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We present the first application of a central scheme in an unstructured meshless code and 
extend it to limit diffusion in shearing flows.
Some numerical diffusion is required in simulations of compressible fluids to maintain 
stability and prevent formation of spurious structures. The Kurganov-Tadmor (KT) central 
scheme uses a signal velocity and a linear reconstruction of fields to limit numerical 
diffusion away from discontinuities.
We implement the KT scheme as a drop-in replacement for the Riemann solver in the 
GIZMO hydrodynamics code. Both the original finite-volume version of the KT scheme, 
which is quasi-Lagrangian in meshless geometry, as well as a new fully-Lagrangian finite-
mass variant are presented. In addition, to mitigate excessive diffusion, a new shear-
based switch is proposed. The new methods, as well as the default Riemann solver, were 
applied to a set of test problems. The results show that, although the KT scheme is more 
diffusive than the Riemann solver, it produces correct results with better convergence. The 
switch is shown to reduce diffusion in shearing cases, while not compromising stability 
in the supersonic regime. The fully-Lagrangian variant is shown to behave similarly to its 
Riemann solver counterpart. We conclude that the new variants of the KT scheme are 
good alternatives to Riemann solvers in meshless geometry, especially where its simplicity 
is desirable, such as for a complex equation of state.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we aim to solve the following hyperbolic conservation law,

∂

∂t
U(x, t) + ∇ · F(x, t) = 0 (1)

where U is the vector of conserved quantities, and F is the nonlinear convective flux. Of particular interest is the application 
to inviscid, incompressible gases, for which U is the fluid state,

U = [
ρ ρvx ρv y ρvz ρeT

]T (2)
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and F defines the fluxes across a plane with unit normal vector n = [nx ny nz]T :

F =

⎡
⎢⎢⎢⎢⎣

ρvn

ρvx vn + Pnx

ρv y vn + Pny

ρvz vn + Pnz

ρvn(eT + P
ρ )

⎤
⎥⎥⎥⎥⎦ (3)

Here, ρ is density, P is pressure, v = [vx v y vz]T is the velocity vector, vn = v · n is its scalar projection onto n, and 
eT = e + 1

2 |v|2 is the specific total energy. An equation of state such as P = (γ − 1)ρe for ideal gases completes the system. 
We note, however, that our method is independent of the choice of equation of state.

In the following work, we propose a method for solving the above problem in an unstructured meshless geometry. In 
particular, we demonstrate the viability of the Kurganov-Tadmor (KT) central scheme [1] to compute finite-volume Godunov-
like fluxes in said geometry. This, in effect, acts as a replacement for Riemann solvers, simplifying implementation and 
suggesting applicability to any general finite-volume geometry. We additionally derive a novel finite-mass extension of the 
KT scheme, as well as propose a new numerical diffusion switch based on splitting the numerical flux between a shearing 
and a normal component.

2. Background

2.1. Meshless discretization

We assume a meshless geometry defined by a set of particles, as prescribed in the work of Gaburov & Nitadori [2], which 
aims to combine desirable properties from both grid and particle methods. This method builds on progress from Onate et 
al. [4] which introduced the moving least-squares interpolation to computational mechanics, Dilts 1999 [5] which produced 
a smoothed particle hydrodynamics (SPH) implementation, and Lanson & Vila [6] which introduced meshless particle area 
and gradient estimators. To this, Gaburov & Nitadori introduced a Riemann solver to compute fluxes between pairwise 
interacting particles, completing a Godunov-style finite-volume framework.

Broadly, this meshless method provides a kernel-based reconstruction similar to SPH. A key distinction of the meshless 
method is that it reconstructs a face area and normal, which allows it to discretize the hyperbolic conservation law (Equation 
(1)) as a Godunov-like form [6,2]. This means pairwise fluxes between particles can be computed using a numerical flux 
function and the approximate face area. Implementations often compute numerical fluxes via a slope reconstruction to 
project the fluid state to the faces then use a Riemann solver at the face ([2,3]) – we later show this can be replaced with 
a central scheme formulation.

We briefly review the derivation of this meshless discretization, following closely Section 2.1 of [2], but also refer the 
reader to Section 2.2 of [6] and Section 2.1 of [3] for a more complete discussion. Following the usual finite-volume deriva-
tion, we seek a solution of the weak form of the hyperbolic conservation law Equation (1):∫ (

U(x, t)
Dϕ

Dt
+ F(x, t) · ∇ϕ

)
dx dt = 0 (4)

where ϕ is an arbitrary differentiable test function and D
Dt = ∂

∂t + v · ∇ is the material derivative. For a differential volume 
dx, ψi(x) represents a fraction of the volume associated with some particle i, using a partition of unity:

ψi(x) = W (x − xi,h(x))∑
j W (x − x j,h(x))

(5)

where W is a kernel function with compact support, h is the kernel size, and the summation is over all particles, including i.
Notice that this enforces 

∑
i ψi(x) = 1, allowing the following approximation for some function f (x),∫

f (x) dx =
∑

i

∫
f (x)ψi(x) dx (6)

=
∑

i

f i

∫
ψi(x) dx +O(h2

i ) (7)

≡
∑

i

f i V i +O(h2
i ) (8)

where f i = f (xi) denotes the function evaluated at the location of particle i. Equation (7) is a first order Taylor expansion, 
and assumes |x − xi | = O(hi). Equation (8) defines V i = ∫

ψi(x) dx as an “effective volume” for particle i, representing 
its total volume partition over all space. Note that in order to get an exact partition of unity, this integration must be 
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performed over all particles, but an approximation such as the smooth particle number density is often used [3]. Applying 
this discretization to the weak form Equation (4) yields,

∑
i

∫ (
V iUi

Dϕi

Dt
+ V iFi · (∇ϕ)i

)
dx dt = 0 (9)

dropping the O(h2) terms for brevity. A second-order meshless gradient approximation is given by,

(∇ f )i =
∑

j

( f j − f i)ψ
α
j (xi) (10)

ψα
j = Bαβ

i (x j − xi)
βψ j(xi) (11)

using Einstein summation on α and β . Bi is the renormalization matrix defined as the inverse of Ei :

Eαβ

i =
∑

j

(x j − xi)
α(x j − xi)

βψ j(xi) (12)

Applying this gradient to the second term in Equation (9) gives:∑
i

V iF
α
i (∇ϕ)αi =

∑
i, j

V iF
α
i (ϕ j − ϕi)ψ

α
j (xi) (13)

= −
∑

i

ϕi

∑
j

(
V iF

α
i ψα

j (xi) − V jF
α
j ψ

α
i (x j)

)
(14)

Plugging this into Equation (9), and applying integration by parts to the first term, gives:

∑
i

ϕi

⎛
⎝ d

dt
(V iUi) +

∑
j

[
V iF

α
i ψα

j (xi) − V jF
α
j ψ

α
i (x j)

]⎞⎠ = 0 (15)

This holds for any test function ϕ , therefore the expression inside the parentheses vanishes. Defining a numerical flux, F̂i j , 
for the substitution Fi = F j = F̂i j (since the left and right fluxes are necessarily equal to retain pairwise conservation), and 
defining Aα

i j ≡ V iψ
α
j (xi) − V jψ

α
i (x j), produces the Godunov-like form:

d

dt
(V iUi) +

∑
j

F̂i j · Ai j = 0 (16)

Notice that in this form, Ai j can be interpreted as an “effective face area” representing the magnitude of the interaction 
between particles i and j [3].

The key idea of the meshless discretization is that it can be represented in a Godunov-like form. As such, neighbouring 
particles have an associated plane interface, Ai j , with unit normal vector, ni j , by which they interact. The distinguishing 
characteristic of the meshless discretization is that this interface is not explicitly constructed geometrically – as done in 
grid and moving mesh methods [8] – but rather approximated according to the aforementioned kernel reconstruction and 
renormalization [3].

