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a b s t r a c t

The onset of fluid-elastic instability in tube arrays is thought to depend primarily on the
mean flow velocity, the Scruton number and the natural frequencies of the tubes. However,
evidence fromexperiments suggests that the Reynolds number is also an important param-
eter, although the available data are insufficient to understand or quantify this effect. We
use high resolution direct numerical simulations to solve the penalized two-dimensional
Navier–Stokes equations in order to accurately model turbulent flow through tube arrays
with a pitch to diameter ratio P/D = 1.5. To investigate the Reynolds number effect we
perform simulations that independently vary the mean flow velocity and the Reynolds
number at fixed Scruton number. Parameters are chosen so that the simulations are well
outside the lock-in regime of resonant vortex excitation. Increasing Reynolds number and
mean flow velocity both have strong de-stabilizing effects for rotated arrays. For in-line
arrays the effect is weaker and not monotonic with increasing Reynolds number andmean
flow velocity. This study clarifies how the onset of fluid-elastic instability depends on
Reynolds number (and hence turbulence intensity) and reduces uncertainties arising from
the experimental data, which usually do not account for the effect of Reynolds number.
It also demonstrates the usefulness of two-dimensional direct numerical simulations to
investigate fluid-elastic instability at turbulent Reynolds numbers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Tube arrays consist of parallel tubes (typically with circular cross-sections) in a periodic pattern and are found in
heat exchangers, boilers, condensers and steam generators. Hundreds to thousands of tubes are typically used in heat
exchangers depending on the application (Païdoussis et al., 2010). Tube arrays in these installations are subjected to cross-
flow, interacting with an external fluid stream which is hotter or colder than the internal flow within the tubes. There are
other situations similar to cross-flow in tube arrays. For instance, wind engineering applications where several slender and
closely spaced flexible structures are exposed to the high speed wind.

The response of the tubes is a fluid–structure interaction (FSI) problem since the tubes often move or bend due to the
external fluid forces. The fluid flow is modified in turn by the tube motion. This is therefore a strongly nonlinear coupled
problem. Fig. 1 shows various tube array configurations for different industrial applications (Chen, 1987); however in this
study, we focus on two cases: in-line and rotated square arrays. Table 1 summarizes the non-dimensional parameters that
characterize this problem.
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Fig. 1. Basic cross-sectional patterns for tube layout in heat exchangers (Païdoussis et al., 2010). The arrow indicates the direction of the cross-flow U . (a)
Normal-triangular, (b) rotated-triangular, (c) normal or in-line square, and (d) rotated or staggered square. We consider in-line and rotated square arrays.

Flow-induced periodic movements (oscillations) of the tubes may cause sudden destruction, especially in tightly packed
arrays, if the vibration amplitude exceeds a critical threshold. This phenomenon was not properly identified until the 1960s
and has led to many failures. MacDonald et al. (1996) reported a long list of tube failures in power plant steam generators.
Damage caused by flow-induced vibration is not limited to equipment containing tube arrays. In 1965 three of eight cooling
towers arranged in two parallel staggered rows at the Ferrybridge power station in England collapsed suddenly to the
synchronization of the wind-induced vibrations with the natural frequency of the structure (Shellard, 1967).

Many attempts have been made by researchers and engineers to better understand this particular FSI problem. Chen
(1968) presented a map of Strouhal numbers for tube arrays as a function of geometry and gap spacing and the data have
been used widely for industrial designs by engineers. Connors (1970) introduced the self-excitation phenomenon in tube
arrays caused by energy transfer from fluid flow to tubes. He proposed a simplified theory, the displacement mechanism, to
evaluate tube instability which was later termed fluid-elastic instability (FEI). FEI is characterized by an exponential increase
in tube vibration amplitude and is distinct from tube vibration due to resonancewith shed vortices. Lever andWeaver (1982)
developed a theoreticalmodel for FEI inwhich instabilitywas attributed to themovement of the separation point on the tube
surfaces. Price and Païdoussis (1984) proposed a quasi-static model for the flow-induced forces to analyze the instability
for the case of one-degree-of-freedommechanism. Lever andWeaver (1986a,b) proposed a simplified theory of fluid-elastic
instability derived by calculating the forces on a single tube moving periodically in a curved channel. Soon after, Chen
(1987) introduced a newmodel in which fluid forces were simply defined as an empirically determined function of the tube
position, velocity and acceleration. Based on experimental measurements Blevins (1984, 2001) proposed a guideline for
heat-exchanger design by plotting the critical flow velocity as a function of the mass-damping ratio of tubes. However, he
did not explicitly include other parameters such as geometry or gap spacing.

Most importantly, none of these experimental and heuristic theoretical models of FEI account explicitly for the influence
of turbulence intensity or Reynolds number. Indeed, even the qualitative effect of turbulence, either stabilizing or de-
stabilizing, is unclear in the literature. Nevertheless, the Reynolds number for flow through tube arrays is large enough
that the flow is turbulent, 103

≤ Re ≤ 106 depending on the type of cross-flow fluid (steam, air or water).
Tube excitations are attributed to four distinct mechanisms: vortex-induced vibrations (VIV), turbulence buffeting, acoustic

excitation and fluid-elastic instability. In this study, our main focus is the role of turbulence in the FEI mechanism, which is
usually the most dangerous form of fluid-induced motion for tube arrays.

Analysis of the cross-flow in tube arrays using analytical or numerical/computational approaches is complicated for two
main reasons. First, the geometry of the tube array changes due to the excitations caused by acting fluid forces. Secondly,
the flow has a complex coherent vortex shedding structure and becomes turbulent at moderate Reynolds numbers due to
the interaction of the fluid with (moving) tubes. The effect of turbulence, as measured by the Reynolds number, on FEI of
tube arrays is our main concern in this study. The available data on the effect of turbulence intensity and Reynolds number
is conflicting. Indeed, increasing the Reynolds number might be predicted to have either a stabilizing effect (because of
increased turbulent damping or a de-stabilizing effect (because of increased fluid forces or a wider range of vortex shedding
frequencies). The effect of Reynolds number and turbulence intensity could also depend on the geometry of the array (e.g. in-
line or rotated).

Knowing that the turbulence level depends on Reynolds number, Franklin and Soper (1977) claimed that turbulence is
destabilizing, i.e. it decreases the critical velocity for the onset of FEI. On the other hand, experimental data of Southworth and
Zdravkovich (1975) suggest that turbulence has a stabilizing effect for the in-line case. Experiments investigating the effect of
turbulence are difficult because, for a fixed flow velocity, Reynolds number is a function of kinematic viscosity which makes
it difficult to evaluate the effect of Reynolds number and cross-flow velocity separately. In experiments changing viscosity is
not easy since it is a basic fluid property and in most cases is only weakly dependent on experimentally controlled variables
(e.g. temperature, pressure). Nevertheless, Mewes and Stockmeier (1991) were able to adjust the viscosity in a special fluid
mixture and found that lowering the viscosity (i.e. increasing the Reynolds number) eliminated FEI in a normal triangular
array, again suggesting that turbulence is a stabilizing effect.

In order to clarify the effect of turbulence we use two-dimensional pseudo-spectral direct numerical simulations (DNS)
to perform numerical experiments which are very difficult to perform physically. The experiments separate the effects of
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Table 1
Key non-dimensional parameters for tube arrays subjected to cross-flow (Blevins, 2001; Nakamura et al., 2013). U is the cross-flow velocity (we use the
gap velocity Ug defined in Section 3.3), fN is the natural frequency of the tubes, D is the diameter of the tubes, ν is the kinematic viscosity, fS is the vortex
shedding frequency, m is the mass per unit length of the tubes, δ ≈ 2πζ is the logarithmic decrement of tube response (where ζ is the damping ratio of
the tubes), ρ is the density of the fluid, and u′ are turbulent velocity fluctuations.

