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ABSTRACT

Observations of the interstellar medium (ISM) and molecular clouds suggest these astrophysical flows are strongly
turbulent. The main observational evidence for turbulence is the power-law energy spectrum for velocity fluctuations,
E(k) ∝ kα , with α ∈ [−1.5,−2.6]. The Kolmogorov scaling exponent, α = −5/3, is typical. At the same time,
the observed probability distribution function (PDF) of gas densities in both the ISM as well as in molecular clouds
is a log-normal distribution, which is similar to the initial mass function (IMF) that describes the distribution
of stellar masses. In this paper we examine the density and velocity structure of interstellar gas traversed by
curved shock waves in the kinematic limit. We demonstrate mathematically that just a few passages of curved
shock waves generically produces a log-normal density PDF. This explains the ubiquity of the log-normal PDF
in many different numerical simulations. We also show that subsequent interaction with a spherical blast wave
generates a power-law density distribution at high densities, qualitatively similar to the Salpeter power law for
the IMF. Finally, we show that a focused shock produces a downstream flow with energy spectrum exponent
α = −2. Subsequent shock passages reduce this slope, achieving α ≈ −5/3 after a few passages. We argue
that subsequent dissipation of energy piled up at the small scales will act to maintain the spectrum very near to
the Kolomogorov value despite the action of further shocks that would tend to reduce it. These results suggest
that fully developed turbulence may not be required to explain the observed energy spectrum and density PDF.
On the basis of these mathematical results, we argue that the self-similar spherical blast wave arising from
expanding H ii regions or stellar winds from massive stars may ultimately be responsible for creating the high-
mass, power-law, Salpeter-like tail on an otherwise a log-normal density PDF for gas in star-forming regions. The
IMF arises from the gravitational collapse of sufficiently overdense regions within this PDF. Thus, the composite
nature of the IMF—a log-normal plus power-law distribution—is shown to be a natural consequence of shock
interaction and feedback from the most massive stars that form in most regions of star formation in the galaxy.

Key words: ISM: kinematics and dynamics – ISM: structure – shock waves – stars: formation – stars: luminosity
function, mass function – turbulence

1. INTRODUCTION

The distribution of stellar masses, known as the initial mass
function (IMF), is of paramount importance to many fields
of astrophysics. The form of the IMF plays a central role in
subjects as diverse as galactic evolution and the formation and
evolution of exoplanetary systems. Although its origin has been
the focus of many analytical models for several decades, only
recently have numerical simulations become available that can
include many of the important physical processes involved (see
the reviews by McKee & Ostriker 2007; Bonnell et al. 2007).
The form of the IMF is variously described as a log-normal
distribution at low stellar masses with a power-law tail at masses
exceeding a solar mass (e.g., Chabrier 2003), or as a multiple
power law (e.g., Kroupa 2002). The Salpeter power-law index of
−1.35 for the high-mass power-law tail appears to be universal.
These properties of the IMF must ultimately reflect robust
properties of the dense substructure within molecular clouds
in the interstellar medium (ISM), in which stars are born.

It is not surprising therefore that one of the central problems
in star formation is to characterize the mass distribution of the
dense star-forming regions within clouds. Millimeter and sub-
millimeter wave observations show that these clouds are highly
inhomogeneous and are dominated by systems of filaments,
punctuated by smaller denser regions in which clusters of stars
form. Individual stars form in dense regions (n � 104 cm−3),
whose mass distribution is known as the core mass function

(CMF). The gas velocities in these clouds are observed to be
supersonic and chaotic. Numerical studies reveal that “turbu-
lent” supersonic gas motions can reproduce many aspects of
this structure. A number of observational surveys have shown
that the CMF can be modeled by a log-normal distribution in
many instances (e.g., Goodman et al. 2009). Other studies sug-
gest that the high-mass tail of this distribution is closer to a
power law, whose index is nearly identical to the Salpeter value
(e.g., Motte et al. 1998; Johnstone et al. 2000). However, the
debate continues as to the exact form of the mass distribution of
these dense gaseous structures (e.g., Goodman et al. 2009).

This subject has made major advances largely due to the
advent of numerical simulations. These show that the filamen-
tary nature and the mass spectra of structure in clouds naturally
result from the action of supersonic turbulence within them
(e.g., the review of Mac Low & Klessen 2004). The precise
origin of the turbulence is still somewhat unclear. Molecular
clouds are themselves embedded in a multicomponent ISM and
could be formed by several processes, including cloud colli-
sions, spiral shock waves, and a combination of gravitational
and magnetic instabilities. They are also shocked by the effects
of feedback from star formation itself including expanding H ii

regions, supernovae, and powerful winds from massive stars.
Simulations have started to make substantial progress in fol-
lowing most of these processes (e.g., Wada & Norman 2001;
Tasker & Bryan 2006). The presence of supersonic turbulence
within all molecular clouds has been interpreted as evidence
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that they are short-lived structures that are dissipated in one or
two shock crossing times: star formation occurs in the few tran-
sient turbulent structures that have sufficiently high density to
collapse (e.g., Elmegreen 2002; Hartmann et al. 2001). Indeed,
observational studies of molecular clouds in the nearby Large
Magellanic Cloud (LMC) galaxy indicate that the timescale to
form star clusters is rapid (of order a Myr) and that molecular
clouds are rapidly dissipated in a few Myr as a consequence
of their formation (Fukui et al. 1999). Turbulence within such
clouds may result from processes on larger scales (>100) that
tap into energy released by galactic shear, gravitational instabil-
ity, or large-scale expanding H ii regions.

In spite of the wide range of conditions in the ISM and
the details of the modeled process, time-dependent numerical
simulations show that the density structure can be well modeled
by a log-normal probability distribution function (PDF) over
several orders of magnitude: from the diffuse atomic gas to
molecular clouds (e.g., Wada & Norman 2007; Tasker & Bryan
2008). At later times in their simulations of the ISM undergoing
feedback from the effects of massive star formation Tasker
& Bryan (2008) found that a power-law fit might also be
possible. Numerical simulations of density fluctuations in purely
isothermal supersonic turbulence have a log-normal PDF, and
this is often taken as evidence for turbulence in the ISM.
However, Padoan & Nordlund (2002) used the central limit
theorem to show that a flow with a power-law energy spectrum
will necessarily have a log-normal PDF of density. Thus, a log-
normal PDF of density does not provide any more evidence for
turbulence than a power-law energy spectrum.

