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ARTICLE INFO ABSTRACT

Keywords: Accurate modelling of tsunami waves requires complete boundary and initial data, coupled with the appropri-
Shallow water equations ate mathematical model. However, necessary data is often missing or inaccurate, and may not have sufficient
Obser"an‘?“? resolution to capture the dynamics of such nonlinear waves accurately. We demonstrate that variational data
Ch'araCterlStICS assimilation for the continuous shallow water equations (SWE) is a feasible approach for recovering initial
Grid - i . . . o L. .
Arc conditions. We showed that the necessary conditions for reconstructing one-dimensional initial conditions in

Kevlahan et al. (2019) can be extended to the maximum Euclidean distance between pairwise observations
to two-dimensions. We use Sadourny finite-difference finite volume simulations to verify convergence to
the true initial conditions can be achieved for observations arranged in multiple configurations, for both
isotropic and anisotropic initial conditions, and with realistic bathymetry data in two dimensions. We compare
observations arranged in straight lines, in a grid, and along concentric circles, and assess the optimal number
and configuration of observation points such that convergence to the true initial conditions is achieved. These
idealised results with simplified two-dimensional geometry are a first step towards more physically realistic
settings. Recent advances in altimetry observation data now permit much denser measurements of sea surface
height than is possible with a fixed buoy network. This provides the opportunity to use the method developed
here for more accurate tsunami forecasts in realistic settings.

1. Introduction

The 2004 Indian ocean tsunami and the 2011 Japanese tsunami
have highlighted the need for more effective forecasting models that
can be used to create and implement evacuation and emergency proto-
cols effectively in a limited amount of time. However, existing methods
are challenged by the limitations of the necessary sets of data (Naka-
mura et al., 2006). Consequently, information on the initial conditions
of tsunamis is likely to be incomplete or inaccurate. Tsunamis are
series of waves caused by large-scale disturbances in the ocean, such
as seismic activity. In this study we focus on tsunami propagation
in the deep ocean and not on the interaction of tsunami waves with
the coast (where the dispersive Boussinesq equation may be a better
model). They are characterised by very long wavelengths relative to the
ocean depth (sometimes hundreds of kilometres), categorising them as
shallow-water waves. However, the perturbation of the free surface in
the deep ocean can be less than a metre, rendering it virtually imper-
ceptible away from the shore. The wave speed c is directly proportional
to the square root of the water depth, and with an average deep ocean
depth of 4000 m, tsunamis can travel faster than 700 km/h, and are
capable of generating atmospheric gravity waves that can travel into
the upper atmosphere.

In this study we formulate a variational data assimilation scheme
for the two-dimensional shallow water equations (SWE), where obser-
vations of sea surface height are used to reconstruct missing initial con-
ditions data. The two-dimensional SWE system includes an additional
conservation of momentum equation in the horizontal y-direction. The
state vector is subsequently (4 « v)”, and the full system is given in
(2.1).

For the one-dimensional SWE considered in Kevlahan et al. (2019),
the wavefront is simply a moving point (on one side). Therefore, in
one dimension the only degrees of freedom in observation placement
are their spacing and their number. However, in the two-dimensional
extension considered here, the wavefront is a one-dimensional curve
and the observations can be placed along curves or in various two-
dimensional arrays. Additional features that increase the complexity
of the this case include nonlinear characteristic curves of the hy-
perbolic partial differential equation, and the wave focusing effects
of two-dimensional bathymetry features. Our goal is to investigate if
the minimum spacing requirement in Kevlahan et al. (2019) can be
extended to two dimensions. We are particularly interested in explor-
ing the effects of greater choice in observation placement and the
richer nonlinear wave-front geometry allowed by the two-dimensional
problem.

* Correspondence to: Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden.

E-mail address: ramsha.khan@misu.su.se (R.A. Khan).

https://doi.org/10.1016/j.ocemod.2022.102009

Received 23 March 2021; Received in revised form 15 March 2022; Accepted 19 April 2022

Available online 30 April 2022

1463-5003/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://doi.org/10.1016/j.ocemod.2022.102009
http://www.elsevier.com/locate/ocemod
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2022.102009&domain=pdf
mailto:ramsha.khan@misu.su.se
https://doi.org/10.1016/j.ocemod.2022.102009
http://creativecommons.org/licenses/by-nc-nd/4.0/

R.A. Khan and N.K.-R. Kevlahan

In practice, Zou et al. (1992) have demonstrated that the discre-
tised two-dimensional SWE are observable even with measurements
of only one of the three variables #,u,v. However, existing data as-
similation methods have been applied mostly for tsunami forecasts in
North America and Japan where relatively large observation networks
exist (Wang et al.,, 2019). Primary sources of observations include
the Deep-ocean Assessment and Reporting of Tsunamis (DART) buoy
system, consisting of a bottom pressure recorder residing on the ocean
floor which transmits data to a surface buoy. The data is then relayed
to shore via NOAA’s Geostationary Operational Environmental Satellite
(GOES) (Gonzalez et al., 1998). The large investment required for such
apparatus limits the feasibility of a dense network, and currently the
global network consists of approximately 60 systems, spread over the
entire Pacific Ocean and located mostly near coastlines, at depths of
1-6 km. Other observations used for tsunami detection and reporting
include ocean bottom seismometer (OBS) pressure gauges, however
these are sparsely distributed in the Indian ocean (Wang et al., 2019).

Angove et al. (2019) state that one of the major limitations to
accurate tsunami forecasts is their inability to quickly measure and
represent the tsunami source. The placement and number of DART
tsunameters and ocean bottom seismometers (OBS) is currently not
extensive enough to simultaneously provide (i) early warning of im-
pending tsunamis, and (ii) enough observational data to for data as-
similation methods to accurately reconstruct the displacement at the
source, and subsequently predict wave height and velocity at coastlines.
Therefore, our objective with this work is to outline a theoretical data
assimilation framework that could make use of satellite altimetry data,
where considerable progress has been made in data availability and
precision.

Existing data assimilation schemes are able to utilise multiple
sources and techniques for assimilating off-shore observations. Maeda
et al. (2015) assimilated real-time data from an ocean bottom network
of tsunameters to simulate the wave field directly in real time instead of
approximating initial conditions, and thus mitigating the uncertainties
of modelling the seismic source. Wang et al. (2019) used interpola-
tion of observed waveforms to create virtual observational data, and
demonstrated the success of the assimilation scheme when applied to
forecasting simulations of the 2004 Indian ocean tsunami.

Kalman filtering techniques have also been used extensively for
both parameter estimation and initial condition reconstruction in ocean
models. Mayo et al. (2014) use variants of an ensemble Kalman filter
EnKF (where error statistics of the model are represented by an en-
semble of forecasted model states) to estimate bottom stress terms in
the Advanced Circulation (ADCIRC) coastal model using observations
of sea surface elevations. They demonstrate accurate estimation of
friction parameters in lagoons and estuaries, and highlight the influ-
ence of the bottom surface roughness, motivating the need for high-
resolution bathymetry. Ghorbanidehno et al. (2019) also use Kalman
filtering to estimate near shore bathymetry, using a novel compressed-
state Kalman Filter to recover both constant and temporally evolving
bathymetry profiles, and demonstrate superior accuracy compared to
ensemble-based methods with comparable computational costs. Sta-
tistical data assimilation has also been used in tsunami modelling
efforts. Yang et al. (2019) use Optimal Interpolation (OI), a variant
of the EnKF to reconstruct real-time tsunami wave fields using mea-
surements of pressure changes on the ocean floor. However, accurate
prediction in real time using Kalman filtering techniques can be chal-
lenging as forecast accuracy depends on the choice of initial error
covariance matrices, and often the error statistics for true state vari-
ables are not available, nor easily estimated. Additionally, the ability to
resolve details of covariance structure is proportional to the ensemble
size, and larger ensembles may be too computationally expensive for
predictions in real time.

Nevertheless, comparison between Kalman filtering and variational
data assimilation (given a perfect model and same observations and do-
main), determined that performance was equivalent for both (Fletcher,
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2017; Lorenc, 1986). In this study we implement a variational data
assimilation scheme, using optimal control theory to minimise the
error between the state variables and observations. The novelty of
our variational approach is that we consider the infinite dimensional
case, unlike previous works on 4D-VAR for the SWE like Zou et al.
(1992) and Maeda et al. (2015), and Kalman filtering techniques.
Consequently, our data assimilation algorithm is independent of the
discretisation used in its numerical implementation.