Non-dimensional parameter Definition Physical meaning

Reduced velocity (Ur ) U
fND Normalized cross-flow velocity

Dimensionless amplitude Ay
D Vibration amplitude/tube diameter

Reynolds number (Re) UD
ν

Inertia force/viscous force

Strouhal number (St) fSD
U Normalized vortex shedding frequency

Scruton number (Sc) 2mδ

ρD2 Mass ratio × damping ratio

Turbulence intensity (TI) ⟨u′
⟩

U RMS of turbulence fluctuations/mean flow velocity

reduced velocity and Reynolds number (and hence turbulence intensity). We assume doubly periodic boundary conditions
with four tubes in each periodic unit cell. The accuracy of two-dimensional simulations for predicting the onset of FEI for
in-line arrays was confirmed in previous work (Kevlahan, 2011; Shinde, 2014) and is explained and validated in detail in
Section 4.3. The periodicity assumption is justified by the periodic geometry of industrial tube arrays over many rows, and
a 2 × 2 tube arrangement in the periodic unit cell is the smallest that allows for both in-phase and out-of-phase motions of
adjacent tubes (which are the dominant instability modes).

In the following section we review the experimental results and theory of flow-induced vibration phenomenon (Sec-
tion 2). Then in Section 4 we present the mathematical model and the numerical method. We finally present the simulation
results and discuss the results in Sections 5 and 6. The main conclusions of the study are summarized in Section 7.

2. Flow-induced vibration (FIV) in tube arrays

Flexibly mounted tube arrays, subjected to cross-flow, begin to vibrate due to the energy gained from the fluctuating
forces (drag and lift) exerted by the fluid. Flow past a fixed tube array has a complicated structure; however, interaction
of the moving tubes with the fluid and adjacent tubes increases the flow complexity due to the interaction of the moving
wakes from adjacent rows and columns of tubes.

In this sectionwe briefly review the various types of vibrational responses (excitationmechanisms) of tubes in cross-flow
caused by lock-in, fluid-elastic instability and turbulence buffeting (excluding acoustic excitation) using the classification
introduced by Chen (1987) (Fig. 3). In particular, we consider the effects of parameters such as flow velocity, turbulence
level, Scruton number, natural frequency and geometry of the array on excitations and instability.

2.1. Vortex-induced vibration (VIV)

When a fluid passes a structure sufficiently rapidly (e.g. Re > 60), it generates vortices in the wake region behind the
body. This phenomenon (also known as Kármán vortex shedding) imposes a periodic surface pressure on the body causing
flexible structures to oscillate. The vortex street formed behind the structure and parallel to the flow direction, regardless
of the geometry of the structure, are usually similar. The vortex shedding frequency is characterized by a non-dimensional
parameter called the Strouhal number St ,

St =
fSD
U

, (1)

where fS is the vortex shedding frequency, U is the cross-flow velocity (usually the mean or up-stream velocity U∞ or
sometimes the mean velocity in the gap between tubes Ug ), and D is the characteristic length scale of the structure. The
Strouhal number increases with increasing packing density (pitch to diameter ratio) of the array from about 0.2 (for an
isolated tube) to about 0.5 for an in-line array (Fitzhugh, 1973) based on gap flow velocityUg (or St = 6.0 based on upstream
velocity U∞).

The Strouhal number is important because tube motion is excited if the vortex shedding frequency is close to one of the
natural mechanical frequencies of the tube 3. Since the rate of energy input can exceed the rate of energy damping in the
array, high amplitude vibrations (resonance) may occur. This phenomenon is known as the lock-inmechanism and must be
avoided in tube arrays due to the possibility of destroying the tube array. American Society of Mechanical Engineers (ASME)
design standards (ASME, 1995) propose an empirical guideline for the range of frequency ratios to be avoided,

|fN − fS | ≥ 0.3fN , (2)

or equivalently, in terms of reduced velocity Ur and Strouhal number St we require that

Ur ≤ 0.7/St and Ur ≥ 1.3/St. (3)
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For the in-line arrays considered here we should ensure that the critical velocity Ucr ≥ 3.7 to ensure FEI is well-separated
from lock-in. Similarly, we should ensure Ucr ≥ 2.6 to avoid lock-in for the rotated arrays.

Vortex induced vibration is an important phenomenon for three reasons. First, the vortex shedding frequency bandwidth
is not always narrow, particularly in turbulent flows, and excitation may occur if the vortex shedding frequency band
overlaps thenatural frequency of the tubes. Secondly, lock-inmay cause transitory oscillations in the tubes if the flowvelocity
is gradually increased from zero to its operating value if the operating value exceeds (3). Finally, although synchronization
mostly occurs in transverse oscillations (caused by lift force) in high-density fluid flows can induce stream-wise vibrations
at a frequency approximately twice the vortex shedding frequency (2fS) (Chen, 1978; Nakamura et al., 2013). Therefore, in
the present work we have been careful to choose parameters such that the lock-in region is well-separated from the region
of fluid elastic instability (see Section 2.2).

2.2. Fluid-elastic (self-excited) instability (FEI)

Roberts (1966) was probably the first to observe that a single row of tubes responded to cross-flow by high amplitude
transverse vibrations well outside the lock-in region. He proposed that the phase lag between periodic fluid forces and
periodic tubes displacement (response) is the cause of such behavior. Four years later Connors (1970) used linear stability
analysis (assuming induced flow forces varies due to the interaction of adjacent tubes) to suggest a similar displacement-
induced vibration mechanism. Connors’ quasi-static model predicted that the critical velocity for FEI scales like the square
root of Scruton number. FEI is the main cause of short term damage in heat exchangers (Païdoussis et al., 2010).

More precisely, FEI is usually understood as an ‘‘negative damping’’ of tube oscillations where a phase lag between the
fluctuating tubemotion and fluid forces produces an effective negative damping in the simple harmonic oscillator model for
tube vibration. The response of an individual tube is modeled as a simple harmonic oscillator, where the fluid forcing due
to vortex induced vibration or turbulence reduces the effective damping ratio. For sufficiently large cross-flow velocities
the phase lag between the periodic motion of the tubes and the periodic fluid forces generates a net negative damping
ratio that causes the amplitude of tube oscillation to increase exponentially with increasing flow velocity. Note, however,
that the negative damping explanation was not verified in a numerical study that carefully separates potential flow and
vortical effects (Kevlahan, 2011). In particular, the negative damping theory was found to significantly overestimate the
onset of FEI. The negative damping explanation, although intuitively reasonable and leading to qualitatively accurate results,
is incomplete.

Evidence from experiments suggests that the critical flow velocity (onset of FEI) scales approximately with Scruton
number (Table 1) like

Ucr

fND
= CScα. (4)

Experimentally derived constants a and b are given in Table 2. The given critical velocity Ucr is a conservative lower bound
for the onset of instability (Chen, 1987) and not a precise characterization of the onset of instability. Note that the effects
of turbulence intensity and Reynolds number are not accounted for independently of cross-flow velocity. A widely used
experimental dataset for prediction of FEI is the empirical data published by Blevins (1984), which simply shows the stable
and unstable regions based on a scaling like CSc1/2 (as found by Connors (1970)) with constant C = 1.7 picked so the
stability bound is below 90% of the available experimental data for Sc > 1.4 (Fig. 2). We will mostly refer to these data,
since both the lower bound (conservative) and the mean value of the critical velocity are illustrated. The square root scaling
appears to be valid except at very low Scruton numbers, although the semi-empirical model of Lever andWeaver (1986a,b)
(discussed below) predicts a linear scaling for large Scruton numbers.

Combining this conservative FEI criterion Ucr ≥ 1.7Sc1/2 with (3) suggests that to clearly separate lock-in from FEI we
require

Sc ≥ 0.59/St2. (5)

Therefore, since St ≈ 0.35 for the in-line arrays we consider and St ≈ 0.5 for the rotated arrays we require Sc ≥ 4.8
or Sc ≥ 2.3 respectively. At smaller Scruton numbers the effects of lock-in and FEI are combined. In addition, the theory
of Lever and Weaver (1986b) predicts multiple regions of FEI stability at small Scruton numbers (see Fig. 2).

A simple semi-empirical model of FEI based on modeling the flow as a single vibrating tube in a curved channel was
developed by Lever and Weaver (1986a,b). This model gives a linear, rather than square root, scaling Uc ∝ Sc for Sc ≫ 1,
but predicts multiple stability regions for fixed small Scruton number below an array-dependent threshold (see Fig. 2). The
linear scaling for large Scruton numbers appears to be inconsistent with the experimental data, but the multiple stability
regions is consistent with the spread of data points at small Scruton number. Again, this model does not include turbulence
effects and is based on a negative damping mechanism for FEI due to a phase lag between fluid forces and tube motion.
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Table 2
Lower bounds (Chen, 1987) on critical velocity for in-line and rotated square
tube arrays: the critical velocity is assumed to scale like CScα . P/D is the
pitch to diameter ratio characterizing the spacing of the array. Note that the
relevant structural parameters are measured in vacuum.

