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Abstract An adaptive collocation wavelet method for three-dimensional fluid–
structure interaction at large Reynolds numbers is presented. This ap-
proach is shown to give accurate results with a reduced number of com-
putational elements. The method is applied to two-dimensional flow
past moving and fixed cylinders at Re = 102 and Re = 104, and to
three-dimensional flow past a sphere at Re = 500. This is the first
three-dimensional calculation of flow past an obstacle using a dynami-
cally adapted grid.
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Introduction
One of the most practically important problems in aerodynamics is

calculating moderate to high Reynolds number flow around solid ob-
stacles of arbitrary shape. This problem arises in aerodynamics (e.g.
turbulent flow over the wings and fuselage of airplanes), in off-shore
drilling (e.g. water flow around riser tubes transporting oil from the sea
bed to the surface), and in the wind engineering of buildings. In each
case the primary difficulty arises from the need to calculate turbulent
or transitional flow with boundary conditions on complicated domains.
In addition, it may be important to allow for the obstacle to move or
deform in response to the applied fluid forces (this motion in turn affects
the flow).

In this paper we combine two mathematical approaches to calcu-
late turbulent flow in complex domains. The first technique, the adap-
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tive wavelet method, tackles the problem of efficiently resolving a high
Reynolds number flow in complicated geometries (where grid resolu-
tion should depend both on time and location). The second technique,
Brinkman penalization, addresses the problem of efficiently implement-
ing solid boundaries of arbitrary complexity.

Adaptive wavelet methods have been developed recently to solve the
Navier–Stokes equations at moderate Reynolds numbers (e.g. Schnei-
der et al., 1997; Vasilyev and Bowman, 2000; Vasilyev and Kevlahan,
2002; Griebel and Koster, 2002). The adaptive wavelet method is ap-
propriate to turbulence since the wavelets (which are localized in both
space and scale) adapt the numerical resolution naturally to the intermit-
tent structure of turbulence at small scales . The wavelet method thus
allows turbulent flows to be calculated with a greatly reduced number of
modes and a well-controlled error. Furthermore, the computational cost
is O(N ) (where N is the total number of wavelets actually used), which
does not depend directly on the dimensionality of the problem. We
employ a collocation wavelet method using second generation wavelets.
This approach allows the order of the method to be varied easily (we
generally use a 6th-order method). Another advantage of the collocation
wavelet approach is that it is equally easy to implement in two or three
dimensions. Indeed, the same code is used to do both two-dimensional
and three-dimensional simulations presented here.

Parallel to the development of efficient wavelet codes for turbulence,
we have been investigating the use of the Brinkman equation to sim-
ulate the presence of arbitrarily complex solid boundaries (Kevlahan
and Ghidaglia, 2001). This technique allows boundary conditions to
be enforced to a specified precision, without changing the numerical
method (or grid) used to solve the equations. The main advantage of
this method, compared to other penalization methods, is that the error
can be estimated rigorously in terms of the penalization parameter. It
can also be shown that the solution of the penalized equations converges
to the exact solution in the limit as the penalization parameter tends
to zero. Because this volume penalization is very simple and cheap to
calculate, it is well-suited to moving obstacles. The adaptive wavelet
method then allows the computational grid to following the moving ob-
stacle, without the need for accelerating reference frames, or large areas
of very fine grids.

The combination of the above two methods is applied here to the two-
and three-dimensional Navier–Stokes equations. We have also developed
a multilevel elliptic solver, based on the adapted multiscale wavelet grid,
to solve the Poisson problem for the pressure at each timestep. Note
that we do not use a subgrid-scale model: we resolve fully all significant
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length-scales. Thus, the wavelet grid follows the natural intermittency
of the flow.

In §1 and §2 we briefly sketch the penalization and numerical meth-
ods. Some results for two- and three-dimensional flow past obstacles
for Reynolds numbers up to 104 are shown in §3, and in §4 we make
some concluding comments. Note that this is the first time an dynam-
ically adaptive wavelet method has been implemented for the three-
dimensional Navier–Stokes equations with obstacles.