Our model for tsunami wave propagation is based on the two-
dimensional non-dispersive SWE, however tsunami waves can also be
modelled using the Boussinesq water wave approximation. While both
shallow water and Boussinesq approximations are widely used for
analysing solitary wave propagation, studies such as Dongfang et al.
(2013) have compared the two processes, finding that in certain run
up processes the two approximations are identical, and that Boussinesq
approximation is most often used to model near shore hydrodynamic
behaviour. However, our analysis addresses the optimal configuration
of deep-ocean observations required to accurately reconstruct initial
conditions and bathymetry and the necessary and/or sufficient condi-
tions for convergence, before coastal dynamics are observed. Therefore,
we do not take near-shore behaviour into account in our analysis.

Additionally, we neglect Coriolis effects, bottom friction, and kine-
matic viscosity. This idealised configuration with simplified
two-dimensional geometry is intended to be a first step for more
complex analyses. For this reason we also assume there are no errors in
measurements. We aim to validate the basic approach by demonstrating
the feasibility of variational data assimilation for tsunami wave predic-
tion, and investigate fundamental questions for the idealised case first
before considering more physically realistic settings.

The purpose of the current study is not to determine optimal place-
ment of observations, or to develop new assimilation techniques based
on observability criteria. Instead, we extend our one dimensional initial
condition variational assimilation technique (Kevlahan et al., 2019)
from one dimension to two dimensions, and analyse results from a vari-
ety of numerical experiments assessing its performance and flexibility.

The problem of finding an optimal observation configuration has
been considered in King et al. (2015). They derive a measure of how
well information about the system state can be inferred using observa-
tion sensors, and provide an approximation for a partial observability
index. Their findings suggest that optimised observations reduced the
root mean square error (RMSE) by approximately 20% compared to
equally spaced observations. Similarly, Kang and Xu (2014) also intro-
duce a gradient projection method for maximising partial observabil-
ity. However, King et al. (2015) provide results showing the efficacy
of their observability index for the one-dimensional shallow water
equations and optimal observations are arranged in a straight line,
with variable spacing. Comparisons are given with equidistant points,
and the extension to higher dimensions is not discussed. Kang and
Xu (2014) also only provide results for the one-dimensional Burger’s
equation. We note that the core contribution of these works is the
mathematical approximation of partial observability, framing it as an
eigenvalue optimisation problem, whereas our goal is not to develop
an algorithm to determine optimal placement of observations, but to
extend the one-dimensional algorithm derived in Kevlahan et al. (2019)
to two-dimensions, and verify its performance in a situation where
there is much more freedom in observation placement.

In Kevlahan et al. (2019), we have proven sufficient conditions for
optimal reconstruction of the true initial conditions using sparse obser-
vations for the one-dimensional SWE . Our objective was to determine
the optimal number and locations of wave height measurements, such
that the optimally reconstructed initial conditions obtained via data
assimilation converged to the true form. In order to extend the analysis
to more realistic dynamics in tsunami models, here we implement an
analogous scheme on the two-dimensional SWE system, and investigate
whether the key results of our previous study extend to the more
complex case with full dimensionality.
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Due to the sparsity of observations in tsunami models, our aim
for the two-dimensional case is to find the minimum information,
in the form of observations of surface wave height (such as their
configuration, number, and spacing between adjacent points), required
for convergence to the true initial conditions.

This focus also differentiates the current work from existing litera-
ture on data assimilation for the two-dimensional SWE like Zou et al.
(1992), as they do not analyse the choice of the observation configura-
tion, and focus instead on the minimum number of observational fields.
Additionally, while they derive a variational scheme for the discrete
two-dimensional SWE system, a novelty of our approach is that we
consider the infinite dimensional case, unlike previous works on 4D-
VAR. Our purpose is to extend the one-dimensional data assimilation
scheme derived in Kevlahan et al. (2019) to two-dimensional.

Subsequently, we investigate whether the conditions for conver-
gence observed for the one-dimensional case, also hold for the more
complex two-dimensional system. We recall that for the one-dimens-
ional assimilation, optimal convergence to the true initial conditions
occurs when at least one pair of observation points are spaced more
closely than half the effective minimum wavelength of the energy
spectrum of the initial conditions.

In the one-dimensional case we were able to exploit the fact that
the linear one-dimensional SWE system can be formulated as the one-
dimensional wave equation, and subsequently we used its analytic
properties to derive an exact solution for the adjoint system solved
in the variational scheme. This solution was used to prove sufficient
conditions for convergence to the true initial conditions. However, this
method fails to extend to the two-dimensional case, as the analytical
solution to the adjoint system is not easily found. Existing works,
such as Iacono (2005) on analytical solutions of the two-dimensional
SWE, involve drastic simplifications of the equilibrium problem. Such
simplifications would not help us adequately investigate the mini-
mum observation information required for tsunami models with high
dimensionality.

Therefore, our approach is focused on a qualitative investigation of
the applicability of results from the one-dimensional analysis for the
two-dimensional data assimilation, and on a comparison of different ob-
servation spacings, configurations, and numbers. We begin in Section 2
by extending the data assimilation to two-dimensional, and implement
this algorithm numerically in Section 3. The results and complementary
analyses are divided into the following three topics.

1. Section 4: Assess the optimal number and configuration of obser-
vation points such that convergence to the true initial conditions
is achieved in the data assimilation for the two-dimensional
SWE.

2. Section 4.1: Investigate whether the sufficient conditions for
convergence in Kevlahan et al. (2019) for the one-dimensional
case extends to the two-dimensional data assimilation.

3. Section 5: Implement the data assimilation algorithm for a
relatively realistic tsunami forecasting model, using non-flat
bathymetry. Our final analysis uses realistic bathymetry data
from the ETOPO2 global topographical relief database and the
optimal observation configurations identified in this study.

We conclude with a summary of the main results and future consid-
erations in Section 6.

2. Derivation

The two-dimensional shallow water equations (SWE) are

om0 P B
E+a((n+H—ﬂ)u>+5}((n+H—ﬂ)v)_O, 2.1a)
ou ou ou  0n

Ztu—4+v—+— =0, 2.1b
o P tUe Y ox (2.1b)
L @10

U2
Jat 0x dy dy

Ocean Modelling 174 (2022) 102009

nx,y.0) = ¢(x,y), (2.1d)
u(x,y,0)= 0, (2.1e)
v(x,y,0)= 0, (2.19

where H is the average depth of the fluid and the system has been

normalised such that \/g_H = 1. n and p are the perturbation of the
free surface and sea floor respectively, and « and v are the velocities
in the x and y direction. We assume the initial conditions ¢ € L*(Q) is
compactly supported on the spatial domain 2 = {(x,y);x € [-L, L], y €
[-L, L]} and is periodic at the boundaries. The notation used in the data
assimilation algorithm is summarised in Table 1.

Let us define mﬁ’”(z) to be observations of the surface wave at
positions {(x, y); } for j =1,..., N, at continuous times ¢. Our objective
is to minimise the least squares error between the observations m;")(t)
and the forecast solution of the wave height #/)(x,y,f) given some
initial conditions ¢. We express this as a cost functional J : L2(2) — R,
constrained by the system (2.1),

1T & SYRL
VOEES /0 ;[n“)(x,»y,-,t;@—mj.)(z) dt. (2.2)

Then the optimal initial conditions ¢® is the minimiser defined as
¢® = argmingg 2o T (). 2.3
Since the minimum of (2.2) is achieved when
vE @) =0, 24)

we formulate a dual adjoint system in terms of some appropriately
chosen adjoint variables, such that V" 7(¢®) can be derived more
efficiently than direct computation of the gradient of (2.2), given ¢.

The first variation of J, given some arbitrary perturbation ¢’ of
scale ¢ is given by the Gateaux derivative,

J(¢+671’)—J(¢)_

J'(¢;¢) = lim (2.5)
-0 £
Expanding the perturbation to O(¢), we can reformulate (2.5) as
T
T @& ¢) = - / (103012 =m0 ), (2.6)
0

where (1',u/,v') are the solutions of the perturbed system given the
perturbation in the initial conditions ¢’, found by linearising about
(n,u,v) and extracting the O(¢) system.

As the Gateaux derivative is a directional derivative in the direction
of the perturbation ¢’, we can express (2.6) as the inner product
between VJ and ¢,

J(:¢") = <vjv¢,>L2(_Q) = A)VLZJ n dQ. 2.7)

Then the following forms of .J(f; #') are equivalent,

T
T @) =~ /0 (163,150 = OO ) dt = /!2 VET ¢ dg.
(2.8)

If we form a Lagrangian of our linearised shallow water system with
some arbitrary adjoint variables (n*,u*, v*),

g * oy’ 9 ’ ’
/0 /Qn Gty [ SE o = (' + (0= pu)

+iy (Ur]'+(H+;1—/3)U’]

ot ox dy 0x

ov' o' ov' 071']
0|2 4w 4 0% L M G0 dr= o, 2.9
+0*(x )[at+”ax+”ay+ay (2.9)
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Table 1
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Notation used in the derivation of data assimilation scheme of the two-dimensional SWE to find the optimal

initial conditions.

