion formulas.

More recent works include Dugan (1997), extended by
Piotrowski and Dugan (2002), where image sequences of
shoaling ocean waves taken from an aircraft are used to
retrieve maps of water depth via the linear dispersion
relation. The accuracy of this method can be as high as
5% if the waves are reasonably linear. However, Grilli
(1998) builds on Dugan (1997), arguing that the latter is
limited due to neglect of amplitude dispersion effects,

which accumulate through increasing nonlinearity as
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waves approach breaking in shallow water. He compares
the linear frequency dispersion to a third order polyno-
mial relationship between wave speed ¢ as a function of
wavenumber k and depth %, showing that due to ampli-
tude dispersion effects, linear wave theory may greatly
under estimate ¢, and lead to poorer estimates of bathym-
etry inversion formulas based on a linear disper-
sion relation.

These inversion algorithms are calibrated based on
results of simulated periodic waves over mild slopes in a
two-dimensional ‘numerical wave tank’. This fully nonlin-
ear based on potential flow (FNPF) numerical wave tank
methodology was developed by Grilli and Subramanya
(1996) with wave generation and absorption methods, to
calculate speed and height variation for a number of
shoaling waves over slopes ranging from 1:35 to 1:70,
as shown in Grilli (1998). It was demonstrated in Grilli
(1998) to have higher accuracy in coastal simulations
than the nonlinear shallow water equations.

Tsai and Yue (1996) also demonstrated how FNPF
numerical tanks allow calculation of ‘numerically exact’
properties of shoaling wave up to breaking point, and
can provide accurate representation of surface waves
independent of nonlinearity parameters.

While these methods are based on an empirical formula
for the 2-D nonlinear inversion problem in idealised cases,
Nicholls and Taber (2009) derive an inversion formula for
bathymetry analytically, using the nonlinearity of the 1-D
governing Euler equations for ideal fluid flow to detect
bathymetry information. The governing equations for the
surface wave are expressed as a Hamiltonian system, and a
Dirichlet-to-Neumann operator (DNO) is applied to the
system in order to remove some implicit dependencies. The
result is a single equation of the wave height at the surface
in terms of the bathymetry, and subsequently an inversion
is derived. However, because their inversion formula is lin-
ear, they are required to assume a small amplitude for the
bathymetry and their numerical results only consider nor-
malised bathymetry amplitudes of 0.07 and 0.025.

Additionally, surface waves can be also used to charac-
terise a rapid dynamic change in bathymetry. Jang et al.
(2010) take a similar approach to Grilli (1998) to the
related problem of measuring a sudden shift in the sea
floor, e.g. due to seismic activity, using measurements of
the surface waves. Their inversion formula, however, is
based on the same approach as Dugan (1997): using the
linear dispersion relation with bathymetry as a parameter,
and using transforms to show that the problem becomes
one of solving an integral equation involving the known
surface wave data. The uniqueness of this solution is dem-
onstrated. However, analysis shows that there is a lack of
stability in the measurement of the bottom displacement,
and a question as to whether it depends continuously on

the wave elevation. They overcome this using regularisa-
tion methods iteratively as a stabilisation technique, and
show numerical convergence to the integral solution.

Each of the aforementioned methodologies has its
strengths and weaknesses. Piotrowski and Dugan (2002)
and Grilli (1998) both discuss practical measurement
techniques of surface waves, whereas theoretical
approaches such as Nicholls and Taber (2009), and Jang
et al. (2010) show high degree of convergence, but assume
full knowledge of the surface wave, and do not address
the complexities involved in obtaining accurate measure-
ments in a real-world scenario, such as noise or incom-
plete measurements. Nicholls and Taber (2009) state that
their future objectives aim to find an effective way of
extracting wave fields from full observational data.

In summary, while the theoretical results from such
models are promising, their applicability to real-world
measurements has not been established. In the present
study we attempt to combine theoretical results with real-
istic assumptions. We consider 1-D geometry as a first
step to validate the basic approach and investigate funda-
mental questions. Assuming a finite set of observations,
we analyse the effects of different bathymetry features on
convergence, as well as the effect of different amplitudes
and shape of the initial condition. These effects have not
been considered in detail in the reviewed works.

Another issue is the difference between the inversion
formulas derived for linear and nonlinear systems. Grilli
(1998), and Nicholls and Taber (2009) give results account-
ing for nonlinearity and the resulting dispersion effects,
whereas Piotrowski and Dugan (2002), and Jang et al.
(2010) are restricted to linear dispersion relations for grav-
ity waves. However, there remains the question of whether
the empirical formulation of the inversion as derived by
Grilli (1998) is as rigorous as the analytically derived solu-
tion of Nicholls and Taber (2009). Both assume periodic
waves, but the practical limitations on the accuracy of the
free surface data make it difficult to assess the relative effi-
cacy of these two methods. Ultimately, a complete evalu-
ation of these approaches will depend on research which
systematically compares inversion formulas based on the
nonlinear governing equations for free surface wave
propagation, as well as addresses the practical issues of
collecting realistic field wave data.

In the present study, we approach the bathymetry esti-
mation problem from a variational data assimilation per-
spective, with the goal of formulating an algorithm for
the 1-D nonlinear shallow water system that predicts
bathymetry from a small set of observations. We neglect
rotational Coriolis effects and noise and assume static
bathymetry with lateral
approach does not involve inversion of the dispersion
relation. Instead, we formulate an optimisation problem,

boundary conditions. Our
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seeking to minimise the error between observations and
forecasts of the free surface wave. The analytical deriv-
ation of the variational algorithm differs from the empir-
ical techniques introduced by Grilli (1998) and is derived
for the infinite-dimensional case. The use of sparse obser-
vations aims to provide a relatively more realistic set of
assumptions than Nicholls and Taber (2009), who require
complete observations of surface wave fields.

We use the conclusions of this idealised case to better
understand the role of model parameters and the observa-
tion operator on bathymetry reconstruction. Our goal is to
take the qualitative results observed here, and use them as a
benchmark for more rigorous sensitivity analyses based on
second order adjoint and GSA approaches. Consequently,
we focus on highlighting results and techniques than can
improve existing methods for accurate tsunami prediction.

3. Derivation of the adjoint based data
assimilation scheme

The nonlinear shallow water equations (SWE) are a
coupled system of equations for travelling free surface
waves. They are derived from the two-dimensional Euler
equations, under the assumption that the wavelength 4 of
free surface waves is much larger than the total ocean
depth A, allowing us to average the Euler equations over
the vertical dimension. The fluid column height becomes
h=H+n(x,t) — f(x), where H is the average depth, 5 is
the perturbation of the free surface, and f is time-
independent sea floor perturbation from zero, i.e. the
‘bathymetry’. Appropriate vertical averaging gives the
irrotational, constant density incompressible one-dimen-
sional nonlinear shallow water equations,

%—F%((H—I—n—ﬁ)u) =0, (3.1a)

1
%+%(5u2+g11) —o, (3.1b)
n(x,0) = ¢(x), (3.1¢)
u(x,0) = (3.1d)

(Note that in the absence of the Coriolis effect the
nonlinear waves in a shallow water system are non-dis-
persive.) We assume that the initial conditions ¢(x) are
compactly supported, and that the boundary conditions
are periodic on some domain Q = {x;x € [-L, L]}. Our
objective is to implement a variational data assimilation
scheme constrained by (3.1) in order to estimate the
bathymetry f(x). We wish to derive an optimal estimate
of the bottom topography using a finite number of obser-
vations of the free surface perturbation, for all times ¢ €
[0, T]. To simplify further, we normalise the system (3.1)
by the average height H and the gravitational acceler-
ation g such that the wave speed ¢ = /gH = 1.

We quantify our objective as the partial differential
equation (PDE) constrained minimisation of some cost
function J,

1T 2
g =5 | Simen-ola 2

0 =1

where yj@)(t) are the observations of the true free surface
perturbations taken at positions x;, j=1,..., Ny, and
n)(x;, t; B) is the solution of our system at x; generated by

the bathymetry 5. We define the optimal bathymetry ﬁ<b) as

B = argminge 120 T (B)- (3.3)

This is equivalent to solving the gradient minimization
problem

vET(pY) =o0.

