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The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced
homogeneous isotropic two-dimensional turbulence predicts the existence of two
inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and
an enstrophy inertial range with an energy spectrum scaling of k−3. However, unlike
the analogous Kolmogorov theory for three-dimensional turbulence, the scaling of the
enstrophy range in the two-dimensional turbulence seems to be Reynolds-number-
dependent: numerical simulations have shown that as Reynolds number tends to
infinity, the enstrophy range of the energy spectrum converges to the KLB prediction,
i.e. E ∼ k−3. The present paper uses a novel optimal control approach to find a forcing
that does produce the KLB scaling of the energy spectrum in a moderate Reynolds
number flow. We show that the time–space structure of the forcing can significantly
alter the scaling of the energy spectrum over inertial ranges. A careful analysis of the
optimal forcing suggests that it is unlikely to be realized in nature, or by a simple
numerical model.
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1. Introduction
In 1941, Kolmogorov proposed a statistical theory for homogeneous, isotropic

and statistically stationary three-dimensional incompressible turbulence (Kolmogorov
1941). He assumed that there is an inertial range of length scales in which the effect
of the external forcing and the molecular viscosity are negligible. Since in the inertial
range the energy spectrum, E(k), depends only on the mean energy dissipation rate
ε and the wavenumber k, dimensional analysis shows that the energy spectrum must
follow the universal form

E(k) = Cε2/3k−5/3, (1.1)

where C is a universal constant. Moreover, he conjectured that in three dimensions
the turbulent energy is transferred from larger scales (lower wavenumbers) to smaller
scales (higher wavenumbers) where the energy is eventually dissipated by viscosity.
The k−5/3 prediction has been verified to high accuracy in numerous experiments and
computations (apart from small corrections due to the intermittency of the energy
dissipation rate).
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In spite of the fact that there are no truly two-dimensional flows in nature, many
flows may be well described by two-dimensional models in the appropriate limit.
For example, certain properties of atmosphere and ocean flows can be explained
by two-dimensional Navier–Stokes equations (Frisch 1995; Lindborg 1999). Such
applications, in addition to the fact that the two-dimensional Navier–Stokes equations
are more mathematically tractable, have led to many studies of two-dimensional
flows over the last few decades. The success and simplicity of Kolmogorov’s theory
has inspired efforts to adapt the theory to two-dimensional turbulence. However,
Kolmogorov’s theory does not apply directly to two-dimensional flow, since the
dynamics of two-dimensional flows are qualitatively different from three-dimensional
flows. For example, vortex stretching, which plays a key role in energy transfer
between scales in three-dimension flow, is absent in the two-dimensional flow. In
addition, Fjørtoft (1953) (and later Merilees & Warn 1975 and Gkioulekas & Tung
2007) showed that in a two-dimensional incompressible Navier–Stokes flow the energy
is (on average) transferred to larger scales, while the enstrophy is transferred to smaller
scales. This so-called ‘dual cascade’ is quite different from the three-dimensional case,
where the energy cascades down to smaller scales in the inertial range. Based on
Fjørtoft’s work and Kolmogorov’s universality assumption, Kraichnan (1967), Leith
(1968) and Batchelor (1969) developed an analogous theory (usually referred to as
KLB theory) for homogeneous, isotropic and statistically stationary two-dimensional
forced turbulence.

According to the KLB theory, in a two-dimensional Navier–Stokes turbulence,
there are two inertial ranges (of energy and enstrophy, respectively) where the effects
of the viscosity and the external forces are negligible. The energy and the enstrophy
are injected by external forcing in some intermediate scales between energy and
enstrophy inertial ranges. The injected energy is then transferred to ever larger scales
through the energy inertial range, while the enstrophy is transferred to smaller scales
through the enstrophy inertial range until it is eventually dissipated by molecular
viscosity. Kraichnan assumed that in the energy inertial range the energy spectrum of
the flow, E(k), depends only on the energy dissipation rate (ε) and the wavenumber k,
while, in the enstrophy inertial range, E(k) depends only on enstrophy dissipation rate
(η) and k. Using dimensional analysis, he then predicted the following scaling laws:
E(k) ∝ k−5/3 in the energy inertial range (just as in the three-dimensional turbulence)
and E(k) ∝ k−3 (with a possible logarithmic correction: see Kraichnan 1971) in the
enstrophy inertial range (see figure 1).

Many numerical and laboratory experiments have been performed in attempts to
test the KLB theory: see, for instance Lilly (1969), Sommeria (1986), Borue (1993),
Marteau, Cardoso & Tabeling (1995), Pasquero & Falkovich (2002), Bruneau &
Kellay (2005) and Boffetta (2007); see also Clercx & van Heijst (2009) for a recent
review. These experiments confirm the general setting of the theory. Each of the
cascades has been observed independently with the predicted slopes. However, there
is a controversy. KLB theory predicts that if enough energy and enstrophy are
injected into the system these dual cascades (i.e. inverse cascade of energy and
forward cascade of enstrophy) must be realizable simultaneously in a statistically
stationary state. (Indeed, the inverse cascade of energy can only be quasi-stationary
in an infinite domain, since the energy is transferred to ever larger scales.) In the
numerical and experimental studies, which attempt to realize the dual cascades of
two-dimensional turbulence simultaneously, the −5/3 slope of the inverse cascade
has been well established: see Frisch & Sulem (1984) and Smith & Yakhot (1993);
see also Scott (2007) for a slightly steeper spectrum in the quasi-stationary state.
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However, slopes significantly steeper than −3 have usually been reported for the
forward cascade. Recently, some very-high-resolution numerical simulations have
been able to achieve scalings of the enstrophy cascade close to k−3. To the best of
our knowledge, Boffetta & Musacchio (2010) have achieved the result closest to the
KLB prediction. At the highest Reynolds number (i.e. at a resolution of 32 7682)
their enstrophy cascade has a slope of approximately −3.35. They present persuasive
evidence that the enstrophy range approaches the KLB scaling asymptotically in the
limit of infinite Reynolds number; see also Boffetta (2007) and Bracco & McWilliams
(2010) for similar studies. While scaling of the energy cascade is not Reynolds-
number-dependent, the source of the Reynolds-number-dependence of the enstrophy
range remains poorly understood.