Symbol Definition

n(x, y, 1) General solution for the height perturbation

dD(x,y) True initial conditions

B(x,y) Time-independent bathymetry

P (x,y) Starting guess for initial conditions

dP(x,y) Approximate bathymetry at iteration n of the assimilation algorithm

P (x,y) Best approximation to the bathymetry (e.g., fixed point of iterations)
m(t) Observations of the true height perturbation at positions {x;,y;},j =L, ..., Ny,
7 (x, y,1) Approximate (“forecast”) solution generated by approximate bathymetry
Jm Cost function at iteration n

Ok Adjoint

we observe that by formulating the following system in terms of the
adjoint variables (y*, u*, v*),

6n*+ on* on*  ou*  dv*

— = m(x,y,0)— Hy(x,y,t: ), (2.10
ot ox ay Tox T oy m(x;, 1) = Hy(x, y.t: ), (2.102)
ou* du* ou* 0,1*
or TUox TG, T =0, 2.10b
o Higy Hegy HH =P (2.10b)
ov* ov* ov* *
o TUes T, TH =0, 2.1
ot tu Ix +v dy +(H +n— ﬂ) 0 (2.100)
n(x,y,T) = 0, (2.10d)
uw(x,y,T)= 0, (2.10¢)
v*(x,y,T)= 0, 2.10

and integrating (2.9) by parts in space and time, due to the periodicity
of the boundary conditions the Lagrangian (2.9) is reduced to

T
/ / (ﬂ('f)(xj’)’ﬁ’;d’)—m(a)(f))"ll dQdt= - /
0 Q Q

Combining this result with the equivalence given by (2.8), we have

_/'7*”1,|1=0d9= _/;1
Q Q

and thus since our functional is linear and bounded, and belongs to the
space of square-integrable functions, we can use the Riesz representa-
tion theorem for the equivalence of inner products to extract V27,
giving us

VE I (¢) =

For a detailed derivation we refer the reader to Kevlahan et al.
(2019). We utilise an iterative steepest descent algorithm to find our
minimiser ¢ yielding V1*J = 0, given some starting guess ¢®. We
also used a Polak-Ribiere conjugate gradient descent method, and found
results to be equivalent to steepest descent. The steps of the process at
each iteration are summarised in algorithm 1.

Nod@,  (2.11)

*| oot d2 = / VE T ¢ de, (2.12)
Q

—1*(x, y,0). (2.13)

3. Numerical implementation

Our spatial domain is 2 = [-L L] X [-L L], where L = 3. The
assimilation is carried out in the time interval [0 T'] where the final
time T = 2 is selected such that there are no boundary effects.

For the spatial discretisation we implement a second-order finite
difference-finite volume Sadourny energy conserving scheme on a C-
grid. The Sadourny scheme ensures that this discretisation inherits the
conservation properties (such as energy or enstrophy conservation) of
the original system (Sadourny, 1975).

If the SWE are expressed in the following equivalent form,

—+—(( +H—ﬂ)u)+%((n+H—ﬂ)U>=0 (3.3)
(3‘%) 2 (en+ 3 +30%) =0 3.4)
(g——g—z) +%(gn+;u +%v> 0, (3.5)

Algorithm 1 Data Assimilation Algorithm for initial conditions
Estimation for the two-dimensional SWE.

1: Pick initial estimate for ¢®.

2: Solve the initial value problem for (,u,v) fromr=0to¢r=T.

3: Solve adjoint problem for (n*,u*, v*) backwards in time from ¢t =T
to t = 0 to find 5*(x, y,0).

4: Define VLZJ = —n*(x,,0).

5: Compute the optimal time step 7, at the n-th iteration through a
line minimisation algorithm

7, = argmin, . J(¢<">(x, ) — Ve T (¢M(x, y))), (3.1)

6: Use a gradient descent algorithm to compute the guess for ¢ at the
next time step

¢ (x, y) = P (x, y) — 7, VE

7: Repeat until || n*(x, ,0) ||~ O
8: Set ¢ (x,y) := pP(x, y).

T (™. )). (3.2)

Then the discretisation

=]
i

r__ . W _ N T p)

o = axolent sy )+<6x ay)((1+n A o) . (3.6)
ov_ 1 1y, 19 dv _ du —_ij
E‘Ay‘s"(g“z“ + 50 )+<6x ay>((1+” Au) (3.7
where

6if=fl.+%—f,._%, (3.8)
f _E(ff%*fff%)’ 3.9)

ensures that the total energy is conserved, such that
on 1
0=) 4Ax4A [ —+ + -0t =(1+
z,-/ xAy|gn—; (2u v) (+n=p)
+> AxAy[(l - ﬂ)u—]
ij

+ Y ayax |+ = g2t ] (3.10)
ij
where the staggered centre difference operator (3.8) and centre linear
interpolation operator (3.9) ensure that the velocities u and v and their
time derivatives are discretised at the centre of the cell boundaries,
and n and p and their derivatives are located at cell centres. The
spatial derivations are discretised using a second order finite differ-
ence scheme with periodic boundary conditions. The system is then
integrated using a four stage third order Runge-Kutta scheme (Spiteri
and Ruuth, 2002). The resolution is 128 x 128 due to computational
cost considerations, as the memory requirements for the solver are
quite high. The time step Ar = Ax/3 is chosen to satisfy the Courant—
Friedrichs-Lewy (CFL) condition, and subsequently the solutions for #,
u, v are 128 x 128 x 193 matrices, which need to be stored for all
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-2 -1 0 1 2
T

(b) Non-isotropic

Fig. 1. Planar view of the true initial conditions ¢®.

time steps. The line minimisation for 3.1s carried out using the Matlab
function fminunc.

We consider the following isotropic Gaussian initial conditions,
where the Gaussian has the same variance and physical properties in
every direction,

2 2
X4y ) (3.11)

0.12

For cases where anisotropic initial conditions are used, the variance of
the Gaussian in the x and y directions is different, and the Gaussian has
been rotated by z/4 radians.

1
0) - _
¢ (x,y) 20 &P (

¢O(x.y) = %) exp (—%) (3.12)
X, = XCOS (—%)—ysin (—%), (3.13)
Y, = XCOS (—%)+ysin (—%) (3.14)

Fig. 1 shows the isotropic and anisotropic initial conditions. In the
results, we indicate an approximation of this support (spatial domain
where the initial condition is non-zero) to highlight the position of
the observation points relative to the initial conditions. While Gaussian
initial conditions are not technically compactly supported, they are in
practise for numerical simulations, for example when the exponential
is smaller than machine precision.

The results in Section 4 are for assimilation with flat bathymetry
f(x,y) = 0 as in Kevlahan et al. (2019). However, in Section 5 we
implement the data assimilation algorithm with (i) a Gaussian form
bathymetry, and (ii) realistic bathymetry data taken from the ETOPO2
database for global topography and bathymetry.

3.1. Verification test

To verify our numerical implementation, we conduct a test using
the equivalent forms for J'(¢, ¢’) used in our derivation, the Gateaux
derivative and the Riesz gradient. If the implementation is correct, the
parameter k should converge to 1 as € — 0,

1 J(p+ed))-T(@)

= lim — .
= e e T —r oy 0 422

The results of the verification test are shown in Fig. 2, with a
non-zero bathymetry.

(3.15)

4. Numerical results

The analysis for the two-dimensional data assimilation is more
complex than the one-dimensional case due to the more complex
geometry of nonlinear wavefronts propagating in two dimensions and
the increased geometric complexity in the placement of the observation

points. With this in mind, in this section we explore the effect of con-
figuration and number of observations on the overall convergence of
the reconstructed initial conditions. We classify a result as convergent if
the relative L? error is lower than 10% based on convergence observed
in Kevlahan et al. (2019), noting that all results where the minimum
distance criteria (4.1) was not met had a relative convergence error
higher than 10% in the 1-D case.

In Kevlahan et al. (2019), all observation points were located to
one side of the initial condition support. In the present analysis, we
consider observations in all quadrants of our spatial domain (where
the initial conditions is centred at (0,0)). We note that in most cases
our initial conditions are isotropic and the subsequent wave propa-
gation is radially symmetric given a flat bathymetry. This azimuthal
symmetry property cannot be observed by observation points along
characteristics in a single quadrant alone. This suggests that to capture
the isotropic nature of the initial conditions it may be beneficial to
place observations along an arc of the circle x> + y*> = R()?, where
R(1) is the radial position of the propagating wave 5(x,y,t) at each
time ¢+ € [0 T]. We qualitatively investigate this claim by analysing
results for three observation configurations. (i) In a square grid centred
at (0,0), (ii) along the characteristics x = y and x = —y, and (iii) on
circular arcs along x? + 3> = r? for i = 1,2. In Section 4.1 we extend
the analysis for observation spacing from the one-dimensional case as
in Kevlahan et al. (2019) for each configuration. For all cases, we
assume the initial guess ¢®) = 0. In Section 4.2 we build on the optimal
results for observation spacing, and investigate whether convergence
improves when increasing the number of observation points. In reality,
it is unlikely there will be many observations within the support of the
initial conditions of a tsunami. Therefore, we also investigate the effect
of removing all observation points located within the support of both
isotropic and anisotropic initial conditions on convergence.

