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Variational Assimilation 
of Surface Wave Data for 
Bathymetry Reconstruction. 
Part II: Second Order 
Adjoint Sensitivity Analysis

R. A. KHAN 

N. K.-R. KEVLAHAN 

Data assimilation methods have been proposed as a technique for reconstructing ocean 
bathymetry from observations of surface waves. To better understand this technique, 
we use second order adjoint (SOA) variational analysis to derive the sensitivity of the 
surface wave error to perturbations in the observations (such as their number, spacing 
and position relative to bathymetry profiles), given the reconstructed bathymetry. We 
apply SOA to the data assimilation scheme for the one-dimensional shallow water 
equations for bathymetry detection introduced in Khan and Kevlahan (2021). We derive 
the Hessian of a cost function J representing the error between forecast surface wave 
and the observations. We then use SOA to derive the sensitivity of the surface wave 
error given the reconstructed bathymetry to perturbations in the observations for both 
a compactly supported Gaussian bathymetry, and a sandbar profile bathymetry. We 
investigate the correlation between (i) low sensitivity of the surface wave given the 
reconstructed bathymetry, to the observations, and (ii) the error in the bathymetry 
reconstruction, as well as the sensitivity of the data assimilation scheme to perturbations 
of its parameters. Additionally, we determine whether the conclusions in Khan and 
Kevlahan (2021) for bathymetry reconstruction can be verified by the present sensitivity 
analysis. We observe that relatively large errors in the bathymetry reconstruction and 
large relative amplitudes of the Gaussian and sandbar bathymetry profiles are associated 
with higher sensitivity of the surface wave reconstruction error to the observations. 
However, sensitivity decreases when the observation network has a greater coverage of 
the bathymetry. Significantly, the sensitivity of the surface wave to the observations is 
orders of magnitude lower than the bathymetry reconstruction error itself. These results 
suggest optimal configurations of surface wave observations, help minimise costs for 
making observations, and could enhance the accuracy of tsunami models.
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1 INTRODUCTION

Data assimilation is integral to accurate climate, 
atmosphere and ocean modelling. Variational data 
assimilation algorithms such as 3D-VAR, 4D-VAR, and 
Kalman filtering techniques like the Ensemble Kalman 
filter (EnKF) are regularly used for numerical weather 
prediction and forecasts of climate trends. For example, 
data assimilation is used by the European Centre for 
Medium Range Weather Forecasting (ECMWF) for climate 
reanalysis, where archived observations are ‘reanalysed’, 
in order to create a comprehensive global data set 
describing the recent history of the earth’s climate, 
atmosphere and oceans. Data assimilation is used in 
tsunami forecast models, where observations of surface 
waves are used to reconstruct missing information such 
as initial conditions, and subsequently predict impact at 
coastlines (Nakamura et al., 2006). Tsunami modelling 
requires accurate knowledge of the bathymetry, and 
data assimilation has also been proposed as a technique 
to reconstruct bathymetry from measurements of 
surface waves. The goal is to reconstruct the bathymetry 
sufficiently accurately to generate precise predictions of 
the surface wave. This paper focuses on the sensitivity 
problem for bathymetry reconstruction.

In Part I (Khan and Kevlahan, 2021) of this study we 
developed and evaluated a variational data assimilation 
algorithm for the one-dimensional nonlinear shallow water 
equations. This algorithm estimates bathymetry using a 
finite set of observations of surface wave height. Our goal 
was to investigate whether variational data assimilation 
is a feasible method to estimate ocean bathymetry, in 
the shallow water model. The computational results 
presented in Part I indicated that convergence to the true 
bathymetry is improved by including more observation 
locations positioned ahead of the bathymetry. A 
necessary condition for convergence of the bathymetry 
reconstruction is that the amplitude of the initial conditions 
is less than 1% of the bathymetry height. Additionally, we 
investigated the effect of varying the amplitudes of the 
bathymetry and initial condition, and concluded that a 
necessary condition for data assimilation convergence 
was that the amplitude of the initial conditions be at least 
two orders of magnitude smaller than the normalised 
amplitude of the bathymetry. We then used density-based 
global sensitivity analysis (GSA) to quantify the sensitivity 
of the surface wave to the bathymetry reconstruction 
error. We concluded that reconstructing the bathymetry 
with a relative error of about 10% is sufficiently accurate 
for surface wave modelling in most cases.

Our objective for Part II of this study is to more 
rigorously quantify the sensitivity of the assimilation 
algorithm results to perturbations to the observations, 
such as to their number, spacing and positions relative 
to the bathymetry. To do this we use the second order 
adjoint (SOA) method developed by Shutyaev et al. 

(2018). The sensitivity analysis in the present study is 
complementary to the previous work since it quantifies 
how the results of the bathymetry assimilation change 
when the observations are perturbed.

In tsunami modelling we wish to choose the number 
and positions of the observation network such that the 
accuracy of the surface wave forecast is maximised, 
given some optimal reconstruction of the bathymetry. 
In order to solve this problem we need to quantify how 
sensitive the surface wave reconstruction is, given the 
reconstructed bathymetry, to the choice of observation 
configuration. To do this we define a response functional 
G as the least squares error in the surface wave height η(x, 
t) based on the reconstructed bathymetry β(b) compared 
to that produced by the true bathymetry β(t),

	 ( )[ ] ( ) ( )
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( ) ( ) ( )
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where η(x, t) depends on its velocity u(x, t) through 
the shallow water equations. Let us define mj(t) to 
be observations of the surface wave at positions {xj} 
for j = 1, …, Nobs at continuous times t. (Recall that the 
reconstructed bathymetry β(b) is itself computed from 
observations of the surface wave using a variational data 
assimilation scheme.) Then,

dG /dm is the sensitivity of the error in the surface 
wave to perturbations in the observations 
{mj(t)}, when the bathymetry is reconstructed 
from observations of the surface wave using the 
assimilation algorithm.

