
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014) DOI:10.1002/qj.2473

A conservative adaptive wavelet method for the shallow-water
equations on the sphere

M. Aechtner,a,b N. K.-R. Kevlahana* and T. Dubosb

aDepartment of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
bLaboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France

*Correspondence to: N. K.-R. Kevlahan, Mathematics & Statistics, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
E-mail: kevlahan@mcmaster.ca

We introduce an innovative wavelet-based approach to adjust local grid resolution
dynamically to maintain a uniform specified error tolerance. Extending the work of Dubos
and Kevlahan, a wavelet multiscale approximation is used to make the Thuburn-Ringler-
Skamarock-Klemp (TRiSK) model dynamically adaptive for the rotating shallow-water
equations on the sphere. This article focuses on the challenges encountered when extending
the adaptive wavelet method to the sphere and ensuring an efficient parallel implementation
using message passing interface (MPI). The wavelet method is implemented in Fortran
95 with an emphasis on computational efficiency and scales well up to O(102) processors
for load-unbalanced scenarios and up to at least O(103) processors for load-balanced
scenarios. The method is verified using standard smooth test cases and a nonlinear test
case proposed by Galewsky et al. The dynamical grid adaption provides compression ratios
of up to 50 times in a challenging homogenous turbulence test case. The adaptive code is
about three times slower per active grid point than the equivalent non-adaptive TRiSK code
and about four times slower per active grid point than an equivalent spectral code. This
computationally efficient adaptive dynamical core could serve as the foundation on which
to build a complete climate or weather model.

Key Words: shallow-water equations; wavelets; adaptive numerical simulation; dynamical core

Received 27 March 2014; Revised 4 August 2014; Accepted 24 September 2014; Published online in Wiley Online Library

1. Introduction

1.1. Adaptive spherical shallow-water models

Geophysical flows are characterized by a wide range of time and
space scales. Eddies, jets, currents and wave packets are typical
features that appear locally and involve small scales. It is also
necessary for global circulation models to resolve large-scale
features with length-scales of thousands of kilometres. Because
the location of the smallest dynamically active scales changes
incessantly, an optimally efficient computational model should
have a dynamically adaptive grid that tracks small-scale features
and ensures that numerical errors remain below a target value. In
other words, the model should automatically adapt its resolution
locally where required, in order to resolve emerging small-scale
features or coarsen as these features dissipate. Fixed nested and
stretched grids (Krinner et al., 1997) have been used in weather
forecasting and regional climate modelling. However the non-
uniform grid resolution of these statically adaptive models is
based on a priori knowledge of the solution, which is not possible
for strongly nonlinear and non-stationary flows.

Dynamical adaptivity, where the grid is adapted automatically
based on the solution and changes in time, is still a research
topic in geophysical science and has not yet been incorporated

into operational general circulation models. The book by Behrens
(2009) gives an introduction and overview of adaptive modelling
in atmospheric science. Pioneered by Skamarock et al. (1989)
for weather models, dynamical adaptivity has been introduced
for rotating shallow-water models by Jablonowski et al. (2009)
(block-structured, finite-volume, latitude–longitude). Several
models (interpolation-based, spectral element, cubed sphere)
were compared by St-Cyr et al. (2008). Solutions of the shallow-
water equations on statically (Ringler et al., 2011) or dynamically
(Bauer et al., 2013) stretched unstructured meshes have also
been examined. More recently, wavelets have been used for
adaptive ocean modelling by Reckinger (2011), although this was
a collocation method on the plane that does not conserve mass.
The potential of dynamically adaptive numerical methods for
global ocean and atmosphere modelling is still being explored.

1.2. Contributions of this work and outline

A conservative adaptive wavelet method for shallow-water
equations on a regular staggered hexagonal C-grid was recently
introduced by Dubos and Kevlahan (2013). This prototype
method was implemented for regular planar geometry in Matlab
and this demonstrated the potential of this dynamically adaptive
method for simulating multiscale geophysical flows. The present

c© 2014 Royal Meteorological Society

M. Aechtner et al.

work is a sequel to Dubos and Kevlahan (2013), which extends
the adaptive wavelet approach to the sphere and reimplements
the algorithm in Fortran 95 and message passing interface (MPI)
with the goal of achieving high computational efficiency and good
parallel scaling.

