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Three-dimensional stability of the periodic wake of tightly packed rotated and inline
cylinder arrays is investigated for 60 � Re � 270. Results are compared with existing
numerical and experimental studies for an isolated cylinder. Numerical Floquet
analysis shows that the two-dimensional wakes of the rotated and inline arrays with
spacing P/D = 1.5 become unstable at Rec = 64 ± 0.5 and Rec =132 ± 1 respectively.
Two-dimensional vortex shedding flow is unlikely in practice for such flows. The
dominant spanwise wavelength is λ/D = 0.9±0.1 for the rotated array at Re = 100 and
λ/D = 3.0 ± 0.1 for the inline array at Re = 200. Three-dimensional simulations show
excellent agreement with the Floquet analysis for the rotated case, and reasonable
agreement for the inline case. The instability mechanism appears to be similar to
Mode A for an isolated cylinder, although the structure of the three-dimensional
vorticity is different due to the spatial periodicity of the flow. Unlike the isolated
cylinder, both array flows are unstable as λ→ ∞ (like a thin shear layer). This is the
first investigation of three-dimensional wake instability in cylinder arrays, a problem
of significant practical and theoretical interest.

1. Introduction
The transition to three-dimensionality of vortex shedding in the wake of an

isolated circular cylinder was first explained physically by Williamson (1988). His
careful laboratory experiments allowed him to identify two distinct spanwise three-
dimensional instabilities. Mode A appears at Rec ≈ 190 and is characterized by
dislocations of the primary spanwise vortices and the formation of pairs of streamwise
vortices with a spacing of 3 to 4 cylinder diameters. Mode B appears at Rec ≈ 260 and
is characterized by the formation of streamwise vortices with a much closer spacing
of about 1 cylinder diameter. Mode A scales on the size of the primary vortex cores,
while Mode B scales on the smaller shear layer between the primary vortices. These
experimental observations were confirmed by the numerical linear Floquet stability
analysis of Barkley & Henderson (1996).

The goal of this paper is to analyse the transition to three-dimensional vortex
shedding in tightly packed cylinder arrays. The cylinder array is a confined bluff
body wake, which is a flow of significant practical interest. Abd-Rabbo & Weaver
(1986) used visualization to show that vortex shedding occurs even under conditions
of tight packing (i.e. when the pitch to diameter ratio P/D < 3). Owen (1965) had
suggested that tight cylinder spacing suppresses vortex shedding. Abd-Rabbo &
Weaver observed two distinct shedding regimes in a square array, depending on
whether the mean flow is aligned with the axis of the array (inline), or at 45◦ to the
axis the array (rotated ). Inline arrays are characterized by approximately symmetric
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vortex shedding (roughly satisfying the symmetry ωz(x, y, t) = −ωz(x, −y, t)), while
rotated arrays are characterized by alternate vortex shedding. In the two-
dimensional vortex shedding regime, both arrays have the exact spatio-stemporal
symmetry

ωz(x, y, t) = −ωz(x, −y, t + T/2) (1.1)

where x is aligned with the direction of the mean flow and T is the periodicity of the
flow. This is the spatio-temporal symmetry of the two-dimensional base flows used in
the Floquet stability analysis of the three-dimensional instability.

Note that the length of the cylinder array wake is limited by the spacing of the
cylinders, whereas for an isolated cylinder the wake length is limited purely by fluid
dynamics: Moulinec, Hunt & Nieuwstadt (2004) argued that the wake disappears
in tightly packed cylinder arrays due to turbulent diffusion. Cylinder arrays are
also characterized by much higher shedding frequencies due to the close spacing
of the cylinders: the Strouhal frequency is about 1 for an array with P/D = 1.5,
compared with about 0.2 for an isolated cylinder. Owen (1965) found empirically
that the Strouhal number scales with the mean velocity in the gap between the
cylinders.