4.1. Observation spacing

In order to investigate the effect of observation spacing for the
two-dimensional initial conditions assimilation, we use the results
of Kevlahan et al. (2019) as a benchmark. We recall that for the
one-dimensional assimilation, optimal convergence to the true initial
conditions ¢ occurs when at least one pair of observation points are
spaced more closely than half the effective minimum wavelength of the
energy spectrum of the initial conditions. Subsequently given a pair of
observation points (m,, m,) we require

T

|my —my| < P (4.1)
max

where k,,,, is the largest effective wavenumber of ¢”. In the absence
of a rigorous equivalent result for the two-dimensional assimilation,
we qualitatively investigate whether convergence improves when (4.1)
is satisfied for the two-dimensional wavenumbers k and /. To find
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kpnex and [,,., we examined the energy spectrum of the true isotropic
two-dimensional initial conditions. We observed that the modes for
k,1 > 40 have relatively negligible magnitudes, and thus k,,,, = /,,, =
40 is a good approximation. Thus the distance between at least two
observation points should be less than 0.0785.

In the one-dimensional case, at least one pair of points was required
to satisfy (4.1). However, it may be that a greater number of points
satisfying this condition is correlated with improved convergence in the
two-dimensional case, due to the need to resolve the two-dimensional
shape of the initial conditions (e.g. azimuthal symmetry). To investigate
this, we compare results with different spacing of observations Ax = Ay
(4r for the arc configurations) in a grid, along characteristics x = +y,
and in radial arcs centred on the initial conditions. We also investigate
convergence with different numbers of pairwise observations with a
Euclidean distance fulfilling (4.1). We begin with observations along
characteristic lines x = +y.

4.1.1. Observations along characteristic x = +y

For this case, we initially choose N, = 36. This initial choice of
N, is larger than those considered in Kevlahan et al. (2019) where
N, < 5 was considered. However, given the higher dimensionality
of the two-dimensional problem, we scale up our initial choice of
N,,,- We evaluate results for the Ax = 4y = 0.07, 0.0785, 0.1, and
0.2. These values were chosen to include cases both when (4.1) is
satisfied, and when it is violated. Since observations are placed along
x = =y, the Euclidean distance between points is 1/(4x)? + (4y)2.
Comparing pairwise distances between any two observation points in
the configuration, we observe that at least 8 out of a total of 36(36 — 1)
pairwise observations have a Euclidean distance less than 0.0785 for
Ax = 0.07, 0.0785, and 0.1. There are zero pairs satisfying (4.1) for
Ax =0.2.

The characteristic configurations can be seen in Fig. 3(a), (b), (c),
and (d). The red circle represents the boundary of the initial condition.
It is an approximate representation intended for reference only, and the
actual region where ¢ # 0 may be slightly larger, and corresponds to
Fig. 1. The configurations in 3(a), 3(b), and 3(c) satisfy (4.1), and those
in 3(d) do not. We wish to determine whether convergence is worse
where spacing is larger than 0.0785.

The convergence results for both cases are given in 3(e), the relative
L2 error in the reconstruction after 1000 iterations. We observe that the
assimilation converges for the three cases with 4x < 0.1. As 0.0785 is
just an estimate of the minimum spacing, it is not surprising that the
slightly larger 0.1 case also converges. There is no significant difference
between the three cases and the error is reduced to ©@(10~3). However,
the configuration with Ax = 0.2 fails to converge. These results confirm
condition (4.1) (and therefore are consistent with the minimum spacing
theorem in Kevlahan et al. (2019)), as Ax = 0.2 was the only case where
there were no pairs of observations with a Euclidean distance less than
0.0785. To analyse the smoothness of the convergence, we considered

the relative L? error for an extended range of Ax, and observed that
the error with spacing of observations such that 0.1 < Ax < 0.2 still
converged despite having a higher error compared to 4x < 0.1, and no
configuration with Ax > 0.2 achieved convergence of the L? error less
than 10%.

We observe that the placement along characteristics in all four
quadrants appears to sufficiently capture the radial symmetry of the
propagating wave and reconstruct the initial conditions accurately. We
verify whether these results by considering observations placed in a
grid, and along concentric circles centred at the initial conditions.

4.1.2. Observations in a grid formation

The second configuration of observation points we consider is a grid
layout in the xy plane. To maintain comparison with the characteristic
configuration, we initially choose N,,, = 62, and observations are ar-
ranged in a six-by-six square grid centred at (0, 0). These configurations
are presented in Fig. 4(a), (b), (c), and (d) with the same values of Ax
as for the characteristic case. The trend in the relative error decrease
over 1000 iterations are presented in Fig. 4(e).

We can see that like the characteristic configuration, the results for
observations in a grid configuration show increasing convergence to
zero as the spacing between adjacent observation points in the x and
y directions decrease. Even the worst performing configuration 4(d)
has a relative error at the final iteration of @(10~2). This suggests that
given the convergence criteria of a relative L? error lower than 10%,
each spacing considered in Fig. 4 convergences, though it is clear the
lower values Ax = 0.07 and Ax = 0.0785 perform better by an order of
magnitude. Once again, we note that these configurations both had 64
pairwise observations satisfying (4.1), whereas the ones with 4x = 0.1
and Ax = 0.2 had none, confirming the hypothesis that (4.1) is a
sufficient condition for convergence with a grid configuration, for the
two-dimensional case. While convergence with Ax = 0.07 is marginally
better for the grid configuration than the characteristic configuration,
they are both ®@(10~3) and we may consider them equivalent in perfor-
mance thus far. We note that these results are also consistent with the
one-dimensional theorem in Kevlahan et al. (2019).

It should be noted however that in Fig. 4, most of the observa-
tions are placed within the support of the initial conditions. This is a
consequence of having a grid centred at the initial conditions support
with only N, = 36 and small spacing Ax and Ay between adjacent
observations. Consequently in Section 4.2 we investigate the effect
of increasing the number of observation points, and subsequently in
Section 4.3 the effect of removing all points that lie in the initial
conditions support.

4.1.3. Observations along arcs

Current observations used for detection and forecasting of tsunamis
such as DART buoys are usually arrayed in an arc-like formation along
coastlines (Gonzalez et al., 1998). Therefore, we consider a circular



R.A. Khan and N.K.-R. Kevlahan

(¢) Ax =0.1 (d) Ax=0.2

Fig. 3. Observations along characteristics x = +y with varying spacing such that Ax = Ay, and N,

6@ = 6@[2/116 2

Ocean Modelling 174 (2022) 102009

—— Az =0.07

<

<
)

-3 s L L
10 400 600 800
Iteration n

(e) Relative L2 Error

200 1000

s = 36. The green circles represent the observation points, and the area inside

the red circle approximates the support of the initial conditions. The assimilation time is # € [0 2]. (d) shows the convergence of the cost function after 1000 iterations and (e)
represents the relative L? error in the initial conditions reconstruction. We note that configuration (d) with 4x = 0.2 fails to converge.

1 1
=0 ® =0 ®
2 2
2 1 0 1 2 3 3 =2 4 0 1 2 3
(a) Ax =0.07 (b) Ax =0.0785
3 3
2 2
1 1
=0 =0
R N
(c) Ax =0.1 (d) Ax=0.2

10% ‘ ‘
—+ Az =0.07
- Az =0.0785
—— Az =0.1

Az =0.2

107}

1072

107

400 600
Iteration n

200

(e) Relative L2 Error
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and(e) represents the relative L? error in the initial conditions reconstruction. All configurations converge (L> error less than 10%), however it is marginal for (d).

arc configuration for observations, as shown in Fig. 5(a)-(d). The
observation points are placed along two concentric circles x* +y* = r?,
for i = 1,2. We vary the spacing 4Ar = |r| —r,| such that Figs. 5(a)
and 5(b) satisfy (4.1) and Figs. 5(c) and 5(d) do not, similar to the
characteristic and grid configurations.

