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ABSTRACT

Data assimilation methods have been proposed as a technique for reconstructing ocean
bathymetry from observations of surface waves. To better understand this technique,
we use second order adjoint (SOA) variational analysis to derive the sensitivity of the
surface wave error to perturbations in the observations (such as their number, spacing
and position relative to bathymetry profiles), given the reconstructed bathymetry. We
apply SOA to the data assimilation scheme for the one-dimensional shallow water
equations for bathymetry detection introduced in Khan and Kevlahan (2021). We derive
the Hessian of a cost function Jrepresenting the error between forecast surface wave
and the observations. We then use SOA to derive the sensitivity of the surface wave
error given the reconstructed bathymetry to perturbations in the observations for both
a compactly supported Gaussian bathymetry, and a sandbar profile bathymetry. We
investigate the correlation between (i) low sensitivity of the surface wave given the
reconstructed bathymetry, to the observations, and (i) the error in the bathymetry
reconstruction, as well as the sensitivity of the data assimilation scheme to perturbations
of its parameters. Additionally, we determine whether the conclusions in Khan and
Kevlahan (2021) for bathymetry reconstruction can be verified by the present sensitivity
analysis. We observe that relatively large errors in the bathymetry reconstruction and
large relative amplitudes of the Gaussian and sandbar bathymetry profiles are associated
with higher sensitivity of the surface wave reconstruction error to the observations.
However, sensitivity decreases when the observation network has a greater coverage of
the bathymetry. Significantly, the sensitivity of the surface wave to the observations is
orders of magnitude lower than the bathymetry reconstruction error itself. These results
suggest optimal configurations of surface wave observations, help minimise costs for
making observations, and could enhance the accuracy of tsunami models.
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1 INTRODUCTION

Data assimilation is integral to accurate climate,
atmosphere and ocean modelling. Variational data
assimilation algorithms such as 3D-VAR, 4D-VAR, and
Kalman filtering techniques like the Ensemble Kalman
filter (EnKF) are regularly used for numerical weather
prediction and forecasts of climate trends. For example,
data assimilation is used by the European Centre for
Medium Range Weather Forecasting (ECMWF) for climate
reanalysis, where archived observations are ‘reanalysed’,
in order to create a comprehensive global data set
describing the recent history of the earth’s climate,
atmosphere and oceans. Data assimilation is used in
tsunami forecast models, where observations of surface
waves are used to reconstruct missing information such
as initial conditions, and subsequently predict impact at
coastlines (Nakamura et al., 2006). Tsunami modelling
requires accurate knowledge of the bathymetry, and
data assimilation has also been proposed as a technique
to reconstruct bathymetry from measurements of
surface waves. The goal is to reconstruct the bathymetry
sufficiently accurately to generate precise predictions of
the surface wave. This paper focuses on the sensitivity
problem for bathymetry reconstruction.

In Part I (Khan and Kevlahan, 2021) of this study we
developed and evaluated a variational data assimilation
algorithm for the one-dimensional nonlinear shallow water
equations. This algorithm estimates bathymetry using a
finite set of observations of surface wave height. Our goal
was to investigate whether variational data assimilation
is a feasible method to estimate ocean bathymetry, in
the shallow water model. The computational results
presented in Part I indicated that convergence to the true
bathymetry is improved by including more observation
locations positioned ahead of the bathymetry. A
necessary condition for convergence of the bathymetry
reconstructionis that the amplitude of the initial conditions
is less than 1% of the bathymetry height. Additionally, we
investigated the effect of varying the amplitudes of the
bathymetry and initial condition, and concluded that a
necessary condition for data assimilation convergence
was that the amplitude of the initial conditions be at least
two orders of magnitude smaller than the normalised
amplitude of the bathymetry. We then used density-based
global sensitivity analysis (GSA) to quantify the sensitivity
of the surface wave to the bathymetry reconstruction
error. We concluded that reconstructing the bathymetry
with a relative error of about 10% is sufficiently accurate
for surface wave modelling in most cases.

Our objective for Part II of this study is to more
rigorously quantify the sensitivity of the assimilation
algorithm results to perturbations to the observations,
such as to their number, spacing and positions relative
to the bathymetry. To do this we use the second order
adjoint (SOA) method developed by Shutyaev et al.

(2018). The sensitivity analysis in the present study is
complementary to the previous work since it quantifies
how the results of the bathymetry assimilation change
when the observations are perturbed.

In tsunami modelling we wish to choose the number
and positions of the observation network such that the
accuracy of the surface wave forecast is maximised,
given some optimal reconstruction of the bathymetry.
In order to solve this problem we need to quantify how
sensitive the surface wave reconstruction is, given the
reconstructed bathymetry, to the choice of observation
configuration. To do this we define a response functional
G as the least squares error in the surface wave height 5(x,
t) based on the reconstructed bathymetry p® compared
to that produced by the true bathymetry g,

9(77, u, ﬁ(b))[x} _ L/;T[n(ﬁm)_ n(ﬁw))r it an

where n(x, t) depends on its velocity u(x, t) through
the shallow water equations. Let us define mj(t) to
be observations of the surface wave at positions {xj}
forj=1, .., N, at continuous times t. (Recall that the
reconstructed bathymetry p® is itself computed from
observations of the surface wave using a variational data
assimilation scheme.) Then,

dg/dm is the sensitivity of the error in the surface
wave to perturbations in the observations

{mj(t)}, when the bathymetry is reconstructed
from observations of the surface wave using the
assimilation algorithm.

Ourgoalinthis paperistoconstruct the response functional
dg/dm, and then characterise its dependence on various
types of perturbations of the observations {m((t)}. These
perturbations include changes in the positions of the
observations {xj}, or perturbations in the shape of the true
bathymetry (such as the amplitude or standard deviation
of a Gaussian bathymetry profile) that result in a change
in {m,()}. The choice of continuous or discrete time does
not fundamentally change the results, and is made for
mathematical convenience. In the discrete case (dG/dm)
[x]isan N, x N, matrix (a function of the space variable
x), where N, is the temporal resolution (e.g. the number
of time steps), and the m,; entry of dG/dm represents
the sensitivity of the surface wave error (4.1) to the i-th
observation at the j-th time step.
Our analysis answers the following three questions:

(I) How does the sensitivity of the surface wave error
to perturbations in the measurements depend on
the magnitude of the error of the reconstructed
bathymetry?