Equation (16) thus discretizes the solution of the global problem into many 1D pairwise local Riemann problems, solved 
in the frame of the point of equal volume fractions between i and j.

To evolve this system over time, we want to find the numerical flux, F̂i j , across each pairwise interface, Ai j – with some 
time discretization, we solve for the time-averaged flux at each timestep. This paper is focused on accurate and stable 
computation of this numerical flux

2.2. Finite volume and finite mass discretizations

Having presented the meshless discretization in its Godunov-like form, it is easy to see how existing machinery can be 
used to solve this problem. In particular, Gaburov & Nitadori make use of a Riemann solver to find the numerical flux at 
each pairwise interface [2]. The same second-order gradient approximation from above is used to project fluid properties 
from the particles to the interface, treated with the necessary slope limiters (whose theory has been extensively shown for 
stationary grids [7]).

Hopkins 2015 notes that applying the fluxes in this manner produces a finite-volume method, which he refers to as the 
Meshless Finite Volume (MFV) scheme [3]. This corresponds to a stationary particle interface, which allows inter-particle 
mass fluxes and forces a drift between the actual fluid velocity and the resulting particle velocity. In this way, MFV is 
considered quasi-Lagrangian since particles do not exactly follow the fluid flow.
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As an alternative, Hopkins 2015 proposes the Meshless Finite Mass (MFM) scheme, applying a linear velocity correction 
to this interface to enforce zero mass flux. In this way, MFM is fully-Lagrangian as particles follow the fluid velocity (to 
second-order accuracy) [3]. Typically, MFV is less diffusive, especially in shear flow, but is more susceptible to instability 
and other difficulties with more pathological tests.

2.3. The numerical flux

Discretizing Equation (16) for a single particle i with nearest-neighbours j, using a time-centred discretization, gives [9]:

Un+1
i − Un

i = −	t
∑

j

Ai j

V i
F̂i j · ni j (17)

Note that the effective face area vector from above has been split into:

Ai j = Aijni j (18)

where Aij = |Ai j| is the approximation of the area and ni j = Ai j
|Ai j | is a unit vector representing the interface normal, pointing 

away from i and towards j. We also adopt the superscript notation to represent the time level.
As before, F̂ is the numerical flux function, and may not be exactly equivalent to the flux function defined above for 

continuous fields. In particular, numerical diffusion is required to retain stability of the discretized problem. Without dif-
fusion, nonlinear waves – such as ones produced at discontinuities – could not be accurately captured. This is largely a 
consequence of Godunov’s theorem: monotone, linear schemes are at most first-order accurate [9]. Here, monotone means 
non-oscillatory and can be expressed as a sufficient stability condition to be elaborated on Section 3.3. Notice that the in-
clusion of the nonlinear diffusion term circumvents the restriction placed by Godunov’s theorem, but we seek to limit this 
nonphysical diffusion to only when the solution could become non-monotone.

The form of Equation (17) is useful as it isolates the numerical flux from the rest of the fluid solver. We limit our 
investigation to explicit methods, where F̂i j is evaluated solely for the current time level n. This means that the method 
for computing numerical flux, F̂i j , is wholly independent of the particle geometry or the time integrator used, and is thus 
translatable to many different solvers.

Additionally, note that the above equation effectively represents the solution for a single cell being comprised of many 
local Riemann problems between it and its neighbours. For grid-based methods, the only Riemann problems required to 
be solved are the nearest neighbours as defined on the grid, such as 6 for the typical rectilinear Cartesian grid (this could 
potentially have more for unstructured meshes). In smoothed particle hydrodynamics (SPH) and other meshless methods, 
considerably more local Riemann problems (GIZMO uses 32 nearest neighbours by default) are needed [3]. Despite the 
much larger number of Riemann problems to solve – and consequently greater computational cost – meshless methods 
have desirable properties, particularly their Galilean invariance. By allowing particle advection, we are able to solve these 
Riemann problems in a convenient local reference frame rather than the lab frame. This avoids cases where very little 
dynamics is occurring physically, but particles are moving fast relative to the background grid, which causes strict timestep 
restrictions for grid-based methods.

An important limitation here is that by discretizing the flux solving to simple pair-wise Riemann problems, we cannot 
account for the nonlinear interactions of the waves from different pairs, such as along diagonals in the grid-based case. This 
effectively limits the method to second-order accuracy unless these waves coming from neighbouring pairs are accounted 
for.

Note that each local Riemann problem is 1-dimensional, albeit embedded in 3-dimensional space - the velocity vectors 
are necessarily 3D, and there is thus a difference between absolute velocity ||v||2 and the velocity projection along the 
normal vector between two particles vn . This distinction will be relevant later.

3. Numerical flux schemes

3.1. Review of central schemes

The Kurganov-Tadmor (KT) scheme is a modern refinement of the family of central schemes that stem from the Lax-
Friedrichs (LxF) scheme [1]. The motivation of the LxF scheme was to apply a central difference approximation of the flux 
function, with a diffusion term applied for stability. For a regular 1D grid, the LxF numerical flux is [10]:

F̂n
i+0.5 = 1

2
(Fn

i + Fn
i+1) − 	x

2	t
(Un

i+1 − Un
i ) (19)

The first term simply represents the central difference approximation of the flux, and the second is a diffusive term. This 
becomes clear when we take the finite difference of the numerical flux vectors:
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F̂n
i+0.5 − F̂n

i−0.5 = 1

2
(Fn

i + Fn
i+1) − 	x

2	t
(Un

i+1 − Un
i ) − 1

2
(Fn

i−1 + Fn
i ) + 	x

2	t
(Un

i − Un
i−1) (20)

= 1

2
(Fn

i+1 − Fn
i−1) − 	x

2	t
(Un

i+1 − 2Un
i + Un

i−1) (21)

We note that the numerical diffusion has the form of a central difference approximation to a Laplacian diffusion of Un
i , 

with diffusion coefficient equal to 	x2

2	t . As stated previously, all high-order numerical schemes, even Riemann solvers, add 
some diffusion to achieve monotone stability. Riemann solvers achieve this with carefully chosen slope and flux limiters, 
while LxF explicitly adds a nonlinear diffusion term [9]. The goal is to minimize this diffusion while retaining its desired 
stabilizing property.

Geometrically, LxF evolves a temporary middle state, Un∗ , between two interacting states using the flux vector, then 
projects this “star” state back onto the grid cell by taking an average over the entire cell. This “star” state is representative 
of the middle state in a simplified two-wave model of the local Riemann problem. This creates excessive diffusion as the 
intermediate middle state influences the entire cell in the projection step.

3.2. The Kurganov-Tadmor scheme

The contribution of Kurganov and Tadmor was to limit the domain of influence of the middle state by bounding it within 
the area reached by the signal velocity, a, during the projection step. The KT numerical flux is [1],

F̂n
i j = 1

2
(Fn,−

i j + Fn,+
i j ) − aij

2
(Un,+

i j − Un,−
i j ) (22)

where a superscript (·)− denotes the left interface state (i.e. closer to particle i), and superscript (·)+ denotes the right 
interface state (i.e. closer to neighbouring particle j). We also adopt the face area normal defined by our interface approxi-
mation Ai j in Equation (18). This defines ni j as an outwards-pointing normal from i to j. We additionally note that, having 
been derived traditionally on grids, the flux is computed on the frame of a static interface between i and j, which is exactly 
the frame used by the 1D local Riemann problem defined above.

To achieve second-order convergence, the KT scheme uses the states interpolated onto either side of the interface rather 
than simply the cell values. Note that while the interface is clearly defined in structured grids, there is some freedom in 
defining it in the unstructured case.

