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A new theory of the propagation of weak shocks into non-uniform, two-dimensional 
flows is introduced. The theory is based on a description of shock propagation 
in terms of a manifold equation together with compatibility conditions for shock 
strength and its normal derivatives behind the shock. This approach was developed 
by Ravindran & Prasad (1993) for shocks of arbitrary strength propagating into 
a medium at rest and is extended here to non-uniform media and restricted to 
moderately weak shocks. The theory is tested against known analytical solutions for 
cylindrical and plane shocks, and against a full direct numerical simulation (DNS) 
of a shock propagating into a sinusoidal shear flow. The test against DNS shows 
that the present theory accurately predicts the evolution of a moderately weak shock 
front, including the formation of shock-shocks due to shock focusing. The theory is 
then applied to the focusing of an initially parabolic shock, and to the propagation 
of an initially straight shock into a variety of simple flows (sinusoidal shear, vortex 
array, point-vortex array) exhibiting some fundamental properties of turbulent flows. 
A number of relations are deduced for the variation of shock quantities with initial 
shock strength Mso and the Mach number of the flow ahead of the shock MU (e.g. 
separation of shock-shocks and maximum shock strength at a focus). It is found that 
shock-shocks are likely to form in turbulent flows with M,/M,N > 0.14-0.25, where 
M ,  is the average Mach number of the turbulence and MIN is the Mach number of 
the shock in a flow at rest. The shock moves up to 1.5% faster in a two-dimensional 
vortex array than in uniform flow. 

1. Introduction 
1.1. A review of shock theory 

Theories of shock propagation in more than one dimension may be divided roughly 
into two groups: the first deals with the propagation (generally in two dimen- 
sions) of curved shocks into uniform flows and the second treats the propagation 
of shocks through non-uniform (e.g. turbulent) flows. The first class of theories 
includes weak shock theory (e.g. Whitham 1974, Chap. 9) and shock dynamics (e.g. 
Whitham 1974, Chap. 8), while the second class includes methods for dealing with the 
shock-turbulence interaction such as the linear interaction analysis (e.g. McKenzie & 
Westphal 1967) and rapid distortion theory (e.g. Lee, Lele & Moin 1993). These two 
classes of theories treat different limits of the shock propagation problem. The first 
class is not useful for turbulent flows, but allows the shock to evolve dynamically; the 
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second class is used for turbulent flows, but does not take into account any nonlinear 
shock evolution. All these theories are approximate, and their domain of accuracy is 
often difficult to assess a priori. A brief description of these theories follows. 

Weak shock theory applies to the propagation of very weak shocks and is mainly 
concerned with the flow profile behind the shock front (the shock wave). In this 
theory an initial pressure pulse is allowed to propagate along the straight rays given 
by geometrical acoustics (Keller 1954). The pulse is nonlinearized by allowing the 
speed of propagation to increase with overpressure. Eventually the shock overturns 
and at that point shocks are fitted into the pressure profile using the equal-area rule. 
For weak shocks, the propagation speed of the shock front is proportional to the 
pressure jump (overpressure at the discontinuity). Thus, the geometry of the shock 
front is given by geometrical acoustics, and the variation in propagation speed of 
different parts of the shock wave with overpressure is found from nonlinear aging 
in ray tubes (Whitham 1974, Chap. 9). Note that the shocks are just fitted in, the 
propagation of the shock-containing pulse is treated identically to the propagation of 
the smooth pulse. In this sense, the weak shock is assumed to propagate in the same 
way as a nonlinear pressure wave. 

In the weak shock limit the shock strength is proportional to the inverse of the 
square root of the ray tube area. If the shock does focus, or form a caustic, the 
ray tube area vanishes and thus weak shock theory predicts an artificial singularity 
in the shock strength. Experimentally, the shock strength always remains finite and 
the shape of the weak shock at the focus does not correspond to that predicted 
by geometrical acoustics (Sturtevant & Kulkarny 1976). This unphysical behaviour 
shows that weak shock theory is a poor approximation near a focus. 

Obermeier (1983) attempted to remedy weak shock theory near a focus. He 
suggested transforming the linear waveform just ahead of the focus to a nonlinear 
waveform by shearing and fitting shocks according to the equal-area rule. The 
solution is limited to weakly curved converging shock waves of moderately weak 
strength. This theory is not completely satisfactory since no justification is given for 
the shearing construction (except weak shock theory, which is invalid at a focus) and 
there is no 1:l correspondence between waveforms before and after the focus. 

Shock dynamics (Whitham 1957) is a theory which describes the propagation of a 
strong shock into a flow at rest. In this theory the flow behind the shock is ignored 
and the shock is treated purely as a propagating discontinuity. Instead of the linear 
rays of geometrical acoustics, shock dynamics is based on a perpendicular coordinate 
system made up of shock ‘rays’ (defined as the orthogonal trajectories of successive 
points on the shock front) and the successive positions of the shock front itself. The 
basic idea of the theory is to treat the propagation of each element of the shock 
down each elementary ray tube in the same way as the propagation of a shock wave 
down a pipe with solid walls. Because the shock velocity depends on its strength, 
the ray geometry cannot be mapped out in advance as it can in weak shock theory. 
The geometry and shock strength are coupled. Shock dynamics has been verified for, 
among other cases, the diffraction of a shock wave around a circular cylinder (Bryson 
& Gross 1961). 

Shock dynamics has been extended to shocks propagating into flows of uniform 
motion (Whitham 1968), and to non-uniform media where the non-uniformity is 
due to the inhomogeneity of the medium, not its motion (Kulkarny & White 1982; 
Catherasoo & Sturtevant 1983). None of these applications of shock dynamics 
corresponds to the case of a weak shock interacting with homogeneous, incompressible 
turbulence considered here. 
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Neither shock dynamics nor weak shock theory are deduced rigorously as ap- 
proximations to the exact equations governing shock motion. They are based on 
reasonable physical assumptions, and their validity has been assessed by applying 
them to a variety of test flows. As Whitham himself notes (Whitham 1974, p. 264), 

In both cases, the approximations become intuitive and are based on incorporating 
known effects into a mathematical description. The “justification” comes from checks 
on particular cases that can be handled precisely and from comparison with observa- 
tions. The problems are too hard for the more routine approximation procedures. 

The accuracy of these theories for a particular problem is thus difficult to judge 
beforehand, as the failure of weak shock theory near a focus shows. Shock dynamics 
is extremely accurate in the case of imploding shocks, but was shown by Hayes (1968) 
to be as much as 15% in error for rising shocks in an atmosphere with exponentially 
varying density. Recently, the validity of some of the basic assumptions of these 
theories (such as applying the characteristic rule to shock propagation) has also been 
questioned (Prasad, Ravindran & Sau 1991). 

Shock theories that have been applied to the shock-turbulence interaction tend 
to take a very different point of view from those described above. instead of 
carefully modelling the dynamics of shock evolution, the shock-turbulence theories 
are interested in the statistics of how the shock is affected by the turbulence and how 
the turbulence is affected by the shock. To simplify the calculation of these statistics 
shock evolution is neglected. 

The most commonly used shock-turbulence theory is the linear interaction analysis 
(LiA). This theory was introduced by Moore (1953) and Ribner (1953) and has since 
been developed by McKenzie & Westphal (1968), Anyiwo & Bushnell (1982) and 
Lee ef d. (1993). in LIA one considers turbulence perturbations incident on the 
shock front to be harmonic waves of the form A’exp[i(k r - w t ) ] ,  where A’ is small. 
The incident wave may be vortical or acoustic or entropic (the three wave types 
decouple for weak turbulence, Kovksznay 1953). One then constructs the linearized 
perturbed Rankine-Hugoniot jump conditions across the shock. A further assumption 
is required about the form of the distorted shock in order to solve the perturbed 
jump equations. I t  is assumed that the shock merely copies the form of the incoming 
disturbance (i.e. a sine wave), but with an amplitude determined from the Rankine- 
Hugoniot equations. This further assumption about the shape of the deformed shock 
closes the perturbed Rankine-Hugoniot equations and allows velocity, pressure and 
density behind the shock to be calculated. A wave of a single type hitting the the 
shock from ahead generates all three wave types behind, and the inclination angle 
and amplitude of each of these waves can be calculated. By assuming a particular 
spectrum of incoming turbulence waves (primarily vortical in turbulent flows), one 
can calculate statistics of quantities behind the shock and shock deformation. The net 
distortion of the shock in a turbulent flow is given by a superposition of a spectrum 
of individual sinusoidal distortions. 

Rapid distortion theory (RDT) has also been applied to the shock-turbulence inter- 
action (Durbin & Zeman 1992). RDT is usually used to calculate the statistical effects 
of a mean distortion (such as simple shear) on a turbulent flow. The velocity field 
is split into mean and fluctuating parts and then substituted into the Navier-Stokes 
equations. Terms nonlinear in fluctuating quantities are neglected and the equations 
are transformed to Fourier space. The resulting Fourier-transformed equations can 
be solved exactly for simple distortions, giving the evolution of the turbulence energy 
spectrum due to the mean distortion. RDT can be applied to the shock-turbulence 
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interaction by assuming that the shock just applies a rapid compression to the tur- 
bulence (e.g. no shock distortion effects are included), and that the effect of this 
distortion can be calculated using RDT. Note that this method, unlike LIA, does not 
include any deformation of the shock front itself and thus can give only a rough 
estimate of the mean change in the turbulence. 

The predictions of LIA and RDT for the shock-turbulence interaction have been 
compared with a DNS of the same flows by Lee et al. (1993). They found that 
for turbulence Mach numbers less than the shock strength (M,' < O.l(Mi - 1)) the 
LIA predictions for r.m.s. shock front displacement and inclination angle are in 
only fair agreement with DNS. The non-monotonic behaviour of turbulent kinetic 
energy is well predicted by LIA; however it tends to underestimate the deformation 
of the shock front (by as much as 25%) and became less accurate as M ,  increases. 
The LIA prediction of the amplification of transverse vorticity is close (within 5%) ,  
but systematically lower than the DNS results. This underestimation of the vorticity 
amplification may be due to the fact that LIA neglects all shock focusing effects, and 
these can lead to greatly enhanced vorticity jumps (Kevlahan 1996). RDT and LIA 
predictions for reduction in length scales and velocity amplification across the shock 
agree with DNS for M,' < O.l(h.1; - 1). The shock front is severely distorted for 
M,2 > O.l(Mi - l), and both LIA and RDT fail in this parameter range. DNS also 
shows a systematic forward drift of the shock front at a speed of about 0.7% of the 
laminar shock speed; this is not predicted by LIA. 