(II) How does the sensitivity of the surface wave
error depend on changes to parameters in
the assimilation scheme (e.g. coverage of the
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bathymetry feature by the the observation points)?
Is there an optimal spacing of observations that
minimises the sensitivity?

(III) Are our qualitative computational observations
from Khan and Kevlahan (2021) verified by the
results of the sensitivity analysis?

In this study, we use the SOA algorithms outlined in
Shutyaev et al. (2018) to analytically derive the Hessian of
the cost function (2.4) minimised in the data assimilation
scheme. We then take advantage of its properties to
extract expressions for dG/dm. We present a numerical
implementation of this algorithm for bathymetry data
assimilation.

The variational data assimilation scheme is summarised
in Section 2. Section 3 gives the analytical derivation of
the Hessian and subsequent SOA sensitivity analysis for
the bathymetry reconstruction data assimilation results.
Section 4 presents the numerical implementation of the
sensitivity analysis for the bathymetry data assimilation.
Finally, Section 5 summarises the main results and
suggests further considerations for future analyses.

2 VARIATIONAL DATA ASSIMILATION
FOR BATHYMETRY RECONSTRUCTION

We briefly summarise the data assimilation scheme for
bathymetry reconstruction as implemented in Khan and
Kevlahan (2021). The 1-D irrotational and incompressible
nonlinear shallow water equations are,

o, 0 _B)u) =

ot + X ((1+77 6)U) O’ (210)
ou 91,

ot +ax[z“ +’7]*O’ 2.1b)
n(x,0)=o(x), 2.10)
u(x,0)=0. (2.1d)

Where p is the bathymetry to be reconstructed. We
assume that the initial conditions ¢(x) are compactly
supported, and that the boundary conditions are
periodic on a domain Q = {x € R; -L < x <L}. The systemis
integrated in time for t € [0 T], where T = 2L, and

Y=L (2x[0,T]), (2.2)
Y, =1(Q) (2.3)
are the state space and the bathymetry function space
respectively.

In order to find classical solutions of (2.1), we require
the gradient VJ(8) to be in the Sobolev space H*(Q),

which imposes additional smoothness requirements
on g and its derivative g . In Khan and Kevlahan (2021),
we implement a low pass filter, which removes higher
frequencies in our reconstruction and effectively
increases the regularity of our estimate of g at each
iteration, raising it from the space L?(Q) to H*(Q).

We assimilate a set of measurements y©(t), which
are observations of the true surface height perturbation
n(x, t) at discrete positions {xj},j =1, ., N, and times
t. This representation of the observation operator
in time is convenient in the “optimise and then
discretise” approach we have used for our variational
assimilation scheme, and does not impose any
smoothness requirements on the time dependence of
the measurements. Discrete measurements at times t,
can be represented easily as Dirac delta functions §(t
- t,) in the continuous integrals representing the cost
function (2.4).

We assume that we do not have complete information
about p(x), and our objective is to minimise the error
between the forecast solution 5(x, t) given some guess
for g, and the observations y©(t). We define this error in
terms of a cost function,

where the Dirac delta functional is used to sample the
state variable 5 at the same spatial locations as the
observation points, and the summation from j=1to M
represents the cumulative error at all observation points.
The optimal bathymetry that minimises this cost function
is the control variable satisfying

v7t (%) =0, (2.5)

where g® is the optimal approximation of the bathy-
metry B(x), and is the local minimizer of (2.4).

Since the focus of this work is the relationship between
the error in the bathymetry reconstruction and the
error in the resulting surface wave, we assume that the
observations are free of noise. Actual applications would
require stabilisation of noise present in the real-world
measurements, which can be achieved by inclusion of a
Tikhonov regularisation term in (2.4).

We note that the variational approach only works for
continuous solutions, because the integration by parts
used to extract V. 7(p) fails for discontinuous solutions.
In principle, any discontinuities could be handled by
including the position of any discontinuities as new
variables, and then integrating by parts separately
on each side of the discontinuity. This would require
additional “boundary conditions” connecting the two
solutions. However, in this paper we assume that the



Khan and Kevlahan Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.36 190

initial conditions and integration times are such that the
solution remains continuous. In practice, there is always
some diffusion in realistic simulations, either numerical
or explicit horizontal Laplacian or hyperdiffusion, that
ensures solutions remain smooth.

We formulate a Lagrangian constrained by (2.1) and
some appropriately chosen adjoint variables (Lagrange
multipliers) (4%, u*) that are solutions of

377

ar ax Z[” Xt 6)- (0)(t)]5(x‘xj) (2.60)
on* 87] our

o T+ n=0)7 - +u—s-=0, (2.6b)
(% T)=0, (2.6
u*(x,T)=0. (2.6d)

System (2.6) is chosen such that when the Lagrangian
is integrated by parts in space and time, we are able to
use the Riesz representation theorem and the Gateaux
derivative representation of J'(8; #’) given an arbitrary
perturbation g’ to derive

T *
2 gt 2.7)
where
T'(8:8")= (VT (6),8") 20y
L (2.8)
:f v ()8 dx.
-L

For a more detailed analysis of this derivation we refer
the reader to Khan and Kevlahan (2021). Finally, the
optimal reconstruction of the bathymetry g® is where

v27(8 f w1 g - (2.9)

In the assimilation scheme we use a gradient descent
algorithm to iteratively find the optimal reconstruction
of the initial conditions g® given some initial guess, such
that (2.4) is minimised.

3 SECOND ORDER ADJOINT
SENSITIVITY ANALYSIS

To derive the sensitivity the surface wave error to to
perturbationsin the observations, given the reconstructed
bathymetry, using the methods outlined in Shutyaev
et al. (2018) we need to formulate expressions for the
Hessian of the cost function (2.4). Shutyaev et al. (2018)
provide a general method based on properties of the

Hessian, however they do not provide a derivation of
the Hessian itself, which means we need to extend our
variational adjoint analysis used to find the gradient of 7,
to find the Hessian of 7.