Our goal in this paper is to construct the response functional 
dG /dm, and then characterise its dependence on various 
types of perturbations of the observations {mj(t)}. These 
perturbations include changes in the positions of the 
observations {xj}, or perturbations in the shape of the true 
bathymetry (such as the amplitude or standard deviation 
of a Gaussian bathymetry profile) that result in a change 
in {mj(t)}. The choice of continuous or discrete time does 
not fundamentally change the results, and is made for 
mathematical convenience. In the discrete case (dG /dm)
[x] is an Nobs × Nt matrix (a function of the space variable 
x), where Nt is the temporal resolution (e.g. the number 
of time steps), and the mi,j entry of dG /dm represents 
the sensitivity of the surface wave error (4.1) to the i-th 
observation at the j-th time step.

Our analysis answers the following three questions:

(I)	 How does the sensitivity of the surface wave error 
to perturbations in the measurements depend on 
the magnitude of the error of the reconstructed 
bathymetry?

(II)	� How does the sensitivity of the surface wave 
error depend on changes to parameters in 
the assimilation scheme (e.g. coverage of the 
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bathymetry feature by the the observation points)? 
Is there an optimal spacing of observations that 
minimises the sensitivity?

(III)	� Are our qualitative computational observations 
from Khan and Kevlahan (2021) verified by the 
results of the sensitivity analysis?

In this study, we use the SOA algorithms outlined in 
Shutyaev et al. (2018) to analytically derive the Hessian of 
the cost function (2.4) minimised in the data assimilation 
scheme. We then take advantage of its properties to 
extract expressions for dG /dm. We present a numerical 
implementation of this algorithm for bathymetry data 
assimilation.

The variational data assimilation scheme is summarised 
in Section 2. Section 3 gives the analytical derivation of 
the Hessian and subsequent SOA sensitivity analysis for 
the bathymetry reconstruction data assimilation results. 
Section 4 presents the numerical implementation of the 
sensitivity analysis for the bathymetry data assimilation. 
Finally, Section 5 summarises the main results and 
suggests further considerations for future analyses.

2 VARIATIONAL DATA ASSIMILATION 
FOR BATHYMETRY RECONSTRUCTION

We briefly summarise the data assimilation scheme for 
bathymetry reconstruction as implemented in Khan and 
Kevlahan (2021). The 1-D irrotational and incompressible 
nonlinear shallow water equations are,
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Where β is the bathymetry to be reconstructed. We 
assume that the initial conditions ϕ(x) are compactly 
supported, and that the boundary conditions are 
periodic on a domain Ω = {x ∈ ℝ; –L ≤ x ≤ L}. The system is 
integrated in time for t ∈ [0 T], where T = 2L, and

	 [ ]( )2L 0, ,Y T= W´ � (2.2)

	 ( )2LpY = W � (2.3)

are the state space and the bathymetry function space 
respectively.

In order to find classical solutions of (2.1), we require 
the gradient ∇J (β) to be in the Sobolev space H2(Ω), 

which imposes additional smoothness requirements 
on β and its derivative βx. In Khan and Kevlahan (2021), 
we implement a low pass filter, which removes higher 
frequencies in our reconstruction and effectively 
increases the regularity of our estimate of β at each 
iteration, raising it from the space L2(Ω) to H2(Ω).

We assimilate a set of measurements y(o)(t), which 
are observations of the true surface height perturbation 
η(x, t) at discrete positions {xj}, j = 1, …, Nobs and times 
t. This representation of the observation operator 
in time is convenient in the “optimise and then 
discretise” approach we have used for our variational 
assimilation scheme, and does not impose any 
smoothness requirements on the time dependence of 
the measurements. Discrete measurements at times tk 
can be represented easily as Dirac delta functions δ(t 
– tk) in the continuous integrals representing the cost 
function (2.4).

We assume that we do not have complete information 
about β(x), and our objective is to minimise the error 
between the forecast solution η(x, t) given some guess 
for β, and the observations y(o)(t). We define this error in 
terms of a cost function,
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where the Dirac delta functional is used to sample the 
state variable η at the same spatial locations as the 
observation points, and the summation from j = 1 to M 
represents the cumulative error at all observation points. 
The optimal bathymetry that minimises this cost function 
is the control variable satisfying

	 ( )2 ( ) 0,L bb = � (2.5)

where β(b) is the optimal approximation of the bathy
metry β(x), and is the local minimizer of (2.4).

Since the focus of this work is the relationship between 
the error in the bathymetry reconstruction and the 
error in the resulting surface wave, we assume that the 
observations are free of noise. Actual applications would 
require stabilisation of noise present in the real-world 
measurements, which can be achieved by inclusion of a 
Tikhonov regularisation term in (2.4).

We note that the variational approach only works for 
continuous solutions, because the integration by parts 
used to extract ∇J L2(β) fails for discontinuous solutions. 
In principle, any discontinuities could be handled by 
including the position of any discontinuities as new 
variables, and then integrating by parts separately 
on each side of the discontinuity. This would require 
additional “boundary conditions” connecting the two 
solutions. However, in this paper we assume that the 
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initial conditions and integration times are such that the 
solution remains continuous. In practice, there is always 
some diffusion in realistic simulations, either numerical 
or explicit horizontal Laplacian or hyperdiffusion, that 
ensures solutions remain smooth.

We formulate a Lagrangian constrained by (2.1) and 
some appropriately chosen adjoint variables (Lagrange 
multipliers) (η*, u*) that are solutions of
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System (2.6) is chosen such that when the Lagrangian 
is integrated by parts in space and time, we are able to 
use the Riesz representation theorem and the Gâteaux 
derivative representation of J′(β; β′) given an arbitrary 
perturbation β′ to derive
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For a more detailed analysis of this derivation we refer 
the reader to Khan and Kevlahan (2021). Finally, the 
optimal reconstruction of the bathymetry β(b) is where
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In the assimilation scheme we use a gradient descent 
algorithm to iteratively find the optimal reconstruction 
of the initial conditions β(b) given some initial guess, such 
that (2.4) is minimised.

3 SECOND ORDER ADJOINT 
SENSITIVITY ANALYSIS

To derive the sensitivity the surface wave error to to 
perturbations in the observations, given the reconstructed 
bathymetry, using the methods outlined in Shutyaev 
et al. (2018) we need to formulate expressions for the 
Hessian of the cost function (2.4). Shutyaev et al. (2018) 
provide a general method based on properties of the 

Hessian, however they do not provide a derivation of 
the Hessian itself, which means we need to extend our 
variational adjoint analysis used to find the gradient of J, 
to find the Hessian of J.