The comparison with DNS shows that even in the range M,' < O.l(M; - 1) LIA 
systematically underestimates the distortion of the shock front, and that this may be 
the reason LIA underestimates vorticity amplification. LIA also fails to predict the 
observed increase in propagation speed of the shock. These results indicate that a 
theory of the shock-turbulence interaction incorporating shock evolution would be a 
significant improvement. 

DNS of the shock turbulence-interaction itself suffers from the problem of having 
to resolve the internal structure of the shock. This greatly increases the computational 
time and restricts the simulations to relatively small Mach numbers. 

Lele (1992) has analysed statistically the shock-jump relations using an RDT 
assumption and has also found that the shock speed increases in turbulence. He 
calculates the increase to be roughly 0.4% of laminar shock speed, 40% lower than 
the increase measured by Lee et al. (1993). The physical interpretation of Lele's 
result is that turbulent fluctuations increase across the shock, leading to an increase 
in turbulent normal stress. The increase in turbulent normal stress produces a 
corresponding decrease in the pressure rise and that means the shock must travel 
faster to bring about the specified mean compression. Lele does not include the effects 
of shock focusing, which, as will be shown, also increases shock speed. One may also 
expect the mean compression in a turbulent flow to actually evolve over time (as the 
shock front deforms) and this may further alter the propagation speed of the shock. 

1.2. Objectives and overview 
As seen in the previous subsection, the theories of the propagation of shocks through 
turbulence (LIA and RDT) do not take into account shock evolution, while theories 
describing shock evolution (weak shock theory and shock dynamics) are really only 
useful for uniform flows at rest, or with simple non-uniformities. Furthermore, neither 
weak shock theory nor shock dynamics are deduced formally as approximations to 
the exact equations governing shock motion, and therefore their domain of validity 
is difficult to assess. The comparison with DNS carried out by Lee et al. (1993) 
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has shown that there is also room for improvement in the LIA theory of the shock- 
turbulence interaction. 

The objectives of this paper are to derive, test and apply a new theory of the 
interaction of weak shocks with non-uniform flow. This theory should be applicable 
to turbulence and include shock evolution. It should also be able to predict correctly 
the behaviour of a weak shock at a focus (unlike weak shock theory). By applying 
the theory to a variety of simple flows the way a shock alters when encountering 
non-uniform flows is examined in detail. Specific questions addressed include : What 
is the maximum shock strength at a focus? How does the separation of shock-shocks 
at a focus vary with shock strength? When will a shock focus in a non-uniform flow? 
How is shock speed altered by a non-uniform flow? When does the evolution of the 
shock become significant, and can any general properties be deduced? 

In $2 a new theory of the interaction of a moderately weak shock with a non- 
uniform flow is introduced. This theory is based on the approach using the shock 
manifold equation with compatibility conditions of Ravindran & Prasad (1993) who 
treated the shock as a propagating discontinuity and included the effect of the flow 
behind the shock through the compatibility conditions on the normal derivatives of 
shock strength. For simplicity the theory is worked out in two dimensions, although it 
can in principle be extended to three dimensions. The exact description of Ravindran 
& Prasad (1993) (which involves an infinite hierarchy of compatibility conditions) 
is closed by considering only moderately weak shocks. Both first- and second-order 
approximations in shock strength are derived. The theory is also generalized to the 
case of non-uniform moving flows with M: << 1. 

The numerical method used to solve the shock equations is described in 93. In 94 
the theory is verified against known analytical solutions in special cases and against 
a DNS of a shock propagating into a sinusoidal shear flow. The shock focusing 
problem is examined in detail in 55.1 where the evolution of an initially parabolic 
shock is calculated. The theory is then applied to a variety of simple flows exhibiting 
some basic properties of turbulence. These flows are a sinusoidal shear flow ($5.2), a 
two-dimensional array of vortices ($5.3), and a linear array of point vortices ($5.4). 
Finally, in 46 the results are summarized and the implications for the shock-turbulence 
interaction are deduced. 

2. A new theory of the propagation of weak shocks in non-uniform flows 
2.1. Assumptions 

We consider the propagation in two dimensions of a shock front in a ideal polytropic 
gas with a constant ratio of specific heats y .  In principle the theory could be extended 
to three dimensions. The gasdynamic approximation is made, i.e. viscous and heat 
conduction effects are omitted and the flow is governed by the compressible Euler 
equations. The shock front is treated as a discontinuity. The assumption of zero 
shock thickness is justified if either the minimum radius of curvature of the shock is 
much greater than the shock thickness, Rmin >> A ,  or if a discontinuity which is placed 
initially within the thickness of the shock front remains there. The validity of this 
assumption is tested by comparison with a DNS which actually resolves the internal 
structure of the shock. 

The Mach number of the shock M,y = C,Ja, where a = (yP/p) ‘ / ’  is the speed of 
sound, is assumed to be moderately weak, i.e. 1 ,< MI < 1.5. The upper limit is chosen 
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because if M ,  < 1.5, then the normalized jump in density p (which is the Taylor 
expansion parameter) is less than one. 

The fluid velocity u, pressure P and density p are assumed to be smooth functions 
except for a discontinuity of the first kind (i.e. limits exist from both ahead of and 
behind the shock) on the shock surface 52. The state ahead of the shock is allowed 
to be non-uniform and in motion, but it is assumed that eddy shocklets do not form 
(which limits the turbulence Mach number, M ,  = (u;uj/a2)'/' < 0.3, and means that 
there must be little kinetic energy in the dilatational mode, Kida & Orszag 1990). 

The approximations used for the flow ahead are the following. Let normalized 
non-uniform quantities be denoted by a tilde and stagnation quantities (the value in 
a flow at rest) be denoted by the subscript 0, then f' = P / P o  - 1, D = p/po - 1 and 
rl = u/ao. It is assumed that products of (") quantities can be neglected (the acoustic 
approximation). 

Making the acoustic approximation, the continuity equation ap/at + V - (pu) = 0 
becomes 

and using the fact that for isentropic flows r? = y p ,  the Euler equation au/at+u.Vu = 
-( l/p)VP becomes 

~ an v p  = -- 
at' 

where we have normalized length by l / k  and time by l / ( a o k )  where k is a characteristic 
wavenumber of the flow. Relations (2.1) and (2.2), together with the isentropic relation, 
allow gradients and time derivatives of pressure and density ahead of the shock to be 
expressed in terms of the velocity ahead of the shock. 

If the flow ahead of the shock varies on a time scale z long compared with aok 
then the flow is approximately steady and the variation in sound speed a is 

where MZ = il - il is the local Mach number. Thus the sound speed of the flow ahead 
of the shock is constant, a = ao, since M $  is neglected in the acoustic approximation. 
Since a2/a i  - 1 + (y - l )D,  this means that the flow is incompressible to O ( M u )  and 
the flow ahead of the shock generates no free-stream acoustic perturbations. 

The shock strength is represented by the normalized density jump, or condensation 
iu 

and it is assumed that the shock is weak, i.e. 

p < 1  

(p is less than 1 to O(p)  provided M ,  < 1.5). Tangential derivatives of shock 
strength along the shock are also assumed to be small, i.e. dp/dS = O(p),  but normal 
derivatives of shock strength may be of order 1, i.e. ap/aN = O(1). Because a p / d S  
is assumed small, the theory is invalid if the shock surface does not remain smooth 
(e.g. when the shock develops kinks at a focus). 

As stated above, the acoustic approximation is used for the flow ahead of the 
shock and terms nonlinear in these quantities are neglected. We retain, however, 
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terms involving products of p and fluctuating quantities ahead of the shock. Since 
nonlinear upstream terms only appear multiplied by p in the shock equations it must 
be assumed that 

M;,P < O ( p 7 ,  (2.6) 

M i .  < O(pL (2.7) 

or 

where M t  is taken as an estimate of the magnitude of products of quantities ahead 
of the shock. Combining conditions (2.5) and (2.7) the range of validity of the shock 
propagation theory derived in the following section is 

Mtr ,< p << 1. 

z(1' + 1)M;. d M ,  - 1 << 1 .  

(2.8) 

(2.9) 

To first order in ~i the range (2.8) may be expressed in terms of M ,  as 

1 

For y = 1.4, (7 + 1)/4 = 0.6. 

2.2. Deriuation of' the ,first-order approximation 
In this section we describe shock propagation in terms of compatibility conditions on 
a shock manifold in space--time. This method was first proposed by Grinfel'd (1978) 
and Maslov (1978) and has since been developed for arbitrary shock strength and 
uniform flows ahead of the shock by Ravindran & Prasad (1 993). The shock manifold 
equation describes how the shape of the shock evolves. The compatibility conditions 
describe the evolution of normal derivatives of a single variable (such as p )  behind 
the shock and are in the form of transport equations along shock rays (defined by 
the successive positions of points on the shock). The effect of the flow behind the 
shock is represented by these compatibility conditions. Tn general, an infinite number 
of compatibility conditions is required (i.e. normal derivatives of p of all orders) and 
the system of equations governing shock propagation is not closed. Requiring an 
infinite number of compatibility conditions is equivalent to saying that the entire flow 
behind affects the shock. As we shall see below, for weak shocks only the first two 
compatibility conditions are required. The theory of Ravindran & Prasad (1993) is 
closed here by the restriction to weak shocks and is extended to non-uniform flows 
ahead of the shock. 

Consider a discontinuous shock Q dividing the flow into two domains which we 
will denote by the subscripts n (the region ahead of the shock) and h (the region 
behind the shock), see figure 1. The shock motion is calculated in a frame of reference 
in which the mean velocity of the flow ahead is zero. The functions to the left ub, 

Ph and P h  are defined only in the domain behind the shock, but are extended as C" 
functions on the whole of g2. The extended functions are non-unique in the domain 
ahead of the shock. The functions in the right-hand domain are similarly extended 
into the domain behind the shock. In particular, the shock strength p is now defined 
over the whole of s2, i.e. 