How does the distribution of stellar masses arise from
this density structure that characterizes the ISM? Stars are
formed in fluctuations whose density exceeds a threshold for
gravitational collapse. Recent theoretical work has emphasized
that the shape of the IMF may be a combination of a power
law at large mass scales, which transitions to a log-normal
form at lower masses. The peak of this distribution is a mass
characteristic of gravitational collapse (e.g., Hennebelle &
Chabrier 2008; Padoan & Nordlund 2002). The power-law tail
and near Salpeter index for the mass function in molecular
clouds has been modeled as arising from shocks generated
in nearly Kolomogorov turbulence (e.g., Padoan & Nordlund
2002), where the power-law index depends on the spectral
index of the turbulent flow, and the half-width of the log-normal
distribution depends on the turbulence Mach number. A recent
analytic approach argues that the log-normal distribution for
the IMF at low masses arises from that part of the gas density
distribution that is supported by thermal pressure, whereas the
Salpeter tail arises for higher mass cores that are supported by
turbulent pressure (Hennebelle & Chabrier 2008). An alternative
explanation for a joint log-normal plus power-law distribution
initial distribution is that an initial log-normal distribution can
develop a power-law tail if cores accrete over a distribution
of timescales (Basu & Jones 2004). Finally, Elmegreen (2002)
noted that if one assumes that all gas above a density threshold
in a log-normal distribution can form stars, then it is possible
to recover the well known Schmidt law that governs the global
star formation rate in galaxies (see also Wada & Norman 2007).

In this paper, we examine the mathematical properties of
shock-driven gas motions and propose a new approach to explain
the nature of gas motions and density structure in the ISM and
molecular clouds. We use analytical theory to examine both the
density distribution expected in the gas due to the interaction of
curved shocks, as well as the nature of the velocity fluctuations

downstream of a shock. We show that the passage of just a
few shock waves can very quickly establish log-normal density
distributions. The passage of a spherical shock (i.e., blast wave)
adds a power-law tail at large mass densities. We demonstrate
that in general a log-normal distribution with a power law at large
densities is expected in media that are occasionally traversed
by such large-scale spherical shocks. These spherical shocks
have been observed in the expanding H ii regions that are a
consequence of massive star formation. Thus, although gravity
may be important for the large-scale dynamics of molecular
clouds (Goodman et al. 2009), the large-scale shock waves of
varying symmetry play an essential role in shaping the mass
function of the cores.

The motions induced in the wake of curved shocks are
vortical in nature. Power is distributed to vortical motions
across a wide range of scales without a cascade process that is
essential for Kolomogorov turbulence. Although tempting, we
will argue that it is problematic to interpret the observations
of Kolmogorov-like scaling in terms of hydrodynamic (or
magnetohydrodynamic (MHD)) turbulence.

The paper is organized as follows. In Section 2, we con-
trast the properties of shock-driven and Kolmogorov turbulence.
Then in Section 3, we review Kevlahan (1997)’s theory for vor-
ticity generation by shocks propagating in nonuniform flows.
Although it is commonly thought that straight shocks, weak
shocks, and spherical shocks do not generate vorticity Kevlahan
(1997) demonstrated that this is not true for shocks in inhomoge-
neous flows. In addition, we highlight the fact that curved shocks
eventually focus. This focusing produces a pair of shock–shocks
(Whitham 1974) which generate vortex sheets downstream of
the shock. This effect appears not to have been considered be-
fore in astrophysical flows. In Section 4 we show how multiple
shock interactions could generate the observed log-normal and
power-law distributions of mass density, and in Section 5 we
show that the observed velocity energy spectra could be pro-
duced by the quasi-singular vorticity generated downstream of
focused shocks and blast waves. Finally, we interpret the results
in terms of an astrophysical model for the role of shock waves
in generating density structure in the ISM and molecular clouds,
and its connection to the IMF and close with our conclusions
for shocks and star formation in the ISM (Section 6).

2. SHOCK-DRIVEN FLOW AND KOLMOGOROV
TURBULENCE

Observations of density and velocity fluctuations have sug-
gested that many astrophysical flows are strongly turbulent.
This phenomenon is widespread and includes a diverse set of
systems—including H i emission in the ISM, interstellar scintil-
lations (ISS), 100 μm IRAS emission in the ISM (Elmegreen &
Scalo 2004), velocity and density structure in molecular clouds,
H i emission in the LMC (Elmegreen et al. 2001), fluctuations
in the solar wind (Horbury 1999; Nicol et al. 2008), and hot
H2O emission in accretion disks (Carr et al. 2004). The evi-
dence suggesting that these fluctuations are in fact turbulent is
principally their turbulent-like velocity dispersions, or, equiva-
lently, energy spectra and second-order structure functions, as
well as their spatial density structure. Sometimes the scaling of
higher-order structure functions is also taken as evidence of tur-
bulence (e.g., Padoan et al. 2003). However, these results are not
conclusive since there is still no rigorous theory for the scaling
of high-order structure functions (only models, such as the one
proposed by She & Leveque 1994), and there is not enough data
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to obtain properly converged statistics for structure functions
of order greater than about 6 or 7 without using the extended
self-similarity (ESS) correction.

One of the central ideas in Kolmogorov’s classical theory of
turbulence is that energy is injected at large scales and cascades
without loss through intermediates scales, until it reaches the
smallest scales where it is finally lost to molecular dissipation
(see Elmegreen & Scalo 2004, for a detailed review). Fully de-
veloped incompressible turbulence is characterized by a power-
law energy spectrum E(k) ∝ kα where α = −5/3 for incom-
pressible homogeneous isotropic three-dimensional turbulence
and α ∈ [−3, −4] for the enstrophy cascade in two-dimensional
turbulence. Astrophysical fluctuations have observed power-law
spectra with α ∈ [−1.5, −2.6] (Elmegreen & Scalo 2004), sug-
gestive of turbulence. Radio propagation observations of the
diffuse ISM have found that density fluctuations obey the “big
power law in the sky”: Kolmogorov-like scaling of the energy
spectrum extends over 11 orders of magnitude, from 107 cm
to 1018 cm (Spangler 1999). However, Lazarian & Pogosyan
(2000) comment that “the explanation of the spectrum as due
to a Kolmogorov-type cascade faces substantial difficulties.” In-
deed, they emphasize that “The existence of the Big Power Law
(see Armstrong et al. 1995; Spangler 1999) is one of the great
astrophysical mysteries.”