C α

In-line square 0.06 < Sc < 1.40 1.48 0.15
1.40 < Sc < 600 1.66 0.50

Rotated square 0.20 < Sc < 600 2.50(P/D − 0.5) 0.50

(a) In-line arrays. (b) Rotated arrays.

Fig. 2. Onset of fluid-elastic instability as a function of Scruton number for in-line and rotated arrays with P/D = 1.5. The experimental data is for a variety
of experiments with different arrays (extracted from Figures 5–6 in (Blevins, 2001)) and the stability curves are calculated from the semi-empirical theory
of Lever and Weaver (1986b). Note that lock-in is well-separated from the region of FEI for sufficiently large Scruton number. The vertical line shows the
fixed Sc = 10 value used for the Reynolds number dependence simulations.

Fig. 3. Different types of response in a tube array subject to cross-flow: lock-in, turbulence buffeting and fluid-elastic instability.
Source: (modified from Chen (1987))

2.3. Turbulence (random) buffeting

At higher cross-flow velocities and Reynolds numbers turbulence fluctuations begin to buffet the tubes. In turbulent
flow random pressure distributions on the surfaces of the tubes induces low amplitude vibrations in which the excitation
level depends on turbulence intensity (TI) and the random behavior of the flow due to the upstream flow turbulence
or the turbulence generated in the tube array itself. In general, the turbulence level increases with increasing Reynolds
number (Chen, 1987). Fig. 3 shows how the vibration amplitude varies with flow velocity (and with Reynolds number). The
turbulence induced vibration amplitude is not usually high enough to constitute a problem. However, random excitation
may induce or modify lock-in or FEI.
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Some experiments have demonstrated that the increases in upstream turbulence intensity can either stabilize or
destabilize self-excited vibrations by increasing or decreasing the critical velocity. This is strong evidence that the Reynolds
number is an important parameter which needs to be accounted for independently of other parameters, such as reduced
velocity and mass-damping ratio, and motivates our numerical study. On the other hand, other experiments have shown
little or no effect of turbulence on instability of tube arrays. Chen and Jendrzejczyk (1981) performedwater-tunnel tests that
partially resolved this problem; depending on the turbulence characteristics of the flow, both stabilizing and destabilizing
effects exists. This statement was verified later by Soper (1982).

The best attempt to study the effect of Reynolds number itself, independent of other flow properties, on fluid-elastic
instability was performed by Mewes and Stockmeier (1991). They made measurements on flow induced instability using a
fluid mixture whose viscosity could be varied such that 0.7 ≤ ν/νwater ≤ 87.3. They were able to eliminate FEI in a normal
triangular array by decreasing ν/νwater from 2.52 to 0.7 (i.e. increasing the Reynolds number).

The role of turbulence in FIV is entangled with both cross-flow velocity (the vertical axis in Fig. 2) and Scruton number
(the horizontal axis in Fig. 2). If the fluid is not changed, the Reynolds number increases proportional to cross-flow velocity.
Low Scruton numbers are associated with high Reynolds numbers (e.g. Re = O(106) for water at Sc = O(10−1)), while high
Scruton numbers are associated with low Reynolds numbers (e.g. Re = O(104) at Sc = 102 for water vapor).

In principle, we expect that increasing Reynolds number should affect stability in three main ways. First, increased
turbulence could increase the effective fluid damping due to increased turbulence damping, thus stabilizing the tubes.
Secondly, the vortex shedding frequency spectrum could broaden, with multiple shedding frequencies, as the flow becomes
more turbulent (see Fig. 17). Therefore, there is a possibility that the presence of multiple shedding frequencies increases
the chance of exciting an unstable oscillation mode. Thirdly, turbulence intensity could increase, which might lead to more
intense vorticity and hence higher fluctuating fluid forces that could trigger an instability.

Although turbulence buffeting has been a well-known factor in tube excitations for decades, the question of precisely
how turbulence affects the stability of tube arrays, particularly the FEI instability, remains open and is the main subject of
the present investigation.

3. Mathematical model

In the previous section we reviewed the three main classes of flow-induced vibration of tube arrays (lock-in, turbulence
buffeting and FEI) and the main empirical models for FEI (based on negative damping). The role of turbulence is rarely
examined explicitly, and when it is found to sometimes destabilize and sometimes stabilize the tube response.

In this section we describe how we efficiently and accurately model the problem in order to better understand the role
of Reynolds number and turbulence in the onset of FEI.

We begin with a mathematical formulation for modeling fluid flow past tube arrays, and then describe the numerical
methods used for solving those mathematical models. Finally, the dynamical model for the interaction of tubes with the
fluid or other tubes is presented. Since computational cost and efficiency of the method is of primary importance, some
notable features of the pseudo-spectral numerical are described.

Because accurately computing turbulence is essential, we use a direct numerical simulation (DNS) approach to resolve
all active length scales of the flow without subgrid scale turbulence models.

3.1. Fluid equations

In this section we describe concisely the model used for this particular fluid–structure interaction problem, originally
developed by Kevlahan and Ghidaglia (2001). As mentioned in the introduction, we use a two-dimensional approximation
to the fluid flow and tube response with doubly periodic boundary conditions.

The Navier–Stokes equations for a fixed mean flow U∞ are
∂u
∂t

+ (u + U∞) · ∇u +
1
ρ

∇P = ν∆u, (6)

where u is fluid velocity, P is the absolute pressure, ρ the fluid density (assumed constant) and ν the viscosity. The mass
continuity equation (conservation of mass) for incompressible flow is

∇ · u = 0. (7)

Eqs. (6) and (7) model fluid flow without solid boundaries. Explicitly imposing no-slip boundary conditions on moving
tubes is numerically very difficult, especially in a pseudo-spectral method. Therefore, we implicitly impose a Dirichlet no-
slip boundary condition using a Brinkman volume penalization technique (Kevlahan and Ghidaglia, 2001). In other words,
instead of modifying the boundary conditions wemodify the equations in such a way that the solution of the new equations
on the original periodic domain approximates the solution of the Navier–Stokes equations with moving solid tubes. Thus,
instead of u in the Eqs. (6), (7), we solve for the penalized velocity uη as

∂uη

∂t
+

(
uη + U∞

)
· ∇uη +

1
ρ

∇P = ν∆uη −
1
η

χ (x, t)(uη + U∞ − Uo,i), (8)

∇ · uη = 0, (9)
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where Uo,i is the velocity of the ith tube and η is the penalization control parameter (permeability constant) which is very
small (0 < η ≪ 1). The characteristic function χ (x, t) defines the solid regions to be penalized,

χ (x, t) =

{
1 if x ∈ Ωi ∀i,
0 otherwise, (10)

inwhichΩi denotes ith solid zone (tube). Carbou and Fabrie proved that the solution of Eqs. (8), (9) converges to the solution
of incompressible Navier–Stokes equations (6), (7) and the upper bound on global error of the penalized Navier–Stokes
is (Carbou et al., 2003)

∥u − uη∥2 ≤ Cη
1
2 in L2(Ωf ), (11)

where Ωf is the fluid part of the domain. Therefore, by choosing the control parameter η sufficiently small we can enforce
the no-slip boundary condition on the (moving) tubes to the desired tolerance.

The Brinkmanvolumepenalizationmethod imposes the no-slip condition automatically since the solution foruη is always
approximately equal to the tube velocity (Uo,i) on the edge of fluid–solid surface. The boundary conditions on Eqs. (8), (9)
are summarized below:{

u + U∞ = Uo,i on Ωi ∀i,
u is Q -periodic, Q = ]0, L1[ × ]0, L2[.

(12)

3.2. Tube equations

The fluid forces Fi acting on the surface of the tubes are calculated simply by integrating the penalization term over the
cross-sectional area of the tube (Angot et al., 1999),

Fi =
1
η

∮
Ωi

(u + U∞ − Uo,i)dx. (13)

It has been proved analytically that the error in the calculated forces are also O(η
1
2 ) (Angot et al., 1999) and it was shown

by Kevlahan and Wadsley (2005) that the actual error for computed drag force is about 1% if the penalization parameter
η = 10−4 (for appropriate non-dimensional variables).