(2.10) 

and the actual shock strength is the value of ,LL at the shock p(x, y, [)la. The extension 
of flow quantities behind the shock to the whole domain allows the definition of 
normal derivatives of /i (and other quantities). These normal derivatives are required 
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FIGURE 1. Shock properties. (a) Internal structure of a shock. p = ( p h  - p a ) / p a  is the shock strength 
and A = 3A(1 - i(y - l)p)'/*/[(l + p)'/* - (1 - i ( y  - 1)p)1/2] is the shock thickness. (b) Shock 
geometry in a reference frame in which the mean flow ahead of the shock is zero (this frame is used 
throughout the paper). 

to construct the compatibility equations which describe the effect of the flow behind 
on the shock. 

Hunt & Vassilicos (1991) have shown that turbulence cannot be C" at the length 
scales of the inertial range (because its inertial-range energy spectrum follows a non- 
integer power law E ( k )  cc k - 5 / 3 ) ,  but, as is shown later, only the first normal derivative 
a,u/ahJ is required for the first-order shock propagation theory. Thus for weak shocks 
the flow ahead of the shock need only be C', provided the shock is smooth so the 
neglected normal derivative terms do not become singular. 

Let g(x, y, t )  = 0 denote the equation of the shock surface D in space-time. In order 
that the jump relations for the conservation of mass, momentum and energy across 
a shock have a non-trivial solution (e.g. a non-zero jump in the flow density) the 
determinant A of the matrix of coefficients of 6u,  6v, 6 P  and 6 p  (where 6 denotes the 
jump of a quantity) must be zero. Prasad (1982) was able to show that the condition 
A = 0 implies that the shock surface must satisfy Prandtl's relation in the form 

(2.11) Dg 
- + C,JVg/ = 0 on g(x,y, t )  = 0 
Dt 

where C, is the propagation speed of the shock relative to the flow ahead. Equation 
(2.11) describes a surface propagating in its normal direction with speed C,. and being 
advected by the flow ahead of the shock. An embedding theorem (Courant & Hilbert 
1953, vol. 2, pp. 557-558) can then be used to obtain a one-parameter family of 
shocks G(x, y ,  t) = const., where the function G satisfies the equation (2.1 1). 

The shock manifold equation (SME) describes the evolution of a scalar field 
G(x, y, t )  where the zero-level surface G = 0 represents the physical shock front. A 
similar description was first proposed for the propagation of a flamelet by Williams 
(1985) and has been used recently by Peters (1992), where it is called a 'field equation' 
or 'Williams equation'. The application of the simplest field equation model (in which 
the propagation speed is assumed constant) to the shock-turbulence interaction is 
described in Kevlahan, Krishnan & Lee (1992). 

If the shock does not curl around on itself the scalar field variable G(x, y, t) may 
be defined as 

G(x7 Y ,  t )  = x - g ( Y ,  t ) ,  (2.12) 
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then the SME on the level surface G(x, y ,  t )  = 0 becomes 

gt zz ~r - U j g )  + Cr(1 + g:)”’. (2.13) 

In general, the propagation speed is a function of time and position, Cr = C,.(X, y ,  t ) .  
The unit normal and unit tangent vectors to the shock front SZ are, respectively, 

N = (N1. N2) = (cos 8, sin Q), and S = (N2, - N 1 )  = (sin 8, - cos 8). The SME is valid 
in !R2 and it is therefore possible to define the angle 8 in !R2 using the relations 

(2.14) 

The equations for the motion of points on the shock surface are given by the 
characteristic equations of the SME 

dX 
- = n,. + C,N,,  
dt 

dY 
~ = Gr + CrN2, d t  

and using (2.17) and (2.18) the variation in the shock normal angle 8 is 

an, dB dH 
dt N2 dt N1 dt 2s 2s as I-  + N 2 2 .  - - - _ _ _ _  +-- = 2 + N  1 d ~ ,  1 d~~ ac 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Equation (2.19) shows how gradients in shock propagation speed (e.g. due to curvature 
via equation (2.43)) turn the shock and cause the ‘shock-rays’ to curve. 

The Rankine-Hugoniot jump conditions for the conservation of mass, momentum 
and energy lead to the following relations on S Z :  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where C,. = C - A, is the propagation speed in an upstream flow at rest (the first 
term on the left-hand side of (2.20)), and A ,  and B, are the normal and tangential 
components of the velocity field ahead of the shock 

A = N * u = N ~ u  + N ~ u ,  
B = S * u = N ~ u  - N ~ v ,  

For weak shocks, i.e. p << 1, the relations (2.20)-(2.23) reduce to 

(2.24) 
(2.25) 
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(2.27) 
(2.28) 
(2.29) 

where the approximation pu = po + O(MA)  has been used (from (2.3)). 

spectively 
In the weak shock approximation equations (2.15), (2.16) and (2.19) become re- 

(2.30) 
dX dY 
~ = N1 (1 + dt dt + 1 ) ~ )  + fia, ~ = N2 (1 + +(? + 1 ) ~ )  + iju 

and 

(2.31) 

Note that if p = 0 we recover the ray equations of geometrical acoustics. 
We will now derive the first compatibility equation which describes how p (and 

hence C,) varies in time. The gasdynamics equations for the conservation of mass, 
momentum and energy are 

(2.32) 

(::)+( :: :;) ( : )+a(  3 = 0 7  

P, + (u,v) ( ; ) + yP(ux + u y )  = 0. 

(2.33) 

(2.34) 

(Note that the acoustic approximation has not been made yet.) 

in terms of normal and tangential differential operators: 
Following Ravindran & Prasad (1993) these conservation equations may be written 

(2.35) 
a a a a  a a 

aN ax d y  as ax dY 
= S * V = N2- - N1-, - = N * V = N 1 - + + 2 - ,  - 

and the time derivative may be expressed as time rate of change following the shock: 

d a  d - _ -  - +c-. 
dt at aN 

(2.36) 

Remembering that because they contain vector information the normal, tangential 
and time differential operators do not commute for a function F ( x ,  y ,  t), i.e. 

(2.37) 
a aF a aF aoaF ae a~ 

iN (dS) = dS ( iN)  + asas + 

(2.38) 
d a F  d 0 a F  dC d F  a0 aF +--+---c-- 

=(dr)=z(%) d t d S  dNdN a N a S ’  
dF 

after some manipulation the conservation equations become 

a0 a A  
aN as as 

dA 3’4 1 d P  
- + (A - C)- + - ~ + B 
dt dN p d N  + ( A  - C)- + - + B 
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FIGURE 2. Typical shock waveforms (profiles of density or pressure are shown). (a) Step shock, 
i , u j ? N  = 0, ( b )  Sawtooth, ?,ujdN > 0, (c) N-wave, ? p / ? N  > 0. 

(2.42) 1 2P -5P dp 
--L- = O .  
is as 

d P  
dt 

On the shock surface Q the tangential and time derivatives (which are 'interior' 
derivatives along the shock) and downstream quantities may be expressed using 
the Rankine-Hugoniot relations (2.26)-(2.29). The normal derivatives, however, are 
'exterior' derivatives and can only be found by solving the gasdynamic equations 

Writing (2.39)-(2.42) ahead of and behind the shock and subtracting, we can 
eliminate the unknowns d A b / z N  and dPh/aN and derive an equation for the evolution 
of shock strength, dp/dt. After some manipulation, neglecting terms of O(p2)  and 
normalizing by the length l / k  and by the time l/(aok) (where k is a wavenumber 
characteristic of the flow ahead of the shock, or initial curvature of a shock if the 
flow is uniform) we find 

(2.39)-( 2.42). 

where M / d S  is the curvature of the shock, and 

(2.43) 

(2.44) 

(2.45) 

is the rate of strain in the direction normal to the shock front. The acoustic 
approximation has only been used to write gradients of pressure ahead of the shock 
and density in terms of the velocity ahead of the shock and to put a = ao. Note that 
terms of order M i ,  would not appear without a factor p since such terms cancel when 
the equations (2.39)-(2.42) written ahead of and behind the shock are subtracted. 

The first term on the right-hand side of equation (2.43) represents the evolution of 
shock strength due to the strength and shape of the shock itself. The shock strengthens 
where it is concave and weakens where it is convex. The term involving dp/dN shows 
the effect of the flow behind the shock. The shock weakens if dp/aN > 0 as in a 
sawtooth or N-wave (see figure 2). The other terms give the effect of the flow ahead 
on shock strength. 

The presence of 3 p / d N  in (2.43) shows that the first compatibility equation is not 
closed: we require a second compatibility equation describing the evolution of dp/aN. 

To derive the second compatibility equation we first take the normal derivative of 
the conservation equations for mass, momentum and energy. After some manipulation 
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this produces the following equations: 

dB d8  

(2.46) 

aA a0 

aA ao 
aN dN 

(2.47) 
8~ ao 
a N a s  as aN 

+ 2- - + B 5 (2) + B (g) + B (g ) '1 = 0, 

A fourth equation corresponding to (2.41) is required only to evaluate the third 
compatibility equation. In order to close the first compatibility equation we require 
an 0(1) equation for dp/dN. The zeroth-order equation for dp/dN can be obtained 
from (2.46)-(2.48) by subtracting the these equations written ahead of and behind 
the shock and then eliminating a2Ab/aN2 and d2Pb/dN2 while retaining only terms 
of O(1). 

The resulting second compatibility equation is 

(2.49) 

One notices immediately that equation (2.49) does not contain any terms involving 
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d2p/aN2 and thus the system of compatibility equations for weak shocks is closed 
at the second compatibility equation. This level of approximation is equivalent to a 
description of the flow behind the shock in terms of a first-order Taylor expansion 
around the instantaneous shock position. Note that the derivation is only valid 
if d p / a N  and higher-order derivatives are O(1) and that dp/aS = O(p) ;  however 
Ravindran, Sunder & Prasad (1994) have shown that if 2p/dZV > 0 the first-order 
approximation will always give accurate results. 

The two compatibility equations (2.43) and (2.49) together with the SME (e.g. 
(2.13)) form a closed set of equations governing the propagation of a weak shock 
into a flow in subsonic, non-uniform motion, The domain of validity of the theory 
is that given by (2.8). In general the theory will also be limited in time because 
remote disturbances may catch up with the shock from behind and the effect of these 
disturbances cannot be included in the truncated Taylor expansion used to describe 
the flow behind the shock. The comparison with DNS in the following section 
shows that, the time limitation is not significant for the time scales considered in this 
paper. 