As direct computation of this optimization problem is
too computationally expensive, we formulate an algo-
rithm that allows us to extract an explicit expression for
the gradient VX 7(8%)), and subsequently find the min-

imiser [3“’) more efficiently. As a first step, we formulate
the first variation of 7, given some arbitrary perturb-

(3.4)

ation f§ of size e. This is given by the Gateaux derivative,

ooy J(B+ep) = J(B)
J(B; B) = lim ——————
( a € (3.5)

d )
= %7(ﬁ+8/3)|8:0

Using a perturbation expansion in ¢ about ¢ = 0 on the
term J(B 4 ¢f’) and truncating to O(¢), we can reformu-
late (3.5) as

T
TB:B) = - L W)~ YO () de. (3.6)

where (1, u') are the solutions of the perturbed system of
(3.1) brought about by the perturbation 8 — &f’,

(3.7)
(3.8)

u—u+ed,
n—n+en,
and by subsequently extracting the O(e) system.
As the Gateaux derivative is a directional derivative in
the direction of the perturbation ', we can express (3.6)
as the inner product between V.7 and f/,

L
T (B B) = (VT B )20 = J . VT B dx. (3.9)
Then the following forms of 7(B; 8') are equivalent,
T
T 8) == 0 i)~ o as

L
- J vE TR dt. (3.10)
L
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Therefore, finding an equivalent expression for the last
term in (3.10) will enable us to extract an expression for
VE 7. This is achieved by formulating the Lagrangian
associated with the linearised system for (', #’) with some
arbitrary adjoint variables (1*, u*),

T ¢L /
[ o 2o = s e -]

/

+u*(x, 1) B)—L; + (,;1 (7 + uu’)} dxdr=0.

(3.11)

Integrating by parts in time and space reduces (3.11) to

_ ’
0= OJOH{OI+M8X+8X
T

], n [ = Byu+ (n+1— ]

L

+
L

L

+ u'u
—L

L
ds

L (3.12)

dx
=0

dx.

t=0

L
dx— J n*n/
—L

=T

L
dx — J '
L

=T

Due to periodicity, the boundary terms vanish. If we
choose the adjoint variables (n*,u*) as the solution to

ont  ont ow Mgy ©)
o ox tax T & (1) (5513 8) = ()| 6 = ),
(3.13a)
ou* on* o
o TAHEn=p g tug=0, (3.13b)
n*(x’ T) =0, (3.130)
u*(x,T) =0, (3.13d)

(where the Dirac delta term in 3.13a is the observation
operator mapping # onto the observation space), then (3.12)
is reduced to

T L T L 87’]*
| [ o eetspy =t avar = | | puh avae
0 0 8)(7

0 0

(3.14)

We refer to the system (3.13) as the adjoint equations.
We note that the normalised mean depth H=1 is pre-
served in the adjoint system. Combining (3.14) with the
equivalence given by (3.10), we have

L T 811* L 5
J J u ﬁ’dtdx:J vE T B dx,
L)oo Ox L

(3.15)
and thus, since our functional is linear and bounded and
belongs to the space of square-integrable functions, we
can use the Riesz representation theorem to extract
Vi 7, giving

T *

2 817
L _
v J—L uax

dr. (3.16)

Losch and Wunsch (2003) use a similar adjoint based
minimisation for their bathymetry detection analysis,
however they do not consider the infinite-dimensional
case as we have here. The benefits of our approach is
that it is independent of the discretisation used in its
numerical implementation.

To verify that our formulation for VL 7 is correct, we
define the Kappa test

(e) = tim LB+ 6) = I (F)

?, 3.17
e—0 & <VL jﬁ >L2(Q) ( )

where «(e) is the quotient of the two equivalent forms for
the variation 7 (f; ') we used in the above derivation. Given
some perturbation f/, if we have correctly defined VZ*7,
then as ¢ — 0, we should see x(¢) — 1. The results of the
kappa test for different cases are presented in Secs. 4 and 5.
The minimiser ﬂ(b) yielding VeI =0, is computed
using a steepest descent algorithm given some starting guess
B, Using a line minimisation algorithm to find the opti-
mal step size at each iteration, this can be summarised as

[g(Hl) _ [3<") _ Tnvzzj(ﬁ(m) (3.18)

where the optimal step-size 7,, can be found at each iter-
ation using the minimisation algorithm

7, = argmin.p T (B (x) = tVET (B (x).  (3.19)

The optimal bathymetry reconstruction ) is the fixed
point of this iterative scheme. The steps for the process
are outlined in Algorithm 1.

Algorithm 1. Data Assimilation Algorithm for Bathymetry
Estimation

1: Pick an initial estimate for .

2: Solve the initial value problem for (u,n) from =0
tot="T.

3: Solve the adjoint problem for (u*,n*) backwards in
time from =7 to t=0 to find #*(x, 7).

4: Approximate jOT u%’—l dt at every point in spatial
domain Q.

5: Define VX' 7 = [ u?L dr.

6: Compute the optimal time step 7, through a line mini-
misation algorithm.

7: Use a gradient descent algorithm to compute
BV (x) = B (x) = ©VE T (B (x)).

8: Repeat until | VX7 ||< ¢ for some small ¢
(I Jo u%% de |l=0).

9: Set B (x) := B (x).
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Table 1. Notation used in the derivation of data assimilation scheme of the SWE to find the optimal bathymetry,

using same format as given in Table 1 of Kevlahan et al. (2019).

Symbol Definition
n(z,t) General solution for the height perturbation
o(x) General initial condition, i.e. ¢(z) := n(z,0)

il Amplitude of the initial conditions ¢(z)
True solution for the height perturbation n(z,t)

True bathymetry
B Amplitude of the true bathymetry ) (z)
9 (z) Starting guess for bathymetry
B (z) Approximate bathymetry at iteration n of the assimilation algorithm
/J’(”)(J) Best approximation to the bathymetry (e.g. fixed point of iterations)
(t) Observations of the true height perturbation at positions {x;},7 =1, ..., N,

Approximate (‘forecast’) solution generated by approximate bathymetry

7z, 1)
T Cost function at iteration n
() Adjoint

Table 2. Cases considered for data assimilation Algorithm 1.

Case Bathymetry Initial conditions
1 Gaussian Gaussian
11 Sandbar Gaussian
111 Gaussian Sinusoidal

These bathymetry/initial conditions cases are illustrated in Fig. 1.

4. Initial results using L* gradients

To verify the numerical implementation of Algorithm 1,
we consider three cases, characterised by different true
bathymetries $)(x) and initial conditions ¢(x). These
cases are summarized in Table 2, and shown in Fig. 1.
They were chosen to analyse convergence in scenarios
where the support of ¢(x) and the support of B(x)
overlap or are disjoint. Additionally, we want to evaluate
the effect of a surface wave with compactly supported ini-
tial conditions (Cases I and II) or periodic initial condi-
tions (Case III). We consider Gaussian and sandbar
profiles for the bathymetry, similar to Nicholls and Taber
(2009), as a 1-D approximation for peaks and ridges
characterising ocean bathymetry. The main application of
this study is tsunami modelling given some optimal
reconstruction of missing bathymetry data, hence we are
primarily interested in a non-periodic propagating surface
wave, as in Case I and Case II. However, including the
periodic initial conditions Case III in our analysis helps
us understand the effects of the observation operator and
model parameters on the optimal reconstruction.

We implement these schemes using a standard second
order finite difference-finite volume approximation on a
staggered grid in space, and a four stage third order
Runge—Kutta scheme (Spiteri and Ruuth, 2002) in time.
The resolution of the spatial grid is N=1512, and the spa-
tial domain is Q = {x € R; —L < x < L}. Velocity u(x, ?)

is located at cell edges and the bathymetry f(x) and free
surface perturbation #(x,#) are located at cell nodes.
Periodic boundary conditions are imposed at x=L and
x = —L where L=3. We assume we have no background

information for bathymetry a priori, and set % (x) = 0.
The system is integrated for ¢ € [0, 7]. In Kevlahan et
al. (2019) the variational data assimilation system for the
initial conditions reconstruction is integrated for ¢ €
[0, T], where the final time 7=2 is chosen such that the
free surface wave does not reach the boundary. This was
appropriate when our objective was to reconstruct the ini-
tial conditions of a tsunami wave in real time. For
bathymetry assimilation, as we have no constraints on
the assimilation time, the final time is chosen to be T =
2L, where boundary effects were present. Periodic bound-
ary conditions are artificial in the sense that they are not
a substitute for realistic ocean conditions and are not
intended to simulate coastlines. However they are appro-
priate in our idealised 1-D case as they simplify the
dynamics, and do not violate underlying principles. In
our case we restrict the choice of free surface wave to (i)
a travelling Gaussian, and (ii) a sinusoidal wave. The lat-
ter is periodic and is not significantly altered by the
boundary conditions. For the Gaussian initial conditions,
the wave is effectively reflected at the boundary, and con-
sequently is a wave travelling in the opposite direction.
We observed that there were no errors generated at the
boundaries that propagated inside the domain and
impacted results. The main conclusions of this study were
not altered by increasing the assimilation time from 7=2
to T =2L, however convergence of the reconstructed
bathymetry improved with the longer assimilation time.
The results in Fig. 2 illustrate the convergence of the
data assimilation scheme for each case outlined in Table
2, as well as the convergence of the kappa test (3.17). In
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Fig. 2. Results for iterative data assimilation scheme outlined in Algorithm 1, with V.7 € L*(Q). Only in Case I do we consider that

the assimilation has reconstructed the bathymetry with sufficient accuracy (< 10% relative error). (a) Convergence of the kappa test for
the three cases. (b) Relative reduction in the cost function after 500 iterations. (c) Relative error in the reconstructed bathymetry. (d-f)
Optimal reconstructed bathymetry for each case. We observe noise in the reconstruction for each case, especially in Case II.