While works such as Wang et al. (1992) provide a 
derivation of the Hessian vector product for the initial 
conditions assimilation, their derivation is for the finite 
dimensional case, and assumes a vector form for both 
the state variables and the control variable. In our case 
the derivation of the first order adjoint is for the infinite 
dimensional case in the space L2(Ω) over some domain 
Ω, where we used the L2 inner product and the Riesz 
representation theorem to extract our gradient ∇L2J (ϕ), 
and subsequently used a low pass filter in the numerical 
implementation to raise it from the space L2(Ω) to 
H2(Ω). For that reason, a derivation of the Hessian in 
the same functional space as for our first order adjoint 
is appropriate, and in doing so we aim to extract the 
‘Gâteaux Hessian’ for Hilbert spaces with the following 
definition:

If f is twice Gâteaux differentiable at x, we can 
identify D2f(x) with the operator ∇2f(x) ∈ B(H) in 
the sense that
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where we call ∇2f(x) the (Gâteaux) Hessian of f at x, B(H)
is the space of continuous linear functionals in H (in our 
case L2(Ω), and Df(x)y is the Gâteaux derivative of f in the 
direction y.

In the remainder of this section we present the derivation 
of the Hessian of J (β), and subsequently the sensitivity 
analysis for the optimal bathymetry reconstructed using 
data assimilation of surface wave measurements, using 
methods outlined in (Shutyaev et al., 2018).

3.1 HESSIAN OF J (β) FOR BATHYMETRY 
RECONSTRUCTION
We know that the Gâteaux derivative of J with respect 
to the bathymetry and some perturbation direction β′ is
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Consider a second perturbation of J ′(β; β′), b̂ where 
we have β → β + εb̂. Then the second order Gâteaux 
derivative of J is
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We consider a regular perturbation expansion of the 
integrand, approximating it by the series f0 + f1ϵ + (ϵ2). 
We can see this is equivalent to a Taylor expansion about 
ϵ = 0. Then
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In order to find the term f1, we recognise that this is equival
ent to the coefficient of the linear term in the Taylor appro
ximation, and ( ) ( )1 0
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Thus, we require u and adjoint variable η* given the 
perturbed bathymetry ˆb eb+ . To find the resulting forward 
and adjoint systems given the perturbation, we assume this 
perturbation b̂ in the bathymetry produces the following 
perturbations to our state and adjoint variables;

•	 u → u + û and η → η + ĥ for the shallow water system.
•	 u* → u* + ū and η* → η* + h  for the adjoint system.

The resulting perturbed model for the state variables û, ĥ is
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and the second order adjoint (SOA) model is
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We define the Hessian H acting on the perturbation b̂ as 
the successive solution of the perturbed and SOA models 
such that
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This form of the Hessian of the cost function can be 
verified using a modified form of the kappa test analysis 
outlined in Kevlahan et al. (2019),
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If the derivations are correct, κ(ϵ) should converge to 1 as 
ϵ → 0. The results for the kappa test for the Hessian H are 
presented in Section 4 in Figure 1(d).

A key observation is that we have only derived the 
action of the Hessian on some perturbation b̂, whereas 
in Khan and Kevlahan (2021) we were able to derive 
the gradient of J(ϕ) for any arbitrary perturbation η′. It 
does not seem possible to proceed as before and find the 
Hessian for any arbitrary perturbation using variational 
methods. This is because the gradient ∇J is an element 
of the Hilbert space L2(Ω), whereas the Hessian H is 
an operator defined on this space. Indeed, Wang et al. 
(1992) were also limited to derivation of a ‘Hessian vector 
product’ in the finite dimensional case. Despite this, the 
current derivation is sufficient for the following sensitivity 
analysis.

3.2 SENSITIVITY ANALYSIS FOR BATHYMETRY 
RECONSTRUCTION
Define the optimality system for bathymetry assimilation 
as the successive solution of
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Where λ(x) is the optimal reconstruction of the bathymetry 
β(x) giving:



192Khan and Kevlahan Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.36

	
0

*
0,

T

u dt
x
h¶

=
¶ò � (3.10)

and m(t) are the observations taken at positions {xj} at 
for j = 1, …, Nobs at continuous times t. We impose periodic 
boundary conditions in space, where the domain is Ω = 
{x ∈ ℝ; x ∈ [–L, L]}.

Let us consider some arbitrary response functional 
G(η, u, λ). Then, by the chain rule, the sensitivity of G to 
perturbations in the observations m can be defined as
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Let us now consider a perturbation in the observations 
m → m + m̂ giving

•	 u → u + û and η → η + ĥ for the shallow water system 
(3.8).

•	 u* → u* + *u  and η* → η* + *h  for the adjoint system 
(3.9).

•	 λ → β + l̂ for the optimal bathymetry.

The perturbed system becomes
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Then we can say
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where Y and Yp are the state space, and the bathymetry 
function space as defined in (2.2), and (2.3) respectively. 
Now, let us introduce some adjoint variables Pi, i = 1, …, 
5, where Pi ∈ Y, i = 1, …, 4, and P5 ∈ Yp. Then if we take the 
inner product of P1 and P2 with the systems (3.12), inner 
product of P3 and P4 with (3.13), and P5 with (3.14), we get 
the following duality relation
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Integrating (3.16) by parts in space and time, we are 
able to transfer the derivatives onto the adjoint variables 
Pi, i = 1, …, 5 instead of on û, ĥ, *u , *u . If we pick the 
following systems for Pi,
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then as a result of integration by parts and the choice of 
systems for Pi, (3.16) reduces to
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By the Riesz representation theorem and equivalence 
of inner products in (3.15) and (3.20), we define the 
sensitivity of the response functional G(η, u, λ) to 
perturbations in the observations m as
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P x t
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¶
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We note that, because of the Dirac delta functional, the 
integrals represented by the inner products on the right-
hand side of (3.20) are well defined, even with discrete 
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observations in space. As we are only perturbing the 
locations of the measurements (i.e. the parameters 
xj of the Dirac function), this should not affect the 
smoothness required in the inner product on the left-
hand side, which logically should be in the intersection 
of the spaces Y and Yp.