Measurements of the velocity dispersion of gas within molec-
ular clouds are made as a function of the size of the region in
which the dispersion is measured. The data show that there is
a power-law relation between the line width and size of a re-
gion such that Δv ∝ Rβ (Ballesteros-Paredes et al. 2007). This
scaling is a direct consequence of the energy spectrum since
β = −(α + 1)/2. Larson (1981) first deduced that β � 0.38,
which is close to Kolmogorov turbulence (β = 1.3, α = −5/3),
and was the first to suggest that turbulence must play a very im-
portant role in the gas, and as a consequence, in the process
of star formation that occurs in such clouds. Recent surveys
for whole giant molecular clouds (GMCs) find β � 0.5–0.6
(e.g., Heyer & Brunt 2004), while studies of clouds with re-
gions of low surface brightness find β � 0.4 (Falgarone et al.
1992). Compressible gas motions which characterize the ISM
are damped very quickly in shocks—typically in one crossing
time of the driving scale.

Turbulence can also be characterized by the scaling of ζp, the
exponent of the pth order structure function,

〈|u(x + r) − u(x)|p〉 ∝ rζp . (1)

Kolmogorov’s theory (Frisch 1995) predicts that ζp is a linear
function of p (with ζp = p/3). However, experiments show that
ζp is in fact a concave function of p, increasing more slowly than
linear with order p. Some attempts have been made to measure
structure function exponents for astrophysical fluctuations (e.g.,
Nicol et al. 2008), although lack of data restricts the analysis to
relatively low order (p � 4 or 6) and quantitative comparison
with turbulent flows is difficult since there is no accepted theory
for how ζp should scale.

The equation of spectral energy balance for approximately
incompressible homogeneous decaying turbulence is

∂tE(k) = −2νk2E(k) + T (k),

where k = |k| is the magnitude of the wavenumber, the first term
on the right-hand side is viscous dissipation of energy (active
only at small scales) and T (k) measures the rate of energy
transfer from all other wavenumbers k′ to k due to nonlinear

interactions, i.e., it quantifies the energy cascade. Thus, in order
to demonstrate conclusively the existence of an energy cascade
one must estimate the energy transfer function,

T (k) =
∫

k=|k|
û∗(k) · P(k)(û × ω(k)) dS(k),

where ˆ( ) denotes the Fourier transform, ω is the vorticity,
P(k) is the divergence-free projection (for approximately in-
compressible flow), and the integral is over spherical shells in
Fourier space. However, it is impossible to estimate T (k) from
the available the observational data since calculating u × ω re-
quires pointwise measurements of all components of the velocity
and vorticity.

The interpretation of power-law scaling of the energy spec-
trum in terms of fully developed Kolmogorov turbulence in the
ISM is problematic for several reasons.

1. Kolmogorov scaling is associated with incompressible neu-
tral flow, whereas the ISM is believed to be strongly
compressible and magnetic. Sridhar & Goldreich (1994)
proposed a theory for anisotropic incompressible MHD
turbulence which gives an energy spectrum k

−5/3
⊥ in direc-

tions perpendicular to the mean magnetic field. However,
the theory is not rigorous and it does not apply to the solar
wind. Other weak turbulence calculations find k−2

⊥ or k
−3/2
⊥ ,

and stationary constant flux solutions may have exponents
anywhere in the range from −1 to −3 depending on the
asymmetry of the forcing (Galtier et al. 2002).

2. The “big power law in the sky” extends over a range
of scales that include many different physical processes,
including scales where the gas dynamics approximations
of fluid turbulence are not valid. How can the same scaling
be maintained across scales with very different physics?

3. It is not clear where the energy sustaining the ISM tur-
bulence comes from. Candidates include massive stellar
winds, supernovae, expanding H ii regions, galactic rota-
tion via spiral shocks, sonic reflection of shock waves
hitting clouds, cosmic-ray streaming, field star motions,
Kelvin–Helmholtz and other fluid instabilities, thermal in-
stabilities, gravitational instabilities, and galaxy interac-
tions (Elmegreen & Scalo 2004).

4. As pointed out by Lazarian & Pogosyan (2000), the
damping rate of MHD turbulence is much faster than
previously thought: about one eddy turnover time (as for
neutral fluids). This implies very large energy injection
scales and efficient and frequent forcing in order to sustain
the turbulence (since the energy cascade takes about one
eddy turnover time). It is useful to recall that hydrodynamic
turbulence typically has constant or frequent forcing, e.g.,
vorticity generation via the no-slip boundary condition, or
the mixing layer instability in jets. Vorticity generation
occurs on a huge range of scales and does not require the
lengthy process of an energy cascade.

In numerical simulations, on the other hand, turbulence is
often generated via spiral shocks or supernovae explosions (e.g.,
Joung & Mac Low 2006; Piontek & Ostriker 2005; Wada et al.
2002). This turbulence is necessarily limited to low Reynolds
numbers, and the power-law scaling of the energy spectrum is
present over a small range of scales (about a decade). Supersonic
turbulence from these and other simulations of the ISM have a
scaling close to the −2 associated with the shock discontinuity
(Kritsuk et al. 2007; Vázquez-Semadeni et al. 1997).
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Mathematically, the energy spectrum of a field is determined
by its strongest singularity. If a function f (x) has a discontinuity
in the p − 1 order derivative (where p is an integer), then the
energy spectrum of f (x) has the form of a power law

E(k) ∼ k−2p.

For example, a field containing shocks (discontinuities in the
velocity field) has E(k) ∼ k−2. A singularity “worse” than a
discontinuity would be required to generate a slope shallower
than −5/3, for example an accumulation of discontinuities
around a given point, or a fractal (see Hunt et al. 1990). Note,
however, that the converse is not true: smooth fields can have
a power-law energy spectrum (e.g., adding together Gaussian
functions of just the right size and amplitude could produce a
k−5/3 spectrum).

The fact that a power-law scaling is observed over such a
wide range of scales suggests that a singularity may be respon-
sible, such as the shocks that are ubiquitous in astrophysical
flows. Kornreich & Scalo (2000) have proposed galactic shocks
propagating through interstellar density fluctuations as a way
of forcing (or “pumping”) supersonic turbulence. We go one
step further: shock-generated vorticity alone may be enough to
explain the observed energy spectra. Dynamical turbulence is
not required.

As mentioned above, simulations of supersonic turbulence
typically produce a −2 spectrum. This is not surprising since
flows with turbulence Mach number Mt > 0.3 will sponta-
neously generate shocklets (Kida & Orszag 1990). Since the
Kolmogorov −5/3 spectrum is likely not associated with a sin-
gularity, the −2 scaling dominates. However, as pointed out by
Elmegreen & Scalo (2004), the observed spectra are often shal-
low than −2 and “the proposed shocks themselves have not been
observed in real clouds.” In this paper, we suggest a shock-based
explanation of the observed spectra that addresses both these is-
sues. First, we show that focused shocks generate vortex sheets,
which means that the shock-driven flow may have a spectrum
E(k) ∼ k−2 even when the shock is no longer present. Second,
we show that multiple passages of curved shocks produces ve-
locity fluctuations with a spectrum shallower than −2. Focused
shocks are not the only shock structures that produce power-law
scaling: we also find that multiple passages of strong spherical
shocks produce similar results.