all cases we consider a relative L2 error of less than 10%
as the threshold for ‘converged’ bathymetry. Let us first
consider the convergence of the cost function (3.2).
Ultimately, the purpose of the optimization scheme is to
minimise the error between the observations of the true
height perturbation y(®(f) and the approximate solution
n) given the optimal bathymetry A®). Minimising the
cost function is necessary for accurate reconstruction of
the bathymetry. However, due to the ill-posed nature of
the problem, convergence of the cost function is not suffi-
cient to guarantee accurate bathymetry reconstruction.
Indeed, the results highlight the difference between these
two objectives. We see in Fig. 2b, that the relative
decrease in the cost function over 500 iterations of
Algorithm 1 is greatest for Case I, at O(107%), and thus
the assimilation algorithm converges successfully for this
case. In contrast, the relative decrease in the cost function

for Cases II and III is not less than O(107%) and
O(107%), respectively. However, the errors in the recon-

structed bathymetry BU’) corresponding to these cost func-
tions in Fig. 2c have very different behaviour.

It is clear that for each case convergence of the cost
function does not necessarily correspond to the true

bathymetry [3<'). Only in Case I does the reconstructed
bathymetry converge to the true bathymetry, although
even in this case the error is relatively large, 0.04. Figure
2d-f shows the reconstructed bathymetry for each case. It
is immediately clear that the primary source of error is
small-scale noise. For Case I we see that, although the
Gaussian bathymetry is well-resolved, there is still small-
scale noise present in the tails. However, for Case III,
where we assume periodic initial conditions ¢(x), the
error in the reconstructed bathymetry is large, and we
conclude that the observability of the bathymetry by
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Fig. 3.
to the (unsmoothed) L? gradient.

sensors measuring a sinusoidal propagating surface wave
is significantly lower than that of a travelling Gaussian
wavefront, as in Case 1.

For Case II, it is interesting to note that the noise is
larger scale on the front slope of the bathymetry (x <0)
than the back slope of the bathymetry (x <0). Since the
observation points are placed to the right hand side of
the Gaussian initial conditions ¢ (as shown in Fig. 1),
there are no observations of the left propagating wave.
Additionally, unlike Cases I and III, the observations are
not positioned before the support of the bathymetry. This
suggests that observations for x >0 may not be able to
sufficiently capture the bathymetry effects on the left-
propagating wave. We provide a more quantitative ana-
lysis of sensitivity to the placement of the observations
and the resulting effect on reconstruction error in Sec. 7.

We expect that if the kappa test converges, the error of
the associated variational algorithm should also converge
(even though this is not necessarily true). However, we
see in Fig. 2a that the best convergence for the kappa test
is for Case 111, whereas Fig. 2c shows that Case III actu-
ally has the least accurate bathymetry reconstruction.

In the following section we show that an optimisation
scheme where the gradient of the cost function (3.16)
exists in L2(Q) is not smooth enough to obtain classical
solutions to (3.1), and thus in Sec. 5 we derive analytic-
ally a low pass filter by smoothing our gradient such that

2 4

The gradient of the cost function [7(f), obtained after one iteration for Case IIL, for H' and H* Sobolev smoothing compared

VJ € H*(Q) and provide results of the numerical imple-
mentation. Using smoother H? gradients largely elimi-
nates the
bathymetry we have seen here using L gradient.

small scale errors in the reconstructed

5. Smoothing using Sobolev gradients

In system (3.1), the bathymetry is incorporated via the
(Pu), term. Thus, a classical solution to this system
requires smoothness not just of f, but also of its first
derivative. Because of this, we require the gradient (3.16)
to be in the Sobolev space H*(Q), which imposes
smoothness conditions on 5, as well as . The following
derivation of the corresponding Sobolev gradient is
adapted from Protas (2008).

H*(Q) is a Sobolev space equipped with the inner
product

8\)1 8\’2
_ 2
(12) gy = (V172) 2 ) 11< ds Os >L2(n)

2 2
+l‘2‘<—‘9 . e V;>
os Os 2(Q)
L vy Ov 8%, 82\12}
= prAe o p LY 2 g
J;:iL {V1V2+ ' 9s Os th os2 082 |

(5.1)

where v, v, € HZ(Q), and /1,5, € R are the length scale
parameters used to adjust the regularity. As long as /;,
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are finite, by the Riesz representation theorem (and
equivalence of inner products),
L

BB =j 2 p ds

s=—L
~ (VT
~ (VT8 pa

.
< > +12< V(%j %[j>
+,4<82vH'J 02ﬁ/>

2 o> 082
(5.2)
In order to extract the gradient using equivalence of
inner products (as we did in 3.15), we need to isolate the
B term in (5.2). We use integration by parts as before, on
the second and third term in (5.2).
We impose periodic conditions in space to eliminate
the resulting boundary terms, and subsequently we have

<VL2*7’ ﬂ/>LZ(Q) = <VH2‘7‘ ﬁ/>H2(Q)
#r VE T B ds
s=—L

L 2\ H? H2
:J h%jfpav J gyv ]
s=—L

(5.3)

0s? Fds.

Since this holds for every arbitrary perturbation ', the
process of smoothing the gradient from L?(Q) to H*(Q)
is equivalent to solving an inhomogeneous boundary
value problem, which in Fourier space simplifies to

1

L g
1+l§k2+1§k4(v I

(VET), = 5.4

This is effectively a low pass filter applied to the L2
gradient. We can make this filter as aggressive as needed
by ‘tuning’ /; and /,, where the case /; =/, = 0 is equiva-
lent to the L? gradient. For our smoothed data assimila-
tion algorithm, we set /; = 0 and calibrate /, as this gives
us the desired regularity and reduces the number of
degrees of freedom in the problem. We now consider the
numerical implementation of this updated optimization
scheme, summarised in Algorithm 2.

Algorithm 2. Data Assimilation algorithm with low pass
filter for bathymetry estimation.

1: Pick initial estimate for p©

2: Solve the initial value problem for (u,n) from =0
tot=T.

3: Solve adjoint problem for (u*,n*) backwards in time
from r=T to t=0 to find n*(x, 7).

4: Approximate _fOTu Oyn*dt at every point in spatial
domain Q.

5: Define VX' J = j;)Tu Oun*dt

6: Apply low pass filter (5.4) to VX' 7 to get V#' 7

7: Compute the optimal time step 7, through a line mini-
misation algorithm.

8: Use a gradient descent algorithm to compute
BV (x) = B (x) = © VT (B (x)).

9: Repeat until || V7 ||< ¢ for some small ¢
(I Jy u o dt || 0).

10: Set ) (x) == B (x).

Before we present the results of the data assimilation
scheme, we illustrate the efficacy of the filtering in Fig. 3.
We compare the gradient in L? with the gradient in H'
and H? obtained after smoothing for Case III. The pur-
pose of this comparison is to illustrate that requiring
VJ € H? is more effective at reducing noise than H'
smoothing, where the H' inner product is equivalent to
(5.1) with /, = 0. In both cases, we try to choose optimal
values of /; (for H') and I, (for H?) to filter out higher
frequencies that contribute to the noise in the bathymetry
reconstruction, without also getting rid of necessary infor-
mation for observing the bathymetry propagated by the
lower wavenumbers. We observe in Fig. 3 that the H'
gradient filters out the noise, but also reduces the ampli-
tude of the signal peaks, whereas the H> gradient filters
the noise and is closer to the original signal shape. We
therefore conclude that H> Sobolev smoothing is optimal.