Equations (3.18) and (3.17) are a coupled system of 
four variables, with two initial time conditions and two 
final time conditions, making it challenging to solve. 
However, we observe that (3.17) is equivalent to the per
turbed system for the Hessian ∇2J(ϕ) (3.1) with P5 = b̂(x), 
and (3.18) is equivalent to the second order adjoint (SOA) 
system (3.1) with forcing term (–∂G/∂η, –G/∂u)T. Let us 
replace P5 with the auxiliary variable ν. Then Shutyaev 
et al. (2018) show that the solutions to the adjoint 
systems (3.17) and (3.18) are equivalent to solving

	 n =  ,� (3.22)

where F is defined as
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and γ is the solution of the forced first order adjoint 
system
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Under the assumption H is positive definite (as our cost 
function J is convex), we can find a unique ν for every 
F such that Hν = F Shutyaev et al., (2018). We are 
then able to find the sensitivity of the surface wave to 
perturbations in the measurements, ∂G/∂m, by the steps 
outlined in Algorithm 1.

4 RESULTS

The results of this analysis are a significant extension 
and complement to the work undertaken in Khan 

and Kevlahan (2021). In this section, we present the 
numerical implementation of the second order adjoint 
sensitivity analysis for the bathymetry assimilation with 
a travelling surface wave over a Gaussian bathymetry 
and a sandbar profile bathymetry.

We recall that the response functional G is the least 
squares error between the surface wave given the true 
bathymetry, and the surface wave resulting from the 
optimally reconstructed bathymetry,

	 ( )[ ] ( ) ( )
2

( ) ( ) ( )

0
, , – d ,

T
b t bu x th b h b h bé ù= ê úë ûò � (4.1)

and that G depends implicitly on the measurements 
mj(t) (taken at positions {xj} for j = 1, …, Nobs at times t, 
which may be either continuous or discrete), through 
the reconstructed bathymetry η(β(b)). We now use the 
Algorithm 1 to find ∂G/∂m, the sensitivity of the error in 
the surface wave to perturbations in the observations 
{mj(t)}, when the bathymetry has been reconstructed 
using the assimilation algorithm outlined in Khan and 
Kevlahan (2021).

As outlined in Section 1, our analysis aims to answer 
the following three questions:

(I)	 How does the sensitivity of the surface wave error 
to perturbations in the measurements depend on 
the magnitude of the error of the reconstructed 
bathymetry?

(II)	� How does the sensitivity of the surface wave 
error depend on changes to parameters in 
the assimilation scheme (e.g. coverage of the 
bathymetry feature by the the observation points)? 
Is there an optimal spacing of observations that 
minimises the sensitivity?

(III)	� Can our qualitative observations from Khan and 
Kevlahan (2021) be verified by the results of the 
sensitivity analysis?

We examine these questions one by one, beginning with 
Question I.

4.1 QUESTION I
We analyse how the sensitivity of the surface wave error 
to perturbations in the measurements depends on the 
magnitude of the error of the reconstructed bathymetry.

If the error in the bathymetry reconstruction is 
defined as

1: Define 0– dT
xu tl g¶ ò ¶ , where γ is the solution of (3.24).

2: Solve Hν = F for ν, where H is the Hessian operator acting on ν, and F is the forcing term defined by (3.2) in step 1.

3: Solve the system (3.17) by substituting the control variable P5(x) with ν (as found in step 2) to find the adjoint variable P3(x, t).

4: Define ( )31 ,M
m j P x t=¶ = å , where P3 has been sampled at the locations of the observation points {xj}.

Algorithm 1 Calculation of Second Order Adjoint Sensitivity ∂mG for Bathymetry Assimilation.
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(where β(t) is the true bathymetry and β(b) is the optimal 
reconstruction), then our objective is to understand 
whether a relatively higher error for the bathymetry 
reconstruction (4.2) is correlated with increased sensitivity 
∂G/∂m where the response functional G is given by (4.1). 
This question is significant because high sensitivity ∂G/∂m 
is undesirable, as it implies that variations in the position 
and number of observations have a large effect on the 
accuracy of surface wave predictions

To answer this question, we compare the error in 
convergence to the exact bathymetry of the optimal 

reconstruction as seen in Khan and Kevlahan (2021) and 
the sensitivity ∂G/∂m for the cases considered. These 
results are summarised in Table 1, and shown in Figure 1.

We recall that these cases were chosen to analyse 
convergence in scenarios where the support of ϕ(x) and 
the support of β(t)(x) overlap or are disjoint, and to evaluate 
the effect of a surface wave with compactly supported 
initial conditions (Cases I and II) or periodic initial 
conditions (Case III). We consider Gaussian and sandbar 
profiles for the bathymetry as a 1-D approximation for 
peaks and ridges characterising ocean bathymetry. The 
results of the kappa test (3.1) for each case are given 
in Figure 1(d). Using these data assimilation results, we 
implement Algorithm 1 to find the sensitivity of the cost 

CASE BATHYMETRY INITIAL CONDITIONS ERROR SENSITIVITY

I Gaussian Gaussian 𝒪(10–3) 𝒪(10–9)

II Sandbar Gaussian 𝒪(10–2) 𝒪(10–5)

Table 1 Cases considered for data assimilation algorithm, and comparison of the relative L2 reconstruction error (4.2) in the bathymetry 
as shown in Figure 4 of Khan and Kevlahan (2021), and the time integrated sensitivity 0 /T m dtò ¶ ¶  of the surface wave error to the 
observations.