The main question we address in this paper is how differences in the wake structure
of the inline and rotated arrays affect the transition to three-dimensionality in the
wake. In particular, we are interested in whether the Mode A and Mode B mechanisms
persist, and if the linear Floquet analysis is able to correctly predict the spanwise
wavelength of the instability. The distinct wake structures of the inline and rotated
arrays suggest that different instability modes may be present at the same Reynolds
number for the same array geometry. The only difference is the orientation of the
mean flow with respect to the array axis. In this respect the cylinder array may be
thought of as breaking the rotational symmetry of the isolated cylinder by imposing
a fundamental periodic ‘crystal’ structure on the flow. We also determine the critical
Reynolds number for vortex shedding (Rec ≈ 45 for the isolated cylinder), and the
statistics of the lift and drag forces before and after the transition to the three-
dimensional wake.

We do three different types of numerical simulations in order to address these
questions. All simulations are pseudo-spectral with periodic boundary conditions in
all directions. We first calculate two-dimensional time-periodic base flows. These are
then perturbed in the spanwise direction in order to carry out a numerical Floquet
stability analysis, as described in Barkley & Henderson (1996). The Floquet stability
analysis gives the growth rate of the most unstable spanwise mode for each spanwise
wavelength and Reynolds number. Finally, we do three-dimensional simulations to
check whether the Floquet analysis correctly predicts the spanwise structure of the
fully developed three-dimensional flow, visualizations of which allow us to characterize
qualitatively the form of instabilities (and compare them to the Mode A and Mode B
instabilities of the isolated cylinder).

The results presented here help improve our understanding of how the wake
structure of vortex shedding flows affects the stability properties of these flows.
In particular, we will see to what extent the isolated cylinder can be taken as
a general model for different vortex wake flows. This knowledge could improve
the design of heat exchangers by allowing engineers to exploit differences in the
dynamical and stability properties of inline and rotated arrays at the same Reynolds
number.
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Figure 1. Cylinder array configuration. Mean flow angle θ = 0 for the inline and θ = 45◦ for
rotated arrays. The flow is calculated in the periodic unit cell shown by the dashed lines.

2. Numerical method
The two- and three-dimensional flows through inline and rotated square arrays

of circular cylinders with a pitch to diameter ratio of P/D are calculated using the
following L2-penalized equations:

∂u
∂t

+ u · ∇u + ∇P =
1

Re
�u − 1

η
χ(x)u, (2.1)

∇ · u = 0, (2.2)

where the last term on the right-hand side of (2.1) approximates the no-slip boundary
conditions on the surface of the cylinder as η → 0 (χ(x) = 1 and 0 in the solid and fluid
regions of the flow, respectively). This penalized formulation allows a Fourier-based
pseudo-spectral method to be used for bluff body flows. Kevlahan & Ghidaglia (2001)
showed that the error in the boundary condition is O(η1/2), and the error in the force
is O(η). We have found that taking η = 10−4 is sufficient for accurate results. The
external boundary conditions are periodic in all directions, and we consider a periodic
unit cell containing one circular cylinder (as shown in figure 1). We have checked
that expanding the periodic unit cell to include two cylinders does not affect the
results. The mean velocity over the computational domain, U∞ = ||U∞||, is constant
(where

∫ P/2

−P/2

∫ P/2

−P/2
u dx dy = P 2U∞). Note that the integral is taken over the entire

computational domain (including the cylinder), which means that U∞ is the mean fluid
velocity in the absence of the cylinders (this is the definition used in the cylinder array
literature). The Reynolds number Re = U∞D/ν, where D is the cylinder diameter. All
quantities are normalized by D and U∞. We consider a tightly packed cylinder array
with P/D = 1.5. The three-dimensional simulations use a spanwise domain Lz = 3 (for
rotated arrays) and Lz = 6 (for inline arrays).

Note that the gap velocity Ug (i.e. the mean velocity in the narrowest gap between
the cylinders) is sometimes used as the reference velocity. Ug is significantly higher
than U∞, Ug =U∞/(1 − D/P ) = 3 U∞ if P/D = 1.5, and this difference should be noted
when comparing with other results.

The penalized Navier–Stokes equations (2.1)–(2.2) are solved using a Fourier-
transform-based pseudo-spectral method in space (Kevlahan & Ghidaglia 2001) and
a Krylov method in time (Edwards et al. 1994). The pseudo-spectral method is
computationally efficient and highly accurate for spatial derivatives, while the Krylov
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method is a stiffly stable explicit method with an adaptive stepsize to maintain
the specified error tolerance. The three-dimensional simulations are parallelized as
described in Kevlahan & Wadsley (2005).