Some attempts have been made to explain this departure from the KLB theory.
First, it should be noted that while the KLB theory assumes unbounded domains,
the numerical and laboratory experiments are necessarily performed on bounded
domains. Kraichnan (1967) pointed out from the very beginning that this may affect
the results of the experiments, since the energy transferred by the inverse cascade
accumulates in the largest available scales. This problem is partially avoided by
adding a friction-type dissipation to remove energy at the largest scales. This type
of dissipation, usually called Rayleigh (or Ekman) damping, resembles the friction
between the atmospheric flow and the earth’s surface (Basdevant, Legras & Sadourny
1981). On the other hand, Tran & Dritschel (2006) (see also Tran, Dritschel &
Scott 2007) disproved one of the underlying assumptions of the KLB theory: that
enstrophy dissipation converges to a non-zero value in the zero molecular viscosity
limit. (This prediction is the analogue of the prediction that the energy dissipation
rate converges to a non-zero finite value as the Reynolds number tends to infinity in
three-dimensional turbulence.) However, Tran et al. (2007) showed (by substituting
enstrophy dissipation with a Reynolds-number-dependent quantity) that the −3
slope of the enstrophy cascade should still hold.

Another question which is still not well understood is the effect of the forcing on the
dual cascades in forced-dissipative two-dimensional turbulence. Studies have shown
that the type of forcing modifies the slope of the enstrophy inertial range spectrum.
The convention is that a monoscale or a monoscale-like (band-limited) forcing is used.
The forcing is confined to a single wavenumber in the case of monoscale forcing, or to
a few adjacent wavenumbers in the band-limited case. The input energy is transferred
to larger scales and the input enstrophy to the smaller scales as predicted by KLB.
This type of forcing, first suggested by Kraichnan (1967), has some advantages. First,
it is easy to control the rate of energy and enstrophy injection and secondly, the
energy and enstrophy injection ranges do not overlap with the inertial ranges. It
is, therefore, consistent with the inertial range hypothesis that conjectures that the
energy input is negligible in the inertial ranges.

However, in 1994 Constantin, Foias & Manley (1994) proved that, in a finite
domain, monoscale forcing cannot produce dual cascades with the slopes predicted
by KLB. Later, Tran & Shepherd (2002) and Tran & Bowman (2003) generalized
this result to band-limited forcing and more general types of dissipation. They proved
that with monoscale (or band-limited) forcing, the slope of the energy spectrum in
the forward cascade cannot be shallower than −5. These results show that monoscale
and band-limited forcing are actually inconsistent with KLB theory. Tran & Shepherd
(2002) showed that in the presence of ‘inverse viscosity’ (which removes energy from
large scales), the KLB scaling is theoretically possible. However, as mentioned earlier,
this result suffers from a lack of numerical and experimental evidence.
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On the other hand, Lundgren (2003) proposed a linear forcing (directly proportional
to the velocity) to study the three-dimensional turbulence. Lundgren was motivated
by the need to find a forcing that has a better physical justification and is easier to
apply in non-spectral simulations than the usual spectral forcing applied only to a
few small wavenumbers. Later, Rosales & Meneveau (2005) further studied the effects
of this type of forcing. Their results show that the predictions of the Kolmogorov
theory still hold under linear forcing, despite the fact that linear forcing is active at
all scales.

In two dimensions, the effects of linear damping, which is active at all scales (as
opposed to Rayleigh friction which is active only at the largest scales), has been
studied in recent years (Boffetta et al. 2002; Tsang et al. 2005; Tsang & Young 2009).
It should be noted that both linear forcing and linear damping are active over all
scales, including the energy and enstrophy inertial ranges. This appears to violate
the inertial range hypothesis because energy is injected (removed) directly at (from)
all scales. However, the above-mentioned studies show that the energy flux (and the
enstrophy flux in the two-dimensional case) remains almost constant over a wide range
of wavenumbers, even when linear forcing or damping is applied. These observations
raise the question of whether there exist types of forcing (possibly active at all scales)
which are able to produce the dual cascades with the scaling laws predicted by the
KLB theory. Answering this question is one of the goals of the present paper.

The other goal is to investigate the effect of the space–time structure of the band-
limited forcing on the energy spectrum. In most previous numerical simulations, the
forcing is random in phase (see e.g. Schorghofer 2000). In some simulations, the
forcing is delta-correlated in time (see e.g. Boffetta 2007). In some other simulations,
the time correlation is increased by a Markov process (see e.g. Lilly 1969). There are
also simulations in which the forcing depends on the instantaneous velocity field (see
e.g. Chen et al. 2003). The motivation for using each of these forcings is to have a
control on the energy and enstrophy injection rates. Therefore, there is no unique
and physically well-justified way to define the forcing. Almost always, the effect of
the space–time structure of the forcing on the energy spectrum is neglected. Here, we
show that the details of this space–time structure can have determining effects on the
slopes of the cascades even when the forcing is band-limited.