Dobbs & Bonnell (2007) have recently proposed a similar
shock-based explanation of the velocity dispersion (i.e., energy
spectrum) in molecular clouds. They use full smoothed par-
ticle hydrodynamics (SPH) simulations of the gas dynamics
equations to show that shocks propagating through nonuniform
fractal gas generate velocity dispersions close to the observed
scaling. Our study is complementary: we use the full analytic
expression for the vorticity produced by a curved shock in
nonuniform flow to show that multiple shock passages could
produce the observed velocity dispersion (and PDF of density
fluctuations). We identify baroclinic vorticity generation as the
key term. In addition, we find that fractal (or even nonuniform)
initial conditions are not necessary.

3. VORTICITY GENERATION BY CURVED AND
OBLIQUE SHOCKS

In this section, we review Kevlahan’s (1997) theory for the
vorticity jump across a shock in nonuniform flow. We emphasize
two effects that are usually neglected in discussions of vorticity
generation by shocks: the creation of vortex sheets downstream

of highly curved shock regions (e.g., shock–shocks), and the role
played by nonuniformities in the flow ahead of the shock (which
can lead to significant vorticity generation even by straight
shocks).

The general expression for the vorticity jump in the binormal
direction b across an unsteady three-dimensional shock moving
into a nonuniform flow was derived by Hayes (1957),

δω b = n×
[
−∂(ρCr )

∂S
δ(ρ−1)(ρCr )−1(DSUS + CrDSn)δ(ρ)

]
,

(2)
where n is the shock-normal direction, s is the tangential
direction, and the binormal direction is given by b = s × n.
Note that both s and b are tangential to the shock surface, and
the normal component of the vorticity is continuous across a
shock. ∂/∂S is the tangential part of the directional derivative,
Cr = C−A is the shock speed relative to the normal component
of the flow ahead of the shock A, and DS is the tangential part of
the total time derivative. A similar expression may be derived
for the vorticity jump in the tangential direction s. However, the
expression usually taken for the vorticity jump is

δω b = − μ2

1 + μ
n ×

(
US · K +

∂Cr

∂S

)
s, (3)

where μ is the normalized density jump across the shock (the
shock strength), K is the curvature of the shock, and US is the
velocity tangential to the shock in the reference frame of the
shock. This expression was derived by Hayes from Equation (2)
by assuming that the flow ahead of the shock is uniform.

Kevlahan (1997) rederived the vorticity jump equation, taking
full account of terms due to the nonuniform upstream, finding
that the vorticity jump in the binormal direction b

δω · b = μ2

1 + μ

∂Cr

∂S
− μ

Cr

([
Du

Dt
+

C2
r

1 + μ

1

ρ
∇ρ

]
· s

)
+ μω · b,

(4)
together with a similar expression for the vorticity jump in the
tangential direction s. If the upstream flow is isentropic then
a2

0/ρ∇ρ ≈ −Du/Dt , and if, in addition, the upstream flow is
quasi-steady and we normalize by the stagnation sound speed
a0 then Equation (4) becomes

δω · b = μ2

1 + μ

∂Ms

∂S
+

1

Ms

(
μ

1 + μ
M2

s − 1

)

×
[

∂ 1
2M2

t

∂S
+ ω × u · s

]
+ μω · b, (5)

where Mt is the turbulent Mach number of the upstream flow. We
will use Equation (5) in the remainder of the paper. Equation
(5) may be simplified further for strong shocks by using the
approximation μ ≈ 2/(γ − 1).

The density jump is given by

δρ ≡ μρ = M2
s − 1

1 + 1/2(γ − 1)M2
s

ρ, (6)

where μ is often referred to as the shock strength.
The first term on the right-hand side of Equation (5) represents

vorticity generation due to the variation of the shock speed Ms
along the shock; by symmetry it is exactly zero for spherical and
cylindrical shocks. Because shocks are nonlinear waves (unlike
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Figure 1. Focused shock model: (–) shock strength, (- - -) shock profile. Note the
shock–shocks (discontinuities in shock strength) which generate vortex sheets
in the downstream flow.

acoustic waves), Ms is larger in regions of concave curvature
and smaller in regions of convex curvature (with respect to
the propagation direction of the shock). This difference in
shock strength increases over time and eventually causes curved
shocks to focus at regions of minimum curvature, developing
a flat shock disk bounded by regions of very high curvature
(often called kinks; Kevlahan 1996). In laboratory experiments
shock focusing is obtained by reflecting a straight shock off a
curved surface (see Sturtevant & Kulkarny 1976, for a detailed
discussion and pictures of shock focusing experiments). The
discontinuous shock strength at the kinks is called a shock–
shock. In the ISM shock focusing could arise due to reflection
off density gradients (e.g., vertically stratified structure in
disks), or due to small variations in shock curvature in blast
waves.

As mentioned above, since the first term on the right-hand
side of Equation (5) is approximately singular at the location
of a kink, extremely strong jet-like vortex sheets develop in
the flow downstream of the kinks (see Figure 1). These vortex
sheets themselves have an energy spectrum E(k) ∼ k−2,
and generate turbulence exponentially fast via the Kelvin–
Helmholtz instability. Note that this scenario produces a −2
spectrum in the downstream flow, even when the shock is
no longer present (resolving the first objection mentioned in
Section 1). In other words, the −2 spectrum is associated with
the downstream flow, not with the shocks themselves (as has
been assumed in the past).

The second term on the right-hand side of Equation (5) is
baroclinic generation of vorticity due to the misalignment of
pressure and density gradients as the flow passes through the
shock. This is the dominant term for vorticity production across
straight or weakly curved shocks. It is also an important term in
the case of multiple shock passages as it nonlinearly mixes the
flow, redistributing energy among different length scales (similar
the quadratic nonlinearity of the Navier–Stokes equations). Note
that the vorticity may be generated across a straight shock even
if the upstream flow is irrotational.

Finally, the third term on the right-hand side of Equation (5) is
the additional angular momentum generated by compression of
the flow in the direction normal to the front (i.e., conservation of
angular momentum). This terms simply moves the entire energy
spectrum up by the factor μ without changing its form.

The following sections use simple examples to show how
multiple shock passages can generate density PDFs and energy
spectra similar to what is seen in molecular clouds. We consider
three generic shock types: weak eddy shocklets (which form
spontaneously in supersonic turbulence), focused shocks, and

strong spherical shocks (which model the blast waves generated
by supernovae explosions).