The three-dimensional stability of the flow is determined using the Floquet analysis
method described in Barkley & Henderson (1996): a two-dimensional T -periodic base
flow u is calculated, and then linearly perturbed by spanwise modes

u′(x, y, z, t) = (û(x, y, t) cosβz, v̂(x, y, t) cosβz, ŵ(x, y, t) sinβz),

p′(x, y, z, t) = p̂(x, y, t) cosβz.

This defines a linear operator L and an evolution equation for the perturbations

∂u′

∂t
= DN(u, u′) − 1

ρ
∇p′ +

1

Re
�u′ − 1

η
χ(x)u′ ≡ L(u′). (2.3)

where ∇ · u′ = 0, u(x, y, t) is the T -periodic two-dimensional base flow and

DN(u, u′) ≡ (u′ · ∇)u +(u · ∇)u′ (2.4)

is the linearized advection term. The solutions of (2.3) are of the form
ũ(x, y, z, t) exp σ t , where ũ are T -periodic eigenfunctions (i.e. Floquet modes), and
the complex Floquet multipliers µ ≡ exp σT are the eigenvalues of L. The flow is
three-dimensionally unstable to spanwise perturbations of wavenumber β if |µ| > 1.
We are particularly interested in comparing the wavelength and growth rate of the
most unstable mode for the isolated cylinder and the cylinder arrays.

We assume that the two-dimensional base flows and flow instabilities are spatially
periodic in tightly packed arrays. This assumption is justified by experimental
visualization (Abd-Rabbo & Weaver 1986) and numerical simulations (Moulinec
et al. 2004). In this paper we consider only temporal Floquet analysis (based on the
time periodicity of the flow). Since the flow is also periodic in space it would also
be interesting to consider a full spatial–temporal Floquet analysis (spatial Floquet
analysis is described in, e.g., Brevdo & Bridges (1996)). In fact, the transition to vortex
shedding flow could be analysed using spatial Floquet analysis (the results presented
here on the critical Reynolds number for the onset of vortex shedding are rough
estimates using DNS for a range of Reynolds numbers).

The dominant eigenvalue and eigenfunction are calculated using an Arnoldi
iteration scheme with a Krylov subspace dimension of 20 (Barkley & Henderson
1996), which gives a relative error of O(10−3) in the calculated value of µ (based on
the exact value µ(β = 0) = 1). In each case the base flow is one vortex shedding period
saved at 32 times for t > 100 (when the flow has reached a statistically steady state).
The base flow u is obtained at the times required by the Floquet calculation using
Fourier interpolation.

The two-dimensional Floquet predictions of the most unstable three-dimensional
modes are compared with full three-dimensional numerical simulations. This check is
necessary since the linear Floquet mode may be only a transient solution, and does
not always describe the fully developed three-dimensional flow.

3. Results
3.1. Characterization of the two-dimensional base flows

Figure 2 shows a typical wake for the rotated and inline arrays. All two-dimensional
simulations were done on a domain of size 1.52 with a resolution of 1282. This
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Figure 2. Vortex wake structure: instantaneous spanwise vorticity for each configuration.
(a) Alternating vortex shedding in the rotated array at Re = 100. (b) Symmetric vortex shedding
in the inline array at Re = 200.

Case Vortex shedding Rec 3-D Floquet Rec 3-D Floquet λz/D 〈C2
L〉1/2 〈CD〉 St

Isolated 45 188.5 ± 1.0 3.96 ± 0.02 0.37 1.4 0.18
Rotated 55 ± 1 64 ± 0.5 0.9 ± 0.1 (Re = 100) 4.9 6.8 1.24
Inline 119 ± 1 132 ± 1.0 3.0 ± 0.1 (Re = 200) 1.4 3.0 1.08

Table 1. Properties of vortex shedding flows (fluid forces and Strouhal numbers are for two-
dimensional flow at Re =140). Rec and λz/D for the isolated cylinder are from Barkley &
Henderson (1996).