This paper is organized as follows. In § 2, we give a brief introduction to adjoint-
based optimal control and introduce our method for controlling the energy spectrum
of a flow. The numerical results of the application of the control process to turbulent
flows are presented and discussed in § 3. These results are divided into two parts.
In the first part full-band forcing is considered (§ 3.1), while in the second part the
forcing is band-limited (§ 3.2). Finally, in § 4 we explore the significance of our results
for the theory of two-dimensional turbulence and suggest further applications of our
optimal control approach.

2. Problem formulation
Consider the incompressible Navier–Stokes equations on a two-dimensional box

�2 with doubly periodic boundary conditions

L q �

[
∂t u + u · ∇u + ∇p − ν�u

∇ · u

]
=

[
f

0

]
, (2.1a)

u(t = 0, x) = u0(x), (2.1b)
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Figure 1. Schematic representation of the KLB theory. Energy and enstrophy are injected by
the external forcing over the range (ke

2, k
z
1). Energy and estrophy inertial ranges are [ke

1, k
e
2] and

[kz
1, k

z
2], respectively. The smallest wavenumber is kmin = 1 (if the domain is unbounded kmin = 0

and the large-scale dissipation is not necessary), while the largest available wavenumber kmax

depends on the numerical resolution.

where the symbol � stands for ‘equal by definition’, u(t, ·) : �2 → �2 is the velocity
field, p(t, ·) : �2 → � is the pressure, ν is the coefficient of kinematic viscosity and
f (t, ·) : �2 → �2 is the external forcing. The vector function q = [u p]T contains the
two components of velocity field u and the pressure field p. For any solution of (2.1),
we define the energy spectrum as

E(t, k) =
1

2

∫
C(k)

|û(t, k)|2 dS(k), (2.2)

where û is the Fourier transform of u and k is the wave vector. C(k) is a circle with
radius k in the two-dimensional plane, C(k) = {k ∈ �2 : |k| = k}.

Let E0(k) be the energy spectrum predicted by KLB theory, i.e.

E0(k) =

{
C1k

−5/3, ke
1 � k � ke

2,

C2k
−3, kz

1 � k � kz
2,

(2.3)

where [ke
1 , ke

2] and [kz
1 , kz

2] are the energy and enstrophy inertial ranges, respectively
(figure 1). The wavenumber ke

1 may extend to the smallest wavenumbers, kz
2 extends

up to the beginning of the dissipation range and ke
2 ≈ kz

1. In the case of monoscale
forcing, ke

2 and kz
1 are almost equal to the forcing wavenumber. C1 depends only on

the energy dissipation rate (ε) and C2 depends only on the enstrophy dissipation
rate (η). Since the energy and enstrophy dissipation rates are constants (based on
KLB theory), C1 and C2 are also constants. Using the inertial range hypothesis,
dimensional analysis gives C1 ∝ ε2/3 and C2 ∝ η2/3. The constants of proportionality
are non-dimensional and of order of unity (Constantin et al. 1994).
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Our goal is to find a forcing, f , which results in a solution of Navier–Stokes equation
(2.1) with the KLB energy spectrum E0(k). Define the following cost functional:

J( f ) �
1

2

∫ T

0

∫
I

w(t, k)|E(t, k) − E0(k)|2 dk dt, (2.4)

where I = [ke
1, k

e
2] ∪ [kz

1, k
z
2]. The function w(t, k) is a positive weight function

which plays two roles. The wavenumber-dependence of w(t, k) normalizes the error
|E(t, k) − E0(k)|2 over the range I in order to get a uniform error distribution over all
wavenumbers. Since E0(k) decreases as k−3 on the interval [kz

1 , kz
2], w(t, k) = k6 α(t) is

a suitable candidate. The time-dependence of the weight function α(t), on the other
hand, is used to put more emphasis on the contribution of E(t, k) near t = T . This
allows the energy spectrum of the flow to evolve gradually from the initial energy
spectrum E(0, k) (which is arbitrary due to universality of the KLB theory) toward
its equilibrium E0(k). Any increasing function of time would be an equally suitable
choice for α(t).

If for some solution of (2.1) the above cost functional is zero, the energy spectrum
will scale as predicted by the KLB theory on the time interval [0 , T ]. In this case, the
energy spectrum will be stationary for times when w(t, k) > 0. However, note that this
does not imply, by itself, the existence of the dual cascades with the constant energy
and enstrophy fluxes. The dynamics of the cascades must be examined independently.

The above description may be formulated as the following optimization problem:

min
f ∈ U

J( f ), (2.5)

where U is a suitable function space with Hilbert structure. Here we consider the
space of square-integrable functions in space and time, i.e. U = L2([0, T ]; L2(�2)). The
cost functional J depends on f through the system of (2.1), in which the explicit
dependence of the cost functional on the velocity field has been dropped. This type
of cost functional is called a reduced cost functional (Nocedal & Wright 2000). Now,
our goal is to find a forcing fopt ∈ U that minimizes the cost functional J. Starting

with an initial guess f (0), an approximation of the minimizer can be found using a
gradient-based descent method of the form

f (n+1) = f (n) + τ (n)A∇J( f (n)), n = 0, 1, . . . , (2.6)

such that limn→∞ f (n) = fopt , where n is the iteration count and τ (n) ∈ �− is a constant
to be determined at each iteration. At each iteration, the descent direction A∇J is
calculated based on the gradient of the cost functional ∇J. Different forms of the
operator, A, correspond to different variants of the gradient method. For instance, if
A is the identity operator, it corresponds to the steepest descent method and if it is
an appropriate affine operator, it corresponds to the conjugate gradient method. As
will be shown below, the gradient ∇J may be expressed in terms of the solution of a
suitably defined adjoint system. This is a standard approach to the solution of partial
differential equation (PDE) constrained optimization problems and its mathematical
foundations were laid by Lions (1969). We refer the reader to the monographs by
Gunzburger (2003) and Bewley (2001) for a survey of applications of this approach
in fluid mechanics.