It is known that eigenvalues of the flux Jacobian represents different waves, which for the Euler flux vector, is:

λ(U) = {vn, vn + c, vn − c} (23)

where vn is again the velocity along the normal direction, now defined by our interface approximation Ai j , and c is the 
local speed of sound. The KT scheme uses the largest eigenvalue, evaluated across the interface, as the signal velocity:

aij = max
U∈C(U−

i j ,U
+
i j )

(λ(U)) (24)

where C(U−
i j , U

+
i j ) is a curve connecting the left and right states via the Riemann fan. In the 1D Riemann problem, this is 

simply the maximum value evaluated on either side of the interface:

aij = max{|λ−|, |λ+|} = max{|v−
n ± c−|, |v+

n ± c+|} (25)

This effectively states that any waves propagating from the interface between two cells travel at most at the maximum 
propagation speed, i.e. the largest acoustic wave speed. Because of this, there is no need to apply diffusion to the rest of the 
cell – only diffuse to the region affected by the propagating waves.

Due to the CFL stability requirement for hyperbolic equations, aij must necessarily be bounded above by 	x
	t , and thus 

the KT scheme experiences less numerical dissipation than the LxF scheme.

3.3. A stability criterion

The KT scheme and the LxF scheme before it are both Godunov-like methods, whose numerical flux can be represented 
in a general form:

F̂n
i j = 1

2
[Fn,−

i j + Fn,+
i j − D(Un,+

i j − Un,−
i j )] (26)

where D is an upwind diffusion matrix. For the KT scheme, we have D = aijI as a constant diagonal matrix of the signal 
velocity.

To retain stability, the scheme should be non-oscillatory, and thus have the Total Variation Diminishing (TVD) property 
[1,7]:
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T V (qn+1) ≤ T V (qn) (27)

With regards to numerical fluxes, Swanson & Turkel 1991 proved that for central schemes, a sufficient, but not necessary, 
stability condition based on the Total Variation Diminishing (TVD) property is [11],

D ≥ |A| = B−1|�A |B (28)

where A = ∂F
∂U is the flux Jacobian, and �A is the diagonal matrix of eigenvalues of A. From this diagonalization, the 

condition can be rewritten as,

λk
D ≥ |λk

A | (29)

where λk
D is the kth eigenvalue of the matrix D and λk

A is the kth eigenvalue of the flux Jacobian A [12,13].
Therefore, a natural choice for D is the spectral radius,

λk
D = ρ(A) = max |λk

A | ≥ |λk
A | (30)

which gives exactly the KT scheme. As well, for a matrix D, the natural matrix choice is |A|, which represents the Roe-
linearized diffusion matrix [14].

4. A finite-mass KT scheme

So far, in computing solutions to the local Riemann problems, i.e. computing the numerical flux, it has been assumed 
that the cell boundary interface is static. This produces a finite-volume method where the volume of interacting particles 
are constant - a property inherited from the grid-based roots of these numerical flux schemes.

It is also possible to allow the interface to move with an arbitrary speed ν . We now derive a variant of the above KT 
scheme that includes this interface motion. We follow a similar reconstruction-evolution-projection method to Kurganov & 
Petrova 2000 [1]. We assume a piecewise smooth reconstruction and aim to have a second-order method to be consistent 
with the meshless discretization.

4.1. Notation

We first define our geometry. Although we intend to apply the new finite-mass KT scheme in the above meshless 
discretization, we first assume the existence of well-defined volumes, but we can later drop these in favour of the volume 
approximation of Section 2.1.

We define volume domains with calligraphic lettering: Vi is the volume domain of particle i, with size V i . We similarly 
define area domains: Ai j is the interface between particles i and j, with size Aij . We also define Vi j as the volume domain 
produced by sweeping Ai j inwards towards i by aij	t and outwards towards j by the same amount. This domain is divided 
into two subdomains by Ai j , such that Vi j = V−

i j ∪ V+
i j and Ai j = V−

i j ∩ V+
i j . Here, V−

i j is the volume on i’s side of the 
interface, and V+

i j is the volume on j’s side of the interface. We also define the region inside Vi j not belonging to any face 
volume as the “interior” region Vi,int = Vi \⋃

j(Vi j).

4.2. Setup

We start with the discretized form from Equation (17), and we seek to find the state at particle i during the next 
timestep Un+1

i . We define this state as the mean of some piecewise smooth intermediate state Wn+1
i within Vi :

Un+1
i = 1

V i

∫
Vi

Wn+1
i dV (31)

Separating the integration between the face volumes, V−
i j , and the interior of i’s volume, Vi,int ,

= 1

V i

⎛
⎜⎜⎝

∫
Vi,int

Wn+1
i dV +

∑
j

∫
V−

i j

Wn+1
i dV

⎞
⎟⎟⎠ (32)

and evaluating the integrals using piecewise averages,

= 1

V i

⎛
⎝V i,intW̄n+1

Vi,int
+

∑
j

V −
i j W̄n+1

Vi j

⎞
⎠ (33)
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where W̄ denotes the mean of the intermediate state evaluated over the volume defined by the subscript. Now, note that 
V−

i j is the face volume on i’s side of the interface. It is the definition of this volume that distinguishes the finite-mass from 
the original finite-volume KT scheme. By allowing the interface to move, the right and left face volumes changes. We revisit 
this later in the derivation. For now, we proceed with the derivation like in the usual KT scheme. Substituting in, we have:

Un+1
i − Un

i = 1

V i

(
V i,intW̄n+1

Vi,int
− V iU

n
i

)
+ 1

V i

∑
j

V −
i j W̄n+1

Vi j
(34)

We thus now need to find expressions for the means of the evolved intermediate states, W̄n+1.

4.3. Face volume

Let’s start with finding the means evaluated at the face volume V ij . We start with a reconstructed state, Wn
i j , evaluated 

at the face volume at the current timestep. Remembering that the intermediate state is discontinuous at the interface, we 
split up the evaluation of the mean into two face regions, V−

i j and V+
i j , representing the volumes taken by extruding the 

interface towards i and j respectively:

W̄n
i j = 1

V ij

∫
Vi j

Wn
i j dV = 1

V ij

⎛
⎜⎜⎝
∫
V−

i j

Wn,−
i j dV +

∫
V+

i j

Wn,+
i j dV

⎞
⎟⎟⎠ (35)

Subtracting the divergent flow leaving the face volume evolves the system to the next timestep:

W̄n+1
i j = W̄n

i j − 1

V ij

tn+1∫
tn

∫
Vi j

∇ · F dV dt (36)

Applying the divergence theorem:

= W̄n
i j − 1

V ij

tn+1∫
tn

∮
∂Vi j

F · n dA dt (37)

By construction, Vi j is the volume produced by extruding the interface inwards and outwards by aij	t . Note here that the 
movement of the interface with velocity ν occurs within this volume, so there is no need to consider it here. Evaluating the 
surface integral, we have:

tn+1∫
tn

∮
∂Vi j

F · ni j dA dt =
tn+1∫
tn

⎛
⎜⎝∫
Ai j

F(Wn,+
i j ) · ni j dA −

∫
Ai j

F(Wn,−
i j ) · ni j dA +O(	t)

⎞
⎟⎠dt (38)

where the 	t terms represent the faces perpendicular to Ai j , with length scale aij	t . They become second-order time 
terms outside the integral, so we hereafter drop them.