Considering the fluid forces to be the only external forces acting on the tubes, the response of tubes is modeled by the
damped simple harmonic oscillation equation and in standard form written as

d2Xo,i

dt2
+ 2ζωN

dXo,i

dt
+ ω2

NXo,i =
Fi
m

, (14)

where Xo,i are the tube positions, m is mass per unit length of tubes, Fi is the external forcing due to the fluid motion, the
important parameters ζ = c/(2

√
km) is the damping ratio, and ωN = 2π fN =

√
k/m (the undamped angular frequency)

in which c is damping coefficient and k is the spring constant. Note that c and k are values based on vacuum or uncoupled
fluid-tube measurements and there is additional damping due to the surrounding fluid (included in Fi). We assume that all
tubes are mechanically identical. All tubes are free to vibrate in both the streamwise and transverse directions.

We use Eq. (13) to compute the fluid forces Fi in Eq. (14) which results in a simple ordinary differential equation (ODE)
problem for the forced simple harmonic oscillator.

In some cases two or more tubes can clash or hit each other. This phenomenon mostly occurs in tightly packed arrays
and when the tubes are highly unstable or have anti-phase vibrations. Although we can easily observe the collision between
tubes during the simulation, interpret it as an unstable case and stop the simulation, we have seen stable situations in which
some transient oscillations caused collisions. It is therefore necessary to consider the situation when tubes can collide.

Ignoring change of total momentum at the moment of collision (i.e. assume that
∫ t+δt
t Fidt = 0), we can write

conservation of momentum for the interaction of two tubes (i, j) as⎧⎪⎨⎪⎩
Uk

n,i =
1
2
(1 − α)Uk−1

n,i +
1
2
(1 + α)Uk−1

n,j ,

Uk
n,j =

1
2
(1 − α)Uk−1

n,j +
1
2
(1 + α)Uk−1

n,i ,

(15)

and {
Uk

t,i = Uk−1
t,i ,

Uk
t,j = Uk−1

t,j ,
(16)

where indices k − 1, k denote time steps before and after collision, respectively. α is the restitution coefficient and equals
zero for totally elastic and one for completely inelastic impacts. For two steel bodies colliding with small relative velocities,
α is close to one (Meriam and Kraige, 2013). Notation ‘‘n’’ stands for velocity components in direction of the impact and ‘‘t ’’
for directions tangent to contact line between tubes. Note that the tubes might impact in any direction since the domain is
periodic.
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3.3. Mean and gap velocity and the definition of Reynolds number

There are two different definitions for the average cross-flow velocity in tube arrays. First, is the mean upstream flow
velocity referred as U∞. The second and most commonly used definition is the mean velocity in the minimum gap between
the (fixed) tubes, referred to as Ug . For in-line square arrays, the relation between these two definitions is

Ug =
P

P − D
U∞. (17)

For square rotated (staggered) arrays, depending on pitch-to-diameter ratio, the gap velocity is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ug =

√
2P/D

2(P/D − 1)
U∞, if 1 <

P
D

≤
1

2 −
√
2
,

Ug =

√
2P/D

√
2P/D − 1

U∞, if
P
D

>
1

2 −
√
2
.

(18)

Consequently there are two different Reynolds numbers corresponding to two different definitions of characteristic flow
velocities, and the Reynolds number based on gap velocity is higher. When P/D = 1.5, as in our case, Reg = 3Re∞ for the
in-line square array and Reg = 3/

√
2Re∞ ≈ 2.12Re∞ for the rotated array. In the following sections we will mostly use

Ug to define Strouhal number, reduced velocity and Reynolds number, although previous experimental results have been
expressed based on both definitions.

In the following section we briefly describe the pseudo-spectral numerical method used to solve the model equations
derived in this section. This numerical method is chosen for its accuracy and efficiency at high Reynolds numbers.

3.4. Determination of critical flow velocity in tube arrays

Since our goal is to determine how Reynolds number influences FEI, it is important to define an accurate and robust
criterion for the onset of instability. As discussed in Section 2.2, the critical flow velocity Ucr for FEI is defined as the velocity
at which the tube oscillation amplitude starts to increase exponentially. Chen (1987) defines Ucr as follows: let the position
of a cylinder be

X(t) = A exp((λ + iω)t). (19)

The vibration is damped (stable) if λ is negative. In contrast, the tube motion amplitude increases with time (unstable state)
if λ is positive. Therefore, Ucr is defined as the velocity at which λ changes sign. In practice, Ucr is determined by the point at
which the RMS tube vibration begins to increase exponentially (see Fig. 3).

In a similar manner, we define Ucr in three steps. First, we plot the tube response (YRMS) with respect to upstream flow
velocity. Secondly, similar to Chung and Chu (2006), we check that the FEI region is well-separated from the turbulent
buffeting region. Finally, as shown in Fig. 4 and in Soper (1983), we define Ucr using the intersection of the best fitted line
to the FEI part of the curve with flow velocity axis. The advantage of this definition is that Ucr is specified independent of
buffeting mechanism. The validity of this procedure for defining Ucr is confirmed below in Section 4.3.

Note that in this study the total response of the tube array (RMS values in the transverse flow direction) is calculated
using the average of RMS values for all tubes. However, for highly unstable cases the total response may be averaged over
only some of the tubes in the array. This is due to the complex dynamic of a tightly packed array in which strong oscillations
of a tube may suppress motion of its neighbors due to clashing.

4. Numerical method

4.1. Discretization

Since the problem is naturally doubly periodic, we solve the model equations presented in Section 3 using a standard
Fourier pseudo-spectral scheme similar to that described by Kevlahan (2011). This method is accurate and efficient on
periodic domains and has been found to work well with the Brinkman penalization approximation. The Fourier transforms
are performed using the FFTW 3.3.4 library and the code is parallelized using mpi. Adaptive time stepping is done using a
third-order four stage strong-stability-preserving Runge–Kutta method (Spiteri and Ruuth, 2002). The same Runge–Kutta
method is used for the tube equations. The computations were done on a variety of parallel machines using up to 128 cores.

For accurate and stable results it is important to resolve the turbulence dynamics, which means fully resolving the thin
vortical boundary layer that develops around the tubes. The thickness of this boundary layer,λ, depends on the tube diameter
D and Reynolds number Reg as

λ ∼
D√
Reg

. (20)
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Fig. 4. The critical flow velocity (Ucr ) is defined by the intersection of the best line fitted to data in the FEI region and the flow velocity axis.

A sufficient number of grid points (NB) is needed in the pseudo-spectral/penalization method to fully capture the boundary
layer. This gives

λ ≥ NB∆x = NB
L
N

,

where ∆x is the grid spacing, L is the size of the (square) computational domain and N is the number of collocation points
in each direction. Therefore, since the grid points are equally spaced, the minimum number of grid points in each direction
of the domain is

N ≥ NBNT
P
D

√
Reg , (21)

where NT is number of tube rows (or columns) per periodic unit cell (NT = 2 for our simulations). An appropriate level
of resolution NB is determined by grid convergence tests of the relevant quantities (in this case, RMS lift, drag and tube
oscillation amplitude).

The grid convergence tests for RMS lift, drag and transverse tube oscillation amplitude presented in Fig. 5 demonstrate
that resolving the boundary layer with NB = 4 points is sufficient to give well-converged statistics (results are converged
to at least 1%). The number of grid points increases with Reynolds number like Re1/2g but, because we use a penalization
technique, the grid does not need to change in time to track the motion of the tubes.

Since we simulate Reynolds numbers in the range 150 ≤ Reg ≤ 2.7 × 104, the number of grid points N in each direction
varies between 128 and 2048, or a total of up to four million grid points. Note that the simulations must be run for very long
times, typically O(103) non-dimensional tube crossing times, to capture the instabilities and obtain stationary statistics.

4.2. Boundary smoothing

Approximation of a discontinuous function using Fourier series produces localized errors Gibbs oscillations near the
discontinuity (Trefethen, 2000). In order to reduce these errors around the penalized region we need to modify the
discontinuous region (Eq. (10)) by smoothing the edge of solid–fluid surface. Since the tubes are circular cylinders it is easy
to smooth the cylinder edge using a truncated hyperbolic tangent function,

χ (x, t) =
1
2

(
1 − tanh

(
r(x, t) − D/2

W

))
, (22)

where r corresponds to the distance from center of cylinder and W is a parameter to control the width of the smoothed
band around a cylinder. The solid–fluid boundary is smoothed over three to four grid points. This smoothing has been found
to give good results and not significantly modify the fluid forces or boundary layer flow (Kevlahan and Ghidaglia, 2001;
Kevlahan and Wadsley, 2005; Kevlahan, 2011).

