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Abstract

An adaptive multilevel wavelet collocation method for solving multi-dimensional elliptic problems with localized

structures is described. The method is based on multi-dimensional second generation wavelets, and is an extension

of the dynamically adaptive second generation wavelet collocation method for evolution problems [Int. J. Comp. Fluid

Dyn. 17 (2003) 151]. Wavelet decomposition is used for grid adaptation and interpolation, while a hierarchical finite

difference scheme, which takes advantage of wavelet multilevel decomposition, is used for derivative calculations.

The multilevel structure of the wavelet approximation provides a natural way to obtain the solution on a near optimal

grid. In order to accelerate the convergence of the solver, an iterative procedure analogous to the multigrid algorithm is

developed. The overall computational complexity of the solver is OðNÞ, whereN is the number of adapted grid points.

The accuracy and computational efficiency of the method are demonstrated for the solution of two- and three-dimen-

sional elliptic test problems.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Elliptic partial differential equations (PDE) are common in many areas of physics and engineering. There

have been several promising attempts to develop adaptive methods for these equations, most notably those
based on adaptive finite elements [1–4]. However, little has been proved regarding the convergence of these
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schemes. In contrast, substantial progress has been made recently in proving convergence of wavelet-based

adaptive methods for elliptic PDEs. In particular, it has been proved that the adaptive wavelet scheme con-

verges for a variety of elliptic PDEs, as well as for singular integral equations [5]. Furthermore, it was

shown that adaptive wavelet schemes are asymptotically optimal for elliptic equations, in the sense that

the rate of convergence to the exact solution with respect to the number of degrees of freedom is the same
as the rate of convergence of the best N-term approximation, which is obtained by retaining the N largest

wavelet coefficients of the exact solution [6,7].

In recent years, there has been a growing interest in developing wavelet-based numerical algorithms for

both elliptic problems [5–9] and evolution problems [10–23]. The existing wavelet-based numerical algo-

rithms can be roughly classified as either adaptive wavelet Galerkin methods (AWGM) [6–14] or adaptive

wavelet collocation methods (AWCM) [15–23]. The major difference between these approaches is that

AWGM algorithms solve problems in wavelet coefficient space and, in general, can be considered as grid-

less methods, while AWCM solve problems in physical space on an adaptive computational grid. Two dif-
ficulties associated with AWGM are the treatment of nonlinearities and general boundary conditions,

although different possibilities of dealing with these problems have been proposed [24–29]. AWCM, on

the other hand, do not have these difficulties and the treatment of nonlinearities and general boundary

conditions is a relatively straightforward task. The main advantage of AWGM is they generate a sparse

operator representation [24], which is the reason research efforts were initially concentrated on the devel-

opment of AWGM solvers. To the best of our knowledge this paper is the first attempt to develop a

AWCM based elliptic solver.

The major strength of wavelet-based methods is their ability to adapt the computational grid (basis) to
the solution. In AWCM every wavelet is uniquely associated with a collocation point, and thus grid adap-

tation is based simply on the analysis of wavelet coefficients: i.e. at any given time the computational grid

consists of points corresponding to wavelets whose coefficients are greater than a given threshold (a param-

eter that controls the accuracy of the solution). With this adaptation strategy a solution is obtained on a

near optimal grid for a given accuracy. This means that the compressed solution is obtained directly, as

opposed being the result of a posteriori compression, as is done in data analysis. We emphasize here that

the adaptation of the computational grid does not require additional effort, and consists merely in turning

on and off wavelets at different locations and scales. Furthermore, grid adaptation is achieved by analyzing
the solution, and not by applying ad hoc assumptions, as is often the case in conventional adaptive mesh

algorithms [30,31].

Traditionally, wavelet-based numerical methods make use of first generation wavelets that are con-

structed by discrete (typically dyadic) dilation and translation of a single mother wavelet w(x). This results
in the construction of first generation wavelets [32,33] that are defined either in infinite or periodic domains.

It is desirable in many engineering applications to have a larger class of wavelets that can be defined in gen-

eral domains and/or on irregular sampling intervals. In order to achieve this, the translation and dilation

relations of the first generation wavelets must be abandoned, and wavelets are constructed in physical space
rather than in Fourier space. Recently, a new class of wavelets, currently referred to as second generation

wavelets [34,35], has come to the fore. The main advantage of second generation wavelets is that they are

constructed in the spatial domain and thus can be custom designed for the complex geometry and nonuni-

form sampling intervals commonly found in engineering and physical applications, e.g. heat transfer in

complex geometry with localized heat source.

The general framework of the second generation AWCM has been developed by Vasilyev and Bowman

[22] and Vasilyev [23] in the context of evolution problems. The objective of the present work is to extend

the method to the solution of multi-dimensional elliptic problems with localized structures. Two different
issues are addressed in this paper. The first concerns the development of a general adaptive elliptic solver

that obtains a solution on an optimal (compressed) grid. The second is the development of an efficient mul-

tilevel elliptic solver for an adaptive, but fixed, computational grid. The multilevel structure of the wavelet
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approximation provides a natural framework to establish an iterative algorithm, which is similar in spirit to

multigrid methods [36]. These two techniques are then combined to produce an adaptive multilevel elliptic

solver. The main differences between the proposed multilevel elliptic solver and multigrid methods are the

structure of the nested grids and the use of wavelet interpolation for both prolongation and restriction

operators.
The paper is organized as follows. Section 2 gives a brief introduction to the second generationwavelets and

wavelet compression. The AWCM for solving elliptic PDEs is introduced in Section 3. Finally, Section 4

presents some applications of themethod to the solution of the Poisson equation, alongwith quantitative con-

vergence results. The main results are summarized, and future research directions are outlined in Section 5.
2. Second generation wavelets