After we introduce the general numerical model and algorithm
in sections 2 and 3, section 4 deals with the technical challenges and
modifications of the algorithm due to the non-uniform discrete
geometry on the sphere (e.g. the fact that triangular cells are no
longer uniform or equilateral). The parallel implementation, data
structure and strategies for optimizing computational efficiency
are described in section 5. This section also summarizes the strong
and weak parallel scaling performance of the method. Sections 6
and 7 verify the accuracy of the model for standard smooth test
cases (Williamson et al., 1992) and for a more complex nonlinear
test case (Galewsky et al., 2004). Finally, we consider the most chal-
lenging shallow-water test case for dynamically adaptive methods:
fully developed homogeneous rotating turbulence on the sphere.

2. Wavelets on the sphere

2.1. Wavelet spaces

A function f (x) defined on a domain � ⊂ R
n may be

approximated by a set of discrete basis functions φ
j
k(x),

f (x) ≈
∑

k∈K(j)

f
j

kφ
j
k(x),

where j is the scale, k is the position, K(j) is the index set of

positions defining the basis functions at each scale j and f
j

k are the
weights (called scaling coefficients). The larger the scale j, the finer
and more accurate the approximation and the bigger the index set
K(j). Alternatively, we can represent f (x) in wavelet space in terms
of the difference between successive levels of approximation j and

j + 1, which is spanned by the set of wavelet functions ψ
j
m(x),

fJmax (x) =
∑

k∈K(Jmin)

f J
k minφ

J
kmin(x) +

Jmax−1∑
j=Jmin

∑
m∈M(j)

f̃ j
mψ j

m(x),

(1)

where M(j) is the index set of positions defining the wavelets at
each scale j. Note that we require a coarse representation at scale
Jmin and we have truncated the representation at a finest level of

resolution Jmax. The basis functions φ
j
k(x) spanning each scale j

are called scaling functions and the functions ψ
j
m(x) spanning the

difference space between representations at successive scales j and
j + 1 (i.e. the interpolation error) are called wavelets.

This wavelet multiresolution analysis relies on the fact that the
grids at two successive scales j and j + 1 are nested. The index
sets K(j) and M(j) refer to nodes on the grid, and hence each

wavelet and scaling functionψ
j
m(x) orφ

j
k(x) (and accordingly each

coefficient f̃
j

m or f
j

k) is uniquely associated with a particular node.
Due to the nesting property of the grids, the union of the index sets
K(j) andM(j) equals the index set of nodes at the finer scale j + 1,

K(j + 1) = K(j) + M(j).

This relation reflects the fact that the wavelets span the difference
in approximation spaces between successive scales j and j + 1.
It is also the basis of adaptive wavelet methods, since the wavelet

coefficients f̃
j

k measure directly the interpolation error associated

with deleting a node x
j
k from the grid. Wavelet-based adaptivity

is described in detail in section 2.3.
Figure 1 shows three levels of nested grids j = 0, 1, 2 on the

sphere. The round (blue in the online article) nodes are a coarse

Figure 1. Nested grids on the sphere. An icosahedron projected on to the
sphere forms a coarse approximation (i.e. the round (blue in the online article)
nodes denoted by index set K(0)).Refining this coarse grid via edge bisection
and projection on to the sphere produces a finer nested grid. M(0) are the
new nodes added between level j and j + 1 and the finer grid has index set
K(1) = K(0) + M(0). Note that wavelets are located at nodes given by the index
sets M(j) and scaling functions are located at nodes with index sets K(j). The
triangles (red in the online article) are the new points added at the next finer level
of approximation j = 2.

grid (level 0, index set K(0)). Together with the square (green in
the online article) nodesM(0), they give the next finer level j = 1
and satisfy the nested property K(0) + M(0) = K(1). Similarly,
by adding the triangles (red in the online article) we construct
the next finer approximation level j = 2 consisting of all nodes
of any colour or shape. Accordingly, in level j, K(j) are all the
node positions obtained from refining the icosahedron j times
and M(j) are all the edge bisections on level j.