4.3. Validity of the two-dimensional approximation and definition of Ucr

Turbulent flow is naturally three dimensional, and obviously two dimensional simulations neglect non-spanwise
components of vorticity and its effect on the fluid forces and resulting tube vibration. Since in static tube arrays non-
spanwise vorticity develops at Re = O(102) (Kevlahan, 2007), the cases we consider here are all strictly three-dimensional.
Nevertheless, the geometry of the tube array means that spanwise correlations are enhanced and spanwise vorticity
is dominant. Three-dimensional simulations are extremely costly if they are to resolve a sufficient spanwise length
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Fig. 5. Grid convergence tests for the numerical scheme as a function of the number of points NB resolving the boundary layer. The 1 × 1 rotated tube
configuration and Re∞ = 200, Sc = 2 is used for the moving cases. (a) RMS drag (left axis, black) and lift (right axis, red) for both the fixed and moving
cylinder cases. (b) RMS cylinder oscillation amplitude in the transverse direction. These results show that the force calculations are fully converged for
NB = 4 points in the boundary layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

(typicallyO(10) tube diameters). Because of this computational cost, even atmoderate Reynolds numbers three-dimensional
simulations rely on some sort ofmore or less arbitrary turbulencemodel, such as unsteady Reynolds averagedNavier–Stokes
(URANS) or large eddy simulation (LES). These turbulencemodels cannot resolve all scales ofmotion and introduce their own
errors, which are particularly significant when it is the effect of the turbulence itself that is the object of study.

It is not clear which compromise (two-dimensional geometry or turbulence models) is best for studying the specific
question at hand: the effect of Reynolds number on the critical velocity for the onset of FEI in tube arrays. The key question
is whether those properties of the flow that determine the onset of FEI are sufficiently well-captured by two-dimensional
DNS.

Sarpkaya (2004)’s review noted that the degree of spanwise correlation is an important factor in VIV in general. However,
he considered the existing numerical turbulencemodels, both RANS and LES, to be inadequate while three-dimensional DNS
was limited tomoderate Reynolds numbers. In the followingwe discuss recent numerical simulations that suggest that two-
dimensional simulations with a good representation of turbulence can nevertheless accurately estimate the onset of FEI in
tube arrays. We also present results from our own simulations confirming this conclusion.

Shinde (2014) simulated URANS turbulent flow through a fixed tube array at Reg = 2840 and observed that the flow
is approximately uniform in span-wise direction. In addition, Kevlahan and Wadsley (2005) found that at low Reynolds
numbers tube vibration could completely suppress the three-dimensional flow instability, in the sense that for the moving
cylinder case the flow is close to two-dimensional. At Reg = 6.0×104 for amoving cylinder Shinde (2014) directly compared
two- and three-dimensional URANS simulations and found that tube oscillation frequencies were well-predicted by two-
dimensional simulations, although the vibration amplitudes in the unstable three-dimensional case were about 30% higher
than in two-dimensional case. He also found that the results were highly dependent on the type of URANS model chosen,
with some models performing quite poorly.

Most importantly, in a sequence of simulations at Reynolds numbers varying from 1.5 × 104 to 5.1 × 104, Shinde et
al. (2015) found that the experimentally measured Reynolds number for the onset of FEI (equivalent to critical velocity)
is well predicted by two-dimensional URANS simulations, even though they may under-estimate the tube oscillation
amplitude. Indeed, they conclude that two-dimensional simulations are appropriate for developing design standards for
heat exchangers that avoid FEI.

On balance, this evidence suggests that two-dimensional DNS is an appropriate choice in the present investigation, since
such simulations are able to reach much higher Reynolds numbers and do not require choosing and tuning a turbulence
model. DNS resolves all active length scales and temporal frequencies, which is important for accurate FEI calculations.
Below we present two separate verifications of the accuracy of our two-dimensional simulations that are relevant for FEI.

As a first partial validation of our two-dimensional simulations we compare calculated Strouhal numbers with experi-
mental measurements. An accurate Strouhal number (i.e. the dominant vortex shedding frequency) is necessary to properly
capture the onset of FEI. As shown in Fig. 6, the simulation results for Strouhal numbers in the rotated array are consistent
with the experimental data. In addition, for the case of the in-line array, Fitzhugh (1973)’s figure showing the dependence
of Strouhal number on array spacing gives St = 1.02 for a spacing P/D = 1.5 at an unknown Reynolds number. This
experimental result is also consistent with the numerical results shown later in Section 6 in Fig. 17: St = 1.10 at Re∞ = 200
and St = 0.98 at Re∞ = 400. (All Strouhal numbers in this section are based on U∞.)



26 A. Ghasemi, N.K.-R. Kevlahan / Journal of Fluids and Structures 73 (2017) 16–36

2.0

1.5

1.0

0.5

0.0
0 500 1000 1500 2000

Reynolds number

S
tr

ou
ha

l n
um

be
r

Fig. 6. Plot of Strouhal number versus Reynolds number in rotated square array (modified from (Price et al., 1995)). Black symbols correspond to
experimental measurements for different rows in the array and added red diamond signs denote to the simulation results. The Strouhal number and
Reynolds numbers are defined using the upstream velocity U∞ .

Fig. 7. Dependence of tube vibration amplitude on reduced velocity Ur and Scruton number Sc for the rotated array with P/D = 1.5 at Reynolds number
Reg = 1060 (Re∞ = 500). The numerical results are compared with experimental results from Figures 5–6 in Blevins (2001) and the theory of Lever and
Weaver (1986a,b). The white circles show the critical flow velocities based on the definition presented in Section 3.4.

Since Strouhal number is known to be relatively insensitive to three-dimensional effects in tube arrays, we also verify our
calculations directly against experimental data for the onset of FEI in Fig. 7. This is a direct test of the ability of our method
to accurately compute the onset of FEI. We plot contours of RMS tube vibration amplitude for the rotated array as a function
of reduced velocity Ur and Reynolds number Reg compared to experimental data and the stability theory shown in Fig. 2(b).
The white circles showing the numerical FEI stability threshold confirm that our two-dimensional model and definition of
Ucr give results for Ucr that are qualitatively consistent with experiment. Interestingly, there is some evidence at low Sc < 4
of the additional unstable regions corresponding to the unstable ‘‘tongues’’ proposed in the theory of Lever and Weaver
(1986a). The stability bound is certainly inconsistent with the simple Sc1/2 scaling at these small Scruton numbers.

Fig. 8 shows RMS tube response compared to flow velocity for various Sc numbers, confirming the exponential growth of
tube response consistent with the definition of FEI. Similarly, Fig. 9 confirms that in the FEI regime tube oscillation amplitude
also grows exponentially in time. The large amplitudes are clearly not due to turbulence buffeting. These results verify that
our procedure for identifying the critical velocity does indeed correspond to the usual definition of FEI.
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Fig. 8. Semi-logarithmic plot of RMS values versus flow velocity, based on Fig. 7 compared with exponential growth (dashed line).

Fig. 9. Response of a tube in an in-line array subjected to flows at Ur,∞ equal to (a) 2.4 (stable), (b) 2.8 (close to instability threshold) and (c) 3.2 (unstable).

The good qualitative results for Ucr and the fact our definition of Ucr does indeed identify the onset of FEI gives us
confidence that ourmethod is robust and reliable.We now apply it to investigate the dependence of FEI on Reynolds number,
independent of reduced velocity at a fixed Scruton number.

5. Simulation results and discussion

5.1. Basic parameters of the simulation

Our strategy to uncover the effect of Reynolds number on critical flowvelocity is to simulate the flow throughmoving tube
arrays, for a wide range of Reynolds numbers and at a range of flow velocities at which FEI is expected to occur. To separate
the effects of (reduced) cross-flow velocity and turbulence, we independently vary cross-flow velocity and Reynolds number
at a fixed Scruton number.

As mentioned earlier, in order to avoid interference between lock-in and FEI, the parameters are chosen so that
synchronization lock-in does not occur.