The present solution of the shock propagation problem is limited to two-dimensional 
motion, but this approach can in principle be extended to three dimensions. Only 
one shock front can be resolved, or equivalently, the shock front must remain 
smooth. Any additional shock fronts (such as the Mach stems that develop at a 
shock-shock after focusing) are not included in this theory, but their effects may 
be found using additional methods (see $4). These first-order equations will be 
the ones used for computing shock propagation in non-uniform flows. Note that 
although we retain only first-order terms in p, the factor ( y  + 1)/4 multiplying p 
in the SME and first compatibility equation is less than 1 (e.g. (1’ + 1)/4 = 0.6 
if y = 1.4) and so the approximation may be sufficient for p quite close to 1 in 
practice. If the magnitude of the terms ahead of the shock is less than p, then the 
terms ahead of the shock in the first and second compatibility conditions may be 
neglected. 

2.3. The second-order approximation 
In order to check whether qualitatively new effects result from retaining higher-order 
terms we have derived the second-order shock propagation equations, retaining terms 
up to O(p2). Following the method described in 52.2 we have derived the second-order 
SME and compatibility equations. Since the second-order approximation will only be 
used to check the first-order approximation, we assume for simplicity that gradients 
of quantities ahead of the shock are O ( p )  and choose the test field appropriately. The 
resulting shock equations are 

(2.51) 
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(2.53) 

Note that the second-order equations involve three compatibility conditions. It is 
tempting to suppose that an Nth-order weak shock approximation will require N + 1 
compatibility equations. The terms ahead of the shock have exact p or d p / a N  factors, 
hence no new upstream terms appear in the SME or first and second compatibility 
equations. The factor multiplying p2 in the SME is only 0.06 (for y = 1.4) which 
suggests that this approximation should be sufficient even for p close to 1. 

The second-order equations governing the motion of points on the shock surface 
are 

aa, 
dt 4 

(2.54) 

(2.55) 

(2.56) 

3. Numerical method 
The system of nonlinear equations (2.13), (2.43) and (2.49) governing the propaga- 

tion of a weak shock in a non-uniform flow cannot be solved analytically except in 
special cases. In general, we require a numerical method to calculate the evolution of 
the shock. 

The simplest way of calculating the spatial derivatives for periodic boundary 
conditions is to discretize uniformly g ( y , t )  in y and use a fast Fourier transform 
(FFT) method to calculate the spatial derivatives. However, one of the problems we 
wish to consider is the focusing of weak shocks. In order to answer questions such 
as whether one or two shock-shocks form at the focus we need to resolve regions 
of high shock strength extremely finely. This requirement suggests that an adaptive, 
non-uniform discretization of the shock is needed. FFT methods are incapable of 
dealing with non-uniform grids and hence to investigate shock focusing we require a 
different method of calculating spatial derivatives. 

A natural way to resolve the shock is to discretize its arclength and then follow 
the motion of points on the shock surface. As the shock evolves these points move 
towards regions of high strength, thus resolving more finely regions near a focus and 
regions where (concave) curvature is high. Using this method the shock is ‘re-gridded’ 
automatically at each time step by the dynamical equations of the shock itself at no 
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extra computational cost. A further advantage of this description is that it allows 
for the possibility of the shock overturning (i.e. the equation of the shock is then 
given by x = g(s, y ,  r ) ) .  Although it is unlikely that a shock will actually overturn 
even in a two-dimensional velocity field, flame fronts do often overturn (because of 
their slower propagation speed). Because the propagation of shocks and flame fronts 
is very similar. allowing for overturning of the front means that this method can be 
carried over with only minor modifications to the case of flamelets. Note that the 
use of compatibility conditions with the 'field equation' avoids the problem of loops 
forming in the front encountered by Vassilicos & Hunt (1992). 

Instead of the SME (2.13) we follow the shock using the 'shock ray' equations 
(2.30) where the unit normal is 

and the curvature is 

Note that if the gradients ahead of the shock are very weak the terms in the second 
and third compatibility equations depending on gradients of quantities ahead of the 
shock may be neglected. The spatial derivatives Xs, Xs.y etc. are calculated using 
second-order central finite differences on a non-uniform grid : 

(3.3) 

where 

u = AS;-[ = S, - Sj-1, 
h = AS, = Sj+l - Si, 

C' = AS,-l + ASl-, = S, - S ,  - 1 ,  

d AS, + AS,+! = S, +: -- S,. 

If the flow or initial conditions are non-periodic (as in  the case of an initially 
parabolic shock) the spatial derivatives at the end points of the shock are calculated 
using backwards or forwards differences. 

The arclength increments are calculated by assuming that adjacent points are joined 
by straight lines, i.e. 

(3 .5 )  
No significant improvement was found if more sophisticated methods were used to 
calculate arclength increments (e.g. polynomial interpolation). 

The shock equations were stepped forward in time using a variable-step-size Adams 
method (NAG subroutine d02cbf ). This routine allows the simultaneous solution 
of a system of equations (one for each grid point for each of the shock equations). 
The routine automatically adjusts the step size during the integration to attain the 
specified accuracy. 

The shock was discretized using 256 points and it was checked that doubling 
the number of points did not change the result significantly. The non-uniform grid 
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FIGURE 3. An illustration of the way the non-uniform grid points concentrate in regions of 
high shock strength (every fourth point is plotted). The flow ahead of the shock is sinusoidal, 
u(x ,y )  = -0.1 cosy, v (x ,y )  = 0, the initial shock strength M ~ o  = 1.2 and t = 5.0 (normalized by 
l / (a&)) .  (a) Shock front. ( h )  Shock strength Ms = 1 + ( y  + 1)/4p. 

method was checked against the FFT method for a sinusoidal velocity field ahead 
of the shock. For relatively short times (before large differences in strength develop) 
there was no significant difference between solutions obtained using the two methods. 
The FFT method had problems resolving the shape of the shock near the focus due 
to Gibbs oscillations. Figure 3 shows how the grid points concentrate in areas of high 
shock strength/curvature. 

Running on a SUN sparcstation, the shock program takes only a few minutes to 
evolve the shock until focus (e.g. using an initially parabolic shock, or sinusoidal 
shear flow). This method’s low computational cost makes it a good candidate for 
significantly reducing the running times in a DNS of the shock-turbulence interaction 
by eliminating the need to resolve the internal structure of the shock. 

4. Verification of the theory 
In this section we verify the first-order shock equations against established asymp- 

totic weak shock results for decaying N-waves and expanding cylindrical shock waves. 
The equations we obtain are original. 

The first- and second-order numerical solutions for an initially plane shock wave 
in a sinusoidal shear flow are compared to a DNS of the same flow. The solutions are 
compared after focusing - an extreme test since the approximations used in deriving 
the shock propagation equations are not strictly satisfied after shock-shocks develop. 
This test also checks the validity of treating the shock as a discontinuity since the 
DNS actually resolves the internal structure of the shock. A method for extending 
the solution past the time shock-shocks form is also tested. 

Finally, we attempt to derive the Guderley self-similarity solution for an expanding 
strong shock as a strong shock limit of our second-order solution for moderately 
weak shocks. 
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4.1. N-IZ'LIW 
Consider a plane shock with an N-wave profile (see figure 2) 
at rest. In thia case the first-order approximations to the 
(2.43) and (2.49) become 

177 

propagating into a fluid 
compatibility equations 

where pl = ? p / c " ,  and X ( t )  IS the position of the shock. The initial conditions 
corresponding to an N-wave (or sawtooth wave) are 

The second compatibility equation (4.2) can be integrated at once giving 

pl(t) = P I 0  (1  + ;(? + l )P lo t ) - l  ' (4.5) 

Thus, the slope of the N-wave decreases like t-' for large times. The shock strength 
can now be found by substituting the solution (4.5) into the first compatibility equation 
(4.1) and integrating: 

p ( t )  = / l o  (1 + { ( y  + l )p lo l ) -1~2 ,  (4.6) 
and we see that shock strength decreases like t r ' ?  for large times. Since p K tr1'2 
and x t r ' ,  the width of the N-wave must increase like r I i2 .  These results agree 
with those obtained by Courant & Friedrichs (1948, pp. 164-168) and by Whitham 
(1974, pp. 312 322) using his weak shock theory for the decay of a two-dimensional 
N-wave. Note that if = 0 the plane shock does not decay. 

4.2. Expanding cylindrical shock 
Now consider a cylindrical shock expanding into a fluid at rest. The shock equations 
become 

(4.9) 

where R(t) is the radius of the shock and we have used the fact that the curvature is 
l /R(t)  by symmetry. The initial conditions are the same as for the N-wave (4.3) and 
(4.4). 

From equation (4.7) R(r)  = r + O(p). Using the weak shock approximation we need 
only take the O(1) solution for the shock radius in equations (4.8) and (4.9), i.e. we 
take R(t)  = t .  Then by inspection the second Compatibility equation (4.9) has the 
solution 

which is the same as for the plane N-wave. If R ( t )  = t and the solution (4.10) are 
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The evolution of an initially straight shock Mso = 1.2 in a sinusoidal shear flow 
iia(x, y ,  t )  = -0.3 cos y ,  ijo(x, y ,  t )  = 0 at times t =-0, 1.2, 2.4, 4.0. (a) Calculated using DNS (the lines 
are contours of dilatation). ( b )  Calculated by solving numerically the second-order shock equations. 

substituted into the first compatibility equation (4.8) one obtains the equation 

which can then be integrated giving 

p( t )  cc t-3’4, 

(4.11) 

(4.12) 

and we see that the strength of an expanding cylindrical shock decays like r3I4. This 
result agrees with that obtained by Landau (1945) for expanding cylindrical weak 
shocks. 

Since p K tr3I4 and p1 cc t r l ,  the width of the N-wave behind the cylindrical shock 
must increase like t’/4. 

Note that for both cylindrical shocks and plane N-waves the ‘shock rays’ remain 
straight lines because of symmetry, and hence the weak shock theory assumption that 
shock geometry is given by geometrical acoustics is satisfied exactly. In the following 
section we check the shock equations in the case of shock focusing in a sinusoidal 
field: a case where weak shock theory fails. 

4.3. Sinusoidal shear flow, comparison with DNS 
The previous two examples involved shocks propagating into a uniform flow and 
the symmetry of the problems ensured that the ‘shock rays’ remained straight lines. 
We now consider the case of an initially straight shock propagating into a steady 
sinusoidal velocity field specified by 

S,(X,JJ )  = -0.3 COSY, 
i q X ,  y) = 0. 