Second generation wavelets [34,35] are a generalization of biorthogonal wavelets [32,33] which are more

easily applied to functions defined on domains more general than Rn. Second generation wavelets form a

Riesz basis for L2 space. The basis is local in both space and frequency, and can have many vanishing poly-

nomial moments. However, the translation and dilation invariance of their biorthogonal cousins is lost. De-

spite the loss of two fundamental properties of wavelet bases, second generation wavelets retain the most

useful features of biorthogonal wavelets, including the existence of a fast transform. In this section, we

briefly summarize wavelet decomposition. For details of multiresolution wavelet analysis and construction

of second generation wavelets we refer the reader to [34,35].
In this work we use tensor product second generation wavelets [23,35] that are constructed on a set of

nested grids
Gj ¼ xj
k 2 X : k 2 Kj� �

; j 2 J; ð1Þ
where j is the level of resolution,J is an integer index set associated with resolution levels,Kj is some index

set associated with scaling functions of level j, k = (k1, . . ., kn), and the grid points xj
k ¼ ðxj1;k1 ; . . . ; x

j
n;knÞ are

constructed as a tensor product of uniformly or nonuniformly spaced one-dimensional nested grids [23].

Since each individual set of one-dimensional grids is nested ðxjm;kl ¼ xjþ1
m;2kl

; m ¼ 1; . . . ; nÞ the resulting set

of n-dimensional grids is also nested, i.e. Gj � Gjþ1. Following the construction of second generation wave-

lets described in [23,35], we construct n-dimensional tensor product scaling functions /j
kðxÞ ðk 2 KjÞ and

wavelets of different families wl;j
l ðxÞ ðl 2 Ll;jÞ such that a function u(x) can be decomposed as
uðxÞ ¼
X
k2K0

c0k/
0
kðxÞ þ

Xþ1

j¼0

X2n�1

l¼1

X
l2Ll;j

dl;j
l wl;j

l ðxÞ; ð2Þ
where Ll;j is some index set associated with wavelets of family l and level j. One may think of a wavelet

decomposition as a multilevel or multiresolution representation of a function, where each level of resolution

j (except the coarsest one) consists of wavelets wj
l or family of wavelets wl;j

l having the same scale but

located at different positions. Note that scaling function coefficients represents a smoothed version of

the function at the current scale, while the wavelet coefficients represent the details of the function between

the current scale and the next finest scale. Also note that the wavelet transform is a recursive application of
a single level wavelet transform starting either from finest or coarsest levels of resolution. Thus, even

though each single level wavelet transform is tensorial, the overall multilevel n-dimensional wavelet trans-

form is not a tensor product of n one-dimensional transforms. In addition, in n-dimensions there are 2n � 1

distinct n-dimensional wavelets [37].

The major strength of wavelet decomposition (2) is the ability to compress functions. For functions that

contain isolated small scales on a large-scale background (i.e. intermittent functions), most wavelet coeffi-
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cients are small. Thus, we can retain a good approximation, even after discarding a large number of wave-

lets with small coefficients. Intuitively, the coefficient dl;j
l is small unless the u(x) has variation on the scale

of j in the immediate vicinity of wavelet wl;j
l ðxÞ. More precisely, if we rewrite (2) as the sum of two terms

composed of wavelets whose amplitudes are respectively above and below some prescribed threshold �,
uðxÞ ¼ uPðxÞ þ u<ðxÞ; ð3Þ

where
uPðxÞ ¼
X
k2K0

c0k/
0
kðxÞ þ

Xþ1

j¼0

X2n�1

l¼1

X
l 2 Ll;j

jdl;j
l

jP�

dl;j
l wl;j

l ðxÞ;
ð4Þ

u<ðxÞ ¼
Xþ1

j¼0

X2n�1

l¼1

X
l 2 Ll;j

jdl;j
l
j<�

dl;j
l wl;j

l ðxÞ;
ð5Þ
then, following Donoho [38], it can be shown that for a sufficiently smooth function u(x)
juðxÞ � uPðxÞj 6 C1�: ð6Þ

This implies that the number of significant wavelet coefficients N is bounded by � as
N 6 C2�
�n

p; ð7Þ

where p is the order of the wavelet (the number of neighboring points used for wavelet construction during

the prediction phase of wavelet transform [35]), n is the dimensionality of the problem and coefficients Ci

depend on u(x) (but are of order unity). Note that p controls the number of zero moments of the interpo-

lating scaling function. Also note that the second generation wavelet transform is characterized by another
parameter ~p (the number of neighboring points, or the stencil size, used for wavelet construction during the

update phase of wavelet transform [35]), which controls the number of zero moments of the wavelets.