Figure 1 (a)–(c): The three test cases for bathymetry β(x) (dashed line) and surface wave initial conditions ϕ(x) (solid line) for the data 
assimilation. The surface wave initial conditions ĥ, bathymetry b̂, and average depth H are not to scale in these diagrams, as ĥ was 
restricted to 1% of b̂ across most of the numerical analyses, and β = 0.1. (d): The log error in the convergence of the kappa test in 
(3.1), to verify the numerical calculation of the Hessian. (e) and (f): Hν (red) and F (blue) for cases I and II where ν is the solution of 

Hν = F found using the matlab linear solver bicgstabl.
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function G to the observations m.
Recall that our analysis here aims to help explain 

the convergence results presented in Part I. (Khan 
and Kevlahan, 2021). In Part I the best convergence 
was for Case I, with a minimum relative bathymetry 
reconstruction error of (10–3) (Figure 4 in Khan and 
Kevlahan (2021)). For Cases II and III, the optimal results 
did not accurately recover the exact bathymetry, and 
the error in the reconstructed convergence error was 
correspondingly larger, (10–2) and (10–1) respectively.

To find the optimal ν such that Hν = F as in (3.22), 
we used the Bi-Conjugate Gradient Stabilised Method 
(BICGSTAB) to solve the system for ν. Figure 1(e) and (f) 

illustrate the convergence of Hν to the right hand side F 
for the optimal ν. The BICGSTAB method is a Krylov linear 
solver designed for non-symmetric linear operators, 
and was found to prove better convergence in this 
analysis than with comparable solvers such as GMRES 
(Generalised Minimum Residual Method). We observe 
that the error in convergence in Case I (Figure 1(e)) is due 
to noise in the right hand side F, and that Hν in Figure 1(f) 
shows some overfitting. A reasonable tolerance for 
convergence of BICGSTAB is a relative residual error 
less than 10–4, however due to the small-scale noise 
shown in Figure 1(e) and (f), this tolerance was not met. 
Convergence is improved for BICGSTAB when the system 
is preconditioned (Barrett et al., 1994). Consequently, 
errors may be due to the fact that preconditioners for the 
operator H were not easily computable in the algorithm, 
and hence were not used. As the error in Figure 1(e) and  
(f) seems to be due to a small amount of noise, for the 
purposes of this study we consider the convergence to 
be satisfactory.

Thus, assuming that we have found the optimal value 
for ν (representing the adjoint variable P5) given F and 
the operator H, we can derive the sensitivity ∂G/∂m = δ(x 
– xj)P3(x, t) as the solution of the system (3.17) using ν 
as the bathymetry perturbation λ, where δ(x – xj) is the 
observation operator mapping the state variables onto 
the observation space. 

The sensitivities for Cases I and II are presented 
in Figure 2(a) and (b) as a function of time at three 
observation points: 1 (first), 23 (centre) and 45 (last). 
We computed the sensitivities for Nobs = 45 observation 
points, as this value produced optimal convergence in 
Khan and Kevlahan (2021). The observation points are 
spaced equidistantly with Δx = 0.06 and with the first 
point at 0.1L. We recall that the sensitivity dG/dm is an 
Nobs × Nt matrix.

Figure 2(a) shows that for Case 1 the sensitivity at each 
observation point is small and similar in magnitude, 
(10–8). Comparing the time dependence at the different 
observation points, we notice that the oscillations are 
largest at the times when the surface wave is observed 
by the relevant observation point even though the 
amplitude of the sensitivity remains low. Since the 
relative convergence error we observed in Part I for the 
Case I bathymetry reconstruction was small, (10–4), our 
initial hypothesis is that a low error in the reconstructed 
bathymetry is correlated with low sensitivity of the 
surface wave error to perturbations in the observations 
for this particular reconstructed bathymetry.

To further substantiate this observation, we compare 
the results for Cases I and II in Figure 2(a) and (b). We 
see that the sensitivity is much higher for Case I, (10–4) 
at the same three observation points. The oscillations 
indicating the passing wave are present for Case II as well, 
and have a relatively lower frequency, possibly due to the 
flatter curvature of the sandbar bathymetry compared 
to a Gaussian bathymetry, resulting in a more gradual 
effect on the surface wave. We note that the bathymetry 
reconstruction error (4.2) for Case II is (10–2), an order of 
magnitude higher than for Case I. Therefore, the increased 
sensitivity shown in Figure 2(b) for Case II compared to 
Case I is correlated with a larger reconstruction error in 
the bathymetry. The fact that the sensitivity is at least 
three orders of magnitude higher than Case I further 
strengthens our initial hypothesis that a higher error in 
bathymetry reconstruction leads to higher sensitivity of 
the surface wave error to perturbations in the observations.

Figure 2 (a, b) The sensitivity dG/dm as a function of time (with final time t = T), for assimilation results for Case I. There are Nobs = 45 
observations, equidistantly spaced with Δx = 0.06 and with the first point at 0.1L. Results show dG/dm at three distinct observation 
points mj, where j = 1 (first observation), 2

obsNé ù
ê úë û

 (the median observation), and Nobs (the last observation). (c, d) The time integrated 
sensitivity 0 / dT m tò ¶ ¶  at each observation point.
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Figure 2(c) and (d) shows the time integrated sensitivity 
across all 45 observation points for Cases I and II. As we can 
see, the hypothesis that large bathymetry reconstruction 
errors lead to higher sensitivity of the surface wave error 
to perturbations in the observations is confirmed across 
the the complete set of observation points.

We summarise the results comparing sensitivity of the 
surface wave error to perturbations in the observations 
and relative error in bathymetry reconstruction in Table 1. 
We now consider Question II, by observing the trend 
when we perturb influential parameters in the algorithm, 
such as the placement and number of observation points.

4.2 QUESTION II
We analyse the sensitivity of the surface wave error to 
perturbations in the in the locations of the of observation 
points, as well as on the shape of the bathymetry. Our 
objective is to determine if there is an optimal spacing 
of the observations that minimises the sensitivity. 
Results are presented for Cases I and II, where we vary 
the spacing of observation points, and shape of the 
bathymetry respectively. The latter consideration is 
motivated by the significant difference in sensitivity we 
observed between Case I (Gaussian bathymetry with 
relatively low standard deviation) and Case II, (a sandbar 
bathymetry that is less localized).