The necessary condition characterizing the minimizer fopt of the cost functional is
the vanishing of the Gâteaux differential J′ : U × U → �, i.e.

J′( fopt ; f ′) = 0 , ∀ f ′ ∈ U, (2.7)



208 M. M. Farazmand, N. K.-R. Kevlahan and B. Protas

where the Gâteaux differential is defined as

J′( f ; f ′) � lim
ε → 0

J( f + ε f ′) − J( f )

ε
. (2.8)

Substituting from (2.2) and (2.4) into (2.8), one can easily show that

J′( f ; f ′) =
1

2

∫ T

0

∫
I

w(t, k)(E(t, k) − E0(k))

(∫
C(k)

(û · û′
+ û · û′

) dS(k)

)
dk dt, (2.9)

where the bar represents the complex conjugate and û′
is the Fourier transform of

the solution of the Navier–Stokes equation linearized around the state u, i.e.

L′q ′ �

[
∂t u′ + u′ · ∇u + u · ∇u′ + ∇p′ − ν�u′

∇ · u′

]
=

[
f ′

0

]
, (2.10a)

u′(t = 0, x) = 0, (2.10b)

where q ′ = [u′ p′]T and f ′ is the direction in the space U in which the Gâteaux
differential is computed in (2.8).

On the other hand, the Riesz representation theorem (Lebedev & Vorovich 2002)
guarantees the existence of a unique element ∇J ∈ U which satisfies the identity

J′( f ; f ′) =
(
∇J, f ′)

U, ∀ f ′ ∈ U, (2.11)

where (·, ·)U is the L2 inner product. Hereafter, the subscript U is eliminated from
the notation of the inner product. Here we consider the cost functional gradients ∇J
as L2-functions; however, this approach can be easily generalized to different Hilbert
spaces and, in particular, Sobolev spaces (Protas, Bewley & Hagen 2004). Note that
∇J is the steepest ascent direction for the cost functional J. An expression for the
gradient ∇J cannot be derived immediately by (2.9) and (2.11), since in (2.9) the
direction f ′ does not appear explicitly as a factor (it is ‘hidden’ in system (2.10)
defining u′). However, the Gâteaux differential (2.9) can be transformed to the Riesz
form using suitably defined adjoint variables u∗ and p∗, as shown by the following
argument.

For any q∗ = [u∗ p∗]T, we have (u∗, f ′) = (q∗, [ f ′

0
]) by definition and (q∗, [ f ′

0
]) =

(q∗, L′q ′) by (2.10). Therefore,

(u∗, f ′) = (q∗, L′q ′)

= (L∗q∗, q ′),
(2.12)

where the adjoint operator L∗ is

L∗q∗ =

[
−∂t u∗ −

[
∇u∗ + ∇u∗T]

u − ∇p∗ − ν�u∗

−∇ · u∗

]
, (2.13)

which was obtained by integration by parts. Note that the boundary terms resulting
from integration by parts in space cancel out due to the periodic boundary conditions.
Assuming u∗(t = T , x) = 0, the terms

∫
�2 u∗ · u′|t = T dx and

∫
�2 u∗ · u′|t = 0 dx, resulting

from integration by parts in time, also vanish since u′(t = 0, x) = 0.
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By Parseval’s identity,

(L∗q∗, q ′) = (L̂∗q∗, q̂ ′
)

=

∫ T

0

∫ ∞

0

(∫
C(k)

L̂∗q∗ · q̂ ′
dS(k)

)
dk dt, (2.14)

where the hat represents the Fourier transform. Since (L∗q∗, q ′) is real-valued,

(L∗q∗, q ′) = 1
2
((L̂∗q∗, q̂ ′

) + (L̂∗q∗, q̂ ′
)). Therefore,

(L∗q∗, q ′) =
1

2

∫ T

0

∫ ∞

0

(∫
C(k)

(L̂∗q∗ · q̂ ′
+ L̂∗q∗ · q̂ ′

) dS(k)

)
dk dt. (2.15)

A comparison between (2.9) and (2.15) suggests that if the following choice is made
for the right-hand side expression in the equation for the adjoint variable q∗,

L̂∗q∗(t, k) =

[
χ

I (k)w(t, k)(E(t, k) − E0(k))û(t, k)

0

]
, (2.16)

with χ
I the characteristic function of the interval I , then the adjoint operator

can be used to re-express Gâteaux differential (2.9) as J′( f ; f ′) = (L∗q∗, q ′). This,
together with the Riesz identity (2.11) and the duality expression (2.12) implies that
J′( f ; f ′) = (u∗, f ′) = (∇J, f ′) for any f ′ ∈ U and, therefore,

∇J = u∗. (2.17)

Hence, the gradient direction ∇J can be conveniently expressed in terms of the
solution of the following adjoint system:

(∂t u∗ +
[
∇u∗ + ∇u∗T]

u + ∇p∗ + ν�u∗)∧(t, k)

= −χ
I (k)w(t, k)(E(t, k) − E0(k))û(t, k), (2.18a)

∇ · u∗ = 0, (2.18b)

u∗(t = T , x) = 0. (2.18c)

By solving the adjoint system to compute the gradient ∇J and using the iterative
process (2.6), one can find an approximation of the minimizer fopt . The optimal

value for the parameter τ (n) in (2.6) is the one that minimizes the function G(τ ) �
J( f (n)+τ A∇J( f (n))) with respect to the real variable τ for fixed f (n) and A∇J( f (n)).
Here a standard line minimization method (Nocedal & Wright 2000) is used to find
the appropriate value of τ at each iteration.