Assuming W±
i j is constant on the face, i.e. the value changes only along the ni j direction), which is justified by our 

simplification into 1D Riemann problems, the area integrals simplify:

tn+1∫
tn

∮
∂Vi j

F · ni j dA dt =
tn+1∫
tn

Ai j

(
F(Wn,+

i j ) − F(Wn,−
i j )

)
· ni j dt (39)

Evaluating the time integral via Taylor expansion up to second order gives:

= Aij	t
(

F(Wn,+
i j ) − F(Wn,−

i j )
)

· ni j +O(	t2) (40)

Once again, we drop the O(	t2) terms.
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Similarly, the volume integrals from Equation (35) simplify into line integrals:

W̄n
i j = Aij

V i j

⎛
⎜⎜⎝
∫
C−

i j

Wn,−
i j dC +

∫
C+

i j

Wn,+
i j dC

⎞
⎟⎟⎠ (41)

We once again Taylor expand to evaluate the integral:

= Aij

V i j
ai j	t

(
Wn,−

i j + Wn,+
i j

)
(42)

Plugging in Equations (40) and (42) into Equation (37):

W̄n+1
i j = Aij

V i j
	t

(
aij

(
Wn,−

i j + Wn,+
i j

)
− (F(Wn,+

i j ) − F(Wn,−
i j )) · ni j

)
(43)

Once again, by construction, V ij = 2Aijai j	t , thus completing our expression for the face volume mean:

W̄n+1
i j = 1

2

((
Wn,−

i j + Wn,+
i j

)
− 1

aij
(F(Wn,+

i j ) − F(Wn,−
i j )) · ni j

)
(44)

4.4. Interior volume

We now turn our attention to evaluating the mean at the interior volume at particle i, Vi,int . Once again, we can evaluate 
W̄n+1

i by looking at the divergent flow leaving the volume:

W̄n+1
i,int = W̄n

i,int − 1

V i,int

tn+1∫
tn

∫
Vi,int

∇ · F dV dt (45)

Applying the divergence theorem:

= W̄n
i,int − 1

V i,int

tn+1∫
tn

∮
∂Vi,int

F · n dA dt (46)

We substitute this into the first term of Equation (34). The state Un
i is the mean of a piecewise smooth Wn

i . Additionally, 
by construction, Vi,int = Vi \⋃

j

(
Vi j

)
, therefore Vi \ Vi,int = ⋃

j

(
Vi j

)
. We once again construct the face volumes by the face 

area sweeping inwards by aij	t , to get:

V i,intW̄n
i,int − V iU

n
i =

∫
Vi,int

Wn
i dV −

∫
Vi

Wn
i dV = −

∫
Vi\Vi,int

Wn
i dV = −

∑
j

Ai jai j	tWn,−
i j (47)

Looking now at the surface integral, this time it is generated by the faces between i and its neighbours j. Performing the 
same process as above to evaluate the space and time integrals, we have:

tn+1∫
tn

∮
∂Vi,int

F · n dA dt =
∑

j

tn+1∫
tn

∫
Ai j

F(Wn,−
i j ) · ni j dA dt (48)

=
∑

j

tn+1∫
tn

Ai jF(Wn,−
i j ) · ni j dt (49)

=
∑

j

Ai j	tF(Wn,−
i j ) · ni j (50)

Substituting in Equations (47) and (50) into the first term of Equation (34) to get:

1

V i

(
V i,intW̄n+1

i,int − V iU
n
i

)
= −	t

V i

∑(
Aijai jW

n,−
i j + AijF(Wn,−

i j ) · ni j

)
(51)
j
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4.5. Constructing the numerical flux

We now can construct the numerical flux by substituting in Equations (44) and (51) into Equation (34):

Un+1
i − Un

i = 	t
∑

j

Ai j

V i

(
−aijW

n,−
i j − F(

n,−
i j ) · ni j + V −

i j

2Aij	t
(Wn,−

i j + Wn,+
i j )

− V −
i j

2Aijai j	t
(F(Wn,+

i j − F(Wn,−
i j ))) · ni j

)
(52)

Now, V −
i j is the volume produced by the interface extruded inwards (towards i) with signal velocity aij . By adding in an 

arbitrary velocity ν , we define the movement of the interface along ni j , following the same sign convention (positive ν
means movement towards j). The inside face volume is thus:

V −
i j = Aij(aij + ν)	t (53)

Substituting this, we get:

Un+1
i − Un

i = −	t
∑

j

Ai j

V i

(
aijW

n,−
i j + F(

n,−
i j ) · ni j + aij + ν

2
(−Wn,−

i j − Wn,+
i j )

+aij + ν

2aij
(F(Wn,+

i j − F(Wn,−
i j ))) · ni j

)
(54)

Rearranging, we get:

Un+1
i − Un

i = −	t
∑

j

Ai j

V i

(
1

2

(
F(Wn,+

i j ) + F(Wn,−
i j )

)
− aij

2

(
Wn,+

i j − Wn,−
i j

)

+ ν

2aij

(
F(Wn,+

i j ) − F(Wn,−
i j )

)
− ν

2

(
Wn,+

i j + Wn,−
i j

))
(55)

Notice that this is now in the same form as Equation (17). Finally, the state at the current time level, Wn,±
i j , is evaluated as 

the reconstructed particle state on the interface, Un,±
i j .

The numerical flux of the finite-mass KT scheme is thus:

F̂n
i j = 1

2

(
Fn,−

i j + Fn,+
i j

)
− aij

2

(
Un,+

i j − Un,−
i j

)
+ ν

2aij

(
Fn,+

i j − Fn,−
i j

)
− ν

2

(
Un,+

i j + Un,−
i j

)
(56)

Notice that it is nearly identical to the finite-volume KT scheme, but with extra correction terms dependent on the speed 
of the interface movement, ν . It thus retains the existing simplicity of the KT scheme, and does not require any more 
information.

In particular, values used in the finite-mass KT scheme are identical to those used in the finite-volume variant – ve-
locities, v, and speeds vn , aij , ν , are defined in the same reference frame as in the finite-volume scheme. We recall that 
the frame used was the quadrature point where the volume fractions of particles i and j were equal. In the original finite-
volume KT scheme, fluxes were computed across this reference frame – i.e. the interface’s position was fixed relative to 
the particles. While we retain this frame, we computed fluxes according to an interface that moves with speed ν along ni j
relative to the frame.

4.6. Defining the interface speed

Next, we seek to define a ν that preserves particle masses. Returning back to the Riemann problem, we let ν be the 
speed of the contact discontinuity, S∗ . While many methods exist for approximating this contact wave speed, in practice we 
can simply solve for the ν which gives zero density flux. That is, we evaluate Equation (56) for the density field, with the 
left hand side set to zero, and isolate for ν . This gives:

νi j = aij

(
ρ−

i j v−
n,i j + ρ+

i j v+
n,i j − aijρ

+
i j + aijρ

−
i j

ρ−
i j v−

n,i j − ρ+
i j v+

n,i j + aijρ
+
i j + aijρ

−
i j

)
(57)

This is once again in the spirit of the original the KT scheme.



10 J. Panuelos et al. / Journal of Computational Physics 414 (2020) 109454
5. A new signal velocity

5.1. Motivation

Our principal goal is to construct a flux scheme which is less diffusive than the KT scheme and computationally efficient. 
We will do so by focusing on the phase speed aij used in the upwind diffusion matrix D.

We choose D = kI, where k is a scalar, to retain the simplicity and flexibility of the KT scheme. We note that there 
are numerous matrix definitions of D, which allows substantial freedom in reducing diffusion, especially when vn 
 c and 
subsequently there exists a wide range of λk

A . These are, however, as computationally expensive as using the Roe-linearized 
diffusion matrix, from which many approximate Riemann solvers are derived, and we seek to avoid such complexity.

In developing this new signal velocity, we refer back to the eigenvalues of the flux Jacobian. For a 1D Riemann problem 
embedded in 3D space, we have:

λ(U) = {vn, vn + c, vn − c, vn, vn} (58)

where the vn eigenvalue has degenerate eigenvectors. Physically, the eigenvalues correspond to distinct wave types - waves 
travelling at the sound speed relative to the flow (vn ± c) are acoustic waves while waves travelling with the flow (vn) are 
entropy waves. In particular, the vn ± c have the potential to be genuinely nonlinear as shocks and rarefactions, while vn

waves are linearly degenerate and exclusively represent contact discontinuities [15].
Now, consider a stationary contact discontinuity. Applying the KT scheme means that the states within a	t of the 

discontinuity are averaged as they are considered within the domain of dependence. This manifests as excessive numerical 
diffusion that incorrectly smears the discontinuity over time. This is especially problematic for shearing flows, which further 
increases signal speed and therefore the domain of dependence, causing momentum diffusion near the shear. However, the 
actual signal velocity must be used for the correct resolution of the nonlinear waves, specifically shocks. Thus, we want to 
keep the full diffusion for shocks, but reduce it in shearing flows.