As emphasized earlier, simulations are expensive for the moderate and high Reynolds numbers characterizing turbulent
flows. It is therefore crucial to choose the key parameters of the problem such that we capture the desired results using a
minimum of computation. Our choice of parameters is based on the physics of the problem and the experimental studies
reviewed in Section 1.
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We consider two cases: in-line and rotated (staggered) square arrays with a pitch-to-diameter ratio P/D = 1.5 (see
Fig. 1). This is relatively tight spacing typical of the experimental results and industrial installations. The computational
periodic until cell has two rows of tubes, NT = 2 (2 × 2 tubes per periodic domain) since this is the minimal configuration
that allows both the in-phase and anti-phase tube oscillations typical of FEI. We have checked that including an additional
row, NT = 3, gives similar results for vortex shedding and Strouhal number for the fixed tube case. Considering the time
and the available resources, we chose 150 ≤ Reg ≤ 9600 (in-line array) and 210 ≤ Reg ≤ 27 200 (rotated array) to analyze
turbulence intensity and Reynolds number effects on the onset of FEI. We considered a wider range of Reynolds numbers for
the rotated array because this configuration ismuchmore sensitive to variations in Reynolds number. This range of Reynolds
numbers corresponds well with typical experimental values (when this number is reported). For example, Weaver et al.
(1993) considered rotated square arrays with 1392 ≤ Reg ≤ 33 659.

All parameters are non-dimensionalized with respect to the tube diameter, mean flow velocity and fluid density.
Since our focus is the onset of FEI, using the Blevins experimental results (see Fig. 2) we choose parameters such that

the lock-in phenomenon (resonant excitation with vortex shedding) does not occur or interfere with the self-excitation of
tubes. Considering all the factors discussed earlier, for each of the simulations we set the Scruton number Sc = 10 and the
natural frequency fN = 1. In this way, the range of flow velocities where lock-in occurs is fixed and should be sufficiently
well-separated from the fluid-elastic vibrations (see Fig. 3). Note that Sc = 10 is in the middle range of cases considered
in previous experimental investigations, 10−1 < Sc < 103. This is because we want the tubes to oscillate easily and are
unstable at relatively low flow velocities.

In addition to ensuring that the critical velocity for FEI is well-separated from lock-in and that the tubes are unstable
at low flow velocities, the choice of Sc = 10 places us just above (for the in-line array) or in (for the rotated array) the
multiple stability region for small Scruton numbers predicted by Lever and Weaver’s semi-empirical theory (Lever and
Weaver, 1986a,b). These multiple stability regions are shown as a sequence of ‘‘tongues’’ in the lower left of Fig. 2(a) and
(b). If this theory is accurate, it suggests that the flow could be particularly sensitive to turbulence effects at this Scruton
number. Critical flow velocities are calculated as described in Section 3.4 independent of turbulence buffeting level.

Because we use numerical experiments to identify the onset of FEI, and the instability may take a long time to occur,
particularly where it is close to instability threshold, the length of the simulation is an important parameter. Generally, a
longer simulation time gives better converged statistical results, but available computational resources limit the practical
maximum simulation times (especially at the higher Reynolds numbers). We stop the simulations at t = Tend once the fluid
flow regime is fully developed and the tube responses have converged to statistically steady state RMS values to within a
few percent. Tend is therefore not a fixed parameter and is determined separately for each simulation.

5.2. Effect of Reynolds number on fluid-elastic instability in an in-line square array

Contour plot 11(a) shows the RMSvalues of tube vibrations in an in-line array in the transverse flowdirection as a function
of Reg andUr for Sc = 10, where the small black circles indicate simulation results. Fig. 11(c) compares critical flow velocities
with the dashed lines denoting the mean critical Ucr for the experimental results as shown in Fig. 2. It is important to note
that the experimental results do not indicate the Reynolds number range in which they are supposed to be valid, but they
are definitely turbulent (e.g. Reg = O(103–104) or greater) and generally higher at smaller Scruton numbers (because of
differences in cross-flow fluid).

We performed 42 simulations, covering a considerable range of flow velocities above the lower stability bound and
close to the onset of expected FEI, for gap-based Reynolds numbers of 150–9600, spanning both laminar and turbulent
flow regimes. The unstable motion is characterized by transverse vibrations (as shown in Fig. 10), with adjacent columns
moving exactly anti-phase. There is a very sharp increase in RMSoscillation amplitudeswith flowvelocitywhich is consistent
with the dynamics of FEI discussed in Section 2.2. The critical flow velocity (white circles) varies somewhat with Reynolds
number, but is consistent with the experimental data as shown in Fig. 11(c). This consistency with experimental results
further validates our numerical model and choice of model-free two-dimensional direct numerical simulation. Overall, the
critical velocity varies relatively little (by about 14%) from its mean value for the range of Reynolds numbers considered.

The fact that the critical velocity is relatively independent of Reynolds number is consistent with the observations
of Kevlahan (2011) who found that potential flow calculations give accurate results for the critical velocity for a wide range
of phase lags between the cylinder motion and fluid force for the in-line array. We will see in Section 5.3 that, in contrast,
the stability of the rotated array decreases strongly with increasing Reynolds number until quite high Reynolds numbers.

Although the critical velocity for the in-line array remains reasonably close to the experimental data for all Reynolds
numbers, for 150 < Reg < 1200 the tubes are more stable at Reg = 600 than they are at either Reg = 300 or Reg = 1200. In
order to better understand this phenomenon, it is helpful to take a closer look at the vorticity dynamics.

At the anomalously stable Reynolds number Reg = 600 Fig. 15 shows the flow has an extremely regular and wavy jet
like wake without complete vortex shedding. This particular wavy wake that does not occur at other Reynolds numbers and
might be the cause of increased stability at this Reynolds number since the wavelength of the wake appears to precisely
match the gap between the tubes. Interestingly, even the unstable velocities at Reg = 600 have lower vibration amplitudes
than the neighboring Reynolds numbers. If a precise match between the wake structure and the tube spacing have a
stabilizing effect at this Reynolds number, modifying the tube spacing should have strong affect on stability. To check
this hypothesis, we performed other simulations keeping the reduced gap velocity, Scruton and Reynolds numbers fixed
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Fig. 10. Typical trajectories of unstable tube oscillations for an in-line array (at Reg = 9600 and Ur = 12) and a rotated array (at Reg = 6800 and Ur = 8.5).
The in-line array has primarily transverse oscillations while the rotated array has whirling oscillations.

Fig. 11. RMS tube vibration as a function of Reynolds number Reg and reduced flow velocity Ug in (a) the in-line square array (b) the rotated square array.
The white circles correspond to critical flow velocities. In (c) Ucr values are compared with the horizontal dashed lines corresponding to the mean values
from linear fits to the experimental data shown in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

and varying only the pitch-to-diameter ratio from 1.4 to 2.0 (i.e. varying the gap between the tubes from 0.4 to 1.6). The
simulation results confirm that the onset of FEI is very sensitive to the array spacing in the in-line case at this Reynolds
number. Even a slightly tighter array (P/D = 1.4) is unstable whereas looser packings (1.5 ≤ P/D ≤ 2.0) are stable.

Therefore, we conclude that interaction between gap size and wake geometry can sensitively modify the onset of FEI, at
least at low Reynolds numbers in the in-line array.

Interestingly, the results suggest that vibration amplitude does not always grow with Ur and Reg . The most unstable
combination is actually at relatively low velocities and Reynolds numbers Ur ≈ 9 and Reg ≈ 1200. There is another strong
peak at Ur ≈ 10.8 and laminar Reynolds number Reg ≈ 300. This non-monotonicity in Ur and Reg is surprising and we will
see it is quite different from the rotated array case.
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Fig. 12. Critical flow velocity in rotated array (left axis) and tube responses for various flow velocities (right axis). There is a peak in RMS values at
Reg = 6800. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Overall, the results show that FEI of the in-line array is relatively insensitive to Reg and is characterized by a sharp
transition between stable and unstable states with increasing Ur . It is interesting to note, however, that for fixed Sc = 10
and Ur ≈ 8.4 the flow may be either stable or unstable depending on Reg , and that this Reynolds number dependence is
not monotonic. This complicated dependence of critical reduced velocity on Reynolds number could have contributed to the
scatter in the data, where experiments at different Reynolds numbers are plotted together.