Combining (6) and (7) we have the following bound on an error in terms of N
juðxÞ � uPðxÞj 6 C3N
�p=n: ð8Þ
This error estimate is consistent with numerical experiments for both one-dimensional [22] and two-dimen-

sional cases [23].
3. Numerical method

A linear elliptic PDE may be written in the general form,
Lu ¼ f; ð9Þ

where L is a linear elliptic operator (including boundary conditions), and f is a source term. In the follow-

ing, we describe an efficient multilevel AWCM for determining u to within a specified residual tolerance

kLu� fkp < � given L and f. One notable feature of the method is that the minimum grid resolution is

determined automatically, given the tolerance �.
The numerical method is formally derived by evaluating the governing PDEs at collocation points. In

order for the algorithm to resolve all the structures appearing in the solution, and yet be efficient in terms

of minimizing the number of unknowns, the computational grid should adapt to reflect local structure of
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the solution, i.e. high resolution computations should be carried out only in those regions where sharp tran-

sitions occur.
3.1. Grid adaptation

Grid adaptation occurs naturally in wavelet methods, e.g. [10,15]. To illustrate the algorithm, let us con-

sider a function u(x), defined on a closed n-dimensional rectangular domain X. Relations (6) and (8) give us

the framework for representing a function with significantly fewer degrees of freedom, while still retaining a

good approximation. However, in order to realize all the benefits of the wavelet compression, we need to be

able to reconstruct uP(x) from the subset of N significant grid points. We recall that every scaling function

/j
kðxÞ; k 2 Kj, is uniquely associated with a grid point x

j
k, while each wavelet wl;j

l ðxÞ; l 2 Ll;j is uniquely

associated with a corresponding collocation point, e.g. two-dimensional wavelets w1;j
ðl1;l2ÞðxÞ; w2;j

ðl1;l2ÞðxÞ, and
w3;j

ðl1;l2ÞðxÞ are respectively associated with ðxjþ1
1;2l1þ1; x

j
2;l2

Þ; ðxj1;l1 ; x
jþ1
2;2l2þ1Þ, and ðxjþ1

1;2l1þ1; x
jþ1
2;2l2þ1Þ grid points. So

once the wavelet decomposition is performed, each grid point is uniquely associated either with the wavelet

or the scaling function at the coarsest level of resolution. Consequently, the collocation point should be

omitted from the computational grid if the associated wavelet is omitted from the approximation. Note that
for the stability of a reconstruction algorithm we need to keep all the grid points associated with the scaling

function at the coarsest level of resolution. This procedure results in a set of nested adaptive computational

grids Gj
P � Gj, such that Gj

P � Gjþ1
P for any j < J � 1, where J is the finest level of resolution present in the

approximation (4).

It should be noted that an additional procedure, called the perfect reconstruction check, is necessary [23].

In order to illustrate the perfect reconstruction check procedure, let us consider the one step forward one-

dimensional second generation wavelet transform
dj
k ¼

1

2
cjþ1
2kþ1 �

X
l

wj
k;lc

jþ1
2kþ2l

 !
; ð10Þ

cjk ¼ cjþ1
2k þ

X
l

ewj
k;ld

j
kþl; ð11Þ
where wj
k;l and ewj

k;l are coefficients associated with two stages of wavelet transform. In order to find the

wavelet coefficient dj
l we need to know only values of cjþ1

k at the grid point associated with the wavelet

wj
lðxÞ, i.e. x

jþ1
2lþ1, and the p nearest even grid points xjþ1

2lþ2n. However, in order to calculate cjk we only need
to know the value cjþ1

2k and the values of dj
l that are above the threshold value, �. Wavelet coefficients below

threshold value are set to zero. In the higher dimensional case the situation is analogous. The only differ-

ence is that the n-dimensional wavelet transform consists of the sequential application of n one-dimensional

wavelet transforms in xi, i = 1, . . ., n, directions. Thus in order to find the grid points that are necessary for

the calculation of the wavelet coefficient dl;j
l , we start with the collocation point associated with dl;j

l and

recursively, i = n, . . ., 1, add points that are needed to perform one step of the one-dimensional wavelet

transform in the xi direction at the locations that are added to perform the one-dimensional wavelet trans-

forms in xl, l = i + 1, . . ., n, directions. At the end of this recursive procedure we will have a minimal set of
grid points that are necessary for calculation of wavelet coefficient dl;j

l , provided that wavelet coefficients at

other locations are either zero or negligible (below an a priori prescribed threshold). Fig. 1 illustrates the

minimal set of grid points that are necessary for calculation of wavelet coefficient dl;j
l belonging to three

different families of wavelets, i.e. l = 1,3. Thus, if we a priori know what wavelet coefficients are zero or

negligible, we can disregard the values of the function at these points. The pseudocode for the perfect recon-

struction check procedure is shown in Algorithm 1. At the end of this procedure we have the complete mask



Fig. 1. Points at the coarser level j (marked d) and finer level j + 1 (marked d) where cjþ1
k are needed for calculation of the wavelet

coefficient dl;j
l , l = 1,3 (marked d) for two-dimensional wavelet transform with p = 4.
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M, from which we can easily construct a set of nested adaptive computational grids Gj
P. The perfect recon-

struction check procedure guarantees that all wavelet coefficients obtained by performing the wavelet trans-

form on the adapted grid are the same as those found by performing the wavelet transform of uP(x) on the

complete grid.
3.2. Global elliptic solver

The strategy for constructing the adaptive computational grid, or equivalently the mask M, which is dis-
cussed in previous section assumes knowledge of the solution on the finest level and results in a compressed

solution. However, one would like to obtain a compressed solution without the additional overhead of find-

ing the solution everywhere on a non-adaptive grid. This overhead could be substantial if a solution is

highly localized. In order to solve elliptic problems with highly localized solutions in an efficient manner,

an iterative procedure of grid refinement should be used. One way to organize such a procedure is to start

the calculations on a coarse grid. Once the solution is obtained, the computational grid must be extended to

include grid points associated with wavelets whose coefficients are, or can possibly become, significant dur-

ing the next iteration. In other words, as suggested by Liandrat and Tchamitchian [10], the computational
grid should include not only points associated with wavelets whose coefficients are greater than the thresh-

old �, but also those points associated with wavelets belonging to an adjacent zone. We say that the wavelet

wl0;j0

l0 ðxÞ located at xj
0þ1

k0 belongs to the adjacent zone of wavelet wl;j
l ðxÞ located at xjþ1

k if the following rela-

tions are satisfied:

Algorithm 1. [Reconstruction check procedure for the wavelet transform]
sample a function u(x) on a grid GJ or GP
perform forward wavelet transform

for all levels j = 1:1:J

create a mask M for jdl;jl j P �
end

include into mask M all points at level j = 1

for all levels j = J � 1:�1:1

extend mask M to include the minimal set of points for jdl;jl j P �
end
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Algorithm 2. [Global elliptic solver]
initial guess ðm ¼ 0Þ : umk and Gm
P

while m = 0 or m > 1 and [Gm
P 6¼ Gm�1

P or kumk � um�1
k k1 > d�]

m = m + 1

perform forward wavelet transform for each component of umk
for all levels j = J:�1:1

create a mask M for jdl;jl j P �
end

extend the mask M with adjacent wavelets (Eq. (12))

perform the reconstruction check procedure (Algorithm 1)
construct Gmþ1

P
if Gmþ1

P 6¼ Gm
P

interpolate umk to Gmþ1
P

end if

solve Eq. (9) using local multilevel elliptic solver (Algorithm 4)

end
0 j0�j 0
jj� j j 6 L; j2 km � kmj 6 M ; m ¼ 1; . . . n; ð12Þ
where L determines the extent of which coarser and finer scales are included into the adjacent zone and M

defines the width of the adjacent zone in physical space. The values of L and M affect the total number of
collocation points present in the grid GP. For efficiency we should keep the number of collocation points in

the adjacent zone as small as possible. We have found that the optimal values are L = M = 1. In other

words, the adjacent zone includes only the nearest neighbors at the same, one above, and one below the

resolution level associated with the current grid point. This grid refinement procedure may be continued

iteratively until both the solution and grid converge.

The adaptive grid refinement procedure provides a way to obtain the solution on an optimal (com-

pressed) grid. This strategy has been already tested for obtaining the compressed form of the initial

conditions for evolution problems in different physical settings, e.g. [21–23,39–43]. What is different
in this work is that the same procedure is applied in the context of elliptic PDEs. In this case the

PDE must be solved during each grid iteration. For this purpose the elliptic multilevel wavelet collo-

cation solver (see 3.2) is used. The pseudocode for the iterative global elliptic solver is shown in Algo-

rithm 2. Note that umk denotes the vector function u evaluated at the grid points xJ
k 2 Gm

P during mth

iteration.

With such an algorithm the grid of collocation points is continuously refined to resolve the local

structures that appear in the solution. Note that by omitting wavelets with coefficients below a thresh-

old parameter � we automatically control the error of approximation. Thus, the wavelet collocation
method has another important feature: active control of the accuracy of the solution. The smaller �
is chosen to be, the smaller the error of the solution is. In typical applications the value of � varies

between 10�3 and 10�6, assuming that the unknown dependent variables have been properly normal-

ized. If the variables are not normalized, the threshold parameter for each variable is scaled by either

the maximum value of the variable or an a priori prescribed scale. Note also that the smallest scale is

also controlled by the parameter �, since new small scales are added automatically as needed via the

adjacent zone.

The algorithm can use different criteria for adaptation of the collocation grid. For example, one can
construct a computational grid based on the analysis of wavelet coefficients of both the function and its
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derivatives. If a system of equations is solved, the adaptation of the computational grid Gm
P should be based

on the analysis of wavelet coefficients associated with all dependent variables. The adaptive grid Gm
P can be

constructed as the union of irregular grids corresponding to each dependent variable. Note that the algo-

rithm can be easily extended to the case where each variable is treated on a separate computational grid.

The mapping from one grid to another can be achieved via wavelet interpolation. This may be important
for problems where scales associated with different variables are considerably different.
3.3. Calculation of spatial derivatives on an adaptive grid

When solving PDEs numerically, it is important to obtain derivatives of a function from its values at

collocation points. The procedure of finding derivatives, which takes advantage of the multiresolution

wavelet decomposition, fast wavelet transform, and finite difference differentiation is discussed in detail

by Vasilyev and Bowman [22] for the one-dimensional case and by Vasilyev [23] for multiple dimensions.
In this paper, we briefly outline this procedure.

The differentiation procedure is based on the interpolating properties of second generation wavelets. We

recall that wavelet coefficients dl;j
l measure the difference between the approximation of the function at the

j + 1 level of resolution and its representation at the j level of resolution. Thus, if there are no points in the

immediate vicinity of a grid point xj
k, i.e. jdl;j

m j < � for all the neighboring points, and points xjþ1

ð2k1�1;2k2�1Þ are

not present in Gjþ1
P , then there exists some neighborhood of x

j
k;X

j
k, where the actual function is well approx-

imated by a wavelet interpolant based on cjm ðm 2 KjÞ, i.e.
uðxÞ �
X
m2Kj

cjm/
j
mðxÞ

�����
����� 6 C4�; x 2 Xj

k: ð13Þ
Thus, differentiating this interpolant will give us the value of the derivative of the function at that par-

ticular location. Rewriting this interpolant as local Lagrange polynomial of order p, i.e. the same order as

the wavelet, differentiating the polynomial, and evaluating it at x
j
k location would result in local finite

difference operator that uses the neighboring points of the interpolant on level j. Let us denote by Dj
P a

collection of such points at each level of resolution. The pseudocode for the procedure for finding deriva-

tives at all grid points is given in Algorithm 3. At the end of this procedure we will have derivatives of the

function at all grid points. The computational cost of calculating spatial derivatives will be roughly the

same as the cost of forward and inverse wavelet transforms.