5.2. The switch

Notice that regardless of the flow, the signal velocity is at least vn . The distinction between nonlinear waves and contact 
discontinuities is the ±c term. Thus, we would like to add a switch, α, on the sound speed that responds to the flow being 
either affected by primarily a shock, or a shear. We modify equation (25) as:

aij = max
{|v−

n ± αc−|, |v+
n ± αc+|} (59)

To do so, remember that even though each pairwise interaction constitutes a 1-dimensional Riemann problem, the momenta 
themselves are 3-dimensional. This means that we can compare the vector of the momenta to the normal vector between 
the two particles. If the momentum difference between two particles is perpendicular to the normal vector, then the local 
flow is likely shearing. The closer the momentum difference becomes to pointing along the normal vector, then the more 
significant nonlinear waves become. We thus propose the following switch:

α =
{∣∣∣ 	(ρvn)

||	(ρv)||2
∣∣∣ , ||	(ρv)||2 > δ,Nonlinear Case

0, ||	(ρv)||2 ≤ δ, Linear Case (no diffusion)
(60)

where ||f||2 =
√

f 2
x + f 2

y + f 2
z is the L2 norm, the operator 	(·) = (·)+ − (·)− is the left and right state difference. All 

values here are defined in the reference frame defined above – the frame of the interface that preserves particle volume 
fractions. δ imposes a small cutoff to prevent numerical divergence in still flows. Note that placing this value too high could 
cause insufficient numerical diffusion and excessive noise. δ = 0.001ρ̄ c̄ was found to be sufficient in numerical tests, where 
¯(·) = 1

2 ((·)+ + (·)−) denotes the mean of the left and right states.
A schematic of this method in the context of two interacting particles and why this method is less diffusive is shown in 
Fig. 1. From this, we see that we should expect diffusion to be decreased with this new switch, given that it limits the 
domain of dependence (determined by a	t) to be less than or equal to that of the KT scheme. Here, diffusion occurs in the 
next step, where the middle state is projected back to the original particles via averaging - a larger domain of dependence 
means that the computed middle state is allowed to be more dominant in the averaging.

6. Implementation details

We use the GIZMO code presented in Hopkins 2015 as the base for our implementation [3]. It includes various numerical 
methods, but we focus here on the two meshless schemes highlighted in [3]. Specifically, these are the original meshless 
discretization of Gaburov & Nitadori [2], Meshless Finite Volume (MFV), as well as the Meshless Finite Mass (MFM) scheme 
introduced in [3]. For these meshless methods, GIZMO employs both a gradient limiter as well as a pairwise slope limiter to 
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Fig. 1. A schematic of a local Riemann problem between two particles ui and u j , with the treatment of different numerical flux methods. Solid black lines 
represent the particle states at time n, and solid dark grey lines represent a slope-limited gradient estimate. Dotted light (blue) lines are waves of the exact 
solution of the Riemann problem. Dashed outermost (grey) lines represent the domain of dependence of the LxF scheme, notice that it influences a full 
half of both cells. Dashed second outermost (orange) lines represent the smaller domain of dependence of the KT scheme, at a distance of a	t away from 
the interface. Dashed innermost (blue) lines represent the domain of dependence using a Riemann solver. Dashed second innermost (red) lines represent 
the domain of dependence using the new switch, which is at most identical to the KT scheme for exactly colliding particles and lower anywhere else. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

project particle states to their interfaces during reconstruction, as detailed in Appendix B of [3]. To solve the local Riemann 
problems, it, by default, applies the approximate Riemann solver HLLC using Roe-averaged wave speeds.

We implement our methods by replacing just the Riemann solver with the numerical fluxes as computed by the KT 
scheme. We stress that the only component being changed is how numerical fluxes are computed – all other parts such as 
the meshless area approximations and both limiters are left unchanged. The inputs to replacement numerical flux schemes 
are the same interface states used as inputs to the Riemann solver.

7. Test problems

We test six different methods: GIZMO-MFV, GIZMO-MFM, KT-MFV, KT-MFM, SWITCH-MFV, and SWITCH-MFM. The 
first two are the meshless methods presented in Hopkins 2015 which implement an approximate Riemann solver for its 
numerical flux computation [3]. Here, we use the unmodified, publicly-available version of GIZMO. The next two are imple-
mentations of the KT central schemes as a drop-in replacement for the Riemann solver in GIZMO. KT-MFV is the original 
formulation of the KT scheme, shown on Equation (22) [1]. KT-MFM is the alternative finite-mass version where the particle 
interface moves with the contact wave, as given by Equation (56). The last two are identical to the KT schemes, except for 
the adjusted signal velocity on Equation (59) with the switch on Equation (60).

Here, we compare the behaviour of the above six methods with a range of purely hydrodynamic tests. The KT scheme is 
more diffusive than the Riemann solver, as expected, but still captures the qualitative form of the solution, but with better 
stability properties. The switch behaves as intended, reducing diffusion in shearing tests, while being as accurate as the 
original KT scheme in shocktube problems. The MFM variant for each method follows the same trends when compared to 
the MFV variant of the same method, being in general more diffusive for most problems.

7.1. Shearing flow

We begin with a relatively simple test to illustrate the problem with the KT scheme. We assume a homogeneous fluid 
with ρ = 1, e = 1, and a sinusoidal shaped shearing velocity in the y-direction, v y = sin(πx). This initial condition is a 
steady state, with no actual fluxes between particles. The particles should simply be advected. Thus, any change in state is 
solely a result of numerical diffusion. The shearing velocity profile at t = 5 is shown in Fig. 2. Notice that the other methods 
remain very close to the original sinusoid, while there is noticable decay at the peaks in the KT scheme.

7.2. 2D Gresho vortex

As a more difficult test, we consider a C1 version of the triangular vortex by Gresho & Chan [16], where the points at 
r = 0.2 and r = 0.4 have been smoothed using piecewise parabolic functions. The azimuthal velocity is defined by,



12 J. Panuelos et al. / Journal of Computational Physics 414 (2020) 109454
Fig. 2. Shearing flow at t = 5, with particles represented as magenta dots and x’s representing binned particle averages, separated by one particle width. 
Notice that the peaks of the sine wave of the KT scheme are highly decayed, while the other methods approximately retain the original sinusoid (in green).

vφ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5r, (0 ≤ r < 0.16)

−62.5r2 + 25r − 1.6 (0.16 ≤ r < 0.24)

2 − 5r (0.24 ≤ r < 0.36)

31.25r2 − 27.5r + 6.05 (0.36 ≤ r < 0.44)

0 (r > 0.44)

(61)

and the pressure by,

P (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
2 r2 (0 ≤ r < 0.16)

15625
4 r4 − 3125

3 r3 + 825
2 r2 − 80r + 2.56 ln( r

0.16 ) + 464
75 (0.16 ≤ r < 0.24)

25
2 r2 − 20r + 4 ln(r) + 2.56 ln(1.5) − 4 ln(0.24) + 11

3 (0.24 ≤ r < 0.36)
976.563

4 r4 − 1718.75
3 r3 + 1134.38

2 r2 − 332.75r + 36.6025 ln(r)

+6.56 ln(1.5) − 36.6025 ln(0.36) + 77.13154890048 − 152
15 (0.36 ≤ r < 0.44)

49.6801625856 − 176.81
3 + 36.6025 ln( 11

9 ) + 6.56 ln( 3
2 ) (r > 0.44)

(62)

and zero radial velocity. The velocity and pressure profiles of the C1 version compared to the original are shown in Fig. 3. 
This test was performed in 2D using particles initially distributed in a regular grid, and a simulation domain of [−1, 1] ×
[−1, 1] to allow the vortex space to decay without influencing itself through the periodic boundary conditions.