The results of Algorithm 2 are given in Fig. 4. The
plots of Fig. 4a—c show the results of the kappa test, the
reduction in the cost function, and the relative error in
the reconstruction for all cases, respectively. The first
thing we note is that in each case, the error is lower for
the results with H? smoothing compared to results in Fig.
2. Especially with Cases I and II, we observe the error
decreases by at least an order of magnitude. The recon-
structed bathymetry shown in (d) and (e) illustrates how
the noise has been greatly reduced, and for Case I is
almost negligible. For Case I we see some noise remain-
ing on the plateau of the sandbar. However, this is never-
theless improvement compared with the
unfiltered result. This increase is reflected in the kappa
test results given in Fig. 4a for Case I and II, although
the increased convergence does not scale proportionally
with the error, as observed previously in Fig. 2.

However, for Case III there is no increase in conver-
gence for the kappa test in Fig. 4a, and while the recon-
struction of f(x) has less small-scale noise, we observe
that amplitude of the Gaussian in Fig. 4f is significantly
smaller than the exact bathymetry. These results did not

a drastic
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(e) Case II

(f) Case III

Results for assimilation scheme with Sobolev H? smoothing applied to VXJ. (a) Convergence of the kappa test. (b)

Convergence of the cost function. (c) Relative L? error || & — ™ |2,/ ¥ 12, between the exact and reconstructed bathymetry at
each iteration. (d—f) Reconstructed bathymetry with H* smoothing and the exact bathymetry for cases I, II and III, respectively.
Convergence is improved compared to results without smoothing given in Fig. 2.

improve even with a more restrictive choice of /,, leading
us to conclude that additional factors, such as the system
parameters and placement of the sensors ) (r), may
affect the observability of the non-localised bathymetry.
In Sec. 6 we attempt to analyse some of these effects.

6. Necessary conditions on the model parameters
and the observation operator

In the previous section we showed that using smoother
H? gradients is necessary to avoid small scale errors in
the reconstructed bathymetry. We now conduct a qualita-
tive analysis to understand the effect of model parameters
and the observation operator on the convergence of the
data assimilation. The qualitative results observed here
motivate the more rigorous analyses in Khan and
Kevlahan (2020) and Sec. 7, using second order analysis
(SOA) and GSA, respectively. All subsequent results are
for J(p) € H>.

6.1. Necessary conditions on parameters

For the purposes of this study, we restrict our parameter
analysis to understanding the relationship between the
amplitude of the initial conditions #, the amplitude of
the true bathymetry [3 and the average depth H, which
we have normalised to 1. The number of observation
points N,,, = 45, and they are positioned as in Fig. 1

with yﬁ") = 0.1L. As this research is focused on improve-
ment in tsunami prediction, our objective is to under-
stand how surface waves propagate over bathymetry, and
these factors play an important part when considering the
scales involved. Tsunamis are characterised by their long
wavelengths, often reaching 100-150km in the deep
oceans, and their relatively small amplitude of 0.1-1 m,
making them often imperceptible. When approaching
coastlines the amplitude of the surface wave can be 20 —
50 m whereas the wavelength may still be up to 2km. As
the energy flux of the wave speed is dependent on depth-
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Table 3. Analysis of six experiments for Case I where 7}/ B and B are varying orders of magnitude.

1I=0(1072)

L 1=0(107%)

B

=

%:OUOU
B =010 [k(e) — 1] =3 x 1072
Failed to converge
B =0(107%) lk(e) — 1] =2.5x 1073

L? Error =7.4 x 1073

lik(e) — 1] =2.7x 1072
L? Error = 1.3 x 1073
ic(e) — 1] =3 x 1072

Failed to converge

lic(e) — 1] = 4.2 x 107*
L? Error = 4.6 x 1073
ic(e) — 1] =2.7x 1073
Failed to converge

The results show the convergence error in the kappa test and the error reconstruction error [ — /f“’)Hig(n)/Hli(”Hi:(Q). Entries

highlighted in red denote non-convergent cases.

dependent wave speed ¢ = \/g(H + n(x,1) — f(x)), the
amplitude and smoothness of the bathymetry can have a
big impact on tsunami propagation (Damen et al., 2005).
Additionally, in deeper water when / is larger the effects
of bathymetry are smaller. Consequently we also investi-
gate the effectiveness of free surface observations in
reconstructing bathymetries with amplitudes
smaller than the average depth H.

We therefore give special consideration to Case I,
Gaussian initial conditions with Gaussian bathymetry, as
shown in Fig. 1la. We wish to highlight how convergence

much

is affected when (i) the ratio 7j/f is increased, and (ii) the
normalised bathymetry amplitude 8/H varies. As H=1,
for the latter we may consider values of f.

We investigated convergence of the kappa test and
relative error in the reconstructed bathymetry when 7 /f
is O(1071) (large’), @(1072) (‘small’), and O(1073) (‘very
small’), respectively. The experiments are conducted for
B =0(107") and for f = O(107). The results of the six
configurations are presented in Table 3. For each case we
provide the error in the kappa test |x(¢) — 1| and the rela-
tive L? error in the reconstruction. We set a tolerance for
the kappa test, such that all values of |x(e) — 1| > 1072
are non-convergent. The entries highlighted in red indi-
cate cases where the optimisation algorithm became
unstable and the gradient V7 failed to converge to zero
or became unbounded.

We observe that there are two cases where convergence
was achieved (the only cells not highlighted in red): (i)
when 7/B = O(107") (large’), B = O(107%) (‘very small’),
and (i) when 77/ = O(107%) (‘very small’), = O(107")
(‘large’). We note that for accurate and stable results we
require either ﬁ/fﬁ to be small or B to be very small
(O(1073)). However, when both are very small (O(1073))
the results are non-convergent. We also note that conver-
gence fails when both are large (O(107!)). Additionally,
we see that when #/f = 0(107%), B =0O(107") the
bathymetry reconstruction error is relatively low, despite
the kappa test error being higher than the set tolerance,
suggesting that the latter may be relaxed to per-
mit [x(e) — 1| = O(1072).

Consequently, the only admissible cases where the
reconstruction error converges are when (i) the surface
waves are small in amplitude compared to the amplitude
of the bathymetry, 7/ < O(1072), or (ii) when the
bathymetry amplitude B is small enough that the ratio
between i) and H is O(10~%) or smaller as a consequence.

Having explored the relationship between 7/ B and
convergence, we now consider the effects of the amplitude
of the bathymetry i? when 7 is fixed. We analyse conver-
gence of Algorithm 2 for relative bathymetry amplitudes
i?/H ranging from 1% of the average depth to 30%.
These results are summarised in Fig. 5, and we have
included results for Cases II and III for more insight. In
all cases we fix 7 to be 0.001 and N,,, = 45. We see that
for Case I, Fig. 5 indicates that the error is highest when
B is small, however it shows a steady decrease even when
B is 30% of H. Case III shows a similar trend, even
though the error is two orders of magnitude larger than
for Case 1. For Case II, the error remains stable at
approximately O(1072) for all values of j.

As bathymetry effects on the surface wave decrease
when the fluid depth / is large, it is reasonable that
higher amplitudes of bathymetry lead to a slight decrease
in the reconstruction error, as observability of the
bathymetry by the surface wave may improve. However,
to consider the effects of higher amplitudes of the
bathymetry in tsunami models, it is reasonable to analyse
the error in the surface wave error given the recon-
structed bathymetry as i? increases. Results for this ana-
lysis are given in Sec. 6.3.

Based on the results shown in Table 3, we suggest that
for situations like Case I (i.e. a localised surface wave
propagating over a compact bathymetry feature of a simi-
lar size) a necessary condition for the data assimilation
scheme to recover the true bathymetry is that 7/ B be at
most O(1072) when bathymetry amplitudes are large
(O(1071)). We observed in Fig. 5 that increasing the
bathymetry amplitude (when the initial condition ampli-
tude is sufficiently small) does not affect the error in the
bathymetry, however further analysis is needed on the
resulting error in surface wave, given the reconstructed
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Fig. 7.

bathymetry, in order to quantify the effects of bathym-
etry in tsunami propagation.

6.2. Observation operator

The observation operator (i.e. the number and location
of observations of sea surface height) used in our opti-
misation scheme is significant, as we have direct control
over the number and location of sea surface sensors in
real world simulations. We are therefore interested in
configuring observation points to optimise convergence
to the exact bathymetry.