5.3. Effect of Reynolds number on fluid-elastic instability in a rotated square array

We now consider the rotated array with the same Scruton number and geometry as the in-line array considered in
Section 5.2. We performed 53 simulations for different cross-flow velocities and Reynolds numbers to investigate how the
instability threshold changes with Ur and Reg . As shown in Fig. 10, the unstable motion is qualitatively different from the
in-line array and is characterized by whirling motion with adjacent tubes moving independently.

The contour plot 11(b) shows RMS tube response (black circles) in the transverse flow direction as a function of reduced
gap velocity Ur and Reynolds number Reg . The white circles show critical flow velocities. Similar to the in-line array, critical
flow velocities are plotted compared to the experimental data for mean Ucr in Fig. 11(c).

In contrast to the in-line array, for the rotated array RMS vibration amplitude increases gradually, smoothly and
monotonically with both the Ur and Reg . This smoother growth in tube vibration is likely due to the fact that, unlike the
in-line case, the wake of the rotated array is characterized by complete vortex shedding and strong vortex dynamics at all
Reynolds numbers (see Fig. 16). There is no abrupt transition to complete vortex shedding and the tube motion and vortex
shedding is not synchronized between adjacent row or columns. In addition, even in the stable region, we observe some
intermittent random turbulence-induced buffeting with an amplitude increasing gradually with Reynolds number.

The most important new information in the Fig. 11(b), (c) is how critical Ur varies with Reg in the rotated array. The
Reynolds number effect in rotated arrays ismuchmore significant than the in-line case, since the criticalUr decreases steadily
bymore than 45% as the Reynolds number Reg increases from210 to 6800. The critical velocity decreasesmonotonicallywith
increasing Reynolds number until Reg ≈ 6800.

For Reg > 6800, our simulation results are not sufficient to compute Ucr since FEI does not appear. However, from the
available results it appears that turbulence buffeting decreases for larger Reynolds numbers, Reg = 6800 to Reg = 27 200,
since the level of RMS fluctuations is lower overall (see Fig. 12). This is in contrast to the simulation results for lower Reynolds
numbers up to Reg = 6800 where turbulence buffeting increases with Reynolds number while Ucr drops considerably. We
tentatively suggest that Ucr may increase (stabilizing effect) at Reg > 6800 since the RMS values are lower in the turbulence
buffeting region.

These results are interesting because we have shown that increasing Reynolds number and reduced velocity have
qualitatively different effect on FEI for in-line and rotated arrays. Rotated arrays appear to be more sensitive to changes
in Reynolds numbers, at least for Reg < 6800. However, the dependence on both Reynolds number and reduced velocity is
smooth andmonotonic. IncreasingUr or Reg always leads to higher RMS tube vibration, probably due to increased turbulence
buffeting. This suggests that the FEI of rotated arrays at high Reynolds numbers should be easier to predict than that of in-line
arrays.

Overall as Fig. 11(c) suggests, critical flow velocity is much larger than the mean Ucr based on experimental data at
low Reynolds number and is less than the mean value for Reg > 800. This finding helps explain the large uncertainty in
experimental studies. It is also appropriate at this point to recall that all the previous experimental data, as well as theories
and design guidelines, have ignored the effect of Reynolds number on FEI or have reported it as an unclear factor. The fact
that in-line and rotated arrays respond differently to increasing Reynolds numbers could have led to this uncertainty.
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Fig. 13. (a) Tube response in an unstable region for an in-line and a rotated array compared to a sine function with the same RMS values. (b) The
corresponding histogram of tube positions for the same tube arrays, compared to sine function.

5.4. Tube vibration dynamics

As noted above, Fig. 11(a), (b) show that the onset of FEI in the in-line array is sharper with respect to a small increase
in the Ur than in the rotated array. The tube vibration responses in these two configurations are also qualitatively different.
Fig. 13 shows typical transverse tube displacements and histograms of tube displacement for in-line and rotated arrays with
the same unstable Yrms/D value of 20%. The responses in the in-line array is closer to a sine wave, in which the displacement
amplitude change slightly over time. On the other hand, the displacement amplitudes of the tubes in the rotated array
vary significantly and rapidly from zero to a relatively high values. This means that rotated arrays have higher maximum
amplitudes than in-line arrays for the same Yrms/D values and RMS values are less representative ofmaximum tube vibration
for rotated arrays than for in-line arrays. In other words, rotated arrays are characterized bymore extreme oscillation events
than the more regular vibrations of the in-line arrays.

6. Discussion: the role of turbulence in FEI

In order to better understand the FEI results of the previous section we consider the equivalent static case of four
fixed tubes per periodic domain. The static case is important for understanding the onset of instability since it is the
unperturbed case that becomes unstable due to the interaction of fluid forces and the mechanical properties of the system.
In Section 2.1 we noted that increasing Reynolds number could affect tube stability in three ways: increasing turbulence
damping (stabilizing), higher fluctuating fluid forces (de-stabilizing) and broadening the frequency of vortex shedding (de-
stabilizing). We will consider each of these effects in turn for the static array.

6.1. Turbulent damping

For small displacements the fluid damping for transverse oscillations may be approximated as (Kevlahan, 2011), 1
2UDCD,

which is proportional to the drag force CD for a given mean flow velocity U and tube diameter D. The level of turbulence
modifies CD compared to its laminar value, and for some turbulent flows CD may also vary with Reynolds number. Fig. 14
shows that the RMS drag force is essentially independent of Reynolds number for the rotated array (it varies by less than
6% from its mean value of 1.57), and increases by just 12% as Reynolds number increases eightfold from 400 to 3200 in
the in-line array. Thus, it is unlikely that increased stability due to increasing turbulence damping is a significant effect of
increasing Reynolds numbers for the rotated arrays. This is consistent with the fact that tube vibrationwas found to increase
monotonically with Reynolds number.

In contrast, for the in-line arrays RMS CD varies by increases by about 25% from its low Reynolds value of 0.52 to its higher
Reynolds number value of 0.71 as Reg increases from 2500 to 5000. This jump in drag appears to coincide approximately
with the transition to more turbulent flow (compare Fig. 15(d) and (e)). This is not an extremely strong effect, but does
suggest that, in contrast to the rotated array, increasing Reynolds number does lead to more damping and hence lower tube
vibration. This is consistent with the results in Fig. 11 which show lower tube amplitudes at higher Reynolds numbers.

6.2. Increasing fluid forces

Wehave seen that drag force is approximately independent of Reynolds number for rotated array, but jumps significantly
for the in-line array as the flow becomes fully turbulent. In contrast, Fig. 14 shows that both arrays feel a large increase in
RMS lift force with increasing Reynolds number. The RMS lift grows steadily with increasing Reynolds number until the



32 A. Ghasemi, N.K.-R. Kevlahan / Journal of Fluids and Structures 73 (2017) 16–36

Fig. 14. Variation in RMS lift CL and drag CD with Reynolds number Reg for the two static arrays at fixed Ur = 3 (based on U∞). Note that RMS drag is
relatively insensitive to Reynolds number while RMS lift increases dramatically with increasing Reynolds number before stabilizing for Reg > 5000.

flows are fully turbulent, at Reg ≈ 5000, where they stabilize near CL = 2 for the rotated array and CL = 1 for the in-line
array.

Even though the lift forces are twice as large for the rotated array, the typical critical Ur for the rotated array is about
twice that of the in-line array. This shows that the rotated array is far more stable than the in-line array, probably because
the whirling tube motions are largely de-synchronized between rows and columns.

Note, however, that for the in-line array the growth in RMS CL (de-stabilizing) is mirrored by the growth in RMS CD
(stabilizing) which suggests the two effects might compensate each other. In contrast, in the rotated array the growth in
RMS CL is not compensated by a corresponding increase in turbulence damping. These results are again consistent with the
FEI results presented in Fig. 11 which show a stronger dependence on Reynolds number for the rotated array until relatively
high Reynolds numbers, Reg > 6800.

6.3. Vortex shedding

We now consider the third possible effect of Reynolds number on FEI: changes in the vortex shedding frequency. Recall
that we have deliberately chosen the simulation parameters so that we are well outside of the lock-in (resonant vortex
shedding) regime for the peak Strouhal frequency. However, it is possible that increasing turbulence could broaden the peak
Strouhal frequency, possibly exciting unstable FEI modes.