resolution corresponds to a grid size �x ≈ λ/6 at Re = 200, where λ=DRe−1/2 is the
boundary layer thickness. We have checked that all calculations are fully resolved
at this resolution. The periodic unit cell has been copied four times to make the
vortex structure clearer. The wake of the rotated array at Re = 100 shows clearly
the alternating vortex shedding pattern observed experimentally by Abd-Rabbo &
Weaver (1986). This wake structure is similar to that of an isolated cylinder, although
its downstream extent is limited by the close spacing of the cylinders. Figure 2(b)
shows the approximately symmetric vortex shedding characteristic of the inline array.
The wake pattern is similar to the sinuous mode instability of a triangular jet (Drazin
2002), with the addition of relatively weak symmetric vortex shedding. The triangular
jet is unstable for λ/D > 0.86 (taking the gap as the jet width). Recall that both flows
are periodic in time, with the exact spatio-temporal symmetry given by (1.1).

Table 1 summarizes some basic dynamical properties of the three vortex shedding
flows. The onset of vortex shedding is found to be Rec ≈ 55 for the rotated array
and Rec ≈ 119 for the inline array. Note that the critical Reynolds number of the
rotated array is very close to that of the isolated cylinder (Rec ≈ 45) despite the close
cylinder packing (which limits the length of the steady wake). Table 1 also shows that
the r.m.s. lift and average drag are much higher for the arrays than for the isolated
cylinder, and that the fluid forces are significantly higher in the rotated array than
the inline array. As mentioned in § 1 is the Strouhal number for the arrays are also
higher than for the isolated cylinder. The values found here are consistent with the
empirical fits St ≈ 1.0 for the inline array and St ≈ 1.1 for the rotated array reported
in Weaver, Fitzpatrick & Elkashlan (1987).
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Figure 3. The most unstable Floquet multiplier |µ| � 1. (a) Rotated, nine equally spaced
contours from |µ| = 1 to 2. (b) Inline, nine equally spaced contours from |µ| = 1 to 1.4.

3.2. Three-dimensional Floquet analysis

Two-dimensional base flows similar to those discussed in § 3.1 were calculated for
60 � Re � 200 for the rotated array and 135 � Re � 270 for the inline array. Beyond
these maximum Reynolds numbers the flow is not precisely periodic in time. 32
snapshots of one period were then saved for each Reynolds number and the Floquet
stability analysis was done for spanwise wavenumbers 0 � β � 20, as described in § 2.
We have checked that the 1282 resolution gives converged results.

The results of the three-dimensional Floquet stability analysis are summarized
in table 1. Transition to three-dimensional flow occurs at Rec = 64 and Rec =132
for the rotated and inline arrays respectively. These critical Reynolds numbers are
much smaller than previously accepted (e.g. Moulinec et al. (2004) state that the flow
in a rotated array is two-dimensional for Re < 200). Both cylinder array flows are
significantly more unstable than the flow past an isolated cylinder. In fact, it is likely
that two-dimensional vortex shedding flow is not possible in practice (except for very
low free-stream turbulence levels). The most unstable three-dimensional wavelength is
approximately 1D for the rotated case, and about 3D for the inline case. The spanwise
wavelength of the most unstable Floquet mode is close to that of the Mode A
instability for the inline array and to that of the Mode B instability for the rotated
array. This is surprising since the wake of the inline array is very different from the
wake of the isolated cylinder.

Figure 3 shows contour plots of the stability of each array for the whole range
of Reynolds numbers and perturbation wavenumbers. Each local maximum along
directions of constant Reynolds numbers corresponds to a different Floquet mode.
One important difference compared with the isolated cylinder is that the array wakes
are unstable for arbitrarily small spanwise wavenumber perturbations (except for the
more stable range 140 � Re � 190 in the rotated array). This suggests that confinement
makes the wake behave like a thin shear layer or jet, which are similarly unstable
for 0 <β <βs . In contrast, the wake of an isolated cylinder is always stable as β → 0.
This difference in behaviour is due to the curvature of the function |µ|(β) at β =0.
For the isolated cylinder, the second derivative of this function is negative, whereas it
is positive for both tube array orientations (see figure 5b). Note also that the rotated
array has a much larger unstable region than the inline array.