(4.13) 
(4.14) 

The initial shock strength MSo = 1.2 and the shock wave has a step profile. This 
situation is examined in more detail in $5.2. The non-uniformity of the flow ahead 
of the shock eventually causes the shock to,focus around y = 0 at t = TC and form 
two shock-shocks (discontinuities in shock strength) separated by a flat shock disk. 
Associated with the shock-shocks are Mach stems (secondary shocks) and vortex 
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FIGURE 5. Comparison of shock shape in a sinusoidal shear flow &(x, y ,  t )  = -0.3 cosy, F,(x, y ,  t )  = 0 
at r = 4.0 (after focus) predicted by the shock equations (solid line) and calculated from DNS (circles) 
( M s o  = 1.2). The diameter of the circles is roughly the width of the DNS shock. (a) Second order. 
( b )  First order, obtained by extending ’wings’ and shock disk separately from T = 3.7. 

sheets in the flow behind the shock. The ‘shock rays’ are curved in this case and weak 
shock theory fails, predicting infinite shock strength at the focus. 

The evolution of the shock front calculated using DNS ( a  program written by S. 
Lee at CTR, Stanford University) and by solving numerically the second-order shock 
equations are shown in figures 4(a) and 4(b) respectively. A comparison of the shock 
shape predicted by the shock equations and by DNS after shock-shocks form is a 
severe test because in deriving the shock equations we assumed that d,u/dS remains 
O(p). Figure 5(a)  shows a comparison of shock position after focus from the DNS 
and the shock equations. The agreement is remarkably good: the error is certainly 
less than the thickness of the shock front. 

Note that the approximation ?,u/?S = O(p)  used in deriving the shock equations 
becomes invalid slightly before Tc (when the more fundamental assumptions that 
only a single shock exists in the flow and that the shock surface is smooth become 
invalid). However, the comparison with DNS has shown that the first-order equations 
give the correct shock shape even at t = Tc. This somewhat surprising result may be 
explained by the fact that the curvature increases at the same rate as ?,u/dS once the 
curvature becomes large. Thus the curvature always remains the dominant term in 
the compatibility equations (2.43) and (2.49). 

The first-order solution breaks down when the shock focuses and discontinuities 
in shock strength (‘shock-shocks’) form at Tc = 3.3, before the time of the DNS 
data at t = 4.0. The discontinuous jump in M s  means that the shock surface has 
an associated corner or ‘kink’. The jump in shock strength behaves like a normal 
shock and propagates along the shock at a speed that depends on the size of the 
jump and the angle between the shock disk and the outer shock ‘wing’. The shock 
system at a focus is essentially the same as that of a Mach reflection (e.g. supersonic 
flow in a nozzle, see Courant & Friedrichs 1948, p. 387). In both cases a shock-shock 
forms and the ‘shock-disk’ and the ‘wing shock’ coalesce to form a single stronger 
shock (reflected wave) behind. A vortex sheet also forms behind the shock (see 
Kevlahan 1996 for a discussion of the vorticity jump across a shock). The shock 
system at a Mach reflection is shown in figure 6(u ) .  

The solution actually only breaks down at the two shock-shock points; at all other 
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Y I X  
FIGURE 6. (a)  The shock system at a Mach reflection in stationary flow between parallel wedges 
(after Courant & Friedrichs 1948, p. 337). ( b )  Mach number M s  of a shock in sinusoidal shear flow 
at t = 3.1 showing shock-shocks ( M s  in the shock disk has been replaced by its value at y = 0). 
(c) Construction used to propagate a shock after the focus when shock-shocks form. 

places the shock remains smooth and the curvature, d p / d S  and d p / d N  is small. This 
means that dp/dt is small and suggests that the shape and strength of the shock 
disk and wings may have reached an approximately stationary state. Subsequent 
changes in the shock system reduce to an increase or decrease in size of the shock 
disk determined by the strength of the shock-shock and by the angle between the 
shock disk and the wings (see the experimental photos of the focusing of weak shocks 
in Sturtevant & Kulkarny 1976). At least for short times the angle between the shock 
disk and wing does not change significantly. Therefore, the solution may be extended 
for short times past the time kinks form by propagating the shock disk and wing as 
separate shocks. The position of the kink is then given by the intersection of the two 
shocks. This method was used by Whitham (1974, p. 289) to treat shock-shocks in 
his theory of shock dynamics. 

For small times the shock can be propagated in two parts using the following 
approximate solutions to the SME: 

(4.15) 

(4.16) 

where x = g ( y ,  t )  gives the position of the shock, MsD is the (uniform) Mach number 
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of the shock disk at Tc,  and M u , ( y )  is the shock strength of the wings at Tc. The 
position of the physical shock is then given by g(y. t )  = max(gsD, gw) (the physical 
shock is the portion ahead of the intersection). This shock construction is shown 
schematically in figure 6(c). A comparison of the first-order solution extended from 
f = 3.7 to t = 4.0 with the DNS solution at t = 4.0 is shown in figure 5(b). The 
agreement is remarkably good. 

The above 'intersection' method could be used for arbitrary times by solving 
numerically the shock equations for the shock disk and wings separately. This 
method allows for the possibility that the shape and strength of the shocks could 
change over time. 

The intersection method can also give a rough estimate of whether the two shock- 
shocks will move apart or together. Figure 6(c) shows that for short times in uniform 
flow the speed of the shock-shock in the y-direction is 

Thus the shock-shocks will move apart if 

(4.17) 

(4.18) 

where AM is the jump associated with the shock-shock and N1 is the x-component 
of the unit normal to the shock on the wing side of the shock-shock (see figure 6). 
If the inequality (4.18) is not satisfied the shock-shocks will move together and may 
eventually close up, leading to the focusing behaviour observed by Sturtevant & 
Kulkarny (1976) for moderately weak shocks (see their figures 6h and 6c), otherwise 
the shock-shocks will move apart and 'strong' shock (M,s  = 1.1-~ 1.3) focusing occurs 
(Sturtevant & Kulkarny, figure 6 4 .  This criterion will be used in $5.1 which considers 
the focusing of an initially parabolic shock. 

Germain & Guiraud (1966) claimed that the presence of viscosity is a singular 
perturbation to the Euler equations and must always be included in the description 
of curved shocks. This is equivalent to saying that one may never neglect the 
thickness of a curved shock when deriving equations governing its propagation. We 
have shown here that the focusing of a shock in a non-uniform velocity field is 
described extremely accurately by a theory which assumes that shock thickness is 
negligible. The shock is extremely curved at the focus (the curvature is infinite at 
the shock-shocks) and yet the discontinuous shock remains at the centre of the 
finite-thickness shock calculated using DNS. These results suggest that for practical 
purposes it is sufficient to consider an unsteady shock to be discontinuous, even if 
the shock has significant curvature. 

In this section we have verified the first-order shock equations against a full DNS 
that resolves the internal structure of the shock, and have also checked a method for 
extending the solution past the time of focus. This is an extreme test of the theory 
and numerical method since the shock strength actually becomes discontinuous at 
the focus. The shock shape at the focus t = Tc calculated by the first-order equations 
agrees remarkably well with the shock shape calculated using DNS. The second- 
order solution shows no qualitative differences from the first-order solution, although 
discontinuities in p occur slightly later. Thus the first-order equations may be used 
right up until the focus, t = T ( .  After the focus the solution may be extended using 
the intersection method described in this section. 
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4.4. Converging strong shock 

Guderley (1942) found a self-similarity solution for converging cylindrical and spher- 
ical strong shocks which has since been confirmed by Van Dyke & Guttmann (1982). 
The strength of a converging cylindrical strong shock in a uniform flow with y = 1.4 
varies with radius according to 

M ( r )  cc Fn, n = 0.197294. (4.19) 

In comparison, n = 0 for an acoustic wave. 
As another rather extreme test of the shock equations we shall attempt to deduce 

the value of n from the change in n as the initial shock strength Mso varies between 1 
and 1.5. The method is as follows: first, the second-order shock equations are solved 
numerically for a cylindrical strong shock and n(Mso) is determined for a range of 
shock strengths 1 < Mso < 1.5. Second, it is assumed that n(Mso) has the following 
form : 

(4.20) 

and n, is altered until the data form the straightest line on a plot of log(l-n(Mso)/n,) 
versus log(Mso). The value of nz which gives the best fit is the estimate for the 
Guderley strong shock exponent II. 

Using the above procedure n was estimated to be 0.171, within 13.5% of the exact 
value for the limit of infinite shock strength. The exponent b = 4.75. A 13.5% error 
is actually quite good considering a weak shock theory was used to estimate a result 
for asymptotically strong shocks ! This result indicates that the second-order shock 
equations contain a significant amount of strong shock physics. 

It is also interesting to note that for a shock of only Mso = 1.5 n is within about 
10% of its value in the limit of infinite shock strength. 

5.  Applications 
In this section the first-order shock equations that were derived and verified in the 

previous three sections are applied to a variety of shock propagation problems. The 
focusing of an initially parabolic shock in a uniform flow is considered in $5.1, then an 
initially straight shock propagating into various non-uniform flows exhibiting some 
fundamental properties of turbulence are considered. The flows ahead of the shock 
considered are: a sinusoidal shear flow (§5.2), a vortex array (§5.3), and an array of 
point vortices ($5.4). Two-scale versions of the sinusoidal and vortex array flows are 
also examined to determine whether the shock deforms on the energetic scale or the 
vortical scale of the flow. 

5.1. The .focusing of an initially parabolic shock 
An acoustic discontinuity ( M s  = 1) with an initially parabolic profile will eventually 
come to a perfect focus at a distance equal to the radius of curvature on its axis. 
Weak shock theory assumes that a weak shock focuses in the same way as an acoustic 
discontinuity and hence predicts infinite strength at the focus (where ray tube area 
vanishes). 

Sturtevant & Kulkarny (1976) examined experimentally the focusing of weak shock 
waves. They found that the geometry of the shocks at the focus is different from that 
predicted by weak shock theory, and that (as might be expected) the shock strength 
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remains finite. At the focus relatively strong ( M s  = 1.2) shocks show a flat shock 
disk bounded by shock-shocks which gradually move apart. If the shock is slightly 
weaker the shock-shocks move together and eventually meet, producing the crossed 
shocks predicted by geometrical acoustics theory. They emphasize that in both cases 
the behaviour at the focus is nonlinear. 