While works such as Wang et al. (1992) provide a
derivation of the Hessian vector product for the initial
conditions assimilation, their derivation is for the finite
dimensional case, and assumes a vector form for both
the state variables and the control variable. In our case
the derivation of the first order adjoint is for the infinite
dimensional case in the space L%(Q) over some domain
Q, where we used the L? inner product and the Riesz
representation theorem to extract our gradient VeI (@),
and subsequently used a low pass filter in the numerical
implementation to raise it from the space L*Q) to
H2(Q). For that reason, a derivation of the Hessian in
the same functional space as for our first order adjoint
is appropriate, and in doing so we aim to extract the
‘Gateaux Hessian’ for Hilbert spaces with the following
definition:

If fis twice Gateaux differentiable at x, we can
identify D?f(x) with the operator V*f(x) € B(H) in
the sense that

(Vy e H)(Vz e H),
(sz(X)y)Z = (Z,V’f (X) Y)s(r0)

where we call V?*f(x) the (Gateaux) Hessian of f at x, B(H)
is the space of continuous linear functionals in H (in our
case L*(Q), and Df(x)y is the Gateaux derivative of f in the
direction y.

In the remainder of this section we present the derivation
of the Hessian of 7 (p), and subsequently the sensitivity
analysis for the optimal bathymetry reconstructed using
data assimilation of surface wave measurements, using
methods outlined in (Shutyaev et al., 2018).

3.1 HESSIAN OF 7(B) FOR BATHYMETRY
RECONSTRUCTION

We know that the Gateaux derivative of 7 with respect
to the bathymetry and some perturbation direction g is

7'(6:8) f[f w2t

Consider a second perturbation of J'(8; #), B where
we have g — S + ¢3. Then the second order Gateaux
derivative of Jis

B'dx. (3.2)

J"(8:858) === (B+28:8') |

de
d L
il

j;Tu(x, t;[:’—&-sﬁ)aai):(x, t;,@—&-sﬁ)dt

ﬁ’dxl

e=0
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We consider a regular perturbation expansion of the
integrand, approximating it by the series f, + f,e + O(e?).
We can see this is equivalent to a Taylor expansion about
e=0.Then

d ! Al

Ej (ﬁ‘f'sﬂyﬂ) =0

d L T ,
% [f (f”fls)dt]ﬂ o

—ﬂ[ﬂfldt}ﬁ'dx.

In order to find the term f,, we recognise that this is equival-
ent to the coefficient ofthe linear term in the Taylor appro-
ximation, and f; = (x t; ﬁ+sﬁ) 2 (X, t;ﬂ+83) -—0
Thus, we require u cmd adjoint variable #* given the
perturbed bathymetry 3+ 4. To find the resulting forward
and adjoint systems given the perturbation, we assume this
perturbation 3 in the bathymetry produces the following
perturbations to our state and adjoint variables;

* u—u+0andy - n+nforthe shallow water system.
s U* > u*+aandn* - n* +7 for the adjoint system.

The resulting perturbed model for the state variables g, 7 is

9+ 2 {1+~ 000) + 8(6“Xﬁ) - 6<£ 4 _ 0, (3.30)
%+@+%?:O’ (3.30)
7(x,0)=0, (3.3¢)
3(x,0)=0. (3.3d)

and the second order adjoint (SOA) model is

1620 WISt )s(x-x), 4o
ot ox  ox o ox LUV R
o 07 (. a0 | 0T o
N (14g-8) 2L 4 (- 512y u e —0, (34
S+ 6)6X+( 8) ox UG Tig, =0 G
77(X, -’—) =0, (3.4¢)
(% T)=0. (3.4d)
Giving us
R (. on* on
v27(3; :f U NRECTN 7y 35
7d)= [ oG 6o

We define the Hessian H acting on the perturbation 3 as
the successive solution of the perturbed and SOA models
such that

dt. (3.6)

wi= f % 5

This form of the Hessian of the cost function can be
verified using a modified form of the kappa test analysis
outlined in Kevlahan et al. (2019),

H:(g)*llml j(ﬂJrsﬁ'ﬂ)_j(ﬂ'”)

oe IL[IT{AM Jdt]ﬂdx’ 7

If the derivations are correct, «(e) should converge to 1 as
e — 0. The results for the kappa test for the Hessian H are
presented in Section 4 in Figure 1(d).

A key observation is that we have only derived the
action of the Hessian on some perturbation 3, whereas
in Khan and Kevlahan (2021) we were able to derive
the gradient of J(¢) for any arbitrary perturbation »’. Tt
does not seem possible to proceed as before and find the
Hessian for any arbitrary perturbation using variational
methods. This is because the gradient V. 7is an element
of the Hilbert space L?(Q), whereas the Hessian H is
an operator defined on this space. Indeed, Wang et al.
(1992) were also limited to derivation of a ‘Hessian vector
product’ in the finite dimensional case. Despite this, the
current derivation is sufficient for the following sensitivity
analysis.

3.2 SENSITIVITY ANALYSIS FOR BATHYMETRY
RECONSTRUCTION

Define the optimality system for bathymetry assimilation
as the successive solution of

on 0

T2 -\u)=0

ot o (=AU =0, G289
ou 91,

ou, 912 =0,

o +8x[2u H,] (3.8b)
n(x,0)=(x), 389
u(x,0)=0. (3.8d)
817* a”r]* ou* .

B o= 2 ) -]l x) oo
on* an* ou*

T 4N - =0

o TN Z - tu—-=0, (3.90)
?7*<X,T>:O, (390)
Ut (X, -,—) _ O, (390)

Where A(x) is the optimal reconstruction of the bathymetry
B(x) giving:
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T 8 *
f w1 e —o, (3.10)
0 ox

and m(t) are the observations taken at positions {x} at
forj=1,.., N, at continuous times t. We impose periodic
boundary conditions in space, where the domain is Q =
xeR;xel-L, L]}

Let us consider some arbitrary response functional
G(n, u, 1). Then, by the chain rule, the sensitivity of G to
perturbations in the observations m can be defined as

dg _dg dy  dgdu  dg dr i)
dm dpdm dudm dxdm’ '

Let us now consider a perturbation in the observations
m — m +m giving

* u—u+0andy— g+ forthe shallow water system
(3.8).

e U*— u*+0"and i* — n* + 7 for the adjoint system
(3.9).

« A — p+Afor the optimal bathymetry.