First, we consider the sensitivity of the surface wave 
error to the spacing of the observation points, keeping the 
total number of observation points fixed. Our objective is 
to find the spacing of a fixed number of uniformly spaced 
observation points that minimises the sensitivity of the 
surface wave error to perturbations in the observations. 
We choose Nobs = 45 for these experiments. We run several 
iterations of the data assimilation algorithm, where in 
each iteration the position of the last observation point 
x45 is fixed, and as Δx is varied, the the first observation 
point is shifted back (as in Figure 3d, e and f).

We wish to observe how the resulting sensitivity of 
the surface wave error to the observations changes, and 
thus answer the question: does increasing the spacing of 
the observations (and consequently increasing coverage 
of the domain by observation points) always lead to a 
decrease in the sensitivity dG/dm? If so, the implication 
for tsunami models is that, given a fixed number of evenly 
spaced observation points, it is best to choose a spacing 
that covers as much of the bathymetry feature as possible.

However, we also need to ensure that the spacing 
is small enough that the smallest scales in the surface 
wave resulting from the bathymetry can be observed. 
To verify this, in Figure 4 we show the spectrum of the 
surface wave with and without bathymetry (for both 
Cases I and II). We observe that for both cases, the 

Figure 3 Case I: The time integrated sensitivity of the surface wave error 0 / dT m tò ¶ ¶  as the location of the first observation point is 
varied such that the observation points cover a greater proportion of the domain and the initial conditions support.
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bathymetry does not introduce scales smaller than those 
of the initial condition into the surface wave solution. In 
other words, it is sufficient that the observation points 
are spaced closely enough to resolve the initial conditions 
(i.e. one half the minimum effective length scale of the 
initial conditions).

Figure 3 shows the time integrated sensitivity 

0 / dT m tò ¶ ¶  of the surface wave error for Case I, 
corresponding to different observation point spacings 
Δx. The values of Δx and the resulting observation 
configurations are given in the bottom panels of Figure 3. 

We observe that for Case I, despite a large variation in the 
sensitivity between the first and last observation points, the 
amplitude of the sensitivity dG/dm is small for each choice 
of Δx, at most (10–8). This suggests that for Gaussian 
bathymetry and initial conditions (as seen in Figure 3(d)–

(f)), larger spacing of observations (or more coverage 
of the bathymetry) does not significantly increase the 
sensitivity of the error in the surface wave produced by the 
reconstructed bathymetry, to the observations mj(t).

Results for Case II are shown in Figure 5. For easy 
comparison across results we give the semi-log graph of 

Figure 4 (a, c) The surface wave at t = 1.95 given a flat bathymetry (red), and non-zero bathymetry (blue). The amplitudes of 
bathymetry and initial condition are not to scale, however the location is accurately represented. (b, d) Spectrum of the surface wave 
given a flat bathymetry and non-zero bathymetry for Cases I and II respectively.
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Figure 5 Case II: the absolute time integrated sensitivity of the surface wave error 0| / d |T m tò ¶ ¶  as the location of the first observation 
point is varied such that the observation points cover a greater proportion of the domain and the initial conditions support.
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the absolute time integrated sensitivity 0| / d |T m tò ¶ ¶ . 
Increasing the spacing Δx dramatically improves 

0| / d |T m tò ¶ ¶ . We note that this may be due to either 
the increased coverage of the bathymetry support by the 
observation points, or the larger spacing. We observe that 
configurations of observations for Case II in Figure 5(b) 
and (c) show larger coverage of the bathymetry feature 
by observations than in 5(a), where only half of the 
bathymetry is observed by the right propagating surface 
wave. Based on this result, we suggest that while 
increasing the spacing Δx does not have a significant 
impact on 0| / d |T m tò ¶ ¶ , increasing the coverage of 
the observation network such that it covers the support 
of the bathymetry, results in lower sensitivity of the 
response functional G to the observations mj(t).

There is a clear difference between Cases I and II, 
where we have the same initial conditions (Gaussian) 
but different bathymetry. To better understand the 
reasons for this difference, in our next analysis we run 
trials of the data assimilation scheme where we begin 
with a Gaussian, as in Case I, and iteratively increase 
the standard deviation of the bathymetry such as it 
becomes closer in shape qualitatively to a sandbar 
type bathymetry, with flatter curvature. We consider 
two different positions for the initial condition, given in 
Figure 6(a)–(f) and 6(g)–(l) respectively. This is because for 
Case I the bathymetry is to the right of the support of 
the initial condition, and so we replicate this positioning 
in Figure 6(a)–(f). However, in Case II the support for both 
the bathymetry and the initial conditions is centred at 
x = 0, and so we replicate this for the set of results in 
Figure 6(g)–(l).

For both initial conditions, it is clear that the flatter 
the bathymetry shape (i.e. the longer the bathymetry 
feature), the higher the sensitivity of the response 
functional to the locations of the observations. This 
suggests that the position of the bathymetry relative 
to the initial conditions support does not influence 
sensitivity, but that extent of the bathymetry does. Each 
trial was conducted with Nobs = 45 and Δx = 0.1, with 
the position of the first observation at x1 = –L (complete 
coverage of the domain by the observations).

Having gained some insight into the influence of 
spacing and number of points on sensitivity, our ultimate 
objective is to gauge whether these conclusions regarding 
the sensitivity of the surface wave error produced by the 
bathymetry reconstruction to observations confirm and 
help us understand the main conclusions of Khan and 
Kevlahan (2021).

4.3 QUESTION III
In Khan and Kevlahan (2021) we presented results for 
optimally reconstructing bathymetry using surface wave 
observations in a variational data assimilation algorithm. 
We concluded that the data assimilation results are 
improved by (i) increasing the number of observation 

points, and (ii) maintaining an optimal ratio between the 
amplitude of the initial conditions and bathymetry relative 
to the average depth. We also observed that the error in the 
surface wave produced by the reconstructed bathymetry 
was orders of magnitude smaller than the error in the 
bathymetry reconstruction, suggesting low sensitivity of 
the surface wave to bathymetry reconstruction error.

In terms of the current sensitivity analysis, the ques
tion we wish to address is:

Does satisfying the aforementioned conditions 
(i) and (ii) also result in low sensitivity of the 
surface wave error (4.1) to perturbations in the 
observations {mj(t)}, and is this sensitivity also 
orders of magnitude lower than the reconstruction 
error in the bathymetry?