This setup is a steady-state solution, where the rotational force is exactly cancelled out by the pressure gradient. While 
the inner portion (x < 0.2) is in rigid body rotation and is relatively easy to simulate accurately, the outer region of the 
vortex has particles shearing against each other as the inner particles rotate with a faster angular velocity than the outer 
particles. Since there should be no mass or momentum transfer radially, this setup allows us to assess the amount of 
numerical diffusion required, with deviations from the steady-state solution being known to be due to excessive numerical 
diffusion.

We can quantitatively measure the error of the solution through various norms, which can be used to look at the 
convergence of each method. We choose to plot the l1, l2, and l∞ error norms of the azimuthal velocity for particles within 
r < 0.5 at time t = 3.0, which are shown in Fig. 4, with convergence rates shown on Table 1. We see that convergence 
for this problem is approximately linear in L1 and L2. This matches results from Hopkins 2015 for GIZMO [3], as well as 
other existing results for particle-based methods [17]. We see that in all three norms, the Riemann solver methods have 
the best convergence rates as well as smaller errors in general. We emphasize the degree to which the switch improves on 
the KT scheme, especially in convergence. The convergence rates of the SWITCH methods are much closer to the rates of 
the Riemann solver methods, and is actually better when measured in the L∞ norm. The L∞ result is due to reduced noise, 
which is not surprising for a more diffusive method.
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Fig. 3. The initial condition of the Gresho-Chan vortex, for both the C1 (labelled smoothed) version as well as the original piecewise linear version from 
Gresho & Chan 1990 [16]. The left (blue) axis shows the azimuthal velocity profile and the right (green) axis shows the pressure profile that exactly cancels 
out the rotational force to produce a steady-state solution.

Fig. 4. Error norms for the azimuthal velocity of the Gresho-Chan vortex using different methods in 2D. Norms were computed for particles within r < 0.5
at t = 3.0 on a log-log plot against the effective 1D resolution. Initial conditions have an effective 1D resolutions of multiples of 16, up to 128.

Table 1
Convergence rates for the Gresho-Chan vortex in 2D computed within r < 0.5 on t = 3.0.

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -1.1608 -1.1448 -0.9098 -0.9046 -1.0776 -1.0806
L2 -1.0487 -1.0401 -0.8837 -0.8747 -1.0013 -1.0107
L∞ -0.6890 -0.7561 -0.6988 -0.6909 -0.7390 -0.7763

7.3. 3D Gresho vortex

We repeat the above Gresho Vortex setup (Equations (61) and (62)) in 3D with a glassy initial particle distribution and a 
simulation domain of [−1, 1] × [−1, 1] × [−0.5, 0.5]. A glassy distribution means the particles are arranged in no particular 
order, but enforcing a near-constant nearest neighbour distance for all particles. In this way, we avoid dominant axes but 
keep a near-uniform particle density.

The results for an effective 1D resolution (i.e. the inverse of the average particle separation) of 64 are shown in Fig. 5. We 
see that while the azimuthal velocity for the KT scheme is almost nearly wiped out at t = 4, the inclusion of the new switch 
better preserves the structure of the vortex, albeit with a small negative impact on the particle deviation. This small increase 
in noise is an expected tradeoff of reducing the amount of diffusion applied, given that diffusion inherently smooths small 
scale local deviations. Also notice that, due to the diffusive conversion of kinetic to potential energy, the pressure for the KT 
scheme rises at the centre, whereas the switch reduces this increase.

On the other hand, the Riemann solver schemes retain the original structure for longer, but quickly deviate from the 
steady state solution around t = 3 via a non-physical instability. This numerical instability is likely seeded by small (grid-
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Fig. 5. Results for the smoothed Gresho Vortex with an effective 1D resolution of 64. (a) Azimuthal velocity profiles (blue points) and pressure profiles 
(brown points) for numerical solutions of the Gresho-Chan vortex at t = 4.0 (≈ 2.9 rotations). Exact steady-state solution is shown as green lines for 
velocity and magenta lines for pressure. (b) Velocity slice coloured from blue (vφ = 0) to red (vφ = 1).
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Fig. 6. Kinetic energy over time of the Gresho-Chan vortex on a semilog plot, normalized by the initial kinetic energy. Notice the clear change in behaviour 
for the GIZMO-MFV and GIZMO-MFM schemes at around t = 3, due to an instability forming.

Fig. 7. Error norms for the azimuthal velocity of the Gresho-Chan vortex using different methods in 3D. Norms were computed for particles within r < 0.5
at t = 3.0 on a log-log plot against the effective 1D resolution. Initial conditions have an effective 1D resolutions of multiples of 16, up to 128.

scale) particle noise from the glassy initial condition, and demonstrates a pitfall in applying too little diffusion. The particle 
noise should be dominated by the physical structure, especially given that the smoothed initial condition already aids in 
preventing numerical instability by allowing the gradient of the velocity and pressure to change over several particles, 
rather than instantaneously in a sub-resolution scale. Longer simulations showed that KT and SWITCH never developed 
such structure, and evenly dissipate energy until the velocity is uniformly zero. This time-dependent behaviour is shown in 
Fig. 6, where we see that both KT and SWITCH have a consistent exponentially decaying kinetic energy, while the other two 
schemes transition from a very slow initial decay to a very rapid decay as an instability forms. Here, we also see the extra 
diffusion in the MFM variants compared to MFV, with the kinetic energy decaying faster.

We once again plot the three error norms against resolution, shown in Fig. 7. We see that in general, the Riemann 
solver is more accurate than KT and SWITCH, but that KT and SWITCH methods are better converged. In the l1 and l2
norms, the errors of the Riemann solver methods do not decrease following some power law, but erratically increases and 
decreases as a result of the unpredictable formation of secondary structures seeded by particle noise. This is less so the 
case in lower resolutions, which are too coarse to allow the formation of secondary structures, meaning the physical vortex 
remains dominant. In a sense, the secondary structures formed in GIZMO-MFV and GIZMO-MFM are of a fixed resolution, 
and at lower resolutions it simply is absorbed into the actual physical structure. This is also shown in later tests. Even 
more interestingly, the l∞ norm of GIZMO-MFV and GIZMO-MFM methods do not converge at all, suggesting that there are 
always at least a few particles in an ill-conditioned situation due to particle noise. We would thus like to stress the value 
of a method that reliably diffuses away grid-scale noise rather than evolving them physically.

Fitting a power law gives the convergence rates shown on Table 2. From this, we see that the SWITCH methods have 
the best convergence rates, with around N−0.75, though all methods converge sublinearly – showing increased difficulty 
1D
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Table 2
Convergence rates for the Gresho-Chan vortex in 3D computed within r < 0.5 on t = 3.0.

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -0.441 -0.532 -0.480 -0.466 -0.756 -0.726
L2 -0.348 -0.439 -0.518 -0.504 -0.748 -0.720
L∞ 0.003 -0.069 -0.398 -0.386 -0.498 -0.446

Fig. 8. Results for the colliding flows test at t = 2.5. From top to bottom, mass density, internal energy, pressure, collision velocity (vx), and z-projected slice. 
The black line represents binned averages of the numerical solution, with x’s separated by effective 1-dimensional resolution. The green line represents the 
analytic solution. In the upper four rows, blue points represent particles originally in x < 0 and magenta points represent particles originally in x > 0. In 
the last row, blue points represent particles originally in x < 0 and yellow points represent particles originally in x > 0

with the added degree of freedom in 3D. We once again wish to point out the degree to which the switch improved the 
convergence rate of the KT scheme, jumping from a similar rate to GIZMO-MFV and GIZMO-MFM, to well above. The switch 
converges so well that it rivals the solution of the Riemann-solver based methods at N1D = 64.