The accuracy of this differentiation procedure was examined by Vasilyev and Bowman [22] for the one-

dimensional case and by Vasilyev [23] in multiple dimensions. It was shown that the error bound on the

derivative is given by
DxiuðxÞ � DxiuPðxÞj j 6 C5N
�ðp�1Þ=n; ð14Þ
where Dxi stands for the derivative operator in the xi direction. This relation was verified numerically for

both one-dimensional [22] and two-dimensional cases [23]. Note that the error bound (14) is also correct

for the second-order derivative if a symmetric stencil is used.

Algorithm 3. [Calculation of derivatives on the adapted grid]
perform forward wavelet transform for each component of umk
for all levels j = 1:1:J � 1

perform one step of inverse wavelet transform for level j

find derivatives at grid points that belong to D
j
P

end



3.4. Multilevel iterative wavelet collocation elliptic solver
The algorithm presented in this section can be used as part of the elliptic solver to obtain the solution of
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an elliptic equation during iterative grid refinement as discussed in Section 3.1 or as a part of a differential

constraint for the evolution problems, such as the continuity equation in the incompressible Navier–Stokes

equations. In the latter case the Poisson equation for the pressure is solved in order to enforce the incom-

pressibility condition.

The multilevel structure of the wavelet approximation gives us a natural framework to establish a V-

cycle on an adaptive computational grid GP. We recall that the adaptive computational grid GP ¼ GJ
P

is constructed as a set of nested adaptive computational grids Gj
P � GP, such that Gj

P � Gjþ1
P for any

j < J � 1, where J is the finest level of resolution. This nested grid structure provides a framework that
allows the approximation from coarser levels of resolution to be used to improve the approximation at

the finest level.

The pseudocode for the full local elliptic solver (without grid adaptation) is given in Algorithm 4,

where jmin and J are respectively the lowest and the highest levels of resolution, m1 and m2 are respec-

tively the number of pre- and post-relaxations, m3 is the number of iterations of exact solver, x0 and x1

are the dumping parameters, and Ij�1
w and Ijw are respectively the restriction and interpolation wavelet-

based operators. The multilevel iterative Algorithm 4 is similar in spirit to multi-grid methods [36]. The

main similarity lies in the fact that both multi-grid methods and multilevel solver utilize recursive coarse

grid correction procedure. Both algorithms make use of low order approximate iterative solvers (smoo-

thers) to relax on the error of the residual equation. Finally, both algorithms use exact (high order)

solvers on the finest mesh to either correct approximate solution or to calculate the residual to be used

by approximate solver.

The main differences between the proposed multilevel method and other multi-grid algorithms are in

the details of the implementation. First, the structure of the nested grids is very different. In particular,

in contrast to multi-grid methods, the lower level grid is not necessarily coarser at every region of the

domain, and, thus, in some regions the grid could be identical for both finer and coarser levels. Sec-
ondly, lower-order wavelet differentiation is used for the approximate solver (smoother). Thirdly, wave-

let interpolation and projection are used respectively for prolongation (injection) and restriction

operators.

Algorithm 4. [Local multilevel elliptic solver using V-cycles]
while kfJ �LuJPk1 > d�
rJ ¼ fJ �LuJP
for all levels j = J:�1:jmin + 1

do m1 steps of approximate solver for Lvj ¼ rj

rj�1 ¼ Ij�1
w ðrj �LvjÞ

enddo

end

Solve for j = jmin level: Lvj ¼ rj

for all levels j = jmin + 1:+1:J
vj ¼ vj þ x0Ijwv

j�1

do m2 steps of approximate solver for Lvj ¼ rj enddo

end

uJP ¼ uJP þ x1v
J

do m3 steps of exact solver for LuJ ¼ fJ enddo

end
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In the numerical results presented in this paper the same damping parameters have been used after
each cycle. The weighted Jacobi second-order iterative solver was used as an approximate solver. The

weight for the weighted Jacobi method was set to the theoretically predicted value of 2/3 for optimal
convergence. Numerical experiments confirmed this weight to be the optimal for adaptive calculations

as well. Finally, as in the usual multi-grid methods, either BI-CGSTAB [44] or GMRES [45] is used as

an exact solver.
4. Results and discussion

In order to illustrate the accuracy and efficiency of the proposed numerical method, we will apply it
to the solution of some two- and three-dimensional test problems. Both of these test problems are lin-

ear elliptic equations. The current method can be extended easily to include nonlinear equations by

implementing the full approximation storage (FAS) algorithm [46]. FAS is the standard way of solving

nonlinear elliptic PDEs using a multilevel or multigrid scheme. The process of grid adaptation would be

roughly the same, except the adjacent zone definition may need to be modified to reflect the nature of

the nonlinearity.
4.1. Problem formulation

4.1.1. Two-dimensional elliptic problem

For the first test problem we consider the two-dimensional Poisson equation
Du ¼ f ; ð15Þ
where the operator D is the Laplacian operator
D ¼ o2

ox21
þ o2

ox22
ð16Þ
and f is the localized source chosen such a way that the solution of the Poisson equation is given by
uðx1; x2Þ ¼ 1þ exp �ðx01Þ
2 þ ðx02Þ

2

2l1

 !
þ exp �ðx001Þ

2

2l2

� ðx002Þ
2

2l3

 !
; ð17Þ
where x 0 = x � x0, x
00 = R(x � x1), x0 and x1 are constants, and R is a rotation matrix
R ¼
cosðhÞ sinðhÞ

� sinðhÞ cosðhÞ

� �
;

defined by the angle h. The initial and Dirichlet boundary conditions are obtained from the analytical solu-

tion (17). The problem is solved for parameter values x0 = (0.2, 0.1), x1 � = (�0.25, �0.25), h = 60�,
l1 = 10�2, l2 = 10�3, l3 = 10�1.