We consider the effect of the number of observation
points on convergence. In Fig. 6 we present the results of
Algorithm 2 for N,y = 5,10,20,25 observation points.
Each configuration is a set of equidistant points, with the
first point placed at x = L/10. For Cases I and II the
first point is within the support of the Gaussian initial
condition. We show the convergence of both the cost
function and the relative L? error. In all three test cases,
the general conclusion is that more observation points
produces better convergence. For Cases I and II the error
decreases by approximately two orders of magnitude as
N, 1s increased from 5 to 45. However, none of the
results for Case III (periodic surface wave over Gaussian
bathymetry) converge, and the error remains greater than
10% for all values of N,,.

To better understand the effects of N, in Fig. 7 we
present the reconstructed bathymetry for each case, with
Nops = 5 and N, = 45, respectively. We observe in Fig.
7a that for Case I (Gaussian surface wave over Gaussian
bathymetry) even with N,,; = 5, the bathymetry is well-
resolved, and increasing the number of observations suc-
cessfully eliminates some small-scale noise at the base of
the Gaussian.

(b) Case II

T
L

-0.01
-3

(c) Case III

In Fig. 7b it is clear that for Case II (Gaussian surface
wave over a sandbar) N,,, = 5 is not enough to resolve
the bathymetry shape, especially for the bathymetry fea-
tures in the region x < 0. However, increasing N, to 45
leads to accurately reconstructed bathymetry. The only
significant error is a small amount of noise at the plateau
of the sandbar profile near x=0. For Case III, we note
that while neither of the reconstructed bathymetries in
Fig. 7c converge to the true bathymetry in Fig. lc, con-
vergence is much better qualitatively for N,,, = 45.
However, the peak of the Gaussian is not fully resolved
and the amplitude of the reconstruction with N,,; = 45 is
smaller than the amplitude of the true bathymetry.

Based on these results, we conclude that a sufficiently
large number of observations N, is a necessary condi-
tion for optimal convergence. However, as indicated by
the reconstructions in Fig. 7c, it is not a sufficient condi-
tion for convergence in all configurations. Despite this,
results in Fig. 7a demonstrate that observations of a
localised surface wave are able to reconstruct both a
Gaussian bathymetry and a Sandbar bathymetry with
relatively small error in convergence. The following ques-
tion remains: how does the size of the reconstruction
error of the bathymetry affect prediction of the free sur-
face wave?

In the context of tsunami modelling, our priority is
accurate prediction of the free surface wave given the
reconstructed bathymetry. Therefore, motivated by results
observed thus far, in Sec. 6.3 we analyse the L? error in
the surface wave given the reconstructed bathymetry, as
N,»s 1s increased. Additionally, a rigorous sensitivity ana-
lysis of the surface wave error to observations is pre-
sented in Khan and Kevlahan (2020) using second order
variational techniques, and in Sec. 7 using GSA. The
objective of this analysis is to explore further, not only
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The relative L? error in the bathymetry reconstruction, shown for different amplitudes B, and the corresponding relative L*

error in the propagating surface wave #(z,t). The amplitude of the initial conditions # is 0.001, and N,,, = 45.

the effect of the number of observation, but also the pos-
ition of the observations in the spatial domain.

6.3. Sensitivity of propagating surface wave to to
bathymetry reconstruction error

Our final analysis concerns the sensitivity of the surface
wave to the bathymetry, in particular, to errors in the
bathymetry data. Given some optimal reconstruction
ﬁ(b), we wish to gauge the sensitivity of the propagating
surface wave n(x, ) to the errors in the reconstruction.
Our objective is to address the following question: how
does the reconstruction error in the bathymetry impact
the propagating surface wave? If our goal is to use recon-
structions of the bathymetry to generate more accurate
predictions of tsunami waves, then the main consider-
ation is not the error between the optimal bathymetry
reconstruction and the true bathymetry, but the resulting
error in n(x,7). In other words, we only need the recon-
structed bathymetry to be ‘good enough’ to produce suf-
ficiently accurate surface waves.

Thus far we have qualitatively assessed the conver-
gence to the exact bathymetry as we varied the observa-
tion operator, and the amplitudes of the initial conditions

and bathymetry # and B We now address the corre-
sponding error in the surface wave given the recon-
structed bathymetry n(x, ¢ ﬁ<">) as a function of #, B,
and N,p.

The results for each are summarised in Figs. 8, 9, and
10, respectively. The L? error in the bathymetry is plotted
alongside the resulting L* error (in space and time) in the
surface wave. Figure 8 shows the respective errors as a
function of bathymetry amplitude, where # = 0.001. In
each of the three cases, we observe the error in the

surface wave for $=<0.1 is almost 2 orders of magnitude
lower than the error in the bathymetry estimation. As the

relative amplitude of the bathymetry ,B increases, so does
the surface wave error, even though the bathymetry error
remains relatively constant. This is intuitive, as we
observe that since the effect of bathymetry decreases as
the fluid depth increases (a consequence of smaller ampli-

tudes f3), the height n(x,t) is affected more by larger
bathymetry amplitudes. As such, errors in the reconstruc-
tion of larger bathymetry perturbations are more likely to
be observed in the resulting surface wave. Therefore, we

consider ﬁ < 0.1 a necessary condition for optimal con-
vergence of the surface wave. Overall, the results suggest
there is low sensitivity of the surface wave to bathymetry

reconstruction errors as B varies.

Figure 9 presents the L* error in the bathymetry along-
side the resulting L? error in the surface wave, as a func-
tion of the number of observation points. We consider
Nops = 5,10,20,45, and plot the resulting errors for each
of the three cases. B is fixed at 0.1 and 7 = 0.0IB. We
observe that for Cases I and III, the error in the surface
wave is almost two orders of magnitude smaller than the
bathymetry error, and both decrease proportionally as
the number of observation points increases. For Case II,
the difference in the errors is O(107") for smaller values
of N, however this difference increases as we increase
the number of the observation points, suggesting the sen-
sitivity of the surface wave decreases with more observa-
tion points for a sandbar profile. A reason for this may
be that for Case II there are no observation points
located before the support of the bathymetry, and conse-
quently a smaller value of N,,, may not be sufficient to
create a an accurate profile, resulting in increased error in
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Fig. 9. The relative L* error in the bathymetry reconstruction, shown for different values of N,,, and the corresponding relative L?
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Fig. 10.  The relative L? error in the bathymetry reconstruction and the corresponding relative L error in the propagating surface

wave n(x,t), as a function of the initial conditions amplitude 7. The amplitude of the bathymetry is fixed to be 0.2.

the reconstruction (as observed in Fig. 7). Consequently,
the error in the surface wave increases as well. However,
as more observation points are added in Fig. 7 the noise
in the bathymetry is smoothed, and the smoother profile
may explain the relative larger decrease in the surface
wave error, up to two orders of magnitude smaller than
the bathymetry error.

Finally, Fig. 10 shows the bathymetry reconstruction
and surface wave errors as a function of the initial condi-
tions amplitude 7. We have already observed a correl-

ation in the amplitudes # and Zi, and we concluded in
Sec. 6.1 for optimal convergence we require 7 /[f =
O(1072). Therefore, in Fig. 10c we present results for

small values of #, and § = 0.2. For each case we observe
that the error in the surface wave is orders of magnitude

lower than the bathymetry error for most values of 7.
Both errors are relatively high for smaller values of 7,
but as # — 1073, they both decrease. This suggests that
the free surface wave is more sensitive to bathymetry
reconstruction error when # is very small.

To summarise, we observed that across variations in (i)
the number of observation points, and (ii) model parame-
ters such as # and 7, the error in the surface wave was
orders of magnitude lower than the bathymetry recon-
struction error, suggesting low sensitivity of the surface
wave to bathymetry reconstruction error. The consequen-
ces of this low sensitivity are significant. It is essential to
understand the sensitivity of the surface wave to the
bathymetry for two distinct but related reasons. First,
the assimilation described in this study is contingent upon
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the assumption that the surface wave (and observations)
are affected by the bathymetry. We have demonstrated
this is true in Fig. 1. Secondly, the variation in the sur-
face wave error in Fig. 8 shows that changes in bathym-
etry amplitude and shape do significantly affect surface
wave propagation. However, we observe that the sensitiv-
ity of the surface wave to the bathymetry reconstruction
error is low. This means that the surface wave is not sen-
sitive to the details of the bathymetry: a roughly accurate
reconstruction of bathymetry should be sufficient in
most cases.