The dominant (real-valued) Floquet modes of both arrays have the spatio-temporal
symmetry of the Mode A instability of an isolated cylinder (Barkley & Henderson
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Figure 4. (a) Maximum dominant Floquet multiplier as a function of Reynolds number.
(b) Wavenumber β associated with the maximum dominant Floquet multiplier as a function
of Reynolds number. Filled circles indicate real, positive Floquet multipliers µ; open circles
indicate complex-conjugate pair multipliers.

1996)

ωx(x, y, z, t)= −ωx(x, −y, z, t + T/2),
ωy(x, y, z, t)=ωy(x, −y, z, t + T/2),
ωz(x, y, z, t) = −ωz(x, −y, z, t + T/2),

⎫⎬
⎭ (3.1)

where x is aligned with the direction of the mean flow and T is the period of the
flow; this is also a symmetry of the two-dimensional base flows (with ωy = ωx = 0).

Figure 4(a) shows the maximum growth rate as a function of Reynolds number for
both arrays. Note that (as is also clear from figure 3a), the rotated array has a local
instability maximum (corresponding to a positive real-valued Floquet multiplier) near
Re =100, β =6.9. As Re increases further the flow becomes less unstable (with a
stable range appearing as β → 0, as mentioned earlier). A second dominant Floquet
mode (corresponding to a complex-conjugate pair of Floquet multipliers) appears for
Re > 170. In contrast, the inline array is characterized by a single dominant real-valued
Floquet mode that becomes monotonically more unstable with increasing Reynolds
number. The discontinuity in the most unstable wavenumber of the rotated array at
Re ≈ 170 shown in figure 4(b) is associated with the change in the dominant unstable
Floquet mode. The transition to the second dominant Floquet mode is characterized
by a jump in the most unstable wavelength from λz = 0.5 to 0.8. This mode is clearly
seen in figure 3(a) in the form of a second local maximum at Re =200. By contrast,
figure 4(b) shows that the most unstable wavenumber for the inline array plateaus at
about β = 2.5 (all dominant µ are purely real in the inline array).

In figure 5(a) we compare the maximum growth rates for the rotated and inline
arrays at Re = 200. Note that the rotated array retains the β = 2.1 (or λ= 3D) real-
valued sub-dominant Floquet mode of the inline array in addition to the higher
wavenumber β = 9 (λ= 0.7D) complex-valued dominant Floquet mode. The stability
curves for the rotated array and the isolated cylinder are compared in figure 5(b).
This shows that although the most unstable spanwise Floquet modes have similar
growth rates and wavenumbers, the inline array has a much larger unstable range
(0 � β � 6.5 compared with 1 � β � 2.2 respectively). As mentioned earlier, a major
qualitative difference is that the array flow wakes are generally unstable for arbitrarily
small wavenumbers (i.e. arbitrarily large wavelengths).
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Figure 5. (a) Dominant Floquet multipliers at Re = 200 for the rotated and inline arrays.
(b) Dominant Floquet multipliers at Re = 220 for the inline array and isolated cylinder (Barkley
& Henderson 1996). Filled circles indicate real, positive Floquet multipliers µ; open circles
indicate complex-conjugate pair multipliers.

Taken together, these results demonstrate that rotated and inline arrays have very
different three-dimensional stability properties. There is only one dominant three-
dimensional Floquet mode in inline flow, while the rotated flow exhibits a sudden
transition to a new lower wavenumber mode at Re ≈ 170. This is probably due to
differences in the wake structure of the two configurations: the rotated array has an
alternate vortex shedding pattern, while the inline array has a jet-like approximately
symmetric shedding pattern.

In the following section we use three-dimensional simulations to determine whether
the Floquet stability analysis correctly predicts the most unstable spanwise wavelength
of fully developed (i.e. nonlinear) three-dimensional flows, and if the wake structures
actually correspond to the Modes A and B instabilities of the isolated cylinder.

3.3. Structure of the three-dimensional instability modes

In this section we compare the predictions of the linear Floquet analysis with
full three-dimensional pseudo-spectral simulations. The simulations were done on
domains of 1.52 × 3 (rotated array at Re = 100) and 1.52 × 6 (inline array at Re = 200)
with resolutions of 1282 × 64 and 1283 respectively. The three-dimensional instability
was triggered by initializing the z-component of velocity with a random phase k−3

spectrum with 1 % of the energy of the mean flow (similar to two-dimensional
turbulence and corresponding to the free-stream turbulence present in experiments).
We have checked that this resolution gives converged results.