The perturbed system becomes

0 . ) D (e D n
St i) (- 1-0)0) - () - ——(2d) =0, (3.120)
o o) o
— 4 ——+—=0 3.12b
ot * ox Jrc’)x ( )
i(x,0)=6(x), (3.120)
i(x,0)=0, (3.12d)
677* 877 onr _
ot +u o +u Z[n X t)\ ]6 X - x , (3.13q)
ou 91 SOt 00 LouT s ant 3.13b
14 ax o U Uk )\(’)x 0 )
i7(x, T) =0, & (x,T)=0. (3.130)
(. on* on*
f [u ]dtfo. (3.14)
0 15)4 ox

Then we can say

dg oG oG oG
()= (50 +(500) +{3e),  ©19

where Y and Y, are the state space, and the bathymetry
function space as defined in (2.2), and (2.3) respectively.
Now, let us introduce some adjoint variables P, i =1, ...,
5 whereP eV, i=1,..,4 andP, e Yp. Then if we take the
inner product of P, and P, with the systems (3.12), inner
product of P, and P, with (3.13), and P, with (3.14), we get
the following duality relation

/ f[ { i) + 2t +1-20) - 2 ()= (x3)
e 0;‘1”%
RO g0 O O > i 63)-m 0ol (3.16)
+P, aa—tJr(r/H A){Z; +7,"8’i: +u%+g%,g%
+pjaZl o Hamx )

Integrating (3.16) by parts in space and time, we are
able to transfer the derivatives onto the adjoint variables
P,i=1, .., 5 instead of on @, %, 4% G*. If we pick the
following systems for P,

P, 0 o(uk) 0(\R,)
B D g P - =0, 3.17a
7t F e AR) - —=m— (3.170)
op, 0(Pu) 0P,
T (O OB, 3.17b
ot ox ox ( !
(X, O) 0 (317(:)
(x, O) 0 (3.17d)
P on*  OP 0P
aTlJrP‘* o 71+7z Zp (3.180)
P, 0P pOn L 0P pOUT G (318
ot +(1+77 /\) Ox +(P3 PS) X +u P% +h ox  ou’ ( )
A(xT)=0, (3.18¢)
(% T) 0. (3.18d)
T *
on P, 0g
P, dt=—, .
e

then as a result of integration by parts and the choice of
systems for P, (3.16) reduces to

g G . 9G ¢
<ZP3 jt), ><8n’n> +<E’u>y+<5’A>yp' (3.20)

By the Riesz representation theorem and equivalence
of inner products in (3.15) and (3.20), we define the
sensitivity of the response functional Gy, u, 4) to
perturbations in the observations m as

M
29 3", (x,.1). (3.21)
m 45

We note that, because of the Dirac delta functional, the
integrals represented by the inner products on the right-
hand side of (3.20) are well defined, even with discrete
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observations in space. As we are only perturbing the
locations of the measurements (i.e. the parameters
X of the Dirac function), this should not affect the
smoothness required in the inner product on the left-
hand side, which logically should be in the intersection
of the spaces Yand V.

Equations (3.18) and (3.17) are a coupled system of
four variables, with two initial time conditions and two
final time conditions, making it challenging to solve.
However, we observe that (3.17) is equivalent to the per-
turbed system for the Hessian V27(¢) (3.1) with P, = B(x),
and (3.18) is equivalent to the second order adjoint (SOA)
system (3.1) with forcing term (-aG/an, -Glou)'. Let us
replace P, with the auxiliary variable v. Then Shutyaev
etal. (2018) show that the solutions to the adjoint
systems (3.17) and (3.18) are equivalent to solving

Hy=F, (3.22)
where Fis defined as
.
]—':a—g—f uﬂdt, (3.23)
o\ 0 ox

and y is the solution of the forced first order adjoint
system

%—ku?—i—kg—f:—g—i, (3.240q)
L9 L +u2l 2 (3.24b)
A (% T)=0, (3.240)
w(x,T)=0. (3.24d)

Under the assumption H is positive definite (as our cost
function Jis convex), we can find a unique v for every
F such that Hv = F Shutyaev et al, (2018). We are
then able to find the sensitivity of the surface wave to
perturbations in the measurements, aG/om, by the steps
outlined in Algorithm 1.

4 RESULTS

The results of this analysis are a significant extension
and complement to the work undertaken in Khan

and Kevlahan (2021). In this section, we present the
numerical implementation of the second order adjoint
sensitivity analysis for the bathymetry assimilation with
a travelling surface wave over a Gaussian bathymetry
and a sandbar profile bathymetry.

We recall that the response functional G is the least
squares error between the surface wave given the true
bathymetry, and the surface wave resulting from the
optimally reconstructed bathymetry,

2

g(ny U, ﬁw))[x]:j;T[n(ﬁ(t>>,n(ﬁ(b>)] dt, (4.1)

and that G depends implicitly on the measurements
mj(t) (taken at positions {xj} forj=1, .., N,,, at times t,
which may be either continuous or discrete), through
the reconstructed bathymetry n(5®). We now use the
Algorithm 1 to find aG/om, the sensitivity of the error in
the surface wave to perturbations in the observations
{mj(t)}, when the bathymetry has been reconstructed
using the assimilation algorithm outlined in Khan and
Kevlahan (2021).

As outlined in Section 1, our analysis aims to answer
the following three questions:

(I) How does the sensitivity of the surface wave error
to perturbations in the measurements depend on
the magnitude of the error of the reconstructed
bathymetry?

(II) How does the sensitivity of the surface wave
error depend on changes to parameters in
the assimilation scheme (e.g. coverage of the
bathymetry feature by the the observation points)?
Is there an optimal spacing of observations that
minimises the sensitivity?

(III) Can our qualitative observations from Khan and
Kevlahan (2021) be verified by the results of the
sensitivity analysis?

We examine these questions one by one, beginning with
Question L.

4.1 QUESTION I

We analyse how the sensitivity of the surface wave error

to perturbations in the measurements depends on the

magnitude of the error of the reconstructed bathymetry.
If the error in the bathymetry reconstruction is

defined as

1o Define 0\G —fg udydt, where y is the solution of (3.24).

2: Solve Hv = Ffor v, where H is the Hessian operator acting on v, and Fis the forcing term defined by (3.2) in step 1.

3:  Solve the system (3.17) by substituting the control variable P,(x) with v (as found in step 2) to find the adjoint variable P,(x, t).

4 Define 9,6 = Z’J‘-/':l P;(x, t), where P, has been sampled at the locations of the observation points {x}.

Algorithm 1 Calculation of Second Order Adjoint Sensitivity d_gG for Bathymetry Assimilation.
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t b
o)
(t) !

[9°];

(where g% is the true bathymetry and g® is the optimal
reconstruction), then our objective is to understand
whether a relatively higher error for the bathymetry
reconstruction (4.2) is correlated withincreased sensitivity
0G/om where the response functional G is given by (4.1).
This question is significant because high sensitivity dG/om
is undesirable, as it implies that variations in the position
and number of observations have a large effect on the
accuracy of surface wave predictions

To answer this question, we compare the error in
convergence to the exact bathymetry of the optimal

(4.2)

reconstruction as seen in Khan and Kevlahan (2021) and
the sensitivity aG/om for the cases considered. These
results are summarised in Table 1, and shown in Figure 1.