We provide an answer by verifying the following con
clusions using the sensitivity analysis results.

C.i	 Does a sub-optimal ratio of the amplitude of the 
initial conditions to bathymetry (i.e. those that were 
found to produce non-convergent results in Khan 
and Kevlahan (2021)) result in greater sensitivity of 
the surface wave error to observations?

C.ii	� If the reconstruction error in the bathymetry is 
high (i.e. at least 10%), does that imply that the 
sensitivity of the resulting error in the surface wave 
to observations is also proportionately high?

(C.i) is based on results in Khan and Kevlahan (2021), 
where we analysed the affect of varying ˆˆ /h b and b̂/H 
on the resulting reconstruction error in the bathymetry. 
Here represents the amplitude of the initial condition, b̂ 
is the amplitude of the bathymetry, and H is the average 
sea depth (normalised to H = 1). We observed that 
convergence was sub-optimal when ˆˆ /h b was greater 
than (10–2) and bathymetry amplitudes were large 
(over 10% of the average sea depth H).

Since satisfying ˆˆ /h b ≤ (10–2) is necessary for 
convergence of the data assimilation, we do not explicitly 
violate this condition in our analysis. Instead, we analyse 
the effect on the sensitivity of the surface wave error to 
observations, as b̂ is varied (and ĥ is fixed at 1% of b̂). 
The relationship between the ratio b̂/H and the sensitivity 
∂G/∂m can be observed in Figures 7 and 8. The figures 
correspond to Cases I and II respectively. We present the 
time-integrated sensitivity as the bathymetry height b̂ is 
varied from 0.01 to c, where c is the approximate cut-off 
value beyond which the surface wave error was larger 
than 0.1% (as shown in Khan and Kevlahan (2021)). In 
Figure 7(a)–(c), results are shown for Case I with b̂/H = 1%, 
15%, and 30% respectively. We observe that the sensitivity 
increases from 10–9 to 10–7 as the bathymetry height 
increases from 1% of the depth to 30% of the depth.

Similarly, in Figure 8, we consider the sensitivity for 
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Case I with b̂/H = 2%, 8%, and 20%. We see that as b̂ 
increases, the sensitivity increases from  𝒪(10–8) by at at 
least two orders of magnitude for each increasing value of 
b̂, indicating a clear correlation between the normalised 
height of the bathymetry b̂ and the sensitivity of the 

surface wave error to observations.
To summarise, in each of the cases sensitivity of 

errors in the free surface wave to perturbations in 
the measurements increases with bathymetry height 
b̂/H. We note that for Case I especially, this increase 

Figure 6 The absolute time integrated sensitivity 0| / d |T m tò ¶ ¶  as the standard deviation of the bathymetry Gaussian is increased. 
(a–f) show results with the initial condition to the right of the bathymetry, like Case I. (g–l) show results with both the initial conditions 
and bathymetry centred at x = 0, like Case II.
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Figure 7 Case I: Absolute time integrated sensitivity 0| / d |T m tò ¶ ¶  as the relative amplitude of the bathymetry is increased.
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(a) β̂/H = 1%
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Figure 8 Case II: absolute time integrated sensitivity 0| / d |T m tò ¶ ¶  as the relative amplitude of the bathymetry is increased.
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occurs when b̂/H increases from 1% to 15%. For Case I 
sensitivity did not vary significantly when b̂/H doubled 
from 15% to 30%. (see Figure 7(b) and 7(c)). Based on 
these observations, we conclude that a lower relative 
bathymetry height b̂/H decreases the sensitivity of G to 
changes in the observations {mj(t)}.

Perhaps the most significant question we aim to 
address with this analysis is whether a large error in 
the reconstructed bathymetry is associated with a high 
sensitivity of the error in the surface wave to perturbations 
in the observations, as stated in (C.ii). In Khan and 
Kevlahan (2021) we found that the error in the surface 
wave was orders of magnitude lower than the error in 
the bathymetry, suggesting low sensitivity of the surface 
wave to bathymetry reconstruction error. This implies 
that relatively large tolerance levels for bathymetry 
reconstruction error in tsunami models may be 
acceptable, at least in the one-dimensional case. We now 
wish to make this conclusion more rigorous, and verify 
whether the SOA sensitivity of the surface wave error to 
the observations ∂G/∂m also exhibits the same behaviour.

If ∂G/∂m were the same order of magnitude as 
bathymetry reconstruction error, this would imply that 
if the bathymetry reconstruction is sub-optimal, the 
accuracy of surface wave prediction will be sensitive to 
perturbations to the observations. This is undesirable from 
a forecasting perspective as it indicates predictions may 
vary greatly based on small changes in the observations 
(such as noise or small changes in position). Due to the 
ill-posedness of inverse problems of this kind, errors in 
measurements can be amplified and subsequently have 
a large affect on the surface wave error.

Fortunately, the sensitivity analysis presented here 
allows us to conclude that, in all cases, considered the 
sensitivity ∂G/∂m is orders of magnitude smaller than the 
optimal values for the bathymetry reconstruction error 
presented in Table 1. This relationship does not change 
even for the worst sensitivity results (observed for Case 
II in Figure 8(c), where the sensitivity is (10–3). This is 
still an order of magnitude smaller than the lowest error 
observed for Case II, which was (10–2).

Additionally, we observed that even when the bathy
metry reconstruction error is sub-optimal the sensitivity 
can be relatively far smaller, as demonstrated in Figures 7(a) 
and 8(a) where the sensitivity is very small, (10–9) and 
𝒪(10–8) respectively, while the bathymetry reconstruction 
error is large,  𝒪(10–1). Thus, although we found that the 
sensitivity of surface wave error to observations increases 
with the error in the reconstructed bathymetry, it is 
nevertheless many orders of magnitude smaller.