Optimization problems of type (2.5) are examples of inverse problems which often
tend to be ill-posed. This ill-posedness may manifest itself in large magnitudes of
the minimizer fopt . Since such large-magnitude forcing is not very interesting, this
problem can be mitigated by adding a penalty term to the cost functional as follows:

Jη( f ) = J( f ) + 1
2
η ‖ f ‖2, (2.19)

where J( f ) is the same as in (2.4), η ∈ �+ is a constant and ‖·‖ is the norm in U
(L2-norm here). The penalty on the magnitude of the control variable f is determined
by the parameter η. Smaller values of η allow forcings with larger norms and vice
versa. Since the Gâteaux differential of the penalty term η/2 ‖ f ‖2 in direction f ′ is
η ( f , f ′)U, the gradient of the modified cost functional is ∇Jη( f ) = ∇J + η f .

To summarize, the optimization process can be expressed as the following algorithm.
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Figure 2. The energy spectrum of the initial condition (- - -) and the energy spectrum resulting
from the optimal full-band forcing (—). The straight lines represent the −5/3 and −3 slopes.

Algorithm 1.

(i) Choose an initial guess f (0)(t, x); set n= 0.
(ii) Solve Navier–Stokes equation (2.1) forward in time with f = f (n).
(iii) Solve adjoint equation (2.18) backward in time.
(iv) Obtain the cost functional gradient as ∇Jη = u∗ + η f .
(v) Find the length of the step τ (n) through line minimization.
(vi) Update the control variable through (2.6); set n= n + 1.
(vii) Go back to 2.

The loop continues until the optimality condition (2.7) is approximately satisfied, i.e.
∇Jη( f (n)) ≈ 0 in some suitable sense.

In this work, a pseudo-spectral method is used to solve Navier–Stokes and adjoint
equations numerically. Since the adjoint equation is expressed in terms of the Fourier
space representatives and the boundary conditions are doubly periodic, the Fourier
spectral method is arguably the most efficient way to solve it. Time integration
is performed with a Krylov subspace method (see Edwards et al. 1994; Schulze,
Schmid & Sesterhenn 2009). As mentioned earlier, the parameter τ (n) is evaluated by
a line search method. This method uses successive evaluations of the cost functional.
Each evaluation of the cost functional requires solving the Navier–Stokes equation.
Usually between 15 and 25 cost functional evaluations are required for each line
minimization. Therefore, it turns out that the most costly part of the above algorithm
is evaluation of the parameter τ (n).

In the next section, we use this control method to study the effects of forcing on
the scaling properties of the energy spectrum in forced two-dimensional turbulence.
Since to the best of our knowledge adjoint-based techniques have not been employed
to control the spectral properties of a turbulent flow, this study also serves as a
validation for the control method proposed here.

3. Results and discussion
Equations (2.1) and (2.18) are solved with ν =6.5 × 10−5 using 10242 Fourier modes.

The aliasing effect of the nonlinear term is removed by the 2/3 rule. To reduce the
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computational time, the initial condition, u0, is a fully developed turbulent field forced
by a monoscale forcing (see figure 2). The initial guess in step (i) of Algorithm 1 is zero,
i.e. f (0) ≡ 0. The constants of proportionality in (2.3) are C1 = 1.18 and C2 = 64.00.
These values are chosen in order to retrieve a continuous target energy spectrum,
E0(k), with the total energy close to the total energy of the initial condition. The weight
function in (2.4) is w(t, k) = k6

√
t/T in order to normalize the error over different

wavenumbers and also to put more emphasis on the contribution of the error near
t = T , where the termination time is T = 4. Here, the penalization parameter η in
(2.19) is equal to zero.

Based on the types of forcing, the results are divided into two parts as follows:
(i) full-band forcing (§ 3.1);
(ii) band-limited forcing (§ 3.2).
In case (i), the forcing is allowed to be active at any wavenumber. Therefore, it

does not necessarily respect the inertial range assumption of the KLB theory, since it
may add (or remove) energy and enstrophy into (from) the cascading wavenumbers.
We show, however, that the inertial interactions (responsible for the cascades) still
dominate the flow dynamics. This forcing is physically more realistic than the
(theoretically interesting) monoscale forcing. For instance, Welch & Tung (1998)
present a model of the atmospheric flow in which the forcing is due to temperature
gradients and active over a portion of the enstrophy cascade.

In case (ii), the forcing is non-zero only at a few intermediate wavenumbers (i.e.
k ∈ (ke

2, k
z
1)) and a few small wavenumbers (i.e. k ∈ [1, ke

1)) (see figure 1). Therefore,
the scalings of the energy and enstrophy cascades are exclusively due to inertial (triad)
interactions. This forcing resembles the classical band-limited forcing used in most
numerical simulations. However, we do not define the forcing a priori, but calculate
it through the optimization. Note that neither a linear damping nor a hypoviscosity
is imposed as a large-scale sink. Instead, we simply allow the forcing to be non-zero
at a few small wavenumbers (i.e. k ∈ [1, ke

1)) in order to allow for large-scale energy
dissipation, if necessary. As shown in the next section, this large-scale sink of energy
is indeed created by the forcing.

In terms of the optimal control setting, in case (i) the only restriction on the forcing
is to be square-integrable. In other words, the cost functional (J) is minimized over
the function space U = L2([0, T ]; L2(�2)). In case (ii), the control space is

U = { f ∈ L2([0, T ]; L2(�2)) : f̂ (t, k) = 0, |k| ∈
[
ke

1, k
e
2

]
∪

[
kz

1, +∞
)
}. (3.1)

3.1. Full-band forcing

The parameters that determine the scaling ranges are ke
1 = 2, ke

2 = kz
1 = 20 and kz

2 = 200.
Figure 2 shows that the optimal control method gives the spectral slopes predicted by
KLB theory. This energy spectrum remains (almost) stationary on the time interval
T/2 � t < T , where T =4 ≈ two eddy turnover times. In figure 3, the instantaneous
vorticity fields produced by a monoscale forcing (a) and the optimal forcing (b)
are compared. It is obvious that the optimal forcing produces more small-scale,
filamentary structures.