We conclude that, although bathymetry does signifi-
cantly modify surface wave propagation, for tsunami
modelling we only need the bathymetry to be accurate
enough that the surface wave is modelled correctly, and
that we can derive criteria for when the bathymetry
reconstruction is  reconstructed  sufficiently  well.
Additionally, we also do not require the optimal recon-

struction %) to be unique. These implications motivate a
more rigorous analysis of surface wave sensitivity, and we
explore this further in Sec. 7.

7. Global sensitivity analysis (GSA)

Based on the observed qualitative results in Sec. 6.3, in
this section, we use GSA to more rigorously quantify the
influence of model parameters on the error in
the bathymetry reconstruction, and the resulting error in
the surface wave, respectively. We focus our analysis on a
localised surface wave propagating over a compact
bathymetry, as in Case I. Using GSA we aim to quantify,
and subsequently rank the influence of these parameters
on the bathymetry and surface wave errors, respectively.

7.1. Sensitivity analysis methods, derivation, and
sampling considerations

Saltelli et al. (2010) define GSA as the set of mathemat-

ical techniques used to assess the propagation of uncer-

tainty in a numerical model. In practice, a set of synthetic

indices are derived that quantify the relative contribution

to the output variance from different input parameters.

These are known as ‘sensitivity’ indices. Liu and Homma

(2009) propose that good sensitivity indices should exhibit

the following properties:

1. They are global, and consider the influence of model
inputs on the entire output range.

2. They are quantifiable, and thus can be computed and
reproduced numerically.

3. They are not conditional on any assumed input values.

4. The value of the sensitivity index for some input gives
an easy interpretation of the sensitivity of the model
to the parameter.

5. They are consistent across multiple samples and
simulations.

6. Ideally, they are moment-independent, and do not
rely on a specific quantitative measure of the output
distribution.

GSA methods can be categorised as one-at-a-time
methods (OAT), where output variations are induced by
varying one input at a time, or all-at-a-time methods
(AAT), where all input factors are varied simultaneously.
GSA methods are widely used in earth systems modelling
(ESM). An example is the work conducted by the
Modelling, Observations, Identification for
Environmental Sciences (MOISE, 2014) project on vari-
ance-based sensitivity analysis on a marine ecosystem
model of the Ligurian sea.

A concise review of the contributions of GSA on
advancement of ESM is provided in Wagener and
Pianosi (2019). They highlight the surge in computational
capacity for Earth and climate models, and address the
resulting problem of increased interaction between model
components and parameters, even when representing a
relatively low number of physical processes. This issue is
particularly problematic in ESM where incomplete know-
ledge and the lack of relevant exact solutions makes
model validation very difficult. In addition, such models
are forced with noisy and inaccurate observations.
Typical uses of GSA include:

e Ranking the influence of the parameters on model
output from highest to lowest.

e Creating a threshold criteria for sensitivity allowing
us to determine parameters of negligible influ-
ence (screening).

e Finding thresholds in the input parameter values
that map into specific output regions (fac-
tor mapping).

Thus, the primary objective of this study is to use
GSA to analyse the data assimilation results bathymetry
detection presented in this paper, in order to rank, screen
and factor map the influence of its parameters.

Our objective is to measure the relative L? reconstruc-
tion error in the bathymetry

C1BY = B2y
T

where B is the ‘true’ bathymetry and ) is the ‘best’
reconstruction obtained via the data assimilation scheme.
Additionally, we define the relative L? error in the propa-
gating surface wave #n(x,¢) given the reconstructed

Y , (7.1)

L*(Qx)

bathymetry /3(” ) as

v B =)0
= .
H’?(/g(’)) HLZ(QXXT)

(7.2)
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Yy. (b) Influence of each parameter on Y.

In Sec. 6.3 we observed that the surface wave error
was orders of magnitude lower than the bathymetry error
(7.1), suggesting low sensitivity to the bathymetry error,
as a function of the bathymetry amplitude fi Based on
this initial observation, we wish to derive a more rigorous
way to measure sensitivity of results to parameters #
(amplitude of the surface wave), 23 and y (amplitude and
position of the bathymetry, respectively) such that

1 (x,0) = 10
B (x) = fe(10G—¥)

(7.3)
(7.4)

2

We focus on Case I, where we have compactly sup-
ported Gaussian initial conditions centred at zero, and a
localised Gaussian bathymetry centred at x = .

The key property of the parameter s is that it deter-
mines the location of the bathymetry relative to the
observation points. When  is small, a smaller proportion
of observation points observes the surface wave before it
interacts with the bathymetry, and for iy approximately
less than 1, the observations do not span the entire
bathymetry support. We wish to discover whether the
influence of shifting the bathymetry position s relative to
the fixed observation points is significant.

7.2. Density based sensitivity analysis (DBSA)

Since skewness in the output distribution is common in
non-linear and models(Pianosi  and
Wagener, 2015), we use a subset of sensitivity analyses
that does not use moments of the model output, such as
the expected value, variance or skewness, as a measure of

environmental
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Approximation of the density-based sensitivity indices for [5 (red), 77 (blue) and  (green). (a) Influence of each parameter on

uncertainty. Such methods are collectively known as
density based sensitivity analysis’(DBSA). The idea is to
measure sensitivity through variations of the probability
density function that occur when the influence of a cer-
tain input factor is removed. This is done by computing
the difference between unconditional PDFs generated by
varying all parameters, and conditional PDFs obtained
when fixing individual input parameters at a particular
nominal value (Pianosi et al., 2016). The sensitivity index
is then computed as a statistic based on this divergence.

For the present analysis, we follow the method out-
lined in Pianosi and Wagener (2015), who improve on
this idea by characterising output distributions by their
cumulative density functions (CDFs) instead. Known as
the PAWN method, density-based sensitivity indices are
calculated using conditional and unconditional CDFs,
using the fact that these are more efficiently derived than
PDFs. We give a brief overview of the PAWN method,
the divergence statistic used to compute the indices, and
the sampling used in the
implementation.

Let us define the unconditional cumulative density dis-

strategy numerical

tribution of our output Y (where Y can be either Yp or
Y,) as Fy(Y), and the conditional cumulative density dis-
tribution when the input parameter x; is fixed as
Fy,(Y). As Fy},,(Y) represents the case where there is
no variability resulting from x,, the distance between the
two functions Fy),,(Y) and Fy(Y) represents the variabil-
ity in the output induced by x;. This distance is propor-
tional to the influence of x;, i.e. if Fy},,(Y) = Fy(Y) then
x; has zero influence on the variability of output Y. In
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the PAWN method, this distance is computed using the
Kolmogorov-Smirnov (KS) statistic

KS(x;) = max |Fy, (Y) = Fy(Y)|. (7.5)

As KS depends on the value of x;, the PAWN sensitiv-
ity index T7; is calculated using a statistic (such as the
median or maximum) over all values of x;,

T,‘ = Siat [KS(XI)} (76)
Pianosi and Wagener (2015) observe that the sensitivity
index T7; satisfies all of the properties of a ‘good’ sensitivity
index, as it is global, quantitative and model-independent. It
has the advantage that it is also moment-independent. By
definition it is normalised to take values between 0 and 1.

In the numerical implementation, empirical CDFs are
used to compute Fy,,(Y) and Fy(Y), using a sample of
the parameter space. PAWN has a big advantage over
the sample size requirements in variance-based sensitivity
analysis (VBSA), as a smaller sample size can be used to
effectively approximate the CDFs due to their regularity
properties. Fy(Y) is approximated using N, model evalu-
ations obtained by sampling over the entire parameter
space, while Fy|,(Y) is approximated using N. model
evaluations derived by sampling over the non-fixed
parameters only, while keeping x; fixed. Additionally, the
conditioning value x; used to compute 7; in (7.6) is
replaced by Xx; =5, 5%, 5", n randomly-sampled
values for the fixed input x,. Thus, the total number of
model evaluations is N, +n x d x N.. Generally these
values are chosen by trial and error.
Wagener (2015) suggest a reasonable choice for n is
between 10 and 50.

For our analysis, we set N, = 200, N. = 150, and
n=15, giving total of 6950 model evaluations. The

Pianosi and

computation of the density-based indices is then a quick
post-processing step. To verify whether the sample size is
adequate, bootstrapping can be used to analyse robust-
ness of sensitivity index estimates, as in the previous sec-
tion. We present the results for the DBSA sensitivity
indices approximated using the PAWN method in the fol-
lowing section.

7.3. Results of DBSA

The number of evaluations used in the analysis was
adjusted to exclude sample points where the data assimi-
lation did not converge (i.e. where the necessary ratio
between the amplitudes of the initial conditions and the
bathymetry did not hold). N, was adjusted to 145, and
6725 evaluations were used to approximate 7;. For the
initial analysis we chose the maximum as the statistic
used in 7.6.