4. THE DISTRIBUTION OF MASS DENSITY

In this section, we derive the density PDF of interstellar
gas that results by the passage of various shock waves. We
first demonstrate that a log-normal distribution is very rapidly
established in a medium that is repeatedly lashed by multiple
shock passages (Section 4.1). However, in Section 4.2 we show
that a power-law behavior for a density PDF is expected for the
passage of a perfectly spherical blast wave. Interstellar gas can
therefore be regarded as being characterized by a log-normal
density PDF, which from time to time develops a power-law tail
at high densities due to the passage of a spherical blast wave
from a nearby supernova, or an ongoing stellar wind bubble. This
situation typifies the gas dynamics in regions of star formation.

4.1. Rapid Generation of the Log-Normal Density Distribution

We first present a very simple explanation for the origin of
the log-normal distribution of density commonly observed in
isothermal turbulent flows. It is well known that flows with
Mt > 0.3 spontaneously generate small, relatively weak, and
highly curved shocks, called “eddy shocklets” Kida & Orszag
(1990). It is therefore reasonable to assume that a region of space
will be hit several times by shocklets of varying strengths. If we
assume that the density is approximately stationary between
shock passages (i.e., that the density changes primarily due to
shock compression), then from Equation (6) the density after
n shock passages is

ρ(n)(x) =
n∏

j=0

(1 + μ(j )(x)), (7)

where we have normalized density in units of the initial
uniform density ρ0. Let us consider the shock strengths μ(j )(x)
to be identically distributed random variables. Then, since
(1 + μ(j )(x)) > 0 we can take the logarithm of both sides and
apply the central limit theorem to the resulting sum. This shows
that the logarithm of density is normally distributed, i.e., the
density PDF follows a log-normal distribution,

P (ρ) = 1√
2πσρ

exp

(
− (log(ρ) − log ρ)2

2σ 2

)
. (8)

Note that application of the central limit theorem to derive
Equation (8) requires only that the random variables log(1 +
μ(j )(x)) have finite mean and variance.

One might think that it would take hundreds of shock interac-
tions to converge to this log-normal distribution. However, if the
PDF of density jumps is symmetric, then the rate of convergence
is quite fast, O(n−3/2). In fact, if the PDF of density jumps is
uniform (a reasonable assumption) then, as shown in Figure 2,
as few as three or four shock passages generates a very good
approximation to the log-normal distribution.

In particular, if the PDF of density jumps μ is uniformly
distributed in (0, 2/(γ − 1)] (i.e., between its minimum and
maximum possible values), then the logarithmic mean and
variance of the log-normal distribution after n shock passages
are, respectively,

log ρ = n

2
ln

γ + 1

γ − 1
, (9)
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Figure 2. Convergence to a log-normal PDF of density after n = 2, 4, 6 shock
passages. (- - -) Log-normal distribution, (–) PDF of density.

σ 2 = n

12
ln

γ + 1

γ − 1
. (10)

There are two important aspects to these results. First, we see
that both the mean and variance of the log-normal are largest
for nearly isothermal gases (i.e., gases with γ ≈ 1). Molecular
gas can be well described as isothermal up to densities of
n � 109 cm−3 due to efficient CO molecular as well as dust
cooling. Second, the result shows that the logarithmic mean
increases proportional to the number of shocks n—and that the
width of the distribution measured by the variance also grows
proportional to n. These trends have been observed in the density
PDFs of simulations of molecular clouds (e.g., the review of Mac
Low & Klessen 2004). The overall amplitude of the distribution
decreases with growing n simply because the integral of P (ρ)
must equal unity for any n. These trends are shown in Figure 2.
Note in particular how few shocks are required to establish a
log-normal distribution to high accuracy. In a self-gravitating
medium such as molecular gas, eventually gravity takes over
and the dense cores begin to collapse.

The explanation for the log-normal distribution of density
proposed here is even simpler and more general than that given
previously by Nordlund & Padoan (1999). In fact, our results
could explain Nordlund & Padoan (1999)’s observation that
in a numerical simulation of isothermal supersonic turbulence
“. . .the high-density wing of the Log-Normal is established very
early—soon after the first shock interactions.” It is precisely
these first few shock interactions that generate the log-normal
distribution.

4.2. The Power-Law Distribution at Large Densities

We have shown that interacting weak shocklets typical of
supersonic turbulence quickly generate a log-normal PDF of
mass density. However, observations show that the PDF of mass
has a power-law tail at high masses with an exponent near the
Salpeter index of −1.35. Although the mass and density PDFs
are not identical, these observations suggest that the density PDF
should also have a power tail at high densities. We show here
that such a power-law tail may be explained by the interaction
of the log-normal density fields of supersonic turbulence with a
strong spherical shock (i.e., blast wave).

We adopt the solution for strong spherical shocks with
sustained energy injection E(t) ∝ tp derived by Dokuchaev
(2002). This solution generalizes the Sedov–Taylor self-similar
solution for a point blast explosion modeled by p = 0 (i.e.,
an instant shock) to permanent energy injection modeled by
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Figure 3. Generation of a power-law PDF at large densities in a nearly isothermal
gas by a spherical blast wave interacting with a log-normally distributed density
field. - - - is the initial log-normal PDF and the slopes −17/6 and −9/2 corre-
spond to an instant shock and an injection shock, respectively. Note that the upper
limit of the power-law range is proportional to 1/(γ − 1), and thus we expect
the largest power-law ranges for nearly isothermal gases, i.e., those with γ ≈ 1.

p = 1 (i.e., an injection shock). The first case corresponds to the
instantaneous addition of energy to the ISM (as in a supernova
explosion), while the second case corresponds to the continuous
injection of energy (as in a massive stellar wind). The instant
shock corresponds to the classical Sedov–Taylor solution for
supernovae explosions.

We assume3 that the PDF of finding a particular value of gas
density ρ1 is proportional to the space–time volume where the
density exceeds ρ1,

P (ρ > ρ1) ∝
∫ t(ρ1)

0
R3(t) dt, (11)

where R(t) ∝ t (2+p)/5 is the radius of the spherical shock at time
t and t(ρ1) is the time at which the density behind the shock is
equal to ρ1. Using the relation Ms(t) ∝ R(t)/t , Equation (6)
can be inverted to find t(ρ1) ∝ ρ5/(2(−3+p)).