We observe in Fig. 5(e) that the error does not converge for any of
the values of Ar considered, and is ©@(10~1). This is despite the fact that
there are 14 pairwise observations satisfying (4.1) for Ar = 0.07 and 8
pairs for Ar = 0.0785. We present the reconstructed initial conditions
for each Ar in Fig. 5(f)-(i) . We observe that in each case, the Gaussian
peak is not fully resolved and the amplitude is smaller than the exact
initial conditions (0.05). Additionally in each case there is small-scale
noise in the reconstruction.

In theory, observations placed in concentric circles around the true
initial conditions should be able to capture the radial propagation of
the free surface wave in all directions, however these results suggest
that either small spacing between pairwise observations is not sufficient
for convergence with an arc configuration, or that a larger number of
pairwise observations satisfying (4.1) is necessary. In the following sec-
tion we investigate the minimum number of observations necessary for
convergence, and assess whether convergence improves as we increase
the number of observations in each of the three configurations.

4.2. Results with large or small number of observations

In this section observe the convergence of the assimilation when the
number of observation points is either large or small for the character-
istic, grid, and arc configurations respectively. The spacing Ax and 4r is
fixed at the best-performing case considered in Section 4.1 (4x = 0.07
or Ax = 0.0785). We first show convergence for large N, , and then
subsequently investigate the minimum number of observations required
for convergence. For the grid and arc configurations, we initially con-
sider results for N, = 10?,122, 14 respectively, with 4x = 4r = 0.07.
For the characteristic configuration we chose N, = 60,80,100 and
Ax = 0.0785. The comparatively smaller values for the characteristic
configuration are due to the fact that we required all observation points
to interact with the propagating wave in the assimilation time 7, and
this would not have been possible for larger values of N, placed along
characteristics.

The results for the error convergence given a characteristic config-
uration of the observations are presented in Fig. 6(a). We observe that
the relative reconstruction error does not change significantly with the
number of observation points, and is @(10~3). We note that the same
level of convergence was achieved with only 36 observations, as seen
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Fig. 6. (a)-(c) present the convergence of the relative L? error with increased number of points and Ax = 0.0785 for each configuration of observations. (d) shows a grid formation

with increased number of points and Ax = 0.44, and (e) highlights the nonconvergence of

in Fig. 3(e). This is encouraging from a tsunami modelling perspec-
tive, as it would suggest that a smaller observation network placed
along characteristics is sufficient to recreate the initial conditions
effectively.

The error convergence results for observations placed in a grid for-
mat with varying number of observation points are given in Fig. 6(b).

the relative L? error.

As with the characteristic configuration, we observe that the conver-
gence of the L? relative error does not significantly change for the
large values of N, and is O(10~3). To determine whether having a
large number of observations is a sufficient condition for convergence,
we consider results where N,,, = 122, but Ax = 0.44. We see from
Fig. 6(e) that the assimilation does not converge, and therefore large
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Fig. 7. (a)-(d) Characteristic formation, and (e)-(h) Grids formation, with a small number of points and 4x = 0.0785.

N, is not a sufficient condition for convergence. To verify whether it
is a necessary condition for convergence, we explore results when N,
is small, in Section 4.2.1.

We observed in Fig. 5 that unlike the characteristic or grid con-
figurations, the results for the arc configuration failed to converge for
all spacings 4r. Consequently it would be of significant interest to see
whether these results can be improved by increasing N,,,. We present
the configurations for N, = 10,122, and 142 in Fig. 6(c). The relative
L? error converges to O(1072) for each values of N, and consequently
all three cases are convergent. This result suggests that a relatively
larger network of observations is required to fully resolve the initial
conditions for arc configurations. A rigorous verification would be to
analyse results with a larger values of N, and Ar > 0.2. However this
is not possible with our current problem setup as a case where both
N, and 4r (or |m; —m;| with a single circular arc) are large enough
such that no points satisfy (4.1), would result in some observations not
interacting with the free surface wave in the assimilation time 7 = 2.
As the latter was chosen to prevent boundary effects from effecting the

reconstruction, it cannot be altered without impacting the results.

4.2.1. Results with small N .

In this section we investigate the minimum number of observation
points required for convergence. We have shown that when N, is
large (greater than 60), increasing the number of points does not have
a significant impact on the convergence of the relative minimum error
for the characteristic and grid configurations. We now consider results
when 4 < N, < 16, to determine if there is a significant increase
in the relative L? reconstruction error when N, is small. We do not
consider N, = 1, 2, or 3 as the smallest number of points we can have
while still having points positioned in each quadrant (to capture the
azimuthal symmetry of the initial conditions) is 4.

Results for observations along a characteristic with N, = 4, 10, and
16 (with spacing Ax = 0.0785 are presented in Fig. 7(a)—(d). We observe
that the minimum relative L? error is less than 1% for each case. There-
fore we conclude that for the characteristic configuration, the minimum
number of observation points necessary to achieve convergence of an
isotropic initial condition is N, = 4.

Results for observations in a grid configuration for N,,, = 22, 32,
and 42 are presented in 7(e)-(h). We observe that the relative L? error
for all three configurations converges. Configurations with 22 and 42
have a minimum relative L? error of 5% and 3% respectively. The best
convergence is for N, = 3%, with a minimum error of 0.2%, suggesting
that convergence does not necessarily improve with an increase in N,
even with a small number of observations.

To summarise, we have demonstrated that convergence can be
achieved for the characteristic and grid configurations with a relatively
small number of points, and does not necessarily improve as N, is
increased. And so we conclude that, based on the results so far, having
a large number of observation points is neither necessary nor sufficient for
convergence with observations in a grid or along two characteristics.

In the results observed thus far, we note that for all cases that
converge (such as in Fig. 7), there were multiple observations inside
the support of the initial conditions. However, there were no points
within the initial conditions support for the arc configuration. Conse-
quently, we must consider whether convergence can be achieved for the
characteristics and grid configurations when there are no observation
points inside the support of the initial conditions. In tsunami models, it
is unrealistic to assume such observations are available, and thus a lo-
gistically applicable forecasting scheme should avoid such assumptions.
The results of this analysis are presented in Section 4.3.

4.3. Results with no observations within the support of the initial conditions

In this section we present results for the characteristic and grid
configurations, with points inside the initial conditions support re-
moved. The spacing Ax is fixed at the sufficient value for convergence
of 0.07. As removal of these points results in smaller values of N, the
initial number of N, before removal is increased slightly so that the
resulting number of observation points are comparable to the results in
Section 4.2. First, we consider results for small numbers of observation
points, such that Ax = 0.07, and there are no points within the support
of the initial condition, in Fig. 8.

We observe that even with N,,, = 28, the configuration in Fig. 8(c)
(with observations in a grid) fails to converge when there are no points
in the support of the initial conditions, despite having converged when
N, = 4 in Fig. 7(e). Similarly, a configuration of 16 observations
along the characteristics x = +y fails to converge when there are no
points within the support of the initial conditions, as shown in Fig. 8(a).
Consequently, we investigate whether convergence can be achieved
when N, is relatively large.

Fig. 9(a)—(d) shows the configurations and results for observations
along characteristics, with N, = 48, 68, and 88 (after removal). The
relative L? error at the final iteration for each case is approximately
7%, as shown in 9(d). We note that the error is almost two orders
of magnitude higher than it was in Fig. 6(a). These results are not
surprising, as having observations that are able to measure the true
initial conditions may significantly improve the reconstructed initial
conditions. It is therefore to be expected that convergence is slightly
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Fig. 9. (a)-(d): Characteristic configuration, and (e)—(h) Grid configuration with points within the support of the initial conditions removed.

worse when such observations are no longer included in the assimila-
tion. However based on the tolerance that the relative L? error be less
than 10%, these results are still convergent.

The configurations and result for observations in a grid format
are presented in Fig. 9(e)-(h). We note some significant differences
between the results here and those in Fig. 6(b). First, it is clear from
Fig. 9(h) that there is improved convergence for cases with N, > 80,
suggesting that the number of observations is an important factor when
we do not have observations in the support of the initial conditions. In
contrast, the results in Fig. 6(b) did not indicate difference in conver-
gence for the different values of N ;. Secondly, the best convergence in
Fig. 9(h) is a relative L? error of approximately 0.1%, indicating better
convergence than observed in Fig. 6(b), despite the overall number
of observations being comparable. It is interesting to note that in
Fig. 6(b) the error stagnated after approximately 400 iterations. This
suggests that perhaps there is some overfitting that results in small-
scale noise in the reconstructed initial conditions, when there are too
many observations of the true initial conditions. This would impact
the convergence of the gradient descent algorithm used in the data
assimilation. In comparison, in Fig. 9(h) we observe that the error is
still maintaining a negative slope even at the final iteration, suggesting
improved convergence. To verify this hypothesis, Fig. 10 shows the
energy spectra of the relative absolute error of the reconstructed initial
conditions for configurations 6(b) and 9(h) with N, = 144 and N, =
132 respectively.