In this section we examine the problem of the focusing of an initially parabolic 
shock in detail. The parabolic shock is propagated until the time of focus by 
numerically solving the first-order shock equations. Some of the questions we address 
are: How does the separation of shock-shocks depend on initial shock strength? How 
does the maximum shock strength depend on the initial shock strength? What is the 
critical Mach number defining the transition between crossed and uncrossed shocks? 
How does the time at which shock-shocks form (the time of focus, Tc)  depend on 
the initial shock strength'? 

Initially the shock is parabolic in shape, i.e. 

X" = iYt;, - 1.68 < Yo ,< 1.68 (5.1) 

with constant strength Mso, and a step condition behind the shock i3p/dN = 0. This 
initial condition is chosen to reproduce the conditions of experiment number one 
of Sturtevant & Kulkarny (1976) (a plane shock is reflected off a parabolic cylinder 
reflector with an angle of convergence of 160"). These initial conditions produce a 
perfect line focus in the case of acoustic discontinuities. The initial Mach number of 
the shock Mso is varied between 1 and 1.3. 

Figure 7(a) shows an acoustic discontinuity ( M s o  = 1) at various times up to focus, 
while figure 7(b) shows a weak shock (MSO = 1.3) at equivalent times. The acoustic 
discontinuity exhibits the type of focusing typical of geometric acoustics, i.e. a single 
kink appears at Tc- = 1 at the axis of the initial parabola. The weak shock, on the 
other hand, focuses at a later time TcMso = 1.17 and the shape of the shock is very 
different from the acoustic discontinuity: a straight central section bounded by two 
kinks. The shape determined here is very similar to that observed experimentally by 
Sturtevant & Kulkarny (see figure 7c which has been reproduced from Sturtevant & 
Kulkarn y). 

The origin of the double kinks is made clear by examining the evolution of shock 
strength which is shown in figure 7(d) .  The shock strength increases steadily at the 
centre of the shock (where the curvature is greatest) until the the shock strength 
eventually develops a pair of discontinuities. These discontinuities in shock strength 
are associated with discontinuities in propagation speed via equation (2.30) and hence 
with kinks in the shock surface itself. Once the discontinuities form the shock strength 
no longer increases and this determines the maximum shock strength at the focus, 
M,n,,. 

The discontinuities in shock strength may be thought of as 'shock-shocks', i.e. a 
shock wave on the shock front, which form when waves carrying shock strength along 
the shock surface break, just as an acoustic pulse can overturn to form a normal 
shock. Whitham (1974, pp. 284-291) discussed the formation of shock-shock in the 
context of his theory of shock dynamics for strong shocks, but does not consider the 
possibility of shock-shocks forming on weak shocks (his weak shock theory does not 
allow for this). Here we see that the nonlinear phenomenon of shock-shocks is also 
the basic focusing mechanism in weak shocks. 

The separation of the shock-shocks at the focus (when the shock-shocks first form) 
is an increasing function of initial shock strength. The power-law dependence of 
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FIGURE 7. Shock focusing (times normalized by multiplying by Mso for comparison purposes). 
(a)  MSO = 1 shock (acoustic discontinuity) at  times t = 0.60,0.80,1.0 (focus). ( b )  Mso = 1.2 
shock at times t = 0.60,0.80,1.0,1.14 (focus). Note the double kinks bounding a flat shock 
disk. (c) Experimental shock Mso = 1.2 at focus (from Sturtevant & Kulkarny 1976, figure 5). 
(d) Evolution of shock strength for Mso = 1.2 shock at times t = 0.60,0.80,1.0,1.14. Note the spikes 
(where the numerical method begins to break down) which indicate the appearance of shock-shocks. 

shock-shock separation (AYC) on initial shock strength ( M ~ o  - 1) is roughly 

AYc cc (Mso - I)'.*, (5.2) 
for Mso < 1.1. For Mso > 1.1 the AYc increases more slowly. Note that the 
shock-shock separation is non-zero for all initial strengths Mso > 1. 

The power-law dependence of shock strength at the focus (M,,, - l)/(Mso - 1) on 
initial shock strength MS0 - 1 is very close to -5 ,  i.e. 

The dependency of the normalized time to focus minus 1 (where an acoustic discon- 
tinuity Mso = 1 focuses at time 1) on initial shock strength is approximately 

TcMso - 1 cc (Mso - I p 2 ,  (5.4) 
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for Mso - 1 < 1.1. Thus all weak shocks take longer to focus than an acoustic 
discontinuity. 

An indication of whether the shock-shocks will move together and eventually 
meet, forming a crossed shock front, can be found using the criterion given in 
equation (4.18). The smallest Mach number for which the criterion is satisfied is 
Mc = 1.27, thus one might expect crossed shocks for Mso < 1.27 and uncrossed 
shocks for Mso 2 1.27. Sturtevant & Kulkarny find experimentally that M c  NN 1.2. 
Note that M c  is a fairly rough indication of the type of focusing owing to the 
difficulty of determining accurately the shock-shock jump, and because it assumes 
that the strengths of the shock disks and wings do not evolve significantly after focus. 

5.2. Sinusoidal shear flow 
Now we examine a problem complementary to that considered in g5.l: the propagation 
of an initially plane shock in a non-uniform velocity field. The velocity field we 
examine here is a single, steady sinusoidal mode, i.e. 

and the stream function of the flow ahead of the shock Yu is 

Y u  = -Mu sin(y). (5.7) 

This velocity field is a weak shear or vorticity wave and can be considered separately 
from acoustic and entropy waves for weakly compressible flows (Kovasznay 1953). 
Turbulence is often described in terms of a large collection of sinusoidal modes of 
various amplitudes, wavelengths and phases. Thus, by examining the interaction of a 
single sinusoidal mode with a shock wave we should should gain some insight into 
the fundamental aspects of the shock-turbulence interaction. The sinusoidal shear 
flow is also the simplest periodic, non-uniform flow. 

The questions addressed in this section are: When and under what conditions do 
kinks form (the shock focuses) in the shock front? How does the time to focus depend 
on Mso- 1 and M u ?  How does maximum shock strength vary with Mso- 1 and Mu? 
How is shock speed affected by the interaction with a non-uniform flow? Does the 
shock front deform on the length scale of the energy or the enstrophy in a two-scale 
flow? 

Initially, the shock is straight with strength MSo - 1 and a step profile ( d p / d N  = 0). 
The simulation was run for a variety of initial strengths, 0 < Mso - 1 < 0.3, and 
amplitudes ahead of the shock, 0 < M u  d 0.3. 

The focusing of an acoustic discontinuity ( M s o  = 1) and a weak shock wave 
(Mso = 1.2) in an flow ahead of the shock with MU = 0.3 are shown in figure 8(a) 
and figure 8(6) respectively. The evolution of shock strength for the Mso = 1 shock is 
shown in figure 8(c). A comparison of figure 8 with figure 7 shows that the focusing 
mechanism is the same for a straight shock in a non-uniform flow and a curved 
shock in a uniform flow. In a sinusoidal flow the non-uniformity of the flow ahead 
of the shock bends the shock and this deformation causes the shock to strengthen in 
regions of concave curvature and weaken in regions of convex curvature. Eventually 
the shock strength breaks and shock-shocks and a shock disk form, as in the case 
of the initially parabolic shock. Vortex sheets and Mach stems behind the shock are 
associated with the kinks in the shock front (see Kevlahan 1996 for a discussion of 
vorticity generation behind curved shocks). 
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FIGURE 8. Shock focusing in a sinusoidal shear flow with Mu = 0.1 (times normalized 
by multiplying by Mso for comparison purposes). (a) Mso = 1 shock (acoustic discon- 
tinuity) at times t = 0.99,1.98,2.98,3.97,4.46,4.96 (focus). ( b )  Mso = 1.2 shock at times 
t = 0.99,1.98,2.98,3.97,4.46,4.96,5.4,6.0,6.6,7.3. Note the double kinks bounding a flat shock 
disk. (c) Evolution of shock strength for Mso = 1.2 shock at times t = 0.99,2.98,4.46,6.6,7.3. Note 
the appearance of shock-shocks. 

The curvature at the centre of the MS0 = 1 shock wave increases like K(0 , t )  = 
( TC - K(0,  t))-‘ where the time of focus Tc = 4.96 for M U  = 0.1. 

Note that the shock is sinusoidal in shape only for very short times t < 1, and 
therefore LIA (which assumes a sinusoidal distortion of the shock front) is only valid 
for t << 1. The LIA approximation underestimates shock deformation because it 
neglects shock evolution. 

The dependence of time to focus TcMso - Tc(MSo = 1)  on initial shock strength 
iWSo - 1 is 

where the amplitude of the flow ahead is constant, MU = 0.1. 

shock is 

TCMso - 4.96 a~ (Mso - 1)1’2, (5 .8)  

The dependence of time to focus on the amplitude of the disturbance ahead of the 

Tc cc ( M U  - 0.03)-”2, (5.9) 
where the initial shock strength is 0.2. Thus the time to focus is an increasing function 
of M U ,  and the shock does not focus if MU < 0.03 (for MS0 = 1.2). 
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The dependence of the separation of the shock-shocks A Y c  on the shock strength 
(for fixed M u  = 0.1) and on amplitude ahead of the shock (for fixed MSO - 1 = 0.2) 
are given respectively by 

AY<- ( M ~ ~  - 1)-7/~, (5.10) 
AYC K ( M u  - 0.03)-7’x. (5.11) 

The maximum shock strength depends on initial shock strength and on disturbance 
amplitude according to the relations 

(5.12) 

(5.13) 

Note that AYc is much larger and (M,,, - l)/(Mso - 1) is much smaller than for 
a parabolic shock of the same strength (for M U  < 0.3), although the power laws 
governing the dependence of AYc and (M,,, - l)/(Mso - 1) on Mso - 1 are the same. 

The power-law dependencies of Tc, AYc and M,,, on Mso- 1 are the same as those 
for the focusing of an initially parabolic shock. The fact that Tc and AYc show the 
same dependence on Mso- 1 and 1/(MI:-0.03) suggests that ( M s o -  l)/(Mc -0.03) is 
a similarity parameter describing Tc and AYc. Similarly, (Mso - l ) /Mu is a similarity 
parameter describing maximum shock strength at the focus. 