We now present some properties of this optimal forcing. An interesting quantity
is the contribution of the forcing to the energy spectrum of the velocity field. This
quantity is defined by

F (t, k) =

∫
|k|=k

Re{ f̂ (t, k) · û(t, k)} dS(k), (3.2)
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Figure 3. Vorticity fields resulting from the band-limited forcing (a) and the optimal
full-band forcing (b).
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Figure 4. The energy is mostly injected at k = 20 by the external forcing. Different lines
correspond to different time slices. The inset shows the corresponding enstrophy injection.

and indicates whether the forcing injects energy into (if positive) or removes energy
from (if negative) mode k. Figure 4 shows that the optimal control injects energy
into the system mostly at wavenumber k = 20 (i.e. the wavenumber at which the
spectral slope changes from −5/3 to −3: see figure 2). This is a non-trivial result
since the control method allows the forcing to act over the whole wavenumber range.
The energy injection by forcing decays to zero exponentially for k � 20. Enstrophy,
however, is mostly injected at small scales, as shown in the inset of figure 4. For
1 � k � 6, the optimal forcing removes energy from the system, which creates a sink
of energy in large scales. Since energy is transferred to larger scales, a mechanism to
dissipate it is necessary in order to reach a statistically stationary state in forced two-
dimensional turbulence. Moreover, Tran & Shepherd (2002) proved that the presence
of a large-scale sink of energy is necessary in order to obtain the dual cascades with
−5/3 and −3 slopes when the forcing is monoscale or band-limited. In the present
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Figure 5. The energy spectrum of the forcing at different time slices. As time increases, the
energy level of the forcing decreases to zero.

case, where the forcing is full-band, the large-scale energy dissipation seems to be
necessary, and is produced automatically by the optimal control method.

The energy spectrum of the forcing which is defined by

Ef (t, k) =
1

2

∫
|k|=k

| f̂ (t, k)|2 dS(k), (3.3)

is plotted in figure 5 for several time slices. It shows that the forcing is active on
a wide range of scales, which means that the energy and enstrophy cascades are
not inertial ranges. The forcing decays to zero as time increases (also consistent
with figure 4). This decay is an artefact of the control algorithm. Since we start
with a zero initial guess (i.e. f (0) ≡ 0) and the gradient of the cost functional is zero
at t = T (see (2.18)), the forcing remains equal to zero at t = T for all iterations,
i.e. f (n)(T , x) ≡ 0.

It is also necessary to examine the dynamical properties of the flow generated by
the optimal forcing, since one can generate a random phase vector field with −3
(or −5/3) energy spectrum (and no dynamics or cascades). Therefore, we need to
check that the resulting flow is dynamically active. As mentioned earlier, the triad
interactions determine the dynamics of the energy and enstrophy cascades associated
with the nonlinear term in the Navier–Stokes equation. In the two-dimensional case,
they transfer most of the energy to larger scales and most of the enstrophy to
smaller scales. Since our optimal forcing is non-zero on the cascading ranges, it
can significantly affect these transfers. In the following, we will show that the triad
interactions still dominate the dynamics of the flow in the presence of the optimal
control forcing.

For each wave vector triad k, p and q, we use the method introduced in Maltrud &
Vallis (1993) to calculate the energy transfer function Tkpq . The enstrophy transfer
function, Skpq , is related to energy transfer function by Skpq = k2Tkpq . The positive
values of the quantity Tkpq (Skpq ) correspond to energy (enstrophy) transfer rate into
mode k due to interactions with modes p and q. Similarly, the negative values of
these quantities correspond to the energy and enstrophy transfer rates out of mode k.
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Figure 6. The time-averaged energy (Tkp) and enstrophy (Skp) transfer functions.
(a) Tkp, k = 10. (b) Skp, k = 40

We simplify the transfer functions (and make them consistent with the statistical
KLB theory) by averaging over one of the wave vectors and defining

Tkp =
∑

q

Tkpq . (3.4)

Since we consider isotropic turbulence, it is appropriate to average over angles in
wavenumber space. This further simplifies the calculations and leads to the following
definition of the energy transfer function in terms of two wavenumbers:

Tkp =

∫
|k|=k

∫
| p|=p

Tkp dS( p) dS(k). (3.5)

The two-wavenumber enstrophy transfer function, Skp , is defined similarly, and is
related to Tkp by Skp = k2Tkp .

The time-averaged energy and enstrophy transfer rates are plotted in figure 6 for
the fixed wavenumber k = 10 (for energy) and k = 40 (for enstrophy) and in terms of
p. The data are noisy, since the transfer functions are averaged over a relatively short
time interval (0 � t � 4). However, some interesting features may be observed. In a
neighbourhood of k = 40, the enstrophy transfer function is positive for p <k while
it is negative for p >k. Similar behaviour is observed for wavenumbers 25 � k � 150
(not presented here). This shows that the enstrophy is mostly transferred to smaller
scales on this range of wavenumbers. On the other hand, in a small neighbourhood of
the wavenumber k, the energy transfer function is negative for p <k and positive for
p >k, which shows an energy transfer to larger scales. These results provide evidence
that the optimal forcing respects the directions of the energy and enstrophy cascades.