4.1.2. Three-dimensional elliptic problem

As a second test problem we consider the three-dimensional Poisson equation (15) with the three-dimen-
sional Laplacian operator
D ¼ o
2

ox21
þ o

2

ox22
þ o

2

ox23
: ð18Þ
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The localized source f is chosen such a way that the solution of the Poisson equation is given by
uðx1; x2Þ ¼ 1þ exp �ðx01Þ
2 þ ðx02Þ

2 þ ðx03Þ
2

2l1

 !
þ exp �ðx001Þ

2

2l2

� ðx002Þ
2

2l3

� ðx003Þ
2

2l4

 !
; ð19Þ
where x 0 = x � x0, x
00 = R (x � x1), x0 and x1 are constants, and R is a rotation matrix
R ¼
cosðfÞ cosðgÞ cosðnÞ � sinðfÞ sinðnÞ cosðfÞ cosðgÞ sinðnÞ þ sinðfÞ sinðnÞ � cosðfÞ sinðgÞ
� sinðfÞ cosðgÞ cosðnÞ � cosðfÞ sinðnÞ � sinðfÞ cosðgÞ sinðnÞ þ cosðfÞ cosðnÞ sinðfÞ sinðgÞ

sinðgÞ cosðnÞ sinðgÞ sinðnÞ cosðgÞ
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defined by the angles n, g, and f. The initial and Dirichlet boundary conditions are obtained from the ana-

lytical solution (19). The problem is solved for parameters values x0 = (�0.5,�0.5,�0.5), x1 = (0.2, 0.15,

0.1), n = 45�, g = �45�, and f = 30�, l1 = 5 · 10�2, l2 = 5 · 10�2, l3 = 2 · 10�2, l4 = 5 · 10�1.

4.2. Numerical results

4.2.1. Convergence of the global elliptic solver

We start by considering the adaptive grid refinement strategy discussed in Algorithm 2. The progressive

adaptation of the computational grid Gm
P for the first test problem is shown in Fig. 2 for wavelets of order

p ¼ ~p ¼ 6 and wavelet threshold � = 10�5. Comparing the grid structure with the converged solution shown

in Fig. 3, it can be easily seen that the high resolution region simply follows the peaks in the solution, thus

permitting proper resolution of the localized structures. Note that the computational grid for the cylindrical

structure does not change between 5th and 6th iterations, indicating proper resolution of the structure for a

given tolerance specified by the threshold parameter �.
Fig. 2. Adaptive computational grids Gm
Pðm ¼ 1; . . . ; 6Þ for successive iterations ð� ¼ 10�5; p ¼ ep ¼ 6Þ.



Fig. 3. Solution of elliptic problem (15) corresponding to adaptive computational grids shown in Fig. 2 ð� ¼ 10�5; p ¼ ep ¼ 6Þ.
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Figs. 2 and 3 provide a qualitative understanding of the global grid adaptation. In order to provide

quantitative information, one needs to perform the convergence study for the algorithm. The convergence

study for the adaptive wavelet algorithms with � 6¼ 0 should be distinguished from the refinement study.

The latter is done by setting � to zero and progressively refining the computational grid, i.e. increasing
the maximum allowable level of resolution J. On the other hand, in the convergence study the maximum

allowable level of resolution is not fixed and can be as high as needed. The convergence study is performed

by progressively decreasing the threshold parameter � and obtaining the globally converged solution for the

specified �. The decrease of � will result in an increase in the number of grid points and number of levels of

resolution. If the numerical method is convergent, then the computational error of the solution should be

proportional to �. Furthermore, the number of grid points should scale as predicted by (8), while the accu-

racy of the solution should scale according to (14). In order to increase computational savings, the thresh-

old parameter � was progressively decreased from 10�1 to the specified level. We found that the best
strategy is simply to decrease the threshold by a factor of 10 each iteration until the desired value of � is
achieved. After that, the threshold is kept unchanged until both solution and computational grids are con-

verged as described in Algorithm 2.

The results of the convergence study for the two-dimensional elliptic problem are presented in Fig. 4(a),

where the pointwise l1-error of the solution as a function of grid points is shown for different order wave-

lets. It is clearly seen that the convergence is consistent with analytical predictions of Eq. (14), shown by

triangles. The dependence of the number of grid points N on the threshold parameter � is shown in

Fig. 4(b). Once again, the dependence of N on � is consistent with theoretical estimate given in (8), as
shown by the triangles. These figures clearly demonstrate the convergence of the numerical method with

the decrease of �. Note that the actual error of the solution is typically larger then �, but is of the same or-

der. Thus, by prescribing the value of �, we can actively control the accuracy of the solution.