Figure 6 shows the vorticity isosurfaces of all three vorticity components for the
rotated and inline arrays. The spanwise wavelength of the three-dimensional instability
of the rotated array closely matches the Floquet prediction, λz/D ≈ 1. The vorticity in
the x, y plane is composed of pairs of vortex tubes wrapped around the leading edge
of the cylinders. These streamwise vortices alternate in sign in the spanwise direction
and in the gap between the cylinders in the x, y plane. This is similar to the structure
of the Mode A instability (Williamson 1996) where the streamwise vortices alternate
in sign in both the spanwise and streamwise directions. The spanwise vorticity exhibits
wavy dislocations similar to those of the Mode A instability for an isolated cylinder.
Note, however, that unlike the Mode A instability the vortex tubes are upstream of
the cylinder (and wrap around it), rather than extending behind the cylinder in the
streamwise direction.
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Figure 6. Vorticity isosurfaces for the three-dimensional rotated and inline cylinder array
flows at Re = 100 and Re = 200 respectively: (a) spanwise, (b) streamwise, (c) transverse. The
isosurfaces are at ±0.1||ω||∞ (spanwise) and ±0.05||ω||∞ (streamwise) for the rotated array,
and at half these relative values for the inline array. Isosurfaces of positive vorticity are red
and isosurfaces of negative vorticity are blue.

The situation is less clear for the inline array. The transverse vorticity isosurface
in figure 6 shows two dominant wavelengths: a longer wavelength of λz/D ≈ 3 and
a shorter wavelength of λz/D ≈ 0.7. The longer one corresponds to the dominant
Floquet mode, and the shorter is probably due to nonlinear effects. The transverse
vorticity is made up of vortex sheets (rather than vortex tubes). These vortex sheets are
arranged in alternating layers, and fill the gap between the cylinders in the transverse
direction. This vortex sheet structure is quite distinct from the vortex tube struc-
ture of the Mode A or B instabilities of the isolated cylinder. Since the sheets develop
relatively late (after t = 50), it is likely that they form by nonlinear vortex stretching.
This sheet structure has no equivalent in the wake of an isolated cylinder.
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4. Conclusions
This paper presents the first three-dimensional Floquet stability analysis of the

wake in cylinder arrays. Besides its direct application to rotated and inline arrays, this
study also shows how wake confinement and periodicity affects three-dimensional
stability. The main result is that the rotated and inline arrays have very different
stability properties at the same Reynolds number, and that two-dimensional vortex
shedding flow is probably impossible in practice in tightly packed cylinder arrays. The
critical Reynolds number for transition to three-dimensional flow in cylinder arrays
previously believed to be about Rec =200 (Moulinec et al. 2004) is in fact Rec =64.

The Floquet analysis correctly predicts the critical Reynolds number (Rec = 64) and
spanwise wavelength (about 1D) of the three-dimensional instability in the rotated
array. The agreement is not as good for inline array, where a smaller wavelength
spanwise mode of 0.7D is evident in addition to the predicted Floquet mode of 3D.
The dominant real Floquet modes of both arrays have the spatio-temporal symmetry
of the Mode A instability of an isolated cylinder. An important result is that both
array flows are generally unstable as the spanwise wavelength λz → 0; this is not the
case for the isolated cylinder.

The structure of the streamwise vorticity in the rotated array is similar to that of the
Mode A instability of an isolated cylinder. At Re = 200 the transverse vorticity of the
inline array is organized into an unusual vortex sheet structure, quite different from
the Mode A and B instabilities. Mode B type instabilities are probably suppressed
in arrays since the braid structure is distorted by the tight packing (and the wake
includes only one or two vortices).

This study has highlighted differences and similarities in the stability and
dynamical properties of confined and open vortex wake flows, and has improved
our understanding of the three-dimensional stability properties of confined wakes.

The author thanks Dwight Barkley and Laurette Tuckerman for their useful
suggestions. This work was made possible by funding from NSERC and the facilities
of SHARCNET.
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