Using the definition of the PDF, we find that the PDF of
density due to the interaction of a homogeneous gas with a
spherical blast wave has the form

P (ρ) = d

dρ

∫ t(ρ)

0
R3(t) dt ∝ ρ−(17+p)/(6−2p) (12)

(where we have relabeled ρ1 as ρ). Therefore, the density PDF is
a power law with exponent −17/6 ≈ −2.8 for an instant shock
and −9/2 = −4.5 for an injection shock. These slopes are
significantly steeper than the Salpeter value for the mass PDF
of −1.35. However, the actual relation between the density PDF
and the mass PDF depends on the precise assumptions made
about the scaling of clumps (i.e., mass equals density times a
length scale cubed). Thus, one should not necessarily expect the
same index for both the density and mass PDFs (although the
power-law form should be robust).

Mathematically, the PDF of density resulting from the in-
teraction of a spherical shock with a log-normally distributed
density field is simply the convolution of the PDF (Equation
(12)) with the log-normal distribution of density (Equation (8)).
This produces a PDF which is log-normal for small densities,
and has a power law ρ−(17+p)/(6−2p) for high densities up to a
maximum density proportional to 1/(γ − 1). Figure 3 shows
the resulting PDF, where the initial log-normal PDF is the result
of four shocklet passages with maximum shock Mach number

3 We thank an anonymous referee for suggesting this space–time derivation
approach.
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M = 1.5 in a nearly isothermal gas with γ = 1.05. It is impor-
tant to note that because of the efficiency of CO and dust cool-
ing, molecular gas remains essentially isothermal to density of
�109 cm−3—hence our choice of an adiabatic index near to a
value of unity.

Over time, the continuous production of shocklets will cause
the PDF to revert to log-normal form, at the slower rate O(n−1)
(since the PDF is not symmetric). Thus, the presence of a power
law in the density PDF suggests that the flow has interacted
recently with a blast wave (such as a supernova explosion).

5. ENERGY SPECTRUM

5.1. The Multi-Shock Model

In addition to explaining the log-normal and power-law
distributions of density, multiple shock interactions could also
explain the observed power-law energy spectra (or velocity
dispersion). It is important to emphasize that we consider the
energy spectrum of the flow downstream of the shock. The
velocity discontinuity associated with the shock itself gives
E(k) ∝ k−2, which will determine the power-law exponent
of the energy spectrum only if the downstream flow has an
energy spectrum equal to or steeper than −2 (or unless there
are no longer any shocks present). We will show that this is
not the case in general for multiple shock passages. To the
best of our knowledge, the special effects of focused shocks
on the downstream flow have not been examined before in the
astrophysical context.

The relevance of the case of multiple shock passages has
been established by Kornreich & Scalo (2000), who found that
the average time between shock passages in the ISM is “small
enough that the shock pump is capable of sustaining supersonic
motions against readjustment and dissipation.”

We use a semianalytic approach to calculate the vorticity
generation due to single and multiple passages of curved shocks.
The vorticity jump is calculated using Equation (5), and the
velocity and the required gradients of upstream quantities
are calculated using the fast Fourier transform (FFT) on a
computational domain with periodic boundary conditions. The
computational grid is 2563 in all cases. The initial flow is
assumed to be irrotational.

We make the following assumptions.

1. Frozen vorticity. Flow evolution is due to the shock alone.
The flow is approximately steady between shock passages.
This is similar to the rapid distortion approximation for
strained turbulence, and it linearizes the problem. Kornreich
& Scalo (2000) make a similar frozen vorticity assumption
to neglect flow evolution during the shock passage. We
deliberately ignore the internal dynamics of the flow: energy
redistribution among scales is due to the shock.

2. Strong shock. The shock does not change due to interaction
with the flow.

3. Steady shock. The shock’s shape and strength distribution
are fixed.

4. Random shock. The direction and phase of the shock are
chosen randomly for each passage, and the results are
averaged over many independent realizations. This is the
same assumption we made in deriving the density PDFs.

This semianalytic approach is extremely efficient numeri-
cally, and is similar to the kinematic simulation method for tur-
bulence (Fung et al. 1992; Elliott & Majda 1995). In kinematic
simulation the energy spectrum is specified, but the complex

phases are chosen randomly. Thus, kinematic simulation is ac-
curate for quantities that depend on second-order moments of
the velocity field (e.g., particle dispersion and energy spectrum).
However, as its name implies, kinematic simulation does not ac-
curately represent the dynamics of a turbulent flow. In particular,
the linearizing assumption that is at the heart of the model be-
gins to break down once a significant amount of energy piles up
at smaller scales. This will play an important role in defining
the steepness of the energy distribution, as we shall see later in
this section, and which will be discussed in the next.

The shock profile and shock strength profile for each case are
described separately below.

5.2. Focused Shocks and Shock–Shocks

We first consider flow driven by a focused shock. As men-
tioned in Section 1, a focused shock is characterized by a flat-
tened shock disk bounded by two shock–shocks (or a shock–
shock ring in the three-dimensional case). The shock strength
is (approximately) discontinuous at the shock–shocks, which
generate a vortex sheet (with spectrum k−2) behind the shock.
Vortex sheets are linearly unstable via the Kelvin–Helmholtz
instability, and generate turbulence very efficiently and quickly.

We model the shock profile φ and shock speed Ms by

φ(x) = a sin4(k1x), (13)

Ms(x) = M0 + 1 +
4

π

n−1∑
j=1

(−1)j+1

(2j − 1)
cos ((2j − 1)2k1x) sinc2

×
(

(2j − 1)2k1

n

)
. (14)

The expression for Ms is simply the Fourier series for a
square wave, where we have used the Lanczos σ -factor (the
sinc term) to remove the Gibb’s oscillations. The number of
terms N in the series is taken equal to the number of Fourier
modes used in the spectral method. We use a similar expression
for a two-dimensional shock z = φ(x, y), with wavenumbers
k1 and k2 in the x and y directions. Although this shock is
simply a model (i.e., it is not the solution of the nonlinear
wave equation governing shock motion), it captures its main
qualitative features. The shock profile and shock strength are
shown in Figure 1.

We consider two initial conditions: a uniform flow (i.e.,
constant density and zero velocity), and an irrotational flow
with a Gaussian energy spectrum E(k) ∝ exp(−k2). The latter
flow models the final decay regime of a turbulent flow, when
viscous diffusion dominates.