2.2. Discrete wavelet transform

Second-generation wavelets (Sweldens, 1996) allow the compu-

tation of the wavelet coefficients f̃
j

m from the scaling coefficients

f
j+1

k by a discrete wavelet transform referred to as lifting. Starting
on the finest level Jmax and working successively down to the
coarsest level Jmin, one computes

f̃ j
m = f j+1

m −
∑

k∈Kj
m

s̃
j
kmf

j+1
k ∀m ∈ M(j). (2)

This is called the predict step, since the last term predicts (using

interpolation) the values of the scaling coefficients f
j+1

m that will be

neglected at the coarser scale j. The f̃
j

m are the wavelet coefficients
and they measure the local interpolation error at scale j. Finally,
one updates the scaling function coefficients at scale j by adding a
linear combination of the neighbouring wavelet coefficients:

f
j

k = f
j+1

k +
∑

m∈Mj
k

s
j
kmf̃ j

m ∀k ∈ K(j). (3)

This update step is used to improve the properties of the
transformation. In our case, we design the update step to ensure
that the mean is conserved during refinement (i.e. prolongation)
or coarsening (i.e. restriction) between different levels of

resolution. Note that the predict and update weights s̃
j
km and s

j
km

are zero except in a small neighbourhood of l or k, respectively,
i.e. they have finite and compact stencils.

Since, unlike first-generation wavelets, second-generation
wavelets are constructed in physical space, they can be designed
for irregular domains and curved geometries. Second-generation
wavelets were first developed for the sphere by Schröder and
Sweldens (1995). The nested grid is generated by repeatedly
bisecting the edges of an icosahedron, which forms the level j = 0.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

(The dots in Figure 1 are the vertices of an icosahedron.) Each
bisection increases the scale j by one. In practice, the coarsest level
for the wavelet transform Jmin > 0, since the icosahedral grid is
far too coarse to be useful in practice. As explained in section 3.2,
the position of the grid points obtained must be adjusted slightly,
since after many such bisections the resulting triangular cells
are increasingly non-uniform and far from the ideal case of
equilateral triangles (at least near the 12 vertices and 30 edges
of the original icosahedron). We employ grid-improvement
techniques that optimize globally the geometrical properties
that are important for the accuracy of the Thuburn-Ringler-
Skamarock-Klemp (TRiSK) finite-volume/finite-difference
scheme we use to approximate the shallow-water equations.

We now describe how filtering the wavelet coefficients can
make this nested multiscale grid dynamically adaptive.

2.3. Adaptivity using wavelets

The discrete approximation of the function f (x) at the finest scale
fJmax can be compressed by removing (i.e. setting to zero) all those
wavelet coefficients with modulus below a specified tolerance
threshold ε. Due to the one-to-one correspondence between

wavelet coefficients f̃
j

m and grid points x
j
m, an adapted grid is

obtained by including all grid points that correspond to active
wavelet coefficients. Since the wavelet coefficients are exactly the
local interpolation error, this filtering ensures that the error of the
compressed function constructed by inverse wavelet transform
on the adapted grid is at most ε.

In addition to those significant wavelet coefficients above the

threshold, |f̃ j
m| ≥ ε, the adapted grid also includes all grid points

on the coarsest level Jmin and all grid points that are adjacent in
space (i.e. on the same level j) or in scale (on the next finer level
j + 1) to the significant wavelet coefficients. This allows dynamic
adaptivity, since adding nearest neighbours allows the grid to
track energetic features as they move or develop smaller scales
over one time step. This basic approach to wavelet adaptivity
was first proposed by Liandrat and Tchamitchian (1990). For
more details on wavelet-based adaptive numerical methods for
partial differential equations, we refer the reader to the review by
Schneider and Vasilyev (2010).

3. Conservative wavelet method for the shallow-water
equations on the sphere

3.1. Discrete shallow-water equations and flux restriction

The evaluation of the free surface height perturbation δh and
horizontally averaged velocity u of a thin layer of fluid is described
by the vector-invariant rotating shallow-water equations:

∂δh

∂t
+ div F = 0, (4)

∂u

∂t
+ qF⊥ + grad B = 0, (5)

with potential vorticity

q = curl u + f

h
,

thickness flux F = hu, height h = H + b + δh, Bernoulli func-
tion B = g δh + K, kinetic energy K = |u|2/2, Coriolis parameter
f , bottom topography b, mean height H and gravitational accel-
eration g. F⊥ is the flux perpendicular to the thickness flux F.