Figure 11 presents the initial results for the sensitivity
indices 7; for each input parameter. Figure 11a gives the
result for model output Yy and Fig. 11b for Y. Yy has
the greatest sensitivity to position of the bathymetry
(86%). Interestingly, we can see in Fig. 11b that the amp-
litude of the initial conditions # and position of the
bathymetry  have relatively low influence on the error
in the surface wave Y, compared to f, at 13% and 22%,
respectively. On the other hand, the amplitude of the
bathymetry [3 is highly influential for the surface wave
error Y,, with Tff = 0.895.

We need to check these results for robustness and con-
vergence before we can accept them as conclusive.
Bootstrapping is done over 700 re-samples, and confi-
dence intervals are derived. These can be seen in Fig. 12.
We present the distances between upper and lower
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bounds for each parameter in Table 4, and subsequently
compute Stat,s for each.

We observe a great improvement in the Stat., statistics
relative to the VBSA results, where Stat.(Y3) = 0.1081
and Stat.(Y,) = 0.0850. The largest margin of error
from the mean 77" across all input factors and both out-
puts is 6.3%. If we set a tolerance level of 0.05 for the

error margin, then there is only a single instance

{ TBMh — T[f’n\ = 0.0630) where the error margin is higher.
We hypothesise that this could be further improved by
taking a slightly larger sample size.

The convergence of the sensitivity indices is given in
Fig. 13. Across both errors Y3 and Y;, the most influen-

tial parameters (position i and amplitude [3 of the
bathymetry) appear to converge. For the other less influ-
ential parameters in each case, convergence is still rela-
tively smooth. However, we see that the index values are
still decreasing slightly even at the largest sample, sug-
gesting that a larger number of samples might be needed
for convergence to a fixed point. Nevertheless, given the
results of the robustness analysis and convergence
observed thus far, we conclude that we may still accur-
ately gauge the influence of the parameters on our model
outputs with the current sample size, especially in order
to determine the most influential factors. Consequently,

Table 4. Width of the confidence interval |7 — T?|, and mean
index 77" averaged over 700 bootstrap re-samples.

we proceed to consider ranking, screening, and factor
mapping of the input parameters.

The PAWN method can be used effectively to screen
for non-influential input factors. Figure 14 presents an
overview of the different values of KS over the 15 ran-
domly chosen sample points x; for each input parameter.
To determine which input parameters are most influen-
tial, the two-sample KS test (Pianosi and Wagener, 2015)
has been implemented, which allows us to reject the
hypothesis that Fy(Y) and Fy,,(Y) are the same if

[N+ N,
KS > C(O() ﬁ,
ctvu

where o is the confidence level, and c¢(«) is a critical value
determined in the literature (Pianosi and Wagener, 2015).
Figure 14a presents results for Yg and Fig. 14b for Y,.
The red dotted line represents the threshold value at the
confidence level o = 0.05. KS statistics for input x; that
fall below this critical threshold indicate that x; is non-

(1.7)

influential.

We observe that for both outputs Yg and Y, 7 is non-
influential across all 15 choices for the fixed value. KS
statistics for [3 fall below the threshold at fixed values
approximately between 0.1 and 0.25 for the model Yp.
This corroborates results from Sec. 2, where we observed
that the bathymetry reconstruction error Yz was higher
when the amplitude of the bathymetry fi was either too
big or too small relative to the average depth H. In the
present analysis the maximum KS statistic is used to

Input |T7" —TP|(Vy) T (Yp) [T —TP| () T" () compute T; for each input parameter, and so f is still
B 0.1081 0.2241 0.0850 0.8878 considered influential on Yj. It is interesting to contrast
:/7/ 8823(1) gézzz 8823‘: g;zg; this result with the KS statistics for  and output Y,, as
i i : i shown in Fig. 14b. While we see a similar trend, where
Results given for model output Y and Y, respectively. the KS statistic is higher if the bathymetry amplitude  is
1 1 =
® Y e 3
e 3 ey
0.8} ® " o8} e
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Convergence analysis for DBSA indices for (a) Yy, and (b) Y}, for re-samples of size N=215 to N =2375.
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Table 5. Model output Y} : indices T; using different statistics in
the definition of the sensitivity index (7.6).
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KS statistic with significance level 0.05. Values below the dotted red line are non-influential.

Table 6. Model output Y, : indices T; using different statistics in
the definition of the sensitivity index (7.6).

Input Max Mean Median Input Max Mean Median
B 0.2114 0.1334 0.1336 B 0.8950 0.5582 0.5467
il 0.0847 0.0613 0.0610 i 0.0745 0.0560 0.0538
v 0.8524 0.5608 0.5155 v 0.2624 0.1780 0.1626

Values highlighted in red are below the threshold value of 0.147
(¢(oe = 0.05) = 1.36) and are non-influential.

at the lower or upper end of the sample interval, the
resulting variation is much higher, and all KS statistics
are above the influence threshold value.

In a similar manner, while the position of the bathym-
etry ¥ has relatively low KS statistics across all fixed val-
ues of the surface wave error Y, (approximately half of
the values are above the cutoff with no clear trend), it
has relatively much higher KS values, and subsequently
higher influence on the bathymetry reconstruction error
Yp, as observed in the third panel in Fig. 14a. Once
again, KS statistics are much higher at values closer to
the endpoints of the parameter space for v, [0.52]. We
suggest this indicates that the placement of the bathym-
etry relative to the observation points has a significant
influence on the error in the bathymetry reconstruction.
This may be because as the bathymetry Gaussian place-
ment varies over the interval, so does the time and pos-
ition where the bathymetry is first observed by the
measurement points.

Thus, based on the threshold level for a confidence
interval o = 0.05, and using the maximum KS statistic to
compute 7T;, we observe that for both bathymetry recon-
struction error Yg and surface wave error Y, the

Values highlighted in red are below the threshold value of 0.147
(c¢(oe = 0.05) = 1.36) are non-influential.

amplitude of the initial conditions # can be considered
non-influential. We note that the choice of a different
statistic in (7.6), such as the mean or median, may change
the value of 7;. We provide a comparison of the different
indices in Table 5. Given the threshold value of 0.147
(c(« = 0.05)), we can see that by the choice of a mean or
median statistic, B does not affect whether or not a par-
ameter is non-influential for the bathymetry reconstruc-
tion error Yp.

As we can see from Table 5, the overall ranking of the
parameters is not affected by the choice of statistic used
for Yp. The only exception is the parameter B, which is
influential only with the max statistic. The position of the
bathymetry, , is the most influential parameter for Yj,
and the amplitude of the initial conditions # is the least
influential. Similarly, for model output Y,, results in
Table 6 indicate that across all choice of statistics, B is
the most influential parameter and # is non-influential.

So far we have used the results of the PAWN sensitiv-
ity analysis to rank and screen our input factors. A third
analysis that can prove insightful is factor mapping: we
can compute sensitivity indices based on a sub-interval of
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(a) Yp, and (b) ¥;,. Confidence intervals were calculated using 700 bootstrap samples.

our output Y given the current sample. For example,
over all model evaluations, the maximum surface wave
error Y, is 2.63 x 1072, and the minimum is 2.23 x 107*.
Similarly the maximum bathymetry reconstruction error
Yp is 0.265 and the minimum is 3.75 x 1072, To deter-
mine the influence of input parameters when the values
of Y, and Y are relatively high, we define a parameter
M such that we can compute sensitivity indexes for all
input-output samples for the cases Y> M, and Y < M
separately. We choose M =0.015 for output Yz and
M=0.001 for Y,. The results are given in Fig. 15a
and 15b.

While there is not much difference in terms of ranking
between the left (Y > M) and right (Y < M) panes for
either Yp or Y,, it is noteworthy that for the surface
wave error in Fig. 15b the influence of the bathymetry

amplitude [)’ decreases when Y, <0.001 (right panel).
This is insightful, as it suggests that the bathymetry is
more influential when the errors in the surface wave are
large. However, in both intervals of Y, the influence of [3
is high (above 70%). Additionally, the effect of the
bathymetry position y when Y, greater than 0.001 is
29%, and subsequently is greater than the influence
threshold value. On the other hand, the influence of the
initial conditions amplitude # and bathymetry position i
drops below the threshold value when Y, < 0.001.