Figure 4(a) shows the energy spectrum of the downstream
three-dimensional flow after one, two, and three passages of a
focused shock with k1 = k2 = 1, M0 = 6 with zero velocity
initial condition. Note that the initial k−2 scaling of the energy
spectrum (due to the velocity discontinuity associated with
the vortex sheet downstream of the shock–shocks) becomes
gradually shallower with each shock passage. This redistribution
of energy to smaller scales is due to the quadratic baroclinic
terms depending on the (inhomogeneous) upstream flow in the
vorticity jump Equation (5). Although the effect is entirely
kinematic, these quadratic terms redistribute energy among
scales in a way analogous to the quadratic nonlinearity in the
Navier–Stokes equations.
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(a) (b)

Figure 4. Energy spectra for multiple passages of focused shocks: slope decreases with each shock passage as energy is redistributed to smaller scales. Then spectra
have been normalized so that E(1) = 1. (a) Uniform initial flow. (b) Gaussian initial energy spectrum.

(a) (b)

Figure 5. Energy spectra for multiple passages of spherical shocks: the slope decreases with each shock passage as energy is redistributed to smaller scales. The initial
energy spectrum is Gaussian and all spectra have been normalized so that E(1) = 1. (a) Instant shock (p = 0). (b) Injection shock (p = 1).

After three shock passages the energy spectrum has a scaling
similar to k−5/3. More shock passages would produce an even
shallower power law. Figure 4(b) shows that the form of the
energy spectrum is relatively insensitive to the choice of initial
condition.

5.3. Spherical Shocks

We now consider the case of perfectly spherical shocks de-
scribed in Section 4.2. Due to symmetry, the shock strength Ms
is constant along the shock and therefore the first term in Equa-
tion (5) is identically zero. This means that vorticity production
is due entirely to the baroclinic and angular momentum con-
servation terms. Since the initial flow is irrotational, only the
baroclinic term is active for the first shock, however subsequent
shocks generate vorticity both baroclinically and via angular
momentum conservation provided they are not coincident with
the first shock.

For strong spherical shocks the vorticity jump, Equation (5),
reduces to

δω · b = 2

γ + 1
Ms

[
∂ 1

2M2
t

∂S
+ ω × u · s

]
, (15)

and thus, provided the upstream flow is nonuniform, the vorticity
jump is proportional to Ms(r).

If the upstream flow is smooth and irrotational, the energy
spectrum of the downstream flow due to a single shock passage is
simply the convolution of the Fourier transforms of the singular
shock strength Ms(r) given by Dokuchaev’s (2002) blast wave

solution,
Ms(r) ∝ r−(3−p)/(2+p), (16)

and the gradient of the turbulent kinetic energy (e.g.,
k exp(−k2)). This gives E(k) ∼ k−3 for an instant shock and
E(k) ∼ k−14/3 for an injection shock as k → ∞. The en-
ergy spectrum for a generic self-similar shock corresponding to
Equation (16) is

E(k) ∼ k−(3+4p)/(1+p/2). (17)

Recall that these are the energy spectra of the flow down-
stream of the shock.

The singularity at r = 0 is removed by using the following
regularization

Ms(r) = Ms(0)

(1 + (r/rmin)2)α/2
, (18)

where the parameter rmin is set slightly small than the grid
size and Ms(0) is set to ensure that Ms = 1 at the edge
of the computational domain. The upstream flow is assumed
to be irrotational and to have a Gaussian energy spectrum
E(k) ∝ exp(−k2).

Figure 5 shows the energy spectrum of the downstream
flow after one, two, and three passages of a spherical instant
shock and a spherical injection shock. Note that although the
injection shock generates a much steeper energy spectrum after
one passage (k−14/3 compared to k−3 for the instant shock),
after three passages both spherical shock flows have a spectrum
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with a slope close to −5/3. As with the focused shocks, more
shock passages would further decrease the slope as energy is
redistributed to smaller scales by Equation (15). This result is
a consequence of our kinematic treatment. As we shall argue
next, nonlinear processes will cut in to limit this evolution of
the energy spectra.

6. ASTROPHYSICAL IMPLICATIONS

While it is well known that curved shocks are an effective
way of forcing a turbulent flow (Kornreich & Scalo 2000), we
have developed a simple kinematical model which demonstrates
that shock interaction alone may can produce energy spectra of
velocity fluctuations and mass density distributions consistent
with the observations in the ISM. Fully developed turbulence is
not necessary. Our result has several important implications for
the density structure of gas in the ISM, and for the formation of
stars within these structures.

6.1. Energy Spectra

Simulations have confirmed that the structure observed in
the ISM and molecular clouds probably derives from shock-
driven processes. Our results show that these processes do not
drive turbulence in the classical sense of a systematic cascade in
energy from large to small scales. The observed E(k) ≈ k−5/3

“big power law in the sky” may actually be entirely shock-
driven, and not a signature of fully developed turbulence. This
could explain why the power law extends over such a huge range
of length scales (spanning several different physical regimes,
from the diffuse ISM to molecular gas), since the power law
of a shock-driven flow is due to a singularity, and so extends
over all scales (until the viscous cutoff). Shock-driven vortical
motions are generic in the ISM, and we have shown that a log-
normal ordering of gas structure develops rapidly over all scales
of the gas. We demonstrated that this rapid appearance of a
converged log-normal distribution is an expected property of
shocked flows and the central limit theorem.

Our results also show that shocks should be much more
efficient forcing the flow than has been appreciated previously.
This is because the shock immediately distributes energy down
to the smallest scales, according to a spectrum very close to
the Kolmogorov −5/3 profile. Relying on a classical turbulent
energy cascade is not feasible, since the time needed to transfer
energy from the largest to the smallest scales (roughly one large-
scale eddy turnover time) is far too slow.

How in this picture can a turbulence spectrum close to −5/3
be universal if repeated shocks can continue to make it shal-
lower? As noted previously, continued steepening assumes a
purely kinematic mechanism without the limitation of nonlin-
ear or viscous effects. As we pointed out in Section 1, although
radio propagation observations find a turbulence-like spectrum
close to −5/3, the full set of astrophysical observations find
spectra in the range [−1.5,−2.6]. So, our physical model needs
to be able to produce a range of spectra, not just the single uni-
versal slope. Thus, we need to be able to suggest why −5/3 is
the most likely spectrum, as well as accounting for other slopes.

There is in fact a natural limit to how shallow the slope can
be. The slope could never become shallower than −1, since
this would imply infinite energy (assuming an arbitrarily small
minimum length scale). With each shock passage, the slope
of the energy spectrum becomes shallower as the shock redis-
tributes energy to smaller scales (much as the nonlinear term of
the Navier–Stokes equations does). In the kinematic limit this

process would continue until the slope approaches −1. How-
ever, in reality once a sufficient amount of energy accumulates
at the smallest scales energy dissipation by viscosity becomes
significant. At this point, the linearizing assumptions of the
kinematic model break down. Energy dissipation limits the con-
tinued transfer of energy to smaller scales, as well as driving an
energy cascade to small scales (as in decaying turbulence). The
energy cascade necessarily produces an energy spectrum that
converges quickly to −5/3, since we now have the conditions
required for the existence of a universal inertial range: a sink
of energy at small scales separated from a wide and continu-
ous range of active scales. The fact that the initial condition is
already close to −5/3 means that we expect this adjustment to
happen exponentially fast (as in the Kelvin–Helmholtz instabil-
ity, where the initial spectrum is −2). Thus, the shock forcing
effectively transfers energy to smaller and smaller scales until
dissipation drives a turbulence cascade which fixes the slope of
the energy spectrum at the universal value of −5/3.