The energy and enstrophy fluxes

ΠE(k) = −
∫ ∞

k

∫ ∞

0

Tκp dp dκ, ΠZ(k) = −
∫ ∞

k

κ2

∫ ∞

0

Tκp dp dκ (3.6)

show the flux of energy and enstrophy across wavenumber k (see Maltrud & Vallis
1993, for details). Figure 7 shows the time-averaged fluxes normalized by the maximum
of their absolute values. Since ΠE(k) < 0 for k ∈ [3, 30) (except k =6) the energy
fluxes are upscale on average. The dominant downscale flux of enstrophy is clear for
k ∈ (15, 150) since ΠZ(k) > 0 over this range.
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There is another independent way of checking the direction of energy and enstrophy
cascades. In their proof, Gkioulekas & Tung (2007) present a sufficient condition for
the existence of the upscale energy and downscale enstrophy cascades in a statistically
stationary state. This condition is

G(t, k) � 2νk2E(t, k) − F (t, k) > 0, (3.7)

where E(t, k) is the energy spectrum as defined in (2.2) and F (t, k) is the energy
injected (or removed) by the forcing calculated through (3.2). Note that the inequality
holds for band-limited forcings and any wavenumber, k, outside the bandwidth of
the forcing, since F (t, k) = 0 for these modes. Figure 8 shows the quantity G(t, k)
for the optimal forcing and for several time slices. Note that the time-dependence
of the energy spectrum can be eliminated since a statistically steady state is considered;
however, F (t, k) is still time-dependent. Figure 8 shows that the inequality (3.7)
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Figure 9. The controlled energy spectrum (with band-limited forcing) at t = 7T /8 (—) and
the energy spectrum resulting from the conventional band-limited forcing and inverse viscosity
(- - -).

is satisfied and therefore, on average, energy is transferred to larger scales while
enstrophy is transferred to smaller scales.

In summary, our results demonstrate the existence of a forcing which is consistent
with the predictions of KLB theory (i.e. coexisting cascades of energy and enstrophy
with −5/3 and −3 spectral slopes). The upscale energy and downscale enstrophy
cascades are active under this forcing. However, these cascades are not inertial ranges
since the forcing is active on a wide range of scales including the cascade ranges. The
forcing injects energy mostly around the wavenumber at which the slope of the energy
spectrum changes from −5/3 to −3. Moreover, it automatically removes energy from
large scales and produces a statistically steady state.

3.2. Band-limited forcing

We now confine the forcing to the space of band-limited functions defined in (3.1).
Since ke

1 = 3, ke
2 = 18, kz

1 = 25 and kz
2 = 200, the forcing is non-zero only for the

wavenumbers k ∈ [1, 2] ∪ [19, 24]. Note that conventionally, energy is removed from
large scales by Ekman drag or by inverse viscosity. Here, we do not use any energy
dissipative mechanisms at large scales. Instead, we simply allow the forcing to be
non-zero at the largest scales. The forcing may remove the energy from those scales if
necessary (as the following results demonstrate, this is in fact the case). The advantage
of this method is that the energy injection and large-scale energy dissipation are now
determined by the control procedure alone: they are not fixed a priori .

Figure 9 shows the energy spectrum resulting from the band-limited optimal forcing
at t = 3.5 (note that in this case T =4 ≈ four eddy turnover times). The energy
spectrum follows the KLB scaling law E ∼ k−5/3 for a decade of wavenumbers and
E ∼ k−3 for a quarter of a decade. As expected, the enstrophy range is extended over
a shorter range of wavenumbers compared to the previous case, where full-band
forcing was used. The energy spectrum resulting from a conventional band-limited
forcing and inverse viscosity is given for comparison (dashed line in figure 9).

The vorticity field at t = T is presented in figure 10(a). Figure 10(b) shows the
instantaneous non-zero component of ∇ × f in physical space. It appears that the
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Figure 10. The vorticity field resulting from the optimal band-limited forcing and the curl of
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forcing is homogeneous and isotropic. However, more careful investigation shows that
the forcing is particularly aligned in favour of enstrophy injection into the system. To
see this, note that the total energy and enstrophy injections are given by

∫
�2 f · u dx

and
∫

�2 f · (−�u) dx, respectively. Therefore, a forcing aligned with velocity injects
energy more efficiently while a forcing aligned with −�u injects enstrophy more
efficiently. Figure 11 shows the probability distribution function of these alignments
over time and space, where θe and θz are, respectively, the distributions of the angles
�( f , u) and �( f , −�u). These figures reveal that the forcing is aligned such that the
enstrophy injection is relatively more efficient than the energy injection. Note that in
the case of a random phase forcing (which is conventional in numerical simulations of
two-dimensional turbulence) there are no preferential alignments of the forcing with
the velocity field. Figure 12 shows the time correlation of the optimal forcing defined
as 〈 f (x, t) · f (x, t + τ )〉, where 〈 〉 denotes the average in time and space. The time
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Figure 13. Contribution of the forcing to the energy spectrum at t = 19T /20.

correlations of the velocity and the deformation tensor Dij =1/2((∂ui/∂xj )+(∂uj/∂xi))
are given for comparison. The time correlation of all elements of the deformation
tensor (almost) coincide, and therefore, only one of them (the non-diagonal element)
is plotted. The curves are normalized by the correlation at τ = 0. It shows that the
time correlation of the optimal forcing is relatively small and almost equal to the time
correlation of the strain rate. This suggests a connection between the time-dependence
of the forcing and the strain rate.

The energy contribution to the system from the external forcing (i.e. F (t, k)) is
shown in figure 13. Energy is injected in the wavenumbers k ∈ [19, 24], while it is
removed from largest available scales, i.e. k ∈ [1, 2]. This agrees with the fact that a
sink of energy at large scales is a necessary condition for achieving the KLB limit in
a finite domain. Since the forcing is band-limited, the inequality (3.7) is automatically
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satisfied on the range k ∈ [3, 18] ∪ [25, +∞). Therefore, the upscale energy and
downscale enstrophy fluxes are dominant.