For the bathymetry reconstruction error Y3, we see in
Fig. 15a that the influence of the bathymetry position
is approximately doubled when the bathymetry recon-
struction error is less than 0.015. The lower sensitivity of
each of the input parameters when the bathymetry recon-
struction error is higher could be suggestive of other

significant influences on the model error, that cannot be
attributed to these parameters alone.

In summary, for Y, the most influential parameter is
B, the amplitude of the bathymetry, whereas the ampli-
tude of the surface wave initial conditions # is categorised
as non-influential. For the bathymetry reconstruction
error Yp, bathymetry position s is the most influential
parameter, while the initial conditions amplitude # was
determined to be non-influential. Additionally, B is influ-
ential on bathymetry reconstruction error only when the
error is larger than 0.15, and y is only influential on the
surface wave error when the error is larger than 0.001.

8. Conclusion and future directions

This study is a first step in understanding better the role
of observations and model parameters in variational
bathymetry assimilation. We are limited somewhat by the
lack of an analytical solution for the shallow water sys-
tem with non-zero bathymetry, but these computational
results provide some key insights to guide further analy-
ses. The 1-D geometry considered in this analysis is
intended to be a foundation for extensions to more realis-
tic 2-D cases.

We derived a variational data assimilation algorithm
to reconstruct the bathymetry from a set of free surface
wave observations by minimising a functional J(f8) repre-
senting the least squares error between observations and
forecast solutions. We observed that V.7 € L*(Q) resulted
in small-scale noise in the bathymetry reconstruction and
impacted convergence. Consequently, we showed that
smoother H? gradients are necessary to avoid small-scale
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Table 7. Classification of each input parameter as influential or non-influential for the sub-regions of Yj

and Y, in Fig. 15.

Input Y > 0.15 Yy <0.15 Y, > 0.001 Y, <0.001
/3 Non-influential Influential Influential Influential
il Non-influential Non-influential Non-Influential Non-influential
] Influential Influential Influential Non-influential

Values below the threshold value of 0.147 (¢(x = 0.05) = 1.36) are non-influential. The entries highlighted
in blue are the most influential parameter for Y; and Y, respectively. § is influential on bathymetry
reconstruction error only when the error is larger than 0.15, and  is only influential on the surface wave

error when the error is larger than 0.001.

errors in the reconstructed bathymetry. Using the H> gra-
dients, we accurately reconstructed the bathymetry for
test cases with a Gaussian initial conditions, and (i) a
bathymetry, (i) a
file bathymetry.

We then analysed the relationship between the normal-

Gaussian and sandbar  pro-

ised bathymetry and initial conditions amplitudes B and
i to understand how they influence convergence. Based
on a qualitative analysis of a localised surface wave prop-
agating over a compact bathymetry feature of a similar
size, we suggest that a necessary condition for conver-
gence of the assimilation to the true bathymetry is that
the ratio of the surface wave amplitude to the bathymetry
amplitude 7/B be at most O(1072) when bathymetry
amplitudes are O(10~"). Additionally, we observe that a
relatively large number of observations N, is necessary
for convergence. We found N,,, = 45 was the optimal
number of observations for the cases we considered.
Perhaps the most significant conclusion of this study
was that the surface wave n(f® )) has relatively low sensi-
tivity to errors in the reconstructed bathymetry. We
showed that the free surface error was orders of magni-
tude smaller than the bathymetry reconstruction error as

a function of Ny, [3 and 7, respectively. Reconstructing
the bathymetry with a relative error of about 10% is suffi-
ciently accurate for surface wave modelling in most cases.

If this conclusion can be verified in higher dimensions
and in more realistic configurations (e.g. including turbu-
lence and the Coriolis effect), this result will enhance tsu-
nami forecast models by the quantifying exact tolerance
levels for the error in the bathymetry necessary for accur-
ate surface wave modelling. Additionally, tolerances for
smaller scales in bathymetry reconstruction may
be quantified.

To further investigate the sensitivity of the reconstruc-
tion error and resulting surface wave error to model
parameters, we used a density-based method (DBSA) to
empirically compute indices that rely on the variation
between unconditional and conditional cumulative density

functions when particular inputs are fixed, as a measure

of sensitivity. We used the PAWN algorithm Pianosi and
Wagener (2015) to derive sensitivity indices for the three
input parameters, B, 7 and Y (bathymetry amplitude, sur-
face wave amplitude and position of the bathymetry rela-
tive to the observations, respectively), and the model
outputs Y3 and Y,. Our objective was to rank the the
influence of the inputs from highest to lowest, screen for
non-influential parameters, and finding thresholds in the
input parameter values that map into specific output
regions (factor mapping). We summarised the conclusions
in Table 7.

Our results showed that for the model output Y, (the
error in the surface wave given the reconstructed bathym-
etry), the most influential parameter was /3 the ampli-
tude of the bathymetry, whereas the amplitude of the
surface wave initial conditions /) was categorised as non-
influential. This confirms conclusions from Sec. 6.3,
where we observed that the surface wave error increased

as the amplitude of the relative bathymetry /3’ /H became
larger. We considered specific output regions for both the
bathymetry reconstruction error and the surface wave
error. For the latter we consider relative L* errors Y, >
0.001 and Y, <0.001, and found that the influence of all
three parameters (the bathymetry and initial conditions
amplitudes [3 and 7, and the bathymetry position ),
decreases when Y, < 0.001.

The bathymetry position yy was the most influential
parameter on the bathymetry reconstruction error Yy,
while the initial conditions amplitude # was determined
to be non-influential. The influence of  for small errors
Y <0.015 was approximately 85%. However, this
dropped by almost half for large errors Y > 0.015.
Overall, the bathymetry reconstruction error was less sen-
sitive to each of the input parameters when the bathym-
etry reconstruction error was large. This suggests that
other parameters that are not considered in this analysis
may have a significant influence for larger values of the
bathymetry reconstruction error.

While the locations of the observation points were
kept fixed relative to the computational domain, the
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position, ¥, of the bathymetry relative to the observation
locations was varied. The parameter i therefore deter-
mines the point where the bathymetry is observed by the
measurement points, as well as how many observation
points observe the surface wave before it interacts with
the bathymetry. We found that i was influential on the
surface wave error for all statistics, except when the error
in the surface wave Y, was less than 0.001. As our object-
ive is to determine which parameters are responsible for
large errors in the surface wave, we conclude that the
placement of the observation points relative to the recon-
structed bathymetry is influential on the surface wave
accuracy. Further analysis on the best location for the
observations relative to the bathymetry is conducted
using second order adjoint sensitivity analysis in Part II
(Khan and Kevlahan, 2020).

A key observation is that for both bathymetry recon-
struction error and the surface wave error, the amplitude
of the initial conditions # was non-influential for each
sub-region. However, the lack of sensitivity to / can be
explained by the fact that all values where the amplitude
ratio condition was violated (and subsequently the assimi-
lation was non-convergent) were removed from the sam-
ple used to derive sensitivity indices. Therefore, we
cannot conclude that # is non-influential in the bathym-
etry reconstruction and the resulting free surface wave,
on the basis of these results alone.

The inclusion of more parameters in the sensitivity ana-
lysis, like the final control time z=T7, or the resolution of
the numerical approximation (both of which would impact
the accuracy of the reconstructed bathymetry) should be
addressed in future work. Additionally, quantifying the sen-
sitivity of the bathymetry reconstruction to interaction
between various inputs would also be valuable, especially

considering the correlation between # and Z? observed in
Sec. 6. Sensitivity analyses of the accuracy of the observa-
tions themselves would also provide insight. In atmosphere
and ocean models, observation measurements are usually
noisy, and therefore a measure of their sensitivity to the
observation operator would be illuminating for future work
(Wagener and Pianosi, 2019).

The present analysis proved insightful for an idealised
model of data assimilation for the 1-D shallow water
equations with Gaussian initial conditions and bathym-
etry. In order to use these results for more realistic fore-
casts, the inevitable next step is to extend this approach
to a full 2-D model, and include multiple forms of
bathymetry, such as sandbar or ridge formations. The
data assimilation algorithm for reconstructing bathymetry
from surface wave observations presented here in 1-D has
demonstrated the potential of this approach for more
realistic 2-D applications.

Our focus on how the bathymetry and the initial con-
ditions shapes affect reconstruction of the bathymetry
from free surface observations is a novel contribution to
the literature reviewed in Sec. 2. Additionally, we hope
the sensitivity analyses and results observed here can
pave the way for more refined approaches to incorporate
bathymetry estimates in tsunami models. Extending this
approach to 2-D, and verifying the main conclusions
observed here, would contribute significantly improve the
representation of bathymetry in tsunami models.
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