We recall that these cases were chosen to analyse
convergence in scenarios where the support of ¢(x) and
the support of g(x) overlap or are disjoint, and to evaluate
the effect of a surface wave with compactly supported
initial conditions (Cases 1 and II) or periodic initial
conditions (Case III). We consider Gaussian and sandbar
profiles for the bathymetry as a 1-D approximation for
peaks and ridges characterising ocean bathymetry. The
results of the kappa test (3.1) for each case are given
in Figure 1(d). Using these data assimilation results, we
implement Algorithm 1 to find the sensitivity of the cost

CASE BATHYMETRY INITIAL CONDITIONS ERROR SENSITIVITY
I Gaussian Gaussian 0(103) 0(109)
11 Sandbar Gaussian 0(107?) 0(10°)

Table 1 Cases considered for data assimilation algorithm, and comparison of the relative L2 reconstruction error (4.2) in the bathymetry
as shown in Figure & of Khan and Kevlahan (2021), and the time integrated sensitivity /3 8G /8m dt of the surface wave error to the
observations.
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Figure 1 (a)-(c): The three test cases for bathymetry g(x) (dashed line) and surface wave initial conditions ¢(x) (solid line) for the data
assimilation. The surface wave initial conditions 7, bathymetry B, and average depth H are not to scale in these diagrams, as 7 was
restricted to 1% of B across most of the numerical analyses, and g = 0.1. (d): The log error in the convergence of the kappa test in
(3.1), to verify the numerical calculation of the Hessian. (e) and (f): Hv (red) and F (blue) for cases I and II where v is the solution of

Hv = F found using the matlab linear solver bicgstabl.
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function G to the observations m.

Recall that our analysis here aims to help explain
the convergence results presented in Part I. (Khan
and Kevlahan, 2021). In Part I the best convergence
was for Case I, with a minimum relative bathymetry
reconstruction error of O(1073) (Figure 4 in Khan and
Kevlahan (2021)). For Cases IT and I11, the optimal results
did not accurately recover the exact bathymetry, and
the error in the reconstructed convergence error was
correspondingly larger, ©(10-?) and O(10") respectively.

To find the optimal v such that Hv = F as in (3.22),
we used the Bi-Conjugate Gradient Stabilised Method
(BICGSTAB) to solve the system for v. Figure 1(e) and (f)
illustrate the convergence of Hv to the right hand side F
for the optimal v. The BICGSTAB method is a Krylov linear
solver designed for non-symmetric linear operators,
and was found to prove better convergence in this
analysis than with comparable solvers such as GMRES
(Generalised Minimum Residual Method). We observe
that the error in convergence in Case I (Figure 1(e)) is due
to noise in the right hand side 5, and that Hv in Figure 1(f)
shows some overfitting. A reasonable tolerance for
convergence of BICGSTAB is a relative residual error
less than 10 however due to the small-scale noise
shown in Figure 1(e) and (f), this tolerance was not met.
Convergence is improved for BICGSTAB when the system
is preconditioned (Barrett et al., 1994). Consequently,
errors may be due to the fact that preconditioners for the
operator H were not easily computable in the algorithm,
and hence were not used. As the error in Figure 1(e) and
(f) seems to be due to a small amount of noise, for the
purposes of this study we consider the convergence to
be satisfactory.

Thus, assuming that we have found the optimal value
for v (representing the adjoint variable P,) given F and
the operator H, we can derive the sensitivity 0G/om = 5(x
- xj)Pg(x, t) as the solution of the system (3.17) using v
as the bathymetry perturbation 4, where 5(x - x) is the
observation operator mapping the state variables onto
the observation space.
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The sensitivities for Cases I and II are presented
in Figure 2(a) and (b) as a function of time at three
observation points: 1 (first), 23 (centre) and 45 (last).
We computed the sensitivities for N, = 45 observation
points, as this value produced optimal convergence in
Khan and Kevlahan (2021). The observation points are
spaced equidistantly with Ax = 0.06 and with the first
point at 0.1L. We recall that the sensitivity dG/dm is an
N, x N, matrix.

Figure 2(a) shows that for Case 1 the sensitivity at each
observation point is small and similar in magnitude, O
(108). Comparing the time dependence at the different
observation points, we notice that the oscillations are
largest at the times when the surface wave is observed
by the relevant observation point even though the
amplitude of the sensitivity remains low. Since the
relative convergence error we observed in Part I for the
Case I bathymetry reconstruction was small, O(10), our
initial hypothesis is that a low error in the reconstructed
bathymetry is correlated with low sensitivity of the
surface wave error to perturbations in the observations
for this particular reconstructed bathymetry.

To further substantiate this observation, we compare
the results for Cases I and II in Figure 2(a) and (b). We
see that the sensitivity is much higher for Case I, O(10)
at the same three observation points. The oscillations
indicating the passing wave are present for Case IT as well,
and have a relatively lower frequency, possibly due to the
flatter curvature of the sandbar bathymetry compared
to a Gaussian bathymetry, resulting in a more gradual
effect on the surface wave. We note that the bathymetry
reconstruction error (4.2) for Case I is ©O(102), an order of
magnitude higher than for Case L. Therefore, the increased
sensitivity shown in Figure 2(b) for Case II compared to
Case I is correlated with a larger reconstruction error in
the bathymetry. The fact that the sensitivity is at least
three orders of magnitude higher than Case I further
strengthens our initial hypothesis that a higher error in
bathymetry reconstruction leads to higher sensitivity of
the surface wave error to perturbations in the observations.
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Figure 2 (g, b) The sensitivity dG/dm as a function of time (with final time t = T), for assimilation results for Case I. There are N, = 45
observations, equidistantly spaced with Ax = 0.06 and with the first point at 0.1L. Results show dg/dm at three distinct observation

points m;, where j =1 (first observation), [“02"5

sensitivity ST 8G/8m dt at each observation point.

(the median observation), and N

. (the last observation). (c, d) The time integrated
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Figure 2(c) and (d) shows the time integrated sensitivity
across all 45 observation points for Cases I and I1. As we can
see, the hypothesis that large bathymetry reconstruction
errors lead to higher sensitivity of the surface wave error
to perturbations in the observations is confirmed across
the the complete set of observation points.