Figs. 15 and 16 show representative vorticity fields for the in-line and rotated arrays at a range of turbulent and non-
turbulent Reynolds numbers. The two arrays have very different wake structures before the flows become full turbulent at
Reg > 2400. At the lowest Reynolds numbers Reg = 300 and 600 the in-line flow has a wavy jet-like wake with incomplete
vortex shedding. At intermediate Reynolds numbers Reg = 1200 and 2400 vortex shedding is complete, but vortex shedding
is still largely synchronized between all tubes. In contrast, Fig. 16 shows that the rotated array is characterized by complete
vortex shedding even at the lowest Reynolds numbers Reg = 210 and 425. Vortex shedding from adjacent tubes also de-
synchronizes at amuch lower Reynolds number, Reg = 850. However, once the turbulence is fully developed (Figs. 15 and 16
(e) and (f)) the vortex structure is qualitatively similar for both arrays (although the rotated array has much higher vorticity
levels). These qualitative vortex shedding characteristics are consistent with the FEI results which show the in-line array is
more unstable and the critical Ur in the rotated array has a monotonic dependence on Reynolds number. They also agree
with the observation that critical Ur stabilizes at sufficiently high Reynolds numbers.

Fig. 17 shows the frequency spectrum of the non-dimensional lift force (CL) for one of the tubes in the in-line and rotated
arrays at various Reynolds numbers. These plots illustrate some important qualitative differences between the two arrays
and the effects of increasing Reynolds number on VIV.

At Re∞ ≤ 200 there is a single well-defined dominant vortex shedding frequency in the rotated array and the lift force
amplitude is also large. This is because flow is laminar and structured. There is also a dominant vortex shedding frequency
for the in-line array, but it is relatively small because vortex shedding is incomplete and the flow is jet-like.

For larger Reynolds numbers, Re∞ ≥ 400, the flow gradually becomes turbulent and the lift force frequency bandwidth
increases considerably. The higher the Reynolds number, the wider the frequency spectrum and the stronger the vortex
shedding. The effect of this increased range of excited vortex shedding frequencies on FEI is unclear.

The turbulence intensity, the ratio of RMS velocity to mean velocity, is very high for tube arrays compared to a
homogeneous isotropic turbulent flow at a similar Reynolds number. The tube arrays have typical turbulence intensities of
80%–150% due to the strong interactions between adjacent vortical wakes compared to 5%–15% for homogeneous isotropic
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Fig. 15. Vorticity fields at (a) Reg = 300, (b) Reg = 600, (c) Reg = 1200, (d) Reg = 2400, (e) Reg = 4800, (f) Reg = 9600, for moving in-line tube array
subjected to cross-flow Ur = 9.0.

turbulence. This means that random turbulence buffeting should be a strong effect in the rotated array, where vortex
shedding is largely uncorrelated between nearby tubes.

In summary, flow through the tube array is characterized by two distinct flow regimes, one is structured and laminar
(Reg ≤ 600) and the other is unstructured and turbulent (Reg ≥ 1200). The laminar regime is characterized by a single
dominant vortex shedding frequency while the turbulent regime is characterized by multiple vortex shedding frequencies
that could more easily excite tube instabilities, as discussed in Section 2.1. These multiple shedding frequencies could
combine with the higher lift forces noted earlier to increase tube vibrations in the rotated array where higher lift forces
are not compensated by increased turbulence damping.

7. Conclusions

The goal of this paper is to better understand the role of Reynolds number and turbulence in the onset of fluid elastic
instability (FEI) in tube arrays. The effect of Reynolds number on FEI has been controversial, with some experimental studies
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Fig. 16. Vorticity fields at (a) Reg = 210, (b) Reg = 425, (c) Reg = 850, (d) Reg = 1700, (e) Reg = 3400, (f) Reg = 6800, for moving rotated tube array
subjected to cross-flow Ur = 21.2.

claiming that increased Reynolds number is stabilizing and others that it is de-stabilizing. Often, experimental results do
not even report the Reynolds number, which may account for the large scatter in the data. This is the first comprehensive
attempt to analyze the actual role of turbulence and Reynolds number in FEI independently of reduced velocity at a fixed
Scruton number.

To investigate FEI in tube arrays we have developed a parallelized two-dimensional Fourier pseudo-spectral direct
numerical simulation (DNS) method. This approach uses a volume penalization method to account for the moving cylinders
and builds on earlier work (Kevlahan, 2011). The two-dimensional model was validated against experimental data for
Strouhal number and for the dependence of FEI on reduced velocity Ur and Scruton number Sc . This validation confirmed
the usefulness of the two-dimensional DNS approach.

We considered in-line and rotated square arrays of circular cylinders with a pitch-to-diameter ratio of 1.5, configurations
often used in experiments.
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Fig. 17. Lift force (CL) frequency spectrum at a variety of Reynolds numbers for fixed in-line and rotated arrays. The Strouhal and Reynolds numbers are
defined using the upstream velocity U∞ = 3. Ur = 9 for the in-line array and Ur = 6.36 for the rotated array, based on the gap velocity. Note that the
natural frequency of the tubes (St = 1/3) is excited for Re∞ ≥ 400 (corresponding to Reg ≥ 1200 for the in-line array and Reg ≥ 850 for the rotated array).

The two array configurations respond very differently to increasing Reg due to differences in vortex dynamics. The critical
Ur for FEI in the in-line array is relatively insensitive to Reg over the range 150 ≤ Reg ≤ 9600, but with a non-monotonic
dependence of critical Ur on Reg . Surprisingly, we find the largest tube vibration amplitudes at relatively low Ur and Reg :
Ur ≈ 9 and Reg ≈ 1200. The non-monotonic response of in-line tube arrays to increases in Reynolds numbers might explain
the claims of Southworth and Zdravkovich (1975) and Soper (1982) that turbulence has a stabilizing effect for in-line arrays.

In contrast, increasing Reg leads to considerably decreased critical flow velocity for the rotated array for 210 ≤ Reg ≤

6800. Therefore, Reynolds number in this range always has a destabilizing effect on the rotated tube array.Moreover, one can
perhaps expect the stability threshold to increase at Re > 6800 since once the flow becomes fully turbulent at Re > 6800,
we found that turbulence buffeting becomes weaker with increasing Reynolds number. In addition, the change dUcr/dReg is
close to zero at Reg = 6800 which suggest this Reynolds number might be a turning point for Ucr .

The trajectories of unstable tube motion are qualitatively different for the two arrays. Tubes in the in-line array move
transversely to the mean flow with adjacent columns moving exactly anti-phase. Tubes in the rotated array move in a
whirling (roughly circular) motion with little synchronization between adjacent tubes. These motions are related to the
different vortexwake structures in the two arrays,with the in-line array having amore regular jet-likewakewith incomplete
or weaker vortex shedding (at low and moderate Reg ) while the rotated array is characterized by strong alternating vortex
shedding. This results in distinct statistics for tubemotion,with the in-line array having regular sinusoidal tubemotion (well-
characterized by RMS tube displacement) while the rotated array has much more frequent extreme tube displacements.

We attempted to understand these results by looking at three ways increasing Reg might affect FEI: more turbulence
damping (stabilizing), higher fluctuating fluid forces (de-stabilizing) and broadening the frequency of vortex shedding (de-
stabilizing). We found that turbulence damping is essentially independent of Reg for the rotated array, but jumps by about
25% for the in-line array when the flow transition to turbulence. On the other hand, RMS lift forces increase dramatically
with increasing Reg in both arrays before finally stabilizing when the flows are fully turbulent. Since increased fluid damping
compensates for increased lift in the in-line array, these observations could explain the relative insensitivity of FEI in this
array to increasing Reg . Finally, we found that the spectrum of vortex shedding frequencies broadens dramatically as the
flow becomes turbulent. For Re∞ ≥ 400 the natural frequency of the tubes is excited and the broad range of higher excited
frequencies could produce the phase lag between tube motion and lift force necessary for FEI. This means that increasing
Reg raises the probability of triggering unstable FEI modes until Reg is high enough that all potential unstable modes have
been excited.
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The results presented here have helped untangle the effects of reduced velocity and turbulence in FEI of tube arrays. They
have also demonstrated the practical usefulness of two-dimensional DNS for simulating these flows at turbulent Reynolds
numbers.
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