1. Brinkman penalization for complex
geometries

Incompressible fluid flow is described by the Navier–Stokes equations:

∂u

∂t
+ (u + U) · ∇u +∇P = ν∆u, (1)

∇ · u = 0, (2)

where U is an imposed mean flow. We consider here the case where
the fluid occupies the complement in <3 of a set of N obstacles Oi,
i = 1, . . . N . The problem is solved on a rectangular computational
domain Ω = [L11, L21] × [L12, L22] × [L13, L23] containing all obstacles.
To these equations are added appropriate external (inflow, outflow and
side) boundary conditions.

On the surface of the obstacles the velocity must satisfy the no-slip
condition,

u + U = U o on ∂Oi, ∀i, (3)

where U o is the velocity of the obstacle. Imposing these boundary con-
ditions explicitly is difficult and computationally expensive when the ob-
stacles have complicated shapes, move, or deform. To model the effect
of the no-slip boundary conditions on the obstacles Oi without explic-
itly imposing (3) we follow Angot et al., 1999 by replacing (1-3) by the
following set of L2-penalized equations

∂uη

∂t
+ (uη + U) · ∇uη +∇Pη = ν∆uη

−1
η
χ(x, t)(uη + U −U o), (4)

∇ · uη = 0, (5)

Note that equations (4-5) are valid in the entire domain Ω: the last term
on the right hand side of (4) is a volume penalization of the flow inside
the obstacle. Here 0 < η � 1 is a penalization coefficient and χ is the
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characteristic (or mask) function defining the obstacle geometry:

χ(x, t) =
{

1, if x ∈ Oi;
0, otherwise. (6)

Angot, 1999 proved that the solution of the penalized equations (4-5)
converges to that of the Navier–Stokes equations (1-2) with the correct
boundary conditions (3) as η → 0. For finite η the error in the boundary
conditions is O(η1/2).

In general, the obstacles may be fixed, or allowed to move (or even
deform). We consider here the case where there is a single obstacle that
is either fixed or moves like a harmonic oscillator forced by the fluid.
We therefore couple the penalized Navier–Stokes equations (4–5) to a
harmonic oscillator equation for the motion of the obstacle’s centre of
mass xo,

m
d2xo

dt2
+ b

dxo

dt
+ kxo = F (t), (7)

where m is obstacle’s mass, b is the mechanical damping, k is its natural
frequency, and F (t) is the fluid force. Since F (t) is given by

F i(t) = F i(u(t)) =
1
η

∫
Oi

(u + U −U o) dx. (8)

the obstacle and fluid motions are fully and explicitly coupled.

2. Numerical method
We use an adaptive collocation wavelet method (Vasilyev and Bow-

man, 2000; Vasilyev and Kevlahan, 2002; Vasilyev, 2003) to dynamically
adapt the grid to the solution, and to interpolate on the adapted grid.
Derivatives are then calculated on the adapted grid using high-order fi-
nite differences (usually 6th-order). The grid is adapted at each time
step by nonlinear wavelet filtering: only those points whose associated
wavelet coefficients are greater than a threshold ε are retained. The solu-
tion may then be interpolated onto the adapted grid with an L∞ error of
O(ε). Since the wavelet transform has O(N ) complexity (where N is the
number of points in the adapted grid), the method is computationally
efficient and scales well to large problems.

To allow for the change in the solution over one time step, nearest
neighbours in position and scale are added to the adapted grid. Adding
nearest neighbours in position corresponds to a CFL criterion of one. As
the scales are dyadic, adding nearest neighbours in scale means allowing
for the creation of scales twice as small via the quadratic nonlinearity of
the Navier–Stokes equations.
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Because the wavelet basis is not divergence free, we employ the usual
split-step method to make the velocity of the first half-step u∗ divergence
free. This Leray projection involves solving a Poisson equation for the
pressure P ,

∇ · ∇P =
1

∆t
∇ · u∗. (9)

Equation (9) is solved using a standard multilevel technique with V-
cycles (Brandt, 1982). In our case, however, the grids on each level are
provided by the adaptive wavelet multiresolution, which produces a nat-
ural adaptive method for the Poisson equation. Wavelets are also used
to interpolate between levels. This is the first time a wavelet multilevel
solver has been developed, and it is described fully in a companion pub-
licationVasilyev and Kevlahan, 2003. Note that since it is based on the
wavelet transform, the elliptic solver also has complexity O(N ).