We can see that the energy of larger wavenumbers in the recon-
struction error [|¢p® — ¢®||/ || ¢© ||,2 is higher for configuration 6(b),
verifying our initial hypothesis regarding small-scale noise present in
the reconstruction that impacted convergence. On the other hand, the

energy of the error spectrum for configuration 9(h) is mostly restricted
to smaller wave-numbers. This may explain why the latter showed
convergence of the L? error to 0.1% whereas the former converged to
0.3% .

In summary, we conclude that a necessary (but not sufficient for all
configurations) condition for convergence is that Ax be small enough
that the Euclidean distance between some pairwise observations sat-
isfies the condition (4.1). The convergent configurations for the grid
configuration in Fig. 4 had 64 pairwise observations satisfying the
spacing condition (4.1), while the non-convergent cases with spacing
Ax > 0.1 had none. Similarly, the non-convergent arc configurations in
Fig. 5 had at most 14 pairwise observations with a Euclidean distance
less than 0.0785. This may suggest that there is a minimum number of
pairwise observations required that satisfy the spacing condition (4.1).
However, as the minimum spacing observed in this analysis is a qual-
itative estimate and not analytically derived, we cannot conclusively
quantify the minimum number of observations based on this value
alone.

Additionally, we observed that much larger numbers of observa-
tions were required for convergence in the arc configuration, and this
was also true for the grid configuration when observations inside the
support of the initial conditions were removed. In fact, we found
that the assimilation error was lower in the grid configuration when
there were no observations within the support of the initial conditions.
This is likely due to overfitting generating small-scale noise in the
reconstructed initial conditions, as shown in Fig. 10.

To extend these results for more realistic conditions, we conducted
equivalent analyses with the anisotropic initial conditions given in
(3.12).

10
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Ar =0.07.
4.4. Results for anisotropic initial conditions

We have observed convergence for each of the observation point
configurations considered in this study (characteristic, grid, and arc) by
varying the spacing between observations and the number of observa-
tion points. We have also demonstrated convergence even when there
are no observations within the support of the initial conditions. We now
verify whether convergence is still achieved with anisotropic initial
conditions. Our goal is to investigate the observability at measurement
points when the surface wave is no longer azimuthally symmetric, and
contrast with results for isotropic Gaussian initial conditions. Our aim
is to provide results that are more comparable with realistic scenarios
for tsunami observations, where the both the initial conditions and
bathymetry produces highly anisotropic surface waves.

Briefly, we found that there was no significant impact on conver-
gence with anisotropic initial conditions (as given in (3.12)), compared
to results in Section 4.3. The convergence of the relative L? error for
each of the three configurations is presented in Fig. 11. We observe
that the convergence of the relative L? error for the characteristic and
arc configurations is ©(1072), and there is little difference between
results with different values of N, . The convergence for the grid
configuration is @(10™*) with N,,, = 208, and ©(10~3) for the other
values of N,

obs*

4.4.1. Summary of main results for observation configurations (flat

bathymetry)
To summarise, the main results we have observed are as follows:

+ Convergence was achieved (a relative L? error less than 10%)
for each of the three configuration with both isotropic and aniso-
tropic initial conditions respectively.

» The best convergence in the present analysis was achieved with
observations placed in a grid formation. Even with no points
inside the initial conditions support, the relative L? error in the
reconstruction error was 0.1% with both isotropic and anisotropic

11

initial conditions. Convergence was achieved for the characteris-
tic and grid configurations with as few as 4 observation points, the
minimum number required to capture the azimuthal symmetry of
the initial conditions.

A necessary condition for convergence was that the spacing Ax for
grid and characteristic configurations be chosen such that at least
some pairwise observations satisfy (4.1). However convergence
was not achieved for the arc configuration even with small Ar
(the difference between radii of observations placed in two con-
centric circles), suggesting this is not a sufficient condition for
convergence, or there is a minimum number of pairwise obser-
vations with a Euclidean distance satisfying (4.1), which the arc
configuration did not satisfy (having only 14 such points, whereas
the convergent results for the grid configurations in Fig. 4 had 64
such pairwise observations).

Increasing the number of observation points improved conver-
gence of the arc configuration, but had little effect on the grid
and characteristic configurations when there were points placed
inside the initial conditions support. However, without any ob-
servations in the support of the initial conditions, larger numbers
of observations N, resulted in improved convergence with the
grid configuration, and even surpassed convergence achieved in
the former case (points inside initial conditions support). This
suggests that observations of the true initial conditions can lead to
overfitting and small-scale noise in the reconstruction, as demon-
strated in Fig. 10.

5. Results with non-zero bathymetry

We now consider results for simulations where the bathymetry is no
longer flat. Bathymetry can have a significant impact on propagating
shallow water waves, where wave speed ¢ = \/g_h changes as depth &
varies. A tsunami’s energy flux remains relatively constant, and so as
the tsunami’s speed varies, so does wave height (shoaling effects).
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Fig. 12. (a)-(b): Gaussian Bathymetry with 3 peaks and a basin as described in (5.1). The y-axis represents the amplitude of the bathymetry relative to the mean depth H, which
has been normalised to H = 1. Planar view of the free surface wave (c) without bathymetry, and (d) with bathymetry given in (5.1) at the final time T, showing the effect of the
bathymetry in distorting the surface wave. (e)-(h): Results with Gaussian Bathymetry. Note that the configuration in (f) can no longer be referred to as observations placed along

characteristics, as these are no longer characteristics of the distorted wave.

The purpose of this section is to take the best results observed
thus far, and integrate them into a more realistic model, adding some
features of an operational tsunami forecast model. To this end, we limit
our results to N, = 88. Even though we observed higher convergence
with a greater number of N, (for example in Fig. 9(h)), there are
practical difficulties in employing such dense observation networks.
Therefore, we limit the maximum number of observation locations, on
the basis that convergence of the relative L? error to ©@(1072) in the
initial conditions reconstruction was achieved with < 88 points in each
of the three configurations considered in this study.

We begin with a simple Gaussian bathymetry model simulating
peaks and basins, and then subsequently extend our analysis to a
subsample of ETOPO2, a digital database of land elevation and sea
floor topography, where the datum represents the vertical deviation in
metres from the mean sea level.

5.1. Gaussian bathymetry

In this section we analyse results with the Gaussian bathymetry
described by

s 0 ((x+0.5)2+(y+o.1)2)
B(x,y) = T0 P |~ 0652 ]
s [ (6=12+0-05?)
3 ((x—0.75)2+(y+ 1)2)
+ E exp | — 0652 :|
s T ((x+0.8)2 +(y-0.7)2)
+ I exp | — oz ] (5.1)

where a representation is given in Fig. 12. This shape was chosen as
it contains Gaussian peaks that are 30% of the average depth H and
with varying widths, simulating underwater mountains. Additionally,
a negative Gaussian represents a basin, and all features are placed
such that there are relatively quick changes in the depth, within the
assimilation time 7. The amplitude of the true initial conditions is set
to 0.001H, in order to accurately simulate tsunami conditions where
amplitude of the surface wave in the deep ocean can be just a few
metres (depending on the generating mechanism).
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We demonstrate the effect of the bathymetry on the free surface
propagation in Fig. 12, where Fig. 12(c) is the free surface wave 5(x, y, t)
at t = T with a flat bottom bathymetry, and Fig. 12(d) is the free surface
n(x, y,t; B(x, y)) at t = T with the bathymetry given in (5.1).

We observe in Fig. 12(d) that due to bathymetry effects we no longer
have azimuthal symmetry in the free surface wave propagation, and the
wave amplitude is higher at positions close to (-1, 1) and (—%, —%). This
suggests the influence of the peaks in Fig. 12(a). Similarly the ampli-
tude of the wave is slightly damped in the first quadrant, indicating the
effect of the basin.

The results with isotropic initial conditions (and no points inside
the initial conditions support) are shown in Fig. 12(h). We note that
observations placed along the lines x = +y can no longer be referred
to as observations placed along characteristics, as these are no longer
characteristics of the distorted wave, due to bathymetry effects. How-
ever, we include the configuration to demonstrate convergence when
observations are placed along lines.

In each case we have N, 88 and 4x Ar 0.07. We
observe that the grid configuration has the best convergence of the
relative L? error, at 0.5%. The results for the line and arc configuration
also converge, however with a larger error of 5%. There is a relative
decrease in convergence compared to results for with a flat bottom
bathymetry as shown in Section 4.3. This is most likely due to the
fact that there is no longer azimuthal symmetry in the surface wave
propagation, and not all observation points are able to capture the
interaction of the free surface wave with localised bathymetry. Despite
this, we note that results for each case do converge. This is encouraging,
considering our results included effects of localised bathymetry features
with amplitudes as much as 30% of the fluid depth. Another possible
reason for convergence is that the amplitude of the initial conditions is
relatively small, which would mitigate wave breaking effects that could
hinder convergence.