(a) (b)

Fig. 4. The pointwise L1-error of the solution of elliptic problem (15) (a) and the number of grid points as a function of � (b) for

different choices of parameters p, and ep: p ¼ ep ¼ 4 (s); p ¼ ep ¼ 6 (h); p ¼ ep ¼ 8 (d). N is the actual number of grid points used in

the calculations. The triangles indicate the slopes respectively predicted by Eqs. (14) and (8).
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The results presented above clearly demonstrate that the solution converges with the decrease of �. How-

ever, they do not show how fast the method converges. The efficiency of the algorithm is demonstrated in

Fig. 5(a), which shows the rapid (an order of magnitude per iteration) convergence of the solution until �
stops decreasing as shown in Fig. 5(b). At that point the level of resolution continues to increase with iter-
ations until all the structures are resolved and solution is converged. Note that the small dip in the error is

misleading due to the fact that the solution is not fully resolved, and the error is calculated only at the

points on the adaptive grid. Interpolation of the solution to the finer grid results in increase of the error,

as clearly seen in Fig. 5(a). The progressive increase of the number of grid points N and the maximum level

of resolution J with iterations is respectively shown in Fig. 6(a) and (b).

Finally, in order to demonstrate the tremendous savings of the adaptive algorithm it is illustrative to

compare the number of grid points used in the adaptive and nonadaptive methods with adequate resolu-

tion. This can be easily measured by the compression coefficient C ¼ 1� ðN=NJ Þ, where N is the actual
number of grid points used in the calculations and NJ is the number of collocation points, required for the
(a) (b)

Fig. 5. The pointwise L1-error of the solution of elliptic problem (15) (a) and the value of the threshold parameter � (b) as a function

of global iterations for � = 10�5 and different choices of parameters p, and ep: p ¼ ep ¼ 4 (s); p ¼ ep ¼ 6 (h); p ¼ ep ¼ 8 (d).



(a) (b)

Fig. 6. The total number of grid points N (a) and the maximum level of resolution J (b) as a function of global iterations for � = 10�5

and different choices of parameters p, and ep : p ¼ ep ¼ 4 (s); p ¼ ep ¼ 6 (d); p ¼ ep ¼ 8 (h).
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non-adaptive algorithm to solve the same problem with the comparable resolution. In other words, the

compression coefficient measures the percentage of grid points that are not included to the adaptive grid

Gt
P. The larger the compression coefficient, the more efficient the adaptive algorithm. A compression coef-

ficient 0% indicates that there is no adaptation. As seen in Fig. 7(a) the compression coefficient monoton-
ically increases with each iteration until the grid converges. Another way to look at the compression is to

use the compression ratio CR ¼ NJ=N, which measures the ratio of the total number of collocation points,

required for the non-adaptive calculation, to the actual number of grid points used in the adaptive calcu-

lation (see Fig. 7). Note that when both solution and grid are converged, the number of grid points on

adaptive grid is approximately twenty times less than on non-adaptive grid, i.e. CR � 20. The compression

ratio can be even higher for more localized structures. Finally, it should be noted that the execution time of

the algorithm in its current implementation scales linearly with the number of grid points. Thus, the com-

pression ratio is a direct measure of the algorithm efficiency.
(a) (b)

Fig. 7. The compression coefficient C (a) and the compression ratio CR (b) as a function of global iterations for � = 10�5 and different

choices of parameters p, and ep : p ¼ ep ¼ 4 (s); p ¼ ep ¼ 6 (d); p ¼ ep ¼ 8 (h).
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4.2.2. Convergence of the local multilevel elliptic solver

The global convergence study presented in previous section only provides information about global con-

vergence of the solution. Another factor that determines the overall efficiency of the method is the rate of

the convergence of the local iterative multilevel elliptic solver discussed in Section 3.4. Due to similarities

between proposed multilevel elliptic solver and multigrid methods, it is natural to expect linear conver-
gence, i.e. the residual should decrease approximately by the same factor with each iteration. To demon-

strate the convergence of the multilevel elliptic solver Figs. 8–10 show the l1 norm of the residual error

as a function of local iterations (V-cycles) for different choices of the iteration parameters. In particular,

Fig. 8 demonstrates the influence of the number of pre- (m1) and post-relaxations (m2) on the convergence

of the multilevel solver. Obviously, two relaxations is sufficient to smooth the solution. Increasing the

number of relaxations slightly decrease the error, but does not affect the rate of the convergence. The
Fig. 8. The L1-norm of the residual for the multilevel wavelet collocation solver as a function of local iterations (V-cycles) for

� ¼ 10�5; p ¼ ep ¼ 6; x0 ¼ 2=3; x1 ¼ 1 and different choices of iterative parameters m1, m2, and m3: m1 = m2 = 2, m3 = 0 (s); m1 = m2 = 2,

m3 = 0 (h); m1 = m2 = 10, m3 = 0 (d); m1 = m2 = 20, m3 = 0 (j).

Fig. 9. The L1-norm of the residual for the multilevel wavelet collocation solver as a function of local iterations (V-cycles) for

� ¼ 10�5; p ¼ ep ¼ 6; x0 ¼ 2=3; x1 ¼ 1 and different choices of iterative parameters m1, m2, and m3: m1 = m2 = 2, m3 = 0 (s); m1 = m2 = 2,

m3 = 2 (h); m1 = m2 = 2, m3 = 4 (d); m1 = m2 = 2, m3 = 10 (j).



Fig. 10. The L1-norm of the residual for the multilevel wavelet collocation solver as a function of local iterations (V-cycles) for

� ¼ 10�5; p ¼ ep ¼ 6; m1 ¼ m2 ¼ 2; m3 ¼ 0 and different choices of iterative parameters x0, and x1: x0 = 1, x1 = 1 (+); x0 = 0.75, x1 = 1

(s); x0 = 1.1, x1 = 1 (d); x0 = 1, x1 = 0.75 (h); x0 = 1, x1 = 1.1 (j).
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convergence rate is more sensitive to the number of iterations of the exact solver (m3), as clearly seen in Fig.