All differential operators are discretized using second-order
finite volumes or finite differences as described in Ringler et al.
(2010) and the energy-conserving variant is chosen for qF⊥. The
prognostic variables δh and u are arranged in a staggered fashion:
the scalar values h are located on nodes of the triangular grid and

the vector field u is discretized by storing the normal velocity at
the edge midpoints of the triangular cells located at the edge bisec-
tion. There are therefore three velocity components associated
with each height variable and they are oriented parallel to each
edge in a counter-clockwise fashion. Thus, each triangular cell is
associated with four discrete prognostic variables. Since we have
two sets of variables on two different grids, we require two distinct
wavelet transforms: a scalar transform for height h and a vector-
valued wavelet transform for the velocity u. These transforms
are described in detail in Dubos and Kevlahan (2013). For the
implementation, the prognostic variables δh and u can be stored
as either scaling coefficients (i.e. in physical space) or wavelet
coefficients (i.e. in wavelet space), since the wavelet transforms
allow us to convert between the two at any time. While Dubos and
Kevlahan (2013) chooses to represent in wavelet space, the imple-
mentation of this model stores scaling coefficients, which leads
to rearrangements in the algorithm and saves some operations
because values are accessed more frequently in physical space.

The computation of one time step begins with computing the
intermediate values B, F and qF⊥ by the TRiSK operators on
the locally finest level and restricting them to coarser levels until
they are available on all active elements. The computations are
preceded by setting masks for different quantities. This includes
the previous height values, which are computed by the inverse
wavelet transforms as needed. This way, every operator has all
values available that are required for its evaluation. Finally, the
gradient and divergence operators are evaluated and new δh and
u variables are computed from the trends. At this point, the
time step is not yet completed. Partial wavelet transforms (for
height only) need to be computed to ensure consistency and mass
conservation between levels, since prognostic variable are stored
as scaling coefficients. The grid is then adapted based on the
wavelet coefficients. This means keeping, or if necessary adding,
all grid points that either correspond to an active coefficients or
are needed for the stencil of one of the differential operators, and
removing the rest. Since there are two types of wavelet coefficient
(for h and u respectively), the adaptation step also includes a
consistency step that guarantees that active h grid points (nodes)
have active u points (edges) in their vicinity and vice versa.

The wavelet coefficient tolerance ε defined in section 2 is
not the actual threshold used for grid adaption. Instead, it is a
parameter that is set in order to control the error in the trend.
In turn, ε determines the actual tolerances εh and εu on the
height and velocity wavelet coefficients. The relation between the
thresholds for velocity wavelet coefficients, εu, and height wavelet
coefficients, εh, and the trend tolerance ε depends on the regime
and details can be found in Dubos and Kevlahan (2013).

• Quasi-geostrophic regime: Ro = U/fL 	 1 ,

εh = f U L Ro

g
ε3/2,

εu = U Ro ε3/2.

• Inertia–gravity regime: T ∼ L/c,

εh = cU

g
ε3/2,

εu = U ε3/2.

Here U and L are typical velocity and horizontal length-scales, c
is the wave speed and Ro is the Rossby number.

For the discretization in time, we use a four-stage third-order
strong stability-preserving Runge–Kutta method that is stable up
to Courant–Friedrichs–Lewy (CFL) numbers of 2 (Spiteri and
Ruuth, 2002). The time-step size is computed depending on the
solution to guarantee stability:

�t = min

(
1

ωmax
,

(
�x

|u|
)

min

)
,

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

Table 1. Number of bisection refinement levels J of the icosahedron, number
of height nodes N, total degrees of freedom (d.o.f.), average edge length �x and
equivalent truncation limit for spherical harmonic spectral solvers T. Level J = 12

corresponds to a resolution of approximately 1 arcmin on the Earth.