We now investigate whether similar results can be observed with
realistic bathymetry.

5.2. ETOPO2 bathymetry

ETOPO?2 is a database of two-minute global relief data hosted by the
National Geophysical Data Centre at NOAA (2006). This is an amalga-
mation of data collected via multiple sources including satellite altime-
try observations and shipboard echo-sounding measurements (NOAA
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Fig. 13. Smoothed Etopo2v2c bathymetry relief within [15°S, 25°S] and [90°E, 100°E]. d-e: Planar view of the free surface wave with ETOPO2 bathymetry and (d) Isotropic initial

conditions (3.11), and (e) Anisotropic initial conditions (5.1), at the final time 7.

National Geophysical Data Center, 2006). The grid values represent
elevation at the cell edges, averaged over the cell area. The horizontal
grid spacing is 2-min of latitude and longitude, where 1 min of latitude
represents 1.853 km at the Equator, and the vertical precision is 1 m,
where z = 0 represents the mean sea level.

For the current analysis, a square sub-interval of the ETOPO2V2c
database was chosen within the specified latitude and longitude limits
[15°S, 25°S] and [90°E, 100°E] respectively. This is equivalent to a
rectangular grid of approximately 1100 km %1100 km (accounting for
slight differences between degrees of longitude due to the equatorial
bulge, where the maximum variation is approximately 60 km). This
bathymetry section represents the Wharton basin, a topographical fea-
ture in the ocean floor located off the western coast of Australia. It was
chosen because it includes both basin and ridge features, and because
of the relative ease with which periodic boundary conditions could be
implemented. Additionally, it has been a documented source for seismic
activity and strike-slip events such as the 2012 and 2016 events in the
region. As most earthquakes are of strike-slip mechanisms, such events
are potential sources of tsunamis in the Wharton basin (Heidarzadeh
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et al., 2017). A visual representation of the region and a relief map as
taken directly from the ETOPO2v2c database are given in Fig. 13(a)
and 13(b).

In order to find classical solutions of the shallow water equations,
we require the bathymetry f(x, y) and its first derivative to be smoother
than the raw ETOPO2 data. Additionally, we require periodic bound-
aries. Thus the boundaries are artificially padded with zeros, and a low
pass filter is used to damp all frequencies after the lowest 5% modes to
zero. A moving average filter was implemented to remove sharp curves
at the boundaries, using the Matlab smooth function. The control time
T was adjusted so that the free surface wave does not actually reach
the padded boundary region.

The average depth H = —5000 m was normalised to 1 and the length
scales adjusted to [-L, L] in both x and y directions. The amplitude
of the initial conditions was set to 0.001H (equivalent to 5 m). The
smoothed and scaled relief map, and 3-D plot of the bathymetry can be
seen in Fig. 13(c) and 13(f).

We implement the data assimilation for observations along the lines

x = =y, a grid, and an arc, with isotropic initial conditions and
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Fig. 14. Results with ETOPO2 and (a)-(d) isotropic initial conditions. We observe better convergence with an arc configuration of observations than for a straight-line configuration,
despite the latter being in closer proximity to the initial condition region. (e)-(h): Results with ETOPO2 and anisotropic initial conditions.

anisotropic initial conditions respectively. Figs. 13(d) and 13(e) show
the free surface wave at the final time 7T for each initial conditions case.
The effect of the bathymetry on the free surface wave is relatively small
compared to the flat bottom case in Fig. 12(c), than for the Gaussian
bathymetry as in Fig. 12(d). However, we note that the highest am-
plitude in the ETOPO2 bathymetry (as shown in Fig. 13(c)) is only
approximately 0.06, which is significantly less than the bathymetry
in (5.1). Nevertheless, we observe slightly deeper troughs in the free
surface wave indicated by the dark blue regions in 13(d), which are
indicative of bathymetry effects. We conclude that changes in the wave
speed due to the bathymetry structure may result in different coastal
communities having varied arrival time and wave energy.

The observation configurations and results with isotropic initial
conditions and anisotropic initial conditions are presents in Fig. 14.
For the isotropic initial conditions, we see in Fig. 14(d) that the lowest
relative error is for the grid configuration, with a minimum error of
0.3%. The straight line configuration has minimum a relative error of
5% and thus is convergent. However, as in the idealised case with
Gaussian bathymetry, it is again the worst performing configuration.
The results for the arc configuration are a bit better than those ob-
served for the Gaussian bathymetry, with a minimum error of 5%.
Subsequently we conclude that the main results of this study extend to
realistic bathymetry, such as the smoothed topography of the Wharton
basin.

We consider analogous results with a anisotropic initial conditions
in Fig. 14(e)-(h) . The main trends in the relative L? error shown
are similar to the results with isotropic initial conditions as shown
in Fig. 14(d), in that the grid formation has the lowest minimum
relative error, 0.2%. However, in this case the straight line configu-
ration performs better than observations along the arc, although both
are convergent. This is not surprising as we have already observed
in Section 4.4 that the arc and straight line configurations show rel-
atively worse convergence with a radially asymmetric surface wave
and bathymetry features. The main difference across the two cases
is the relatively better performance of the straight line formation.
Nevertheless, overall convergence for both isotropic and anisotropic
initial conditions is relatively equivalent.

6. Conclusion and further considerations
In this study, we implemented a data assimilation scheme for the

two-dimensional SWE to reconstruct the initial conditions, using obser-
vations of free surface wave height. Our objective was to investigate
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configurations of observations that minimise the reconstruction error
in the presence of increased complexity (compared to one dimen-
sion). These new features include curved non-linear wave-fronts and
bathymetry features. We did this by comparing cases where observa-
tions satisfied the minimum distance criterion (4.1) between pairwise
observations (Kevlahan et al., 2019), and when they did not. We com-
pared observations placed along straight lines (i.e. characteristics of the
surface wave with isotropic initial conditions and flat bathymetry), in
a grid array, and along concentric arcs. We analysed the effect of a
small or large number of observations, and the effect on convergence
when observations inside the initial conditions support were removed.
The algorithm was implemented for both isotropic and anisotropic true
initial conditions, both with both flat and non-flat bathymetry.

Summarising the main results, we observed that a necessary (but
not sufficient) condition for convergence was that some of the pairwise
observations are sufficiently closely spaced to observe the minimum
lengthscales of the initial condition, i.e. satisfy Eq. (4.1). While this con-
firms results from the one-dimensional case in part, the main difference
is that for the one-dimensional assimilation, the spacing condition (4.1)
was sufficient for convergence. We have demonstrated that this is not
the case (as for results in Fig. 5) in the two-dimensional assimilation,
and we may require a minimum number of points satisfying (4.1)
in order to achieve convergence. This could be due to the need to
capture the shape of true initial conditions with higher dimensionality.
We recall that Eq. (4.1) was not analytically derived for the two-
dimensional case, and therefore is not expected to account for its
complexities. Nonetheless, it is a useful reference tool for the qualitative
analysis in this study.

For the arc configuration, we observed that a higher number of
observations was necessary for convergence, whereas convergence was
achieved for the straight line and grid configurations with as few as
4 observation points. However, small N, was insufficient for conver-
gence when there were no observations within the support of the ini-
tial conditions. Increasing the number of observation points improved
convergence for the grid and characteristic configurations when obser-
vation points were removed from the support of the initial conditions.
The grid configuration showed the best convergence of the relative L?
error in the reconstructed initial conditions. We concluded that obser-
vations are not required within the support of the initial conditions,
and that this can actually degrade the results due to over-fitting. The
error was ((10~*) with a flat bottom bathymetry, and ©@(10~3) with a
Gaussian bathymetry, and bathymetry from the ETOPO2v2 database.
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Summary of the minimum relative L? error for the different analyses conducted in this study for observations
along (i) straight lines, (ii) in a grid array, and (iii) along arcs. Entries highlighted in red indicate non-
convergent results. Convergence was achieved for all configurations with no points within the support of the
true initial conditions ¢, with large N,,, and Ax = 0.07 (satisfying the necessary condition for convergence

given in (4.1).

Analysis Lines x = +y Grid Arc
N, = 36, minimum spacing Ax < 0.1 0.3% 0.1% 18%
Large N,,,, Ax = 0.07 0.2% 0.3% 2%
Small N, 4x =0.07 0.4% 0.3% None
No observations within support of ¢, small N, 4x = 0.07 18% 20% None
No observations within support of ¢, large N, 4x =0.07 7% 0.1% 2%

obs>

Convergence was slightly worse for the characteristic configuration
with anisotropic initial conditions and when bathymetry features were
included, but overall all configurations showed convergence (a relative
error in the reconstructed initial conditions less than 10%) with 88
observations for both isotropic and anisotropic initial conditions, and
with bathymetry. The main results for the analyses conducted in this
study are summarised in Table 2.