7.4. Colliding flows shocktube

To demonstrate that the new scheme still applies the appropriate amount of diffusion to safely smooth discontinuities, 
we consider a simple 1-dimensional Riemann problem representing two flows colliding with a constant velocity. We use a 
homogeneous initial fluid, with ρ = 0.125 and P = 0.05, differing only in fluid velocity between two fluid domains:

vx =
{

1.0 x < 0

−1.0 x > 0
(63)

This generates two outwards-moving shocks with the horizontal velocity completely cancelling in the post-shock region. We 
simulate this using a 3-dimensional glassy initial condition with constant particle masses, with results shown in Fig. 8.

As shown, all methods are able to capture the discontinuity by smoothing the shocks over about three particles. In 
general, the more diffusive methods have less particle dispersion, less post-shock ringing, and less particle inter-penetration. 
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As previously noted, higher diffusivity reduces dispersion by smoothing out local variability. With regards to the difference 
between KT and SWITCH methods, the increased dispersion comes from reduced diffusion along the y- and z-axes, allowing 
particles located laterally to have larger differences in fluid properties.

Higher diffusivity also reduces particle inter-penetration as particles near the boundary at the beginning of the sim-
ulation are able to convert their kinetic energy into heat faster via the diffusive mechanism. Looking at the slices, the 
penetration is inhomogeneous: in certain regions the left fluid penetrates further and others, the right fluid penetrates 
further. This suggests that the inhomogeneity is seeded by particle noise in the initial condition, which the less diffusive 
methods interpret as possible instability. Post-shock ringing does not satisfy the TVD condition, and is a symptom of insuf-
ficient diffusion to maintain stability. Only the KT scheme, which was previously shown to satisfy a sufficient condition for 
TVD, has no noticable oscillation, while the rest have in varying degrees.

The majority of the error in this colliding flows test occurs at the initial collision interface (x = 0), and is a consequence 
of the well-known wall-heating problem [18]. Wall-heating stems from the rapid conversion of kinetic energy into thermal 
energy at the collision interface. Since the momentum equations find the correct pressure as the shock forms, the density is 
forced to fall; lack of conduction keeps error in the energy local. Noh 1987 showed this heating is purely a consequence of 
numerical diffusion [18], and it is shown later that this leads to nonuniform convergence for the inviscid problem, as higher 
resolutions decreases the width of the wall heating, but not its magnitude [19].

Interestingly, the MFM variants suffer less than MFV from wall heating. For KT and SWITCH, the MFM variants have 
slightly larger density noise, stemming from not being able to diffuse away density variations due to the enforced particle 
masses.

7.5. Shearing shock

Next, we consider a test where the fluid has both shock and shear characteristics. This test is important for validating 
the new switch, which controls diffusion depending on the relative amount of shocking and shearing of the fluid locally. 
We consider a shocktube setup similar to that used in Section 7.4, with the same uniform density and pressure. In addition 
to a colliding x-component of the velocity, we add opposing y-components to produce a transverse velocity jump across the 
interface:

vx =
{

−δx x < 0

δx x > 0
(64)

v y =
{

δ y x > 0

−δ y x > 0
(65)

The magnitudes δx , δ y are varied to test fluids with different proportions of shock and shear. The solution involves a 
complete cancellation of the x-component velocity in the postshock region, leaving a pure shear flow. Ideally, the addition 
of the switch should not adversely affect the performance of the method as the flow transitions from a pure shock to a 
pure shear. We expect the SWITCH methods to be slightly worse for a pure shock, due to a slight increase in noise seen in 
Fig. 8, but better for a pure shear where the reduced diffusion truly applies.

We test two variants of this problem. We let θ be the angle between (1, 0) (representative of the normal of the interface) 
to a velocity vector (δx, δ y). In both tests, we use angles θ ∈ [0, 14π/32] of multiples of π/32. For the first test, we hold 
constant δx = 1 and vary δ y to get θ , while for the second test we hold constant the magnitude ||(δx, δ y)||2 = 1 and vary 
both δx and δ y . The entire set of velocities used for both tests are shown in Fig. 9. Angles 15π/32 and π/2 were avoided 
since the first test would involve infinitely large δ y .

The l1 errors are shown in Fig. 10. Overall, we find that the switch behaves well even in regimes between shocks and 
shears. Since this is a variant of the above colliding flows problem, the error - especially for the first test - is dominated 
by wall heating. This is apparent when comparing the MFV and MFM variants, where the MFM variants having less error 
due to the reduced wall heating. We also note that because the Riemann problem (as formulated in GIZMO) is Galilean 
invariant, the only difference between this problem and the non-shearing problem is during the formation of the shock, 
when particles initially collide. The propagation of the shock is identical for all tests, since the y-component of velocity 
is constant across the shock and thus irrelevant in the rest frame of the particle pair interface. This further indicates that 
errors remain localized around x = 0.

Noh 1987 shows that the wall heating error is dependent on the amount of numerical diffusion applied [18]. For the 
KT and SWITCH methods, numerical diffusion is proportional to the wave propagation speed, a. Since the sound speed, 
c, remains constant in this problem, we expect numerical diffusion to be proportional to ||v||2 alone. For the first test, 
||v||2 = 1/ cos(θ), while for the second, ||v||2 = 1. As shown by Fig. 10, we get close to the expected result of the errors 
being ∝ (cos(θ))−1 for the first test and near constant for the second. The power law slope of the L1 and L2 errors in 
density are shown on Table 3. We see the power law fits are slightly steeper than the expected cos(θ)−1, in both norms. A 
more rigorous error analysis could be used to explain why this is the case, but is unnecessary for the purpose of validating 
the new switch.
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Fig. 9. (δx, δ y) used for the two tests stated in Section 7.5.

Table 3
Power-law fits for the errors in density of the first version of the shearing shock test at t = 2.5.

GIZMO-MFV GIZMO-MFM KT-MFV KT-MFM Switch-MFV Switch-MFM

L1 -1.321 -1.613 -1.597 -1.685 -1.485 -1.630
L2 -1.043 -1.251 -1.218 -1.318 -1.146 -1.275

We now examine on how the switch behaves relative to the other methods. As expected, in density and internal energy 
– the variables directly affected wall heating – SWITCH is very similar to the usual KT scheme for small θ , but has smaller 
error in more shear-like flows. This trend is matched in other variables for the constant-δx test. The second test is perhaps 
more indicative of the behaviour of the methods, as it removes the increasing velocity magnitude – and thus increased wall 
heating – as the angle is increased. The advantage of the switch is clearly shown in density and internal energy - it once 
again matches the error for small θ , but has significantly less error for shearing flows. The switch produces slightly worse 
results in pressure, although this error is very small in magnitude and is primarily due to noise. The switch has larger errors 
in collision velocity due to stronger post-shock ringing, but better for the shearing velocity. The unnecessary diffusion of 
the shear component in the KT scheme is clear from the shearing velocity error, which is strongly dependent on the angle; 
note that all methods increase in error since the magnitudes of the y-velocities themselves increase according to angle.