We summarise the results comparing sensitivity of the
surface wave error to perturbations in the observations
and relative error in bathymetry reconstruction in Table 1.
We now consider Question II, by observing the trend
when we perturb influential parameters in the algorithm,
such as the placement and number of observation points.

4.2 QUESTION II

We analyse the sensitivity of the surface wave error to
perturbations in the in the locations of the of observation
points, as well as on the shape of the bathymetry. Our
objective is to determine if there is an optimal spacing
of the observations that minimises the sensitivity.
Results are presented for Cases I and II, where we vary
the spacing of observation points, and shape of the
bathymetry respectively. The latter consideration is
motivated by the significant difference in sensitivity we
observed between Case [ (Gaussian bathymetry with
relatively low standard deviation) and Case II, (a sandbar
bathymetry that is less localized).

196

First, we consider the sensitivity of the surface wave
error to the spacing of the observation points, keeping the
total number of observation points fixed. Our objective is
to find the spacing of a fixed number of uniformly spaced
observation points that minimises the sensitivity of the
surface wave error to perturbations in the observations.
We choose N_,_= 45 for these experiments. We run several
iterations of the data assimilation algorithm, where in
each iteration the position of the last observation point
X,s Is fixed, and as Ax is varied, the the first observation
point is shifted back (as in Figure 3d, e and f).

We wish to observe how the resulting sensitivity of
the surface wave error to the observations changes, and
thus answer the question: does increasing the spacing of
the observations (and consequently increasing coverage
of the domain by observation points) always lead to a
decrease in the sensitivity dG/dm? If so, the implication
for tsunami models is that, given a fixed number of evenly
spaced observation points, it is best to choose a spacing
that covers as much of the bathymetry feature as possible.

However, we also need to ensure that the spacing
is small enough that the smallest scales in the surface
wave resulting from the bathymetry can be observed.
To verify this, in Figure 4 we show the spectrum of the
surface wave with and without bathymetry (for both
Cases I and II). We observe that for both cases, the
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Figure 3 Case I: The time integrated sensitivity of the surface wave error [T 8G/8m dt as the location of the first observation point is
varied such that the observation points cover a greater proportion of the domain and the initial conditions support.
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bathymetry does not introduce scales smaller than those
of the initial condition into the surface wave solution. In
other words, it is sufficient that the observation points
are spaced closely enough to resolve the initial conditions
(i.e. one half the minimum effective length scale of the
initial conditions).

Figure 3 shows the time integrated sensitivity
fg 0G/omdt of the surface wave error for Case I,
corresponding to different observation point spacings
Ax. The values of Ax and the resulting observation
configurations are given in the bottom panels of Figure 3.

We observe that for Case I, despite a large variation in the
sensitivity between the first and last observation points, the
amplitude of the sensitivity dG/dm is small for each choice
of Ax, at most O(10-®). This suggests that for Gaussian
bathymetry and initial conditions (as seen in Figure 3(d)-
(), larger spacing of observations (or more coverage
of the bathymetry) does not significantly increase the
sensitivity of the error in the surface wave produced by the
reconstructed bathymetry, to the observations mj(t).
Results for Case II are shown in Figure 5. For easy
comparison across results we give the semi-log graph of
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Figure 4 (a, c) The surface wave at t = 1.95 given a flat bathymetry (red), and non-zero bathymetry (blue). The amplitudes of
bathymetry and initial condition are not to scale, however the location is accurately represented. (b, d) Spectrum of the surface wave
given a flat bathymetry and non-zero bathymetry for Cases I and II respectively.
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Figure 5 Case II: the absolute time integrated sensitivity of the surface wave error | [} 3G / dm dt | as the location of the first observation
point is varied such that the observation points cover a greater proportion of the domain and the initial conditions support.
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the absolute time integrated sensitivity | [78G/dm dt|.
Increasing the spacing Ax dramatically improves
| /30G10m dt|. We note that this may be due to either
the increased coverage of the bathymetry support by the
observation points, or the larger spacing. We observe that
configurations of observations for Case II in Figure 5(b)
and (c) show larger coverage of the bathymetry feature
by observations than in 5(a), where only half of the
bathymetry is observed by the right propagating surface
wave. Based on this result, we suggest that while
increasing the spacing Ax does not have a significant
impact on | [;dG/dmdt], increasing the coverage of
the observation network such that it covers the support
of the bathymetry, results in lower sensitivity of the
response functional G to the observations mj(t).

There is a clear difference between Cases I and II,
where we have the same initial conditions (Gaussian)
but different bathymetry. To better understand the
reasons for this difference, in our next analysis we run
trials of the data assimilation scheme where we begin
with a Gaussian, as in Case I, and iteratively increase
the standard deviation of the bathymetry such as it
becomes closer in shape qualitatively to a sandbar
type bathymetry, with flatter curvature. We consider
two different positions for the initial condition, given in
Figure 6(a)-(f) and 6(g)—(1) respectively. This is because for
Case I the bathymetry is to the right of the support of
the initial condition, and so we replicate this positioning
in Figure 6(a)-(f). However, in Case II the support for both
the bathymetry and the initial conditions is centred at
x =0, and so we replicate this for the set of results in
Figure 6(g)-(1).

For both initial conditions, it is clear that the flatter
the bathymetry shape (i.e. the longer the bathymetry
feature), the higher the sensitivity of the response
functional to the locations of the observations. This
suggests that the position of the bathymetry relative
to the initial conditions support does not influence
sensitivity, but that extent of the bathymetry does. Each
trial was conducted with N, = 45 and Ax = 0.1, with
the position of the first observation at x, = -L (complete
coverage of the domain by the observations).

Having gained some insight into the influence of
spacing and number of points on sensitivity, our ultimate
objective is to gauge whether these conclusions regarding
the sensitivity of the surface wave error produced by the
bathymetry reconstruction to observations confirm and
help us understand the main conclusions of Khan and
Kevlahan (2021).

4.3 QUESTION III

In Khan and Kevlahan (2021) we presented results for
optimally reconstructing bathymetry using surface wave
observations in a variational data assimilation algorithm.
We concluded that the data assimilation results are
improved by (i) increasing the number of observation

points, and (ii) maintaining an optimal ratio between the
amplitude of the initial conditions and bathymetry relative
tothe average depth. We also observed that the errorin the
surface wave produced by the reconstructed bathymetry
was orders of magnitude smaller than the error in the
bathymetry reconstruction, suggesting low sensitivity of
the surface wave to bathymetry reconstruction error.