5 CONCLUSION

Variational data assimilation has been proposed as a 
technique for reconstructing ocean bathymetry from 

observations of surface waves. We have used the second 
order adjoint technique to quantify the sensitivity of 
the surface wave to perturbations in the observations 
(such as their number, spacing and position relative to 
bathymetry profiles), given approximately reconstructed 
bathymetry. Our goal is to better understand the 
sensitivity of the assimilation process to the observations, 
and also to quantify the acceptable level of bathymetry 
error for accurate modelling of surface waves.

We first derived the Hessian product Hν given some 
arbitrary perturbation of the control variable ν, and then 
demonstrate that deriving the sensitivity ∂G/∂m involves 
solving the forced equation Hν = F with the right hand 
side F dependent on the optimal assimilation results. 
For the present study, we chose the response G to be 
the relative L2 error in the surface wave, produced by the 
reconstructed bathymetry.

We numerically implemented the sensitivity algorithm 
for the bathymetry assimilation case, in order to further 
investigate and confirm the conclusions about the 
accuracy of variational bathymetry assimilation from 
Khan and Kevlahan (2021). We then used this algorithm 
to answer three questions arising from our bathymetry 
assimilation algorithm.

Question I asks whether there is a link between 
the sensitivity ∂G/∂m and the convergence of the 
reconstructed bathymetry to the exact form. The results 
for three bathymetry and initial conditions configurations 
outlined in Table 1 show that a higher error in bathymetry 
reconstruction is associated with higher sensitivity of the 
surface wave error to perturbations in the observations.

Question II asks how changing parameters in the data 
assimilation scheme, such as the spacing of observation 
points, affects sensitivity of the surface wave. We analysed 
the sensitivity ∂G/∂m as we varied the observation point 
placement and number of points. The main conclusion 
from varying the spacing of the observation points is that 
covering all of the bathymetry feature with the observation 
points dramatically decreases sensitivity (provided the 
spacing is fine enough to resolve all significant scales of 
surface wave).

To gain further insight into the differences between 
cases with localized or extended bathymetry features, 
we conducted trials where we incrementally increased 
the standard deviation of a Gaussian bathymetry feature, 
until its curvature qualitatively resembled a sandbar. We 
observed that the higher standard deviation led to an 
increase in the time-integrated sensitivity, regardless 
of the position of the bathymetry relative to the initial 
condition.

Finally in Question III, we investigated whether our 
qualitative conclusions from Part I (Khan and Kevlahan, 
2021) could be confirmed by the sensitivity analysis. 
Our first conclusion addressed the relationship between 
the bathymetry and initial conditions amplitudes b̂ 
and ĥ, and the average depth H. In Part I we observed 
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that a necessary condition for convergence of the 
reconstructed bathymetry was that the relative height of 
the initial conditions compared to the bathymetry height 

ˆˆ /h b be less than or equal to (10–2) when b̂/H was larger 
than 10% of the depth. In the sensitivity analysis we 
varied the relative bathymetry amplitude b̂/H (keeping 
ĥ at 1% of b̂, to investigate the effect of the relative 
bathymetry amplitude on the sensitivity of the surface 
wave response G to the observations. For both Cases I 
and II, we saw a general increase in sensitivity with the 
relative bathymetry height b̂/H.

Secondly, we verified the observation from Part I that 
the error in the surface wave is orders of magnitude 
lower than the error in the reconstructed bathymetry, 
suggesting low sensitivity of the surface wave to 
reconstruction error. We therefore investigated whether 
the sensitivity ∂G/∂m exhibited the same behaviour, 
i.e. whether the sensitivity of the surface wave error to 
observations was orders of magnitude lower than the 
bathymetry reconstruction error. We clearly observed 
that in all cases considered, the sensitivity ∂G/∂m was 
orders of magnitude lower than the optimal values of the 
reconstruction error presented in Table 1.

In conclusion, the analyses in this chapter confirm 
the results observed for the data assimilation in Part I 
(Khan and Kevlahan, 2021). We have shown that the 
necessary conditions for convergence of the bathymetry 
reconstruction error, also correspond to low sensitivity of 
the surface wave error to the observations. By showing 
that this sensitivity is orders of magnitude lower than 
the bathymetry reconstruction error, we conclude 
that even if the reconstruction of the bathymetry is 
sub-optimal, the forecast of surface wave exhibits low 
sensitivity to changes in observations. High sensitivity 
of the surface wave error to observations would imply 
that predictions of surface waves may vary greatly 
due to small changes in the observations. As errors 
in measurements can be amplified and subsequently 
have a large affect on the surface wave error, the low 
sensitivity observed in these analyses is encouraging 
from a forecasting perspective, especially in situations 
where the relative bathymetry reconstruction error is 
sub-optimal (larger than 10%).

Improvements to the current analysis could be made 
by ensuring better convergence of Hν = F, such that the 
residual error is decreased further. Equivalent results for the 
initial conditions assimilation may also shed more light on 
the sensitivity of surface wave propagation to observations.

We note that these results are for an idealised 1-D 
case. The next step would be verify the conclusions of this 
analysis for the 2-D data assimilation, and use realistic 
ocean bathymetry and observation data. In Khan and 
Kevlahan (2021) we provided a concise overview on 
the importance of bathymetry for accurate tsunami 
modelling. Consequently, the results from the current 

analysis help us to quantify the accuracy required for 
the reconstructed bathymetry, such that the sensitivity 
of the the error in the surface wave to the observations 
remains low. We also gain a better understanding of 
how large bathymetry features impact the surface 
wave accuracy, and the effects of the number and 
placement of observations. In particular, our results 
suggest that efforts to improve bathymetry mapping 
should focus on features with very high relative heights 
(e.g. seamounts). Therefore, the results observed here 
provide an encouraging first step towards a more realistic 
implementation for tsunami models, and may serve as a 
benchmark for future analyses.

The analyses in this work quantify the sensitivity of the 
surface wave error given the reconstructed bathymetry to 
observations. They complement the analysis of sensitivity 
of the surface wave error to parameters in the models 
(like the bathymetry and initial conditions amplitudes b̂ 
and ĥ) in Khan and Kevlahan (2021), where we use Global 
Sensitivity Analysis (GSA) techniques to derive sensitivity 
indices quantifying the variation in the surface wave error 
resulting from the respective parameters.
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