We now consider the feasibility of integrating these idealised find-
ings with a realistic tsunami model. The primary questions are:

(1) Is it realistic to assume that we have a sufficient number of ob-
servations for convergence, int the case of a grid of observations
centred on the initial conditions?

(2) Is it realistic to have a sufficient number of observations of
surface wave heights for potential locations of initial conditions
(i.e. associated with known seismically active regions)?

Addressing these, we note that the most destructive tsunamis are
those generated by shallow earthquakes, with epicentres along fault
lines. Of these, tectonic subduction at the plate boundaries are the
most likely causes of tsunamis, and subsequently their position coin-
cides with the support of the initial conditions. Schellart et al. (2011)
provide a comprehensive overview of global subduction sites as well
as the velocities of the respective plates. Concentrating observations
around subduction zones may sufficiently capture the propagation of
waves triggered by seismic events originating here. However, this is
not necessarily exhaustive; As we have indicated, the Wharton basin
(which does not lie on a subduction zone) is a potential zone for small
tsunamis due to strike-slip earthquakes (Heidarzadeh et al., 2017), and
there are many such regions. However, the most destructive tsunamis
in recent history such as the 2004 Indian ocean tsunami, have been due
to earthquakes with epicentres falling on subduction zones, and hence
merit primary focus.

The scope of positioning observations at all possible such locations,
brings us to the logistical feasibility of such configurations. Angove
et al. (2019) provide a comprehensive review of the major limitations
to accurate tsunami forecasts today, and detail key areas where un-
certainties associated with observing tsunamis can be quantified and
reduced. They highlight the need for updated methods to accurately
capture initial displacement, and detail possible solutions, such as
using data from the ever-expanding Global Navigation Satellite System
(GNSS), bottom pressure recorders (BPRs), and limited-area cabled
observation systems. They conclude that instrumenting commercial
fibre-optic cables with BPRs and accelerometers is the most promising
approach, but it comes with complexities and costs that cannot be
covered by scientific revenue streams alone.

This is especially problematic when we consider that requiring
observation configurations around subduction zones with the highest
probability of tsunamis occurring requires a large number of observa-
tions. In the present analysis we have demonstrated convergence with
N,,s = 88 placed around a single source of potential tsunamis, and
in reality there are several such regions. However as we previously
noted, innovative methods have already been introduced to generate
observations even when existing networks are relatively sparse. For
example, introducing virtual observation data interpolated from neigh-
bouring real observations as demonstrated by Wang et al. (2019). These
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methodologies can be implemented to pad the existing observational
network, such that requirements for N, are satisfied. Additionally,
there have been significant advancements in altimetry observations
taken from geospatial satellite data. Angove et al. (2019) note that
the process to constrain a tsunami source from altimetric data is sim-
ilar to that currently employed, and has the advantage of providing
both spatial and temporal variation not present in the static time
series reported by tsunameters. Despite this, they stipulate that due
to limitations in sensitivity, limited satellite coverage, and extended
data processing times, operational use of satellite altimetry in real-time
tsunami forecasting has not been a viable solution to date.

However, improvements in remote sensing of ocean waves using
altimetry have come a long way since the Geodynamics Experimental
Ocean Satellite 3 (GEOS-3) satellite was first launched in 1975. Even
then, remote sensing of ocean wave height from space was predicted
to provide a quantum increase in forecasting capabilities (Barrick and
Fedor, 1978). Recent projects such as the ESA’s GLOBWAVE project
(2010-2013) have expanded upon this, by providing access to con-
solidated datasets on ocean waves to the scientific community for
the purpose of modelling and forecasting. In 2017 the Copernicus
Marine Environment Monitoring Service (CMEMS) released the first
real-time global wave product, containing wave height data collected
via multiple satellites, available within three hours of acquisition. Addi-
tionally, these observations have been collected and made accessible for
forecasting models, as in Ribal and Young (2019). With a global spatial
resolution of 7 km X 7 km, the observation network is very similar to
the optimal grid configuration observed in this study, and thus has the
potential to generate similar results.

While tsunami waves are characteristic of relatively small ampli-
tudes, Smith et al. (2005) demonstrated that it is still possible to
measure tsunamis using altimetry data, and restrictions for forecasting
in real time were due to the delay in access to data. With innovated
products such as the CMEMS data-sets accessible in under three hours,
these restrictions can be mitigated and real-time forecasting capabilities
for tsunamis using altimetry data are on the horizon.

Ultimately, the efficacy of such modelling frameworks in a realistic
setting also depends on related factors not considered in the present
work, such as positioning of observations such that detection time
of tsunami waves is optimised. Ferrolino et al. (2020) demonstrate a
promising methodology using population-based algorithms that opti-
mises placement of deep ocean sensors around subduction zones, and
finds the minimal time it takes for the disturbance on the source to
arrive at sensor locations. While this work does not focus on recon-
struction of missing initial condition information, or wave accuracy as
it propagates away from the source, it is nonetheless a necessary con-
sideration for realistic tsunami observational needs. Earlier detection
can potentially mitigate the delay in receiving and processing altimetry
data.

As this work is restricted to the extension of the results in Kevlahan
et al. (2019) to two dimensions, future development would benefit
from considering the observability framework outlined by Kang and
Xu (2014) and King et al. (2015). This may provide a more rigorous
mathematical justification for optimal two-dimensional configurations
of observations. We recall that the mathematical proof of theorem (4.1)
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is applicable only for the one-dimensional case, and consequently the
results shown here are qualitative. A similar concept to the minimum
distance criterion considered here was provided in Hinson (2014),
where a lower bound on the radius of attraction to satisfy observability
was found. Future work aimed at determining optimal configurations
of observations in two dimensions would benefit from exploring the
effects of placing sensors within and outside this observability radius.

The analysis provided here can also be made more rigorous by
considering the well-posedness of the inverse problem, and the possible
issues of non-uniqueness and discontinuities in the mapping used to
reconstruct missing parameters, such as initial conditions, from the
model and observations. These considerations are addressed in detail
by Navon (1998), where regularisation methods such as Tikhonov
regularisation, inclusion of background information, and sensitivity
analyses are suggested to address such issues and to identify influential
parameters within the system. Subsequently a next step for this work
would be to conduct sensitivity analyses as in Kevlahan and Khan
(2020) and Khan and Kevlahan (2021), and to include regularisation
and background information terms in the cost function optimisation.

Global optimisation may be a more efficient and reliable method to
minimise the cost function than the gradient minimisation method used
here. In particular, global optimisation may avoid the algorithm getting
stuck in a local minimum. Ferreiro-Ferreiro et al. (2020) consider a
similar problem for tsunami models, where the shallow water model is
discretised using a positivity preserving second-order path-conservative
finite volume scheme, and the data assimilation problem is posed in
a global optimisation framework. Our work is based on the “optimise
then discretise” approach, and our goal is to extend the methodology
derived in Kevlahan et al. (2019) to two dimensions. Therefore, data
assimilation with a global optimisation algorithm is outside the scope
of the current work. However, realistic extensions of our results may
benefit greatly from the automatic data assimilation methods provided
by Ferreiro-Ferreiro et al. (2020).

In conclusion, we have developed a two-dimensional variational
data assimilation algorithm for reconstruction of initial conditions of
surface waves, with the primary aim of extending the results of the
one-dimensional variational assimilation outlined in Kevlahan et al.
(2019). We have confirmed the feasibility of variationally data assim-
ilation for tsunami waves in idealised 2D configurations, and have
qualitatively demonstrated the necessary and/or sufficient conditions
for convergence of the reconstructed initial conditions to the true
shape. We have analysed different configurations of observations, their
spacing and their number, with a variety of bathymetry and initial
conditions. Importantly, we have extended the one-dimensional results
regarding necessary conditions for the maximum distance between
pairwise observations as given by Eq. (4.1) (i.e. resolving the smallest
scales of initial surface displacement), and have additionally shown
that for the two-dimensional case this is not a sufficient condition.
We have demonstrated that when there are no observations within
the support of the initial conditions, a sufficiently large number of
observations is a necessary condition for convergence. Based on these
criteria, we have shown that convergence can be achieved for obser-
vations arranged in straight lines, grids, and along concentric circular
arcs, for both isotropic and anisotropic initial conditions, and with
realistic bathymetry data. With advances in altimetry observation data
availability and accuracy, there is scope to use these results for more
accurate tsunami models, with real observation data.
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