7.6. Kelvin-Helmholtz instability

Finally we consider the Kelvin-Helmholtz (KH) instability, which occurs when a shearing flow is slightly perturbed, 
causing an evolution of waves into vortices [8]. This example tests how the methods handle the generation of mixing and 
turbulence via a dynamic instability. We use the setup from McNally et al. [20], where a 1 × 1 × 0.125 periodic box is 
separated into two halves in equilibrium with properties:

ρ =
{

2 y ∈ (−0.25,0.25)

1 otherwise
(66)

e =
{

1.875 y ∈ (−0.25,0.25)

3.75 otherwise
(67)

The shear is defined by:

vx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.5 + 0.5e(y+0.25)/L y ∈ [−0.5,−0.25)

0.5 − 0.5e(−0.25−y)/L y ∈ [−0.25,0)

0.5 − 0.5e(y−0.25)/L y ∈ [0,0.25]
−0.5 + 0.5e(0.25−y)/L y ∈ [0.25,0.5)

(68)

where L is a smoothing parameter. We choose to use both a thin shear interface L = 0.00625 and a thicker shear interface 
L = 0.025 – at the resolution used, the shear transition occurs along 4 particles for the former and 16 for the latter. The 
instability is seeded by a vertical velocity perturbation to the interface:
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Fig. 10. L1 Error norm for the two shearing shocktube problems. (a) The first shearing shocktube problem has vx = 1.0, with v y being varied so as to 
produce θ ∈ [0, 14π/32] of multiples of π/32. Here, the first four variables (i)-(iv) are shown in a log-log plot against cos(θ) to better represent the 
expected dependency. (b) The second shearing shocktube problem has ||v||2 = 1.0, with both vx and v y being varied so as to produce θ ∈ [0, 14π/32] of 
multiples of π/32. The L1 norm was computed for x ∈ [−2, 2].

v y = 0.01 sin(4πx) (69)

Once again, we use a glassy initial particle distribution, with constant particle masses such that the number density of 
particles is doubled for the middle band. The box resolution is 192 × 128 × 16 particles. Density slices for times t = 1, 
t = 2.5, and t = 8 are shown in Fig. 11 for the thick shear transition, and Fig. 12 for the thinner transition.
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Fig. 11. Density slice for the Kelvin-Helmholtz instability with a thick interface (16 particle widths). Red represents a density of 2, and blue represents a 
density of 1.

Fig. 12. Density slice for the Kelvin-Helmholtz instability with a thin interface (4 particle widths). Red represents a density of 2, and blue represents a 
density of 1.

The reduction of diffusion provided by the switch allows it to capture slightly more vortices than the original KT scheme 
in both cases. Additionally, we note that even at the longer time t = 8, the overall structure with the switch does not greatly 
vary from that without the switch, unlike the result of GIZMO-MFV and GIZMO-MFM. We see from the t = 1 result for the 
thin transition test, that the Riemann solver methods qualitatively do not agree with the other four methods – the vortices 
produced are distorted. This is likely caused by particle noise in the initial condition. The more diffusive KT and SWITCH 
schemes are able to damp this grid-scale noise, while the Riemann solver methods treat it is a physical small-wavelength 
mode in the KH problem. Such small-wavelength modes thus generate smaller scale vortices which distort the KH vortices. 
This is confirmed by tests with smaller box resolutions, where unphysical smaller vortices did not develop, suggesting that 
the grid-scale modes seeded by particle noise could not develop faster than the KH vortices. Additionally, we note that this 
increased mixing causes the mode amplitude to be much larger than with the other two methods.

Agreement of Riemann solver methods is closer when the transition width is increased to 16 particles, although it still 
greatly deviates at long time. Even in this case, grid-scale noise causes formation of smaller vortices just before the velocity-
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Fig. 13. Slice of the KH instability at t = 2.5 for both the (a) thick initial interface and (b) thin initial interface, coloured by the initial particle locations. 
Blue represents particles initially in the high density middle band, and yellow represents particles originally in the low density upper and lower bands.

seeded vortices. The increased interface width, however, causes difficulty for the KT and SWITCH methods, with the vortices 
evolving thicker and more blurred. It is apparent that even with the switch, there is still much shearing diffusion allowed 
to occur, thickening the interface. In this case, however, the diffusion is largely limited to density. Plotting a slice coloured 
based on the origin of the particles as shown in Fig. 13, we find that the switch allows the vortices to develop much further, 
but the structure is obscured by diffusion in density. As well, we see that the Riemann solver methods suffer greatly from 
particle penetration (i.e. mixing) in the vortices, with the two phases of the fluid starting to become homogeneous. It may be 
possible to choose a different, more aggressive switch on the density to further limit the amount of diffusion but maintain 
good behaviour in momentum and energy.

Lastly, we note that for KT and SWITCH, the difference between MFV and MFM variants are very minor, with MFV 
forming slightly more defined vortices than MFM. One notable difference, however, is that SWITCH-MFM greatly reduces 
particle inter-penetration, especially at later time. The Riemann solver methods, MFV and MFM, produce drastically different 
results, with MFV characterized by more sharply defined shear boundaries than MFM. The sharp boundary for GIZMO-MFV 
demonstrates the effectiveness of the meshless method to mimic moving-meshes where the boundary would be sharply 
defined by the mesh boundaries. Here, however, it simply fails to provide enough diffusion to damp unintended grid-scale 
noise, leading to rapid growth of small wavelength modes that destroy the intended vortices.

It is possible to consider the Riemann solver methods here to be more accurate, under the interpretation that grid-scale 
noise in the initial condition should be resolved and allowed to generate small scale vortices. We argue, however, that such 
susceptibility to grid-scale noise is undesirable for numerical methods since grid scale fluctuations are, by definition, poorly 
resolved and unlikely to be physically significant.

8. Computational cost

Exact Riemann solvers are very computationally expensive, given that many iterations are required for each Riemann 
problem. For this reason, many authors choose to use approximate Riemann solvers. GIZMO by default uses the HLLC solver 
with Roe-averaged wave speed estimates, but falls back on an iterative solver if this fails [3]. By comparison, the KT scheme 
incurs a similar computational cost to the HLLC solver, which is apparent in the timing data shown on Table 4. We find that 
the resulting times are all similar - within a 5% margin. The default MFV and MFM are generally fastest, with the exception 
of KT-MFV being slightly faster than GIZMO-MFV for the shocktube problem. The KT and SWITCH methods are very close in 
timing, given that the switch is very simple to compute. The MFM variants of the KT and SWITCH methods are marginally 
slower than their MFV counterparts, owing to the extra computation required to find the interface speed ν .

9. Conclusion

We have demonstrated that the Kurganov-Tadmor central scheme is a viable alternative to Riemann solvers in com-
puting fluxes in numerical methods for solving the gas dynamics equations in unstructured meshless geometry, such as 
particle-based methods. However, we find that the scheme suffers from excessive numerical diffusion, especially in regions 
of shearing flow, even though it is qualitatively accurate.

We have proposed to improve the KT scheme by adding a switch that depends on the local (pairwise) shear of the fluid, 
to limit the amount of numerical diffusion in shearing cases. As well, we present a new fully-Lagrangian version of the 
original finite-volume-based KT scheme.
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Table 4
Wallclock time for the shearing flow problem (Section 7.1) and the 
θ = 0 shocktube Problem 7.4. The CPU used is an AMD R7 1700 
in both cases, using 8 cores for the shearing flow problem and 1 
core for the shocktube. The shearing flow was progressed to t = 5, 
while the shocktube was progressed to t = 0.5.

Shearing Flow Shocktube

GIZMO-MFV 539 m 26 s 3 m 16.02 s
GIZMO-MFM 521 m 41 s 3 m 8.80 s
KT-MFV 548 m 15 s 3 m 15.26 s
KT-MFM 549 m 52 s 3 m 16.90 s
Switch-MFV 543 m 14 s 3 m 20.73 s
Switch-MFM 548 m 49 s 3 m 17.81 s

We have validated these new schemes for a range of physically relevant test cases. The results of these tests show 
that the new schemes behave well in a wide range of applications involving shear, shocks, and nonlinear instabilities. In 
particular, we demonstrate better convergence of the KT scheme, with the inclusion of the switch offering reduced numerical 
diffusion in shearing flows with minimal stability impact in shocks. The fully-Lagrangian reformulation was also shown to 
achieve properties similar to the MFM method of Hopkins.

In conclusion, the KT scheme is a simple scheme for calculating numerical fluxes in gas dynamics simulations that can 
be made significantly more accurate with the addition of a simple switch based on the strength of the local shear. We 
recommend the modified KT scheme as an improved numerical flux method for a wide variety of gas dynamics simulations, 
especially those relying on mesh-free geometries, such as the astrophysical hydrodynamics code GIZMO.
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