J N d.o.f. �x (km) T

3 642 2562 959.3 13
4 2562 10 242 479.6 25
5 10 242 40 962 239.8 51
6 40 962 163 842 119.9 101
7 163 842 655 362 60.0 202
8 655 362 2621 442 30.0 404
9 2621 442 10 485 762 15.0 809
10 10 485 762 41 943 042 7.5 1619
11 41 943 042 167 772 162 3.7 3238
12 167 772 162 671 088 642 1.9 6476

where ωmax =
(√

f 2 + ghπ/�x
)

max
is the maximum frequency

supported on the grid.
The maximum level Jmax may be determined implicitly by the

tolerance ε or it can be set explicitly. Allowing Jmax to be set by
ε ensures spatially homogeneous error, but since an additional
level is always added it also adds computational overhead. It is
also sometimes preferable to know the minimum grid resolution
in advance of the simulation. Similarly, the choice of the coarsest
level Jmin also affects the efficiency of the method, since retaining
several completely filled levels results in unnecessary wavelet
transform steps. (By a filled level, we mean that the grid adaptation
criteria force all grid points on a particular level to be retained.)
Thus, efficiency requires that Jmin should not be less than the
highest filled level. Furthermore, if a particular level j is almost
entirely filled, it is still preferable to set Jmin ≥ j, since the extra
nodes added are compensated by the gains of removing the lower
level(s). Although the choice of Jmin does not affect accuracy
directly, increasing the minimum level can improve accuracy
indirectly by improving grid quality (see section 3.2). Typical
values used in the test cases described below are Jmin = 6 (i.e.
six dyadic refinements of the icosahedron) for a localized test
function and Jmin = 7 for a global test function if there are
O(106) degrees of freedom (d.o.f.) in the adaptive model. Table 1
shows different grid sizes and compares them with the equivalent
spherical harmonic truncation limit T.

The model described above is inviscid and the only source of
dissipation is due to the wavelet adaptivity. We also consider the
shallow-water equations with explicit dissipative terms added to
both the height (4) and velocity (5) equations:

∂δh
∂t + divF = ν div grad(δh),
∂u
∂t + qF⊥ = −grad (B + K)

+ ν
(
grad div u − grad⊥ curl u

)
,

where the new parameter ν is the viscosity. The viscosity can be
chosen to limit the minimum length-scale or to model dissipative
mechanisms in the ocean or atmosphere (e.g. subgrid-scale
turbulent viscosity).

3.2. Grid optimization

Since the discretization of the differential operators from Ringler
et al. (2010) is second-order accurate for equilateral triangles
but drops to first-order accurate when the triangles are far from
equilateral, optimizing grid quality improves the accuracy of the
solutions. As explained earlier, this optimization is especially
important for large number of scales (e.g. approximately for
scales J > 6), since the grid becomes increasingly distorted near
the edges of the original icosahedron as the grid is successively
refined by edge bisection.

Figure 2 shows a section of the grid obtained by simple
edge bisection (top) and the same section for an optimized

Figure 2. Grid quality of simple bisection (top) and an optimized grid (bottom).
The offset (red in the online article, in metres at J = 7) of edge bisection of primal
(black) and dual (green in the online article) grids is reduced when the grid is
optimized using the method of Heikes et al. (2013). The offset error has been
reduced by a factor of about 60. This results in a more accurate discretization of
the differential operators in the TRiSK scheme.

grid (bottom) at J = 7 obtained using the method of Heikes
et al. (2013). The approximation of the Laplacian operator is
guaranteed to converge if the bisection of the primal edge (black
triangles) and dual edge (hexagons, green in the online article)
coincide. The distance (marked in red in the online article)
between those two intersection points is an important measure
for the grid quality. On simple grids refined by edge bisection, the
Laplacian operator does not even achieve first-order convergence.

Optimized grids provided by Heikes et al. (2013) can be read
into the model (this is currently the default method used in this
article). This approach seems to provide the best optimization
and leads to a convergent Laplacian operator. As an alternative,
the grid optimization proposed by Xu (2006) has also been
implemented. Advantages of this method are that it optimizes
locally (rather than globally), is computationally inexpensive
and is easy to implement. However, while the grid quality is
improved, leading to lower error for a given resolution J, the
Laplacian operator does not converge. In both cases, the grid
is first optimized on a coarsest level Jmin (determined by the
physics of the problem and computational resources). Finer levels
j > Jmin are obtained by edge bisection. This is necessary because
the interscale restriction and prolongation operators used in the
adaptive wavelet method require the grid points to be nested.

4. New challenges from spherical geometry

4.1. General issues

The main contributions of this work are to extend the planar
model of Dubos and Kevlahan (2013) to allow for a non-uniform
grid of non-equilateral triangles and to develop a highly efficient
parallelized code and associated data structure. In