In terms of the current sensitivity analysis, the ques-
tion we wish to address is:

Does satisfying the aforementioned conditions

(i) and (i) also result in low sensitivity of the
surface wave error (4.1) to perturbations in the
observations {mj(t)}, and is this sensitivity also
orders of magnitude lower than the reconstruction
error in the bathymetry?

We provide an answer by verifying the following con-
clusions using the sensitivity analysis results.

C.i Does a sub-optimal ratio of the amplitude of the
initial conditions to bathymetry (i.e. those that were
found to produce non-convergent results in Khan
and Kevlahan (2021)) result in greater sensitivity of
the surface wave error to observations?

C.ii If the reconstruction error in the bathymetry is
high (i.e. at least 10%), does that imply that the
sensitivity of the resulting error in the surface wave
to observations is also proportionately high?

(C.i) is based on results in Khan and Kevlahan (2021),
where we analysed the affect of varying //3 and G/H
on the resulting reconstruction error in the bathymetry.
Here represents the amplitude of the initial condition, 3
is the amplitude of the bathymetry, and H is the average
sea depth (normalised to H = 1). We observed that
convergence was sub-optimal when 7/3 was greater
than O(10-?) and bathymetry amplitudes were large
(over 10% of the average sea depth H).

Since satisfying #/3 < ©O(10?) is necessary for
convergence of the data assimilation, we do not explicitly
violate this condition in our analysis. Instead, we analyse
the effect on the sensitivity of the surface wave error to
observations, as 3 is varied (and 7 is fixed at 1% of ).
The relationship between the ratio 3/H and the sensitivity
dGlom can be observed in Figures 7 and 8. The figures
correspond to Cases I and II respectively. We present the
time-integrated sensitivity as the bathymetry height 3 is
varied from 0.01 to ¢, where c is the approximate cut-off
value beyond which the surface wave error was larger
than 0.1% (as shown in Khan and Kevlahan (2021)). In
Figure 7(a)(c), results are shown for Case I with 3/H = 1%,
15%, and 30% respectively. We observe that the sensitivity
increases from 10° to 107 as the bathymetry height
increases from 1% of the depth to 30% of the depth.

Similarly, in Figure 8, we consider the sensitivity for
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Figure 6 The absolute time integrated sensitivity | /5 8G / 8m dt |

as the standard deviation of the bathymetry Gaussian is increased.

(a-f) show results with the initial condition to the right of the bathymetry, like Case I. (g-1) show results with both the initial conditions

and bathymetry centred at x = 0, like Case II.

Case I with ﬁ/H = 2%, 8%, and 20%. We see that as B
increases, the sensitivity increases from O(10-®) by at at
least two orders of magnitude for eachincreasing value of
3, indicating a clear correlation between the normalised
height of the bathymetry 3 and the sensitivity of the

surface wave error to observations.

To summarise, in each of the cases sensitivity of
errors in the free surface wave to perturbations in
the measurements increases with bathymetry height
BIH. We note that for Case I especially, this increase



Khan and Kevlahan Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.36 200
10° 10° 10°
107 107 107
5 0’
Beo
— 10°
1070 10710 10710
‘0"0 5 10 15 20 25 30 35 40 45 107”0 5 10 15 20 25 30 35 40 45 1OVHO 5 10 15 20 25 30 35 40 45
Observation Point Observation Point Observation Point
@ B/H =1% (b) B/H =15% (c) B/H = 30%
M
I\
// \\ ! \
— - L - e — — - L 4/ \\ — - L A/ \V\
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2
T T T
(d) (e) )
Figure 7 Case I: Absolute time integrated sensitivity | /5 G/ dm dt | as the relative amplitude of the bathymetry is increased.
102 10?2 102
10° 10° 10°
10 10* 10*
'§105
:’fws
107 107 107
10° — | 10 10
‘0790 5 10 15 20 25 30 35 40 45 ‘0790 5 10 15 20 25 30 35 40 45 10 90 5 10 15 20 25 30 35 40 45
Observation Point Observation Point Observation Point
(a) B/H = 2% (b) B/H = 8% (©) B/H = 20%
Ve ~TTTTTTT T RN
_________ 7 N
- =~ s AN
——————————————— - ~ _ - ~
-3 -2 -1 0 1 2 -3 -2 -1 0 1 -3 -2 -1 0 1 2
x T T

Figure 8 Case II: absolute time integrated sensitivity | [§ 3G / dm dt | as the relative amplitude of the bathymetry is increased.




Khan and Kevlahan Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.36 201

occurs when G/H increases from 1% to 15%. For Case I
sensitivity did not vary significantly when j3/H doubled
from 15% to 30%. (see Figure 7(b) and 7(c)). Based on
these observations, we conclude that a lower relative
bathymetry height 3/H decreases the sensitivity of G to
changes in the observations {mj(t)}.

Perhaps the most significant question we aim to
address with this analysis is whether a large error in
the reconstructed bathymetry is associated with a high
sensitivity of the error in the surface wave to perturbations
in the observations, as stated in (C.ii). In Khan and
Kevlahan (2021) we found that the error in the surface
wave was orders of magnitude lower than the error in
the bathymetry, suggesting low sensitivity of the surface
wave to bathymetry reconstruction error. This implies
that relatively large tolerance levels for bathymetry
reconstruction error in tsunami models may be
acceptable, at least in the one-dimensional case. We now
wish to make this conclusion more rigorous, and verify
whether the SOA sensitivity of the surface wave error to
the observations 0G/om also exhibits the same behaviour.

If 0G/lom were the same order of magnitude as
bathymetry reconstruction error, this would imply that
if the bathymetry reconstruction is sub-optimal, the
accuracy of surface wave prediction will be sensitive to
perturbations to the observations. Thisis undesirable from
a forecasting perspective as it indicates predictions may
vary greatly based on small changes in the observations
(such as noise or small changes in position). Due to the
ill-posedness of inverse problems of this kind, errors in
measurements can be amplified and subsequently have
a large affect on the surface wave error.

Fortunately, the sensitivity analysis presented here
allows us to conclude that, in all cases, considered the
sensitivity 0G/om is orders of magnitude smaller than the
optimal values for the bathymetry reconstruction error
presented in Table 1. This relationship does not change
even for the worst sensitivity results (observed for Case
II in Figure 8(c), where the sensitivity is O(1073). This is
still an order of magnitude smaller than the lowest error
observed for Case II, which was O(10-?).