4. Conclusions
We have developed an optimal control method in order to study the effect of forcing

on the scaling laws of two-dimensional turbulence. We are particularly interested in
discovering whether it is possible to produce the simultaneous dual cascades of energy
and enstrophy and the corresponding scaling laws (i.e. E ∼ k−5/3 on the energy cascade
and E ∼ k−3 on the enstrophy cascade) predicted by the classical KLB theory in a
non-asymptotic sense.

Our results demonstrate that when a full-band forcing is used (i.e. a forcing active
over all scales), the KLB spectral slopes can be observed in a flow with a moderate
Reynolds number. Such forcings clearly violate the inertial range assumption because
some energy is directly injected by the external forcing into the wavenumbers of
the scaling ranges. However, the inverse energy and forward enstrophy cascades
still exist and their dynamics are dominated by the inertial interactions (i.e. triad
interactions). This is similar to the linear forcing suggested by Lundgren (2003) for
numerical simulations of the three-dimensional turbulence. Linear forcing is also
full-band, and therefore interferes with the inertial range dynamics. However, as we
have found here for two-dimensional turbulence, Rosales & Meneveau (2005) showed
that the resulting statistical properties (e.g. stationarity and power-law scaling) of the
flow under linear forcing are similar to the case where the conventional band-limited
forcing active over largest scales is used.

In general, full-band forcings are of interest because they are physically more
realistic than band-limited forcings. Although there is no reason to believe that
the precise optimal forcing found here may be observed in nature, it suggests that
employing more realistic forcings (rather than the random-phase band-limited forcing)
in the studies of two-dimensional turbulence may significantly change the dynamics
of the flow, including those of the dual cascade. In addition, full-band forcings are
much easier to implement in numerical simulations, which do not benefit from the
scale localization of spectral methods.

We also found that the optimal forcing automatically creates a sink of energy at
largest scales. It has already been proved (Constantin et al. 1994; Tran & Shepherd
2002; Tran & Bowman 2003) in the case of monoscale forcing that such an infrared
sink is a necessary condition in order to obtain the dual cascades and KLB scaling
laws. We have observed a similar sink even when the forcing is full-band. Our result
suggests the possibility of generalizing the existing proofs to more general types of
forcing.

In the case of band-limited forcing, the optimal control method still finds a forcing
which results in the KLB scaling laws. However, the −3 range of the spectrum extends
over only a quarter of a decade of wavenumbers. It is possible, however, to extend
this scaling range by increasing the resolution (results not presented here).

Comparison of the energy spectra resulting from our optimal forcing and from the
conventional random-phase band-limited forcing (figure 9) suggests that the details of
the space–time structure of the forcing can crucially alter the statistical properties of
the flow. For example figure 11 shows that the optimal forcing is particularly aligned
in favour of enstrophy injection. Replacing the phase-structure of the optimal forcing
with a random variable (and preserving other properties of it) leads to a much steeper
spectrum of the enstrophy cascade (i.e. E ∼ k−4). This shows that the conventional
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forcing (which is usually random in phase) has determining effects on the scaling
properties of the enstrophy cascade.

On the other hand, small perturbations in the band-limited optimal forcing leads
to a much steeper fall-off of the energy spectrum (close to k−4). Moreover, we have
not succeeded in constructing a simple model of the forcing based on the observed
space–time properties of our optimal forcing. These observations imply that solutions
of optimization problem (2.5) are quite sensitive to perturbations, which is to be
expected given the ill-posed character of the problem. This suggests that the optimal
forcing belongs to a sparse set in the space of square-integrable band-limited functions.
Therefore, it is quite unlikely to be physically realizable. This implies that reproducing
the co-existing dual cascades which follow the KLB scaling laws is unlikely when a
band-limited forcing is used with a moderate Reynolds number.

Finally, we emphasize that the method of controlling the energy spectrum of the
flow introduced here can be used for other problems in fundamental turbulence
research. For example, by making a particular choice of the weight function w(t, k) in
(2.4) one can control the rate at which an initially localized energy spectrum spreads
over all scales. This can provide a different perspective to some problems such as
transition to turbulence and drag (or lift) control in a flow over a rigid body, which
have already been studied through other approaches. Moreover, Gioia & Chakraborty
(2006) showed that the wall friction in a turbulent flow depends significantly on the
energy spectrum of the flow. Therefore, by controlling the energy spectrum one can
also control the turbulent friction in pipe flow. The method could also be used in
some benchmark studies in geophysical fluid dynamics. For instance, in a separate
attempt (not published) we have produced the Gage–Nastrom spectrum (Gage &
Nastrom 1985) of mesoscale atmospheric flow in a forced two-dimensional Navier–
Stokes flow. Furthermore, our method can be easily modified to control the energy
spectrum of the geophysical fluid dynamics models such as the quasi-geostrophic and
surface quasi-geostrophic equations.

In summary, we have used an optimal control theory approach to find a forcing that
produces the simultaneous dual scaling ranges predicted by KLB. Previous studies
(Boffetta & Musacchio 2010; Bracco & McWilliams 2010) have presented strong
evidence in support of KLB scaling in the limit of very large Reynolds numbers.
In the present study, the simultaneous dual cascade with the KLB scaling has been
observed for the first time at a relatively low Reynolds number by employing a
non-conventional forcing. However, the high sensitivity of the energy spectrum to
this forcing suggests that it is unlikely to be observed in nature or in laboratory
experiments.
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