Finally, we use a stiffly-stable 2nd-order time integration scheme that
is semi-implicit for the advective term, and implicit for the penalization
and diffusion terms.

3. Results
In this section we briefly present the results of some two- and three-

dimensional calculations. They have been selected to illustrate the ef-
fectiveness of the dynamically adapted grid, and the flexibility of the
method. The results presented below used a tolerance of ε = 10−4 for
grid adaptivity, and the time step is chosen to maintain a CFL criterion
of one.

The first example demonstrates the ability of the adaptive wavelet
method to adapt the grid to fine-scale vortical structure. This result
is interesting since although we actually solve the velocity form of the
fluid equations, the grid points are distributed like the vortices of a
(grid-free) vortex method. Figure 1 shows the vorticity and adapted
grid for two-dimensional flow through a tightly packed periodic array of
cylinders at Re = 104. Note that very few points are required inside the
obstacle, and the grid refines and coarsens as needed in order to resolve
the vorticity. Only 66 862 points out of a maximum of 8962 are used,
which corresponds to a compression ratio of 12.

In the second example we plot the drag, lift and amplitude of a two-
dimensional cylinder moving in response to fluid forces at Re = 102. The
oscillation amplitude A = 0.42, lift amplitude CL = 0.81 and Strouhal
frequency St = 0.189 are reasonably close to Shiels et al.’s(Shiels et al.,
2001) vortex method values of A = 0.57, CL = 0.83, St = 0.194.

The final example is flow through a periodic array of spheres at Re =
500. This is a fully three-dimensional calculation, and shows the ability
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(a) (b)

Figure 1. Two-dimensional periodic cylinder array at Re = 104, t = 3.5. (a) Vor-
ticity. (b) Adapted grid.
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Figure 2. (a) Lift and drag for a moving cylinder at Re = 100. Note that the
average drag during the shedding phase is CD = 1.74, lift amplitude is CL = 0.81,
and the Strouhal number is St = 0.189. (b) Cylinder displacement as a function of
time (amplitude A = 0.42).
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(a) (b)

Figure 3. Flow past a sphere at Re = 500, t = 3.4 (looking upstream). (a) Isosurface
of vorticity magnitude. (b) Computational grid.

of the method to efficiently solve the three-dimensional Navier–Stokes
equations with obstacles. Figure 3 shows an isosurface of the vorticity
magnitude, and the computational grid at t = 3.8. Note that the flow is
still at an early stage, so no instabilities have developed. The maximum
resolution is 1443, but only 258 000, or 11.6%, of the points are active.
This example shows the importance of using a dynamically adaptive
method in three-dimensional calculations.

4. Conclusions
In this paper we have presented a new method for calculating three-

dimensional flows at moderate to high Reynolds numbers with obstacles
of arbitrary shape. The method uses an adaptive collocation wavelet
method to dynamically adapted the grid to the flow, and as the basis of
a multilevel solver for the associated Poisson equation for pressure.

We showed results for two-dimensional flow past a moving cylinder at
Re = 102 and a fixed cylinder at Re = 104, and three-dimensional flow
past a sphere at Re = 500. This is the first three-dimensional calculation
calculation of flow past an obstacle using a dynamically adapted grid.

Further three-dimensional test cases will be investigated in future
work. In particular, we would like to determine if the number of ac-
tive grid points is proportional to the Taylor scale (λ = Re−1/2), as is
the case in two dimensions (Kevlahan and Vasilyev, 2003). If this is
true, the overall computational complexity would scale like Re which is
much better than the classical estimate of Re3 based on a uniform grid.
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