The mean speed of the shock can be defined in several ways: e.g. from the mean 
advance ( X ) ( t )  of the shock in the .c-direction 

(5.14) 

(where M S Y ( t )  is the percentage change in mean speed and the averages are normalized 
to take into account non-uniform spacing of grid points in the y-direction), or from 
the instantaneous speed of the shock in the x-direction averaged over y :  

where x = g ( y , t )  gives the shape of the shock front. Equation (5.15) is just the SME 
on the level surface G(x,y ,  t )  = 0 for a non-overturning shock (see equation (2.13)). To 
obtain the mean instantaneous shock speed g ( t ) ,  dg(y ,  t)/dt is averaged over all points 
on the shock surface ( X ,  Y )  and normalized to take into account the non-uniform 
spacing of the points in the y-direction. 

In both the above definitions shock speed is a result of the combined effects 
of uelocity magnitude ahead of the shock, geometry (a shock moving obliquely, 
N I  < I ,  has an increased x-displacement Ag(y ,  t )  even if the propagation speed M s  
is unchanged), and shock strength (an increase in M s  leads to an increase in A g ( y , t )  
even if the shock remains normal, N 1  = 1). The changes in geometry and shock 
strength are, of course, determined by the velocity field ahead of the shock and initial 
shock shape. Note that M s  is constant for an acoustic shock, and therefore any 
changes in shock speed can only come from geometrical effects. 

The percentage change in g ( t )  as a function of time for various shock strengths 
with MLr  = 0.1 is shown in figure 9(a), and a similar graph for varying MU with fixed 
Mso - 1 = 0.2 is shown in figure 9(b); the equivalent graphs for Msx( t )  are shown 
in figures 10(a) and 10(h). It is found that Msy(f) K t2  for Mso = 1, and for t < 4 
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FIGURE 9. Percentage increase in instantaneous mean shock speed in the x-direction as a function 
of time. (a) Fixed disturbance amplitude ahead of the shock M u  = 0.1, shock strengths MSo - 1 = 
0 (-), 0.05 (- - -), 0.2 (- - -1. (b)  Fixed initial strength MSO = 1.2, disturbance amplitude M u  = 0.3 
(-), 0.2 (- - -), 0.1 (- - -). 
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FIGURE 10. Percentage increase in mean shock speed based on mean advance in the x-direction as 
a function of time. (a) Fixed disturbance amplitude ahead of the shock M u  = 0.1, shock strengths 
MSO - 1 = 0 (-), 0.05 (- - -), 0.2 ( - a - ) .  The mean speed for Mso - 1 = 0 increases like t2. ( b )  Fixed 
initial strength MSO = 1.2, disturbance amplitude M u  = 0.3 (-), 0.2 (- - -), 0.1 (- -). 

if MSO > 1. For t > 4 the increase in speed is slower. The increase in instantaneous 
speed is slightly slower (but qualitatively the same) compared to speed based on mean 
advance of the shock, e.g. g cc t’.7 for Mso = 1. 

An example of instantaneous shock speed at a focus as a function of y is shown 
in figure ll(a), and an example of shock position at a focus compared with the 
position of the equivalent plane shock in uniform flow shock is shown in figure 1 l(b). 
The acoustic shock shows a large change in instantaneous shock speed because of 
its single-kink geometry and the fact that shock strength remains constant. The 
MSO = 1.2 shock, unlike the acoustic shock, shows an increase in speed around y = 0 
(where, in this case, the geometrical effect is zero) as well as around y = +1. The 
variation in shock strength causes the Mso = 1.2 shock to become much flatter than 
the acoustic shock, and thus reduces the geometrical effect. The net effect of variation 
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FIGURE 11. (a) Percentage change in the instantaneous mean shock speed in the x-direction as a 
function of y for MSO - 1 = 0.2 (-) and MSo - 1 = 0 (- - -); M u  = 0.1, T = Tc). (b)  Shock position 
(-) compared with the position of an acoustic discontinuity a t  the focus (- - -) and the position of 
an equivalent plane shock in uniform flow (same parameters as u).  

in shock strength is seen to be a smaller increase in shock speed compared with the 
acoustic shock (where changes in shock speed are due entirely to geometric effects). 

The shock always travels faster in the non-uniform flows than in a uniform flow, 
the maximum increase being 12% (this would correspond to an increase of 48 m s-l 
for a shock travelling near the speed of sound in air) for MSO - 1 = 0.2 and MU = 0.3. 
This increase in speed is due to the dynamical evolution of the shock, both in shape 
and in strength. 

A turbulent flow contains motion on a wide range of length scales. The motion 
at the largest scales has most of the energy, but the motion at the smaller scales has 
most of the enstrophy (is. there are strong gradients in the velocity at small scales). 
When a shock passes through a turbulent flow does it distort on the large length 
scales (energetic) or on the small length scales (vortical)? To answer this question in 
the case of a typical uni-directional flow ahead of the shock we now look at a shock 
propagating through the following velocity field : 

iia(X, y )  = - M ~ ( ~ ~ ~ ( ~ )  + 1 0 - ~ / ~  cos(ioy)), (5.16) 
D a ( X ,  Y )  = 0, (5.17) 

where the factor comes from assuming a Kolmogorov k-5/3  energy spectrum. 
The shape of the shock in the two-scale velocity field at the focus is shown in 

figure 12(a) and its strength is shown in figure 12(b). The overall shape of the shock 
is clearly determined by the energetic length scale, but kinks in the shock front form 
at the minima of the vortical length scale. These ‘vortical’ kinks form before the 
‘energetic’ kinks (Tc = 2.4 compared with TC = 5.8). This two-scale calculation is 
repeated for a two-dimensional flow ahead of the shock in the following section. 

5.3. Vurtex array 
In the previous section we examined shock propagation into a one-dimensional 
sinusoidal flow, we now investigate for the first time a weak shock propagating into a 
velocity field with sinusoidal modes in two perpendicular directions (a uortex array). 
The flow ahead is specified by the stream function 

Y,,(x,y) = - M U  cos(x) sin(y), (5.18) 
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which has the corresponding velocity field 

G,(x,y) = -Mu cos(x) cos(y), 
&(x, y )  = -MU sin(x) sin(y), 

(5.19) 
(5.20) 

and vorticity field 
o,(x, y )  = -2Mu cos(x) sin(y). (5.21) 

The flow specified by the stream function (5.18) is an infinite array of two-dimensional 
vortices of alternating sign with centres at x = n(n - l), y = n/2(2n - 1). 

As in the case of the uni-directional sinusoidal shear flow, kinks form in the shock 
front due to focusing. However, in this case the conditions under which kinks form is 
more restrictive. We examined shocks starting from x = 0 (where the flow enhances 
focusing) and starting from x = n /2  (where the flow inhibits focusing). Kinks form 
for all MSo - 1 and for MU > 0.10 in the case SO = 0 and for Mso - 1 < 1.15 and for 
M U  > 0.05 in the case xg = n/2. 

Figure 13 shows a comparison of the focusing of an acoustic discontinuity hls0 = 1 
and of a moderately weak shock Msg = 1.2 for a large disturbance amplitude 
MU = 0.3. Note that the convergence region at (n/2,0) enhances focusing, and that 
later the convergence region at (3n/2,0) pulls the kinks apart. The time to focus is 
much quicker than in the uni-directional case, TC = 2.6 compared with TC = 4.1. 

Time to focus and maximum shock strength at the focus in the case xo = 0 vary 
according to 

(5.22) (TcMso - 9.3) K (Mso - 1)1’2, Msa < 1.1, 

(5.23) 

where Tc = 9.3 for an acoustic discontinuity. There is not a large enough range to 
establish power laws for the variable-Mu case. 

If the shock is started at xo = n/2 then 

(5.24) 
(5.25) 
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FIGURE 13. Shock focusing in a two-dimensional vortex array with disturbance amplitude M u  = 0.3. 
(a) Acoustic discontinuity Mso = 1 at times t = 0.75, 1.50, 2.25 (left to right). (b) Moderately weak 
shock Mso = 1.2 at times Msot = 0.84. 1.68, 2.52, 3.36, 3.84. (c) Variation of shock strength for 
Mso = 1.2 shock at times Msot = 0.84. 1.68, 2.52, 3.36. Note how the flow pulls the kinks apart. 

(5.27) 

where Tc = 5.6 for an acoustic discontinuity. 
The change in propagation speed of the shock for various strengths as a function 

of time is shown in figure 14(a), and for various MU in figure 14(b). Again, except 
for very long times (several eddy diameters), the shock moves faster in the vortex 
array than in uniform flow in all cases. The greatest increase is roughly 1.5% for 
MU = 0.3 and M s o  = 1.2. This increase in propagation speed is achieved in the length 
scale of a single eddy. Note that the increase in speed is less than in the case of the 
unidirectional sinusoidal shear flow. 

As in the previous section, the shock was also propagated through a two-scale 
velocity field to determine whether the shock deforms on the small (vortical) length 
scale, or the large (energetic) length scale. The two-scale velocity field had the stream 
function 

Yu,(x,y)  = -Mc(cos(x) sin(y) + 10-5'6 cos( lox) sin( 1Oy)). (5.28) 
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FIGURE 14. Instantaneous mean shock speed in the x-direction as a function of time (xg = n/2). 
(a) Fixed disturbance amplitude ahead of the shock M u  = 0.1, shock strengths MSo - 1 = 0 (-), 
0.05 (- - -1, 0.2 (- * -). ( b )  Fixed initial strength Mso = 1.2, disturbance amplitude M u  = 0.3 (-), 
0.2 (- - -), 0.1 (- * -). 

It was found that there is essentially no difference between the shock shape in the 
single- and two-scale velocity fields. Unlike the uni-directional case, kinks do not form 
at the minima of the small-scale field. This result suggests that in real turbulence 
the shock deformation is determined essentially by the energy-containing scales of 
motion; the smaller vortical scales have little effect. DNS simulations confirm this 
conclusion, showing no small wiggles on the shock front (see figure 4 in Kevlahan et 
al. 1992). 

In turbulence where the average correlation length of the flow is approximately one 
eddy long a shock is unlikely to focus unless kinks form within a single eddy. From 
the results obtained here, a rough guide is that shock focusing will occur in turbulence 
if Ms0/Mu < 4-7 where we have used the fact that turbulence Mach number, M,, is 
the average Mach number of the flow. For example, an Ms = 1.2 shock focuses in 
turbulent flows with M ,  > 0.17-0.30 (where M s  is the Mach number of the laminar 
shock). 

5.4. Point-vortex array 
We now investigate for the first time how a weak shock wave interacts with a singular 
flow: a one dimensional array of point vortices. These vortices have a structure that 
is similar to the vortices in a turbulent flow. 