Additionally, we observed that even when the bathy-
metry reconstruction error is sub-optimal the sensitivity
can berelatively far smaller, as demonstrated in Figures 7(a)
and 8(a) where the sensitivity is very small, O(10°) and
O(1078) respectively, while the bathymetry reconstruction
error is large, O(1071). Thus, although we found that the
sensitivity of surface wave error to observations increases
with the error in the reconstructed bathymetry, it is
nevertheless many orders of magnitude smaller.

5 CONCLUSION

Variational data assimilation has been proposed as a
technique for reconstructing ocean bathymetry from

observations of surface waves. We have used the second
order adjoint technique to quantify the sensitivity of
the surface wave to perturbations in the observations
(such as their number, spacing and position relative to
bathymetry profiles), given approximately reconstructed
bathymetry. Our goal is to better understand the
sensitivity of the assimilation process to the observations,
and also to quantify the acceptable level of bathymetry
error for accurate modelling of surface waves.

We first derived the Hessian product Hv given some
arbitrary perturbation of the control variable v, and then
demonstrate that deriving the sensitivity aG/om involves
solving the forced equation Hv = F with the right hand
side F dependent on the optimal assimilation results.
For the present study, we chose the response G to be
the relative L? error in the surface wave, produced by the
reconstructed bathymetry.

We numerically implemented the sensitivity algorithm
for the bathymetry assimilation case, in order to further
investigate and confirm the conclusions about the
accuracy of variational bathymetry assimilation from
Khan and Kevlahan (2021). We then used this algorithm
to answer three questions arising from our bathymetry
assimilation algorithm.

Question 1 asks whether there is a link between
the sensitivity oG/om and the convergence of the
reconstructed bathymetry to the exact form. The results
for three bathymetry and initial conditions configurations
outlined in Table 1 show that a higher error in bathymetry
reconstruction is associated with higher sensitivity of the
surface wave error to perturbations in the observations.

Question II asks how changing parameters in the data
assimilation scheme, such as the spacing of observation
points, affects sensitivity of the surface wave. We analysed
the sensitivity 0G/dm as we varied the observation point
placement and number of points. The main conclusion
from varying the spacing of the observation points is that
coveringall of the bathymetry feature with the observation
points dramatically decreases sensitivity (provided the
spacing is fine enough to resolve all significant scales of
surface wave).

To gain further insight into the differences between
cases with localized or extended bathymetry features,
we conducted trials where we incrementally increased
the standard deviation of a Gaussian bathymetry feature,
until its curvature qualitatively resembled a sandbar. We
observed that the higher standard deviation led to an
increase in the time-integrated sensitivity, regardless
of the position of the bathymetry relative to the initial
condition.

Finally in Question III, we investigated whether our
qualitative conclusions from Part I (Khan and Kevlahan,
2021) could be confirmed by the sensitivity analysis.
Our first conclusion addressed the relationship between
the bathymetry and initial conditions amplitudes 2
and 7, and the average depth H. In Part I we observed
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that a necessary condition for convergence of the
reconstructed bathymetry was that the relative height of
the initial conditions compared to the bathymetry height
7113 be less than or equal to O(102) when BIH was larger
than 10% of the depth. In the sensitivity analysis we
varied the relative bathymetry amplitude 3/H (keeping
7 at 1% of 3, to investigate the effect of the relative
bathymetry amplitude on the sensitivity of the surface
wave response G to the observations. For both Cases I
and II, we saw a general increase in sensitivity with the
relative bathymetry height 3/H.

Secondly, we verified the observation from Part I that
the error in the surface wave is orders of magnitude
lower than the error in the reconstructed bathymetry,
suggesting low sensitivity of the surface wave to
reconstruction error. We therefore investigated whether
the sensitivity aG/om exhibited the same behaviour,
i.e. whether the sensitivity of the surface wave error to
observations was orders of magnitude lower than the
bathymetry reconstruction error. We clearly observed
that in all cases considered, the sensitivity dG/om was
orders of magnitude lower than the optimal values of the
reconstruction error presented in Table 1.

In conclusion, the analyses in this chapter confirm
the results observed for the data assimilation in Part I
(Khan and Kevlahan, 2021). We have shown that the
necessary conditions for convergence of the bathymetry
reconstruction error, also correspond to low sensitivity of
the surface wave error to the observations. By showing
that this sensitivity is orders of magnitude lower than
the bathymetry reconstruction error, we conclude
that even if the reconstruction of the bathymetry is
sub-optimal, the forecast of surface wave exhibits low
sensitivity to changes in observations. High sensitivity
of the surface wave error to observations would imply
that predictions of surface waves may vary greatly
due to small changes in the observations. As errors
in measurements can be amplified and subsequently
have a large affect on the surface wave error, the low
sensitivity observed in these analyses is encouraging
from a forecasting perspective, especially in situations
where the relative bathymetry reconstruction error is
sub-optimal (larger than 10%).

Improvements to the current analysis could be made
by ensuring better convergence of Hv = F, such that the
residual error is decreased further. Equivalent results for the
initial conditions assimilation may also shed more light on
the sensitivity of surface wave propagation to observations.

We note that these results are for an idealised 1-D
case. The next step would be verify the conclusions of this
analysis for the 2-D data assimilation, and use realistic
ocean bathymetry and observation data. In Khan and
Kevlahan (2021) we provided a concise overview on
the importance of bathymetry for accurate tsunami
modelling. Consequently, the results from the current

analysis help us to quantify the accuracy required for
the reconstructed bathymetry, such that the sensitivity
of the the error in the surface wave to the observations
remains low. We also gain a better understanding of
how large bathymetry features impact the surface
wave accuracy, and the effects of the number and
placement of observations. In particular, our results
suggest that efforts to improve bathymetry mapping
should focus on features with very high relative heights
(e.g. seamounts). Therefore, the results observed here
provide an encouraging first step towards a more realistic
implementation for tsunami models, and may serve as a
benchmark for future analyses.

The analyses in this work quantify the sensitivity of the
surface wave error given the reconstructed bathymetry to
observations. They complement the analysis of sensitivity
of the surface wave error to parameters in the models
(like the bathymetry and initial conditions amplitudes 3
and 7)) in Khan and Kevlahan (2021), where we use Global
Sensitivity Analysis (GSA) techniques to derive sensitivity
indices quantifying the variation in the surface wave error
resulting from the respective parameters.
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