The essential point is therefore that shock-generated vorticity
will very quickly establish a power-law spectrum that is close
to the Kolomogorov value. We argue that at this point, energy
dissipation will tend to keep it there.

6.2. Feedback and the IMF

Another important result of our analysis concerns the appear-
ance of a power-law tail for initially log-normal density PDFs
that interact with spherical shock waves. The spherical sym-
metry means that a power law will be imposed on the original
log-normal distribution.

Consider the typical situation in a molecular cloud where
a star cluster has started to form. We showed that the shock-
driven motions that dominate an ISM with supersonic velocities
rapidly produces a log-normal density PDF. It is well established
that a typical star forms as a member of a star cluster (e.g.,
reviews by Pudritz 2002; Lada & Lada 2003). The collapse
of the dense, gravitationally unstable regions results in the
observed IMF. Before this process has terminated, however,
a cluster is strongly impacted by the approximately spherical
shocks associated with the most massive stars that have already
formed nearby. Observations show that most embedded clusters
are adjacent to H ii regions that are excited by massive stars
in nearby clusters (e.g., Elmegreen 2002). Most clusters show
evidence that their formation could, in fact, have been triggered
by the powerful shock waves associated with the expansion of
such nearby H ii regions. We showed that the passage of these
shocks alters the initial log-normal density PDF into one that
has a power-law tail. This feedback from massive stars will
therefore change the form of the IMF, most likely by producing
a power-law tail.

Subsequent spherical shock passages will further modify the
index of the power-law tail. We note, however that at most
one or two passages would be expected since cluster formation
is typically completed in a million years, which is roughly the
crossing time for such an event. Thus, we conclude that feedback
from massive stars is likely to leave a signature on the form of
the density PDF in the gas which will carry over into the IMF
(from those fluctuations that undergo gravitational collapse).
Our analysis of how triggering may effect the form of the IMF
given an initial gas density PDF will appear in a future paper.

An important caveat that we have not yet discussed is the
possible role of magnetohydrodynamical (MHD) processes in
shaping the density PDFs. Extensive sets of simulations have
shown that magnetic fields with energy densities comparable
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to gravitational self-energy certainly can affect the form of
the density PDF. However, the observations are best matched
with fields strengths that are much less than this critical value.
The simulations that best match the observations of dense
magnetized cores involve “supercritical” field strengths, i.e.,
fields with significantly less energy density than gravitational
and which are therefore subject to gravitational collapse (e.g.,
Padoan & Nordlund 1999; Tilley & Pudritz 2007; Crutcher
et al. 2009). Thus, MHD effects in the bulk of molecular gas are
probably far less pronounced than envisaged in earlier models
of star formation.

Finally, and as technical aside, we suggest that it may be
more useful numerically to generate a flow with the correct
energy spectrum over a very wide range of length scales than
to try to simulate the full nonlinear dynamics of a turbulent
flow over a very small range of length scales (as is done
currently). For example, Elliott & Majda’s (1995) method is
able to efficiently generate a Gaussian random field with a
k−5/3 energy spectrum over 12 decades in two dimensions
using only about 47,000 computational elements (compared to
1024 computational elements for a conventional nonadaptive
approach!). In addition to being computationally efficient, this
approach may actually be a better model of the hydrodynamics
of the ISM.

7. CONCLUSIONS

Our results have important implications for the origin and
evolution of density fluctuations, and particularly the CMF
in molecular clouds. Our combined log-normal and power-
law distribution arises because there are two natural kinds of
symmetry to shocks—planar and spherical—that combine in a
natural way. The fact that the power-law energy spectrum and
log-normal distribution of mass density are also observed in
the diffuse ISM strongly suggest that shock-generated vortical
motions play a profound role on all scales in the ISM, and
even in star formation within molecular clouds. Our specific
conclusions are summarized below.

1. Supersonic turbulence with Mt > 0.3 spontaneously gen-
erates relatively weak and short-lived “eddy shocklets.” A
few passages of these shocklets is sufficient to generate a
log-normal distribution of mass density. Thus, a log-normal
distribution of density should be typical of supersonic tur-
bulent flows, and is established very rapidly (the passage
of just a couple of shocks will suffice). This is contrary
to the usual assumption that enormous numbers of shock
passages would be required due to the slow convergence to
a normal distribution.

2. A spherical blast wave interacting with a log-normally
distributed density field produces a power-law distribution
of density at large densities, qualitatively similar to the
observed Salpeter tail for the IMF. The power-law range
increases like 1/(γ − 1), and thus will be largest for nearly
isothermal gases (i.e., those for which γ ≈ 1). Over time
the power law gradually decays to a log-normal distribution
due to the action of the continuously generated shocklets.
Thus, the presence of a power law in the density distribution
implies that the flow has interacted fairly recently with a
blast wave (e.g., supernova explosion).

3. A single strong shock passage can generate a relatively
steep power-law energy spectrum over all length scales
(e.g., k−2 for a focused shock or k−3 for a spherical blast
wave) due to the singular structure of the shock strength. In

the kinematic limit that we have investigated, subsequent
shock passages increase the total energy and reduce the
slope of the energy spectrum as the quadratic nonlinear term
representing baroclinic generation of vorticity by the shock
redistributes energy to smaller scales. Three shock passages
suffice to produce an energy spectrum close to k−5/3. Note
that molecular clouds could not support more than a few
large-scale events, such as expanding H ii regions, without
being destroyed.

4. We argue that the onset of energy dissipation that is
expected when energy piles up at the smaller scales acts
to limit the energy spectrum generated by shocks to the
Kolomogorov value.

5. The energy spectrum we find is that of the downstream flow,
not that associated with the velocity jump of the shock itself
(which has a k−2 spectrum), i.e., we are not measuring the
spectrum of the shock itself.

We close by noting that, to our knowledge, this is the first time
vorticity generation and mass clumping by multiple hydrody-
namic, curved shocks has been quantified analytically.
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discussions on the general nature of log-normal plus power-law
distributions in statistics. The research of both N.K. and R.E.P.
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