The velocity field of a row of point vortices of strength K at y = mb and --K at 
y = ( m +  i ) b  may be found using the method of Saffman (1992, pp. 133-138): 

K sin ((2n/b)y) cosh ((2.n/b)x) 

b cosh2 ((2n/b)x) - cos2 ((2.nlb)y) ' 

K cos ((2nlb)y) sinh ((2n/b)x) 

b cosh2 ((27c/b)x) - cos2 ((271/b)y) ' 

fia(x,y) = - (5.29) 

C,(x,y) = -- (5.30) 

Near the origin the point-vortex velocities become 

(5.31) 
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FIGURE 15. Shock focusing in a Rankine vortex array, Mso = 1.2, M u  = 0.3. ( a )  Shock shape at the 
focus (point-vortex array at  y = 0). Note kinks at y = fn/2,  the locations of the vortices. ( b )  Shock 
strength at  the focus. Note the large decrease in shock strength on the positive velocity side of the 
vortices. 

(5.32) 

which is just the velocity field for a point vortex. For large distances x from the array 
the velocity field becomes 

2 K  . ii,(x,y) = - sin ( ( 2 n l b ) y )  ep'2nih)', 
h 

(5.33) 

(5.34) 

i.e. the velocity field decreases exponentially away from the vortex array. 
In order to avoid the singularity at the centre of the vortex the point vortices are 

given solid-body-rotation cores, producing a Rankine vortex. Note that because we 
are interested in the effect of the singular velocity profile of the flow we deliberately 
do not use a vortex with a smooth (e.g. Gaussian) distribution of vorticity. Matching 
the velocity at the core boundary gives the velocity field of the core: 

(5.35) 

(5.36) 

where ro is the radius of the vortex core. 
In the simulation --n < y < 71 (y is shifted by y = --n/2), b = 271, ro = 0.10, 

and i i  = MU/271 (which gives a maximum speed of M U  at the core boundary). 
Figures 15(a) and 15(b) show the shock shape and strength at the time kinks form. 
Kinks form as soon as the shock reaches the core, and move together as the shock 
propagates. 

The shock focusing observed here is different in two important ways from shock 
focusing in the non-singular flows considered earlier. First, all values of shock strength 
and M u  lead to the formation of kinks; even MLT as small as 0.0001 causes the shock 
to focus. Secondly, Tc and M,,, vary only slightly with M r ,  and M,,, is only about 
3% greater than Mso. These results indicate that it is the singular l / r  form of the 
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velocity field that turns the shock and produce kinks; its magnitude is not important. 
Again, remember that the solid-body-rotation core removes the actual point vortex 
singularity. 

If the eddies of turbulence have a l / r  velocity fall-off these results suggest that 
kinks may form at much lower values of M ,  than were estimated based on the results 
of the vortex array simulation. Vortex sheets will form behind the kinks and thus one 
might expect significant enstrophy production in the shock-turbulence interaction, 
even for relatively small values of Mt. 

6. Conclusions 
In this paper we have reviewed the current approaches for treating the propagation 

of weak shocks in uniform and non-uniform flows. We noted that current weak shock 
theory fails near a focus and is unsuitable for non-uniform flows ahead of the shock, 
and that non-DNS treatments of the shock-turbulence interaction do not take into 
account shock evolution. 

The novel shock manifold/compatibility condition method of Ravindran & Prasad 
(1993) is used to describe shock propagation. This method is extended here to non- 
uniform flows ahead of the shock and the infinite set of compatibility conditions is 
closed by making the weak shock assumption, i.e. that the normalized density jump 
is small, p << 1. We derived a set of equations (2.43), (2.491, (2.13) describing the 
propagation of a weak shock discontinuity into two-dimensional non-uniform flow in 
motion. These equations were derived rigorously as an O ( p )  approximation from the 
equations of gasdynamics and the Rankine-Hugoniot jump conditions. The acoustic 
approximation was used for the flow ahead (1.e. products of fluctuating quantities 
ahead of the shock are neglected) and thus the shock equations are valid in the range 
M h  < p << 1, where MU is the Mach number of the flow ahead. No models were 
used. 

If the magnitude of the terms ahead of the shock is less than O(p) (i.e. M u  < p) 
then the terms ahead of the shock in the compatibility equations (2.43) and (2.49) 
may be neglected and the shock propagation equations become simply 

dX 
~ = N1 [I + + ( y  + l ) p ]  +n,, dt 

The shock equations cannot be solved exactly, except in a few simple situations, 
and thus a numerical method of solution was developed. The numerical method uses 
an adaptive non-uniform grid in which the resolution changes over time such that 
regions of high shock strength (large concave curvature) are resolved more finely 
than regions of low shock strength. This method is particularly suited to examining 
the behaviour of a shock near a focus (where the strength increases). 

An O(p2) version of the shock equations was also derived in order to check that 
no qualitatively new effects arise by including higher-order terms. 

The shock equations were verified analytically against known solutions for the 
propagation of a plane N-wave weak shock and an expanding cylindrical weak 
shock. The Guderley self-similarity solution for converging strong shocks was also 
determined to within 13.5% as the limit of the solutions of the second-order shock 
equations. The numerical solution of the shock equations was also checked against 
a full DNS for the case of an initially plane shock propagating into a sinusoidal 
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C'ase T( Mso - T( (Mso = 1) AYc (M,,,,,, - 1)/(Mso - 1 )  
parabola 1 / 7  718 -113 

-113 array 112 713 - 
-113 shear 112 718 

TABLE 1. The dependence on shock strength (M,70 - 1)'. The amplitude of the flow ahead of the 
shock was constant Mc: = 0.1 for the sinusoidal shear and vortex array cases. 

Case T( M,o - Tc (My(, = 1 j 
shear ( M I  -003)-'  ' ( M L  -OO3)- '  M: ' 

A YC (M,,,,, - 1j/(MFo - 1) 

( M I  - 0 0 5 )  ' I h  ~ M: 

TABLE 2 The dependence on velocity amplitude ahedd of the shock M; The initial strength of the 
shock waq fixed (MSo - 1) = 0 2 

shear flow. The DNS resolved the internal structure of the shock and solved the 
full Navier-Stokes equations. The agreement was excellent (the error was less than 
the shock width), even at the time of focus when shock-shocks develop. A way 
of extending the shock propagation equations solution past the time of focus by 
propagating the shock disk and wings separately was also verified against DNS. 

The fact that the shock equations (which assume that the shock is discontinuous) 
agree so well with DNS which actually resolves the shock structure indicates that 
one may safely neglect shock thickness, even in the case of curved shocks. This 
result contradicts Germain & Guiraud (1966)'s assertion that shock thickness must 
be included in a description of the propagation of curved shocks. 

The shock equations were applied to the problem of the focusing of an initially 
parabolic shock. The resulting shock shapes agreed well with the experimental results 
of Sturtevant & Kulkarny (1976). Focusing also occurred in the case of a shock 
propagating into a sinusoidal shear flow, a vortex array (perpendicular sinusoidal 
modes) and a linear array of point vortices. The results on the time to focus 
Tc, separation of shock-shocks AYc and maximum strength at the focus M,,, are 
summarized in tables 1 and 2. These results show that the focusing of an initially 
parabolic shock and an initially straight shock in sinusoidal shear flow (and, more 
generally, any unidirectional flow with a minimum in the velocity) is essentially the 
same process. The dependence of Tc and M,,, on initial shock strength is very 
similar for all the flows; the relations (M,n,y - l)/(Mso - 1) cc (Mso - 1)-'l3 and 
T C M S O  - Tc(Mso = 1) CK ( M s o  - l)- 'I2 appear to be very general. The results 
for the dependence of shock focusing on M u  indicate that no focusing occurs for 

Tables 1 and 2 show that Tc and AYc have the same dependence on MSo - 1 and 
l/(MG- - 0.03). This suggests that (Mso - l) /(Mu - 0.03) is a similarity parameter 
describing Tc and AYc. Similarly, ( M s o  - l) /Mc is a similarity parameter describing 
maximum shock strength at the focus. 

The vortex array results can be used to provide a rough estimate of the conditions 
under which a shock may focus in turbulence. Focusing may occur in turbulence if 
A4,/Ms > 0.14-0.25, where M ,  is the average Mach number of the turbulence and 
M s  is the Mach number of the shock in a flow at rest. 

The average propagation speed of a shock in a two-dimensional vortex array may 

A4L:  < 0.03-0.05. 



196 N. K.-R. Kevlahan 

be up to 1.5% faster than the propagation speed of the same shock in non-uniform 
flow at rest. This increase in propagation speed is achieved in the length scale of 
a single eddy. The shock always moves faster in a non-uniform flow (except for 
very long times). The change in propagation speed is the result of a combination of 
changes in shock geometry and shock strength. The geometrical effects are larger 
and decrease as initial shock strength increases. These results agree qualitatively with 
those of Lee et al. (1993) who found a 0.7% forward drift speed for a weak shock 
interacting with incompressible turbulence. Lele (1992) estimated analytically a 0.4% 
increase in shock speed, but neglected the evolution of the shock front. It is likely 
that the remainder of the increase in shock speed is caused the evolution of the shock. 

Using two-scale velocity fields it was determined that the shock deforms on the 
(larger) length scale of the energy. Kinks form on the (smaller) length scale of the 
enstrophy in the sinusoidal shear flow, but kinks do not form at the small length 
scale in the two-dimensional vortex array. 

To examine the effect of a singular velocity field on shock propagation a flow ahead 
of the shock consisting of a linear array of point vortices with solid-body-rotation 
cores was considered. It was found that kinks formed at even the smallest values of 
M u ,  but that M,,, - MSO was small. 

In summary, we have derived a new set of equations describing the propagation of a 
curved weak shock in subsonic non-uniform flows. These equations have been verified 
against known analytical solutions and against a full direct numerical simulation. The 
focusing of shocks in uniform and non-uniform flows has been investigated and some 
general relations have been deduced. In particular, it has been found that a shock in 
a two-dimensional vortex array moves up to 1.5% faster than the same shock in a 
uniform flow at rest. 

The author is grateful for many conversations with Christos Vassilicos, John 
Chapman and other colleagues, especially those at Cambridge and the Center for 
Turbulence Research (Stanford and NASA Ames). Phoolan Prasad kindly explained 
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used in this paper were made during the 1992 Summer Program at the Center for 
Turbulence Research, Stanford University. Krishnan Mahesh and Sangsan Lee were 
of invaluable help during the author’s stay at Stanford University. The author was 
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