9. It goes from one order per three iterations for no iterations of the exact solver to two orders per three

iterations with m3 = 10. However, the computational cost of both BI-CGSTAB and especially GMRES is

considerably more expensive. In addition, the increase of iterations m3 of the exact solver based on GMRES,
would make the Krylov space larger, which ultimately would result in an increase of memory use. For that

reason we found it is better to use either GMRES with very few iterations of the exact solver or no itera-

tions at all. Finally, the influence of the relaxation parameters x0 and x1 on the convergence of the method

is demonstrated in Fig. 10. Due to optimality of the approximate solver in terms of smoothing the solution,

both under-relaxation (x < 1) and over-relaxation (x > 1) of either x0 and x1 decreases the convergence of

the residual. However, for other choices of elliptic operators it might not be so. For that reason the relax-

ation parameters could provide additional freedom for improving the convergence of the Algorithm 4.
Fig. 11. The solution of three-dimensional elliptic problem (15) (isosurface levels are at 0.25 and 0.75) (a) and the corresponding

adaptive computational grid GP (b) ð� ¼ 10�5; p ¼ ep ¼ 6Þ.
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4.2.3. Three-dimensional results

The proposed method works equally well for the solution of three-dimensional elliptic problems. The

numerical solution of the three-dimensional elliptic problem is discussed in 4.1 and the corresponding com-

putational grid is shown in Fig. 11. The results of the convergence study for the three-dimensional elliptic

problem are presented in Fig. 12(a), where the pointwise l1-error of the solution as a function of grid points
is shown for different order wavelets. It is clearly seen that, as in two-dimensional case, the convergence is

consistent with analytical predictions of Eq. (14), shown by triangles. The dependence of the number of grid

points N on the threshold parameter � is shown in Fig. 12(b). Once again, the dependence of N on � is
consistent with theoretical estimate given in (8), as shown by the triangles. The other global convergence

results are similar to two-dimensional case. Finally, in order to demonstrate that the local convergence

of the three-dimensional multilevel elliptic solver is similar to two-dimensional case, the l1 norm of the

residual error as a function of local iterations (V-cycles) is shown in Fig. 13. The dependence of the rate

of convergence on the relaxation parameters m1, m2, m3, x0, and x1 is similar to two-dimensional case.
(a) (b)

Fig. 12. The pointwise L1-error of the solution of three-dimensional elliptic problem (15) (a) and the number of grid points as a

function of � (b) for different choices of parameters p, and ep : p ¼ ep ¼ 4 (s); p ¼ ep ¼ 6 (h); p ¼ ep ¼ 8 (d). N is the actual number of

grid points used in the calculations. The triangles indicate the slopes respectively predicted by Eqs. (14) and (8).

Fig. 13. The L1-norm of the residual for the three-dimensional multilevel wavelet collocation solver as a function of local iterations

(V-cycles) for � ¼ 10�5; p ¼ ep ¼ 6; x0 ¼ 2=3; x1 ¼ 1; m1 ¼ m2 ¼ 3; m3 ¼ 0 (s).



O.V. Vasilyev, N.K.-R. Kevlahan / Journal of Computational Physics 206 (2005) 412–431 429
5. Conclusions

The second generation wavelet collocation method [22,23] for solving evolution problems has been

extended to the solution of elliptic problems using a multilevel method. Wavelet decomposition is used

for grid adaptation and interpolation, while a OðNÞ hierarchical finite difference scheme, which takes
advantage of wavelet multilevel decomposition, is used for derivative calculations. An efficient adaptive

algorithm for solving elliptic problems is developed. With this algorithm the solution is obtained on a near

optimal grid for the prescribed tolerance that is controlled by wavelet threshold parameter �. In order to

accelerate the convergence of the adaptive method, an iterative multilevel procedure analogous to the

multigrid algorithm is developed.

Despite similarities with multigrid methods, the wavelet multilevel iterative algorithm is different in sev-

eral important ways. The major differences are in the structure of the nested grids, the use of wavelet inter-

polation for both prolongation and restriction operators, and the use of either BI-CGSTAB or GMRES
methods as the exact solver. The accuracy and computational efficiency of this method are demonstrated

for the solution of two- and three-dimensional Poisson equations with highly localized sources. Both global

and local convergence results are presented. The theoretical prediction for the convergence is verified

numerically. Linear convergence of the multilevel wavelet collocation solver is demonstrated. The results

indicate that the computational grid and associated wavelets can efficiently adapt to the local irregularities

of the solution in order to resolve sharp transition regions.

Finally, it should be noted that overall computational cost of the algorithm is data-structure (and hence

problem size) dependent. In the current version of the algorithm, we used the simplest approach: a working
array of the size of non-adaptive grid. This enabled us to perform the calculation on a subset of grid points

with relative ease, although at the cost associated with a cache-inefficient algorithm for large problems.

Working arrays are not efficient in terms of memory use, but they are efficient in terms of computational

cost, since the computation cost scales linearly with the number of points used. We are currently developing

an efficient data structure that is designed to take advantage of the special properties of the wavelet trans-

form as well as computer architecture.

Another future area of research includes the generalization of the method to the solution of evolution

problems in the space–time domain. This approach will provide a natural way of varying the time step
based on location (in time and space), and spatial scale. The effective time step will be smaller in regions

of rapid change (small local time scale), and larger in regions of slow change (large local time scale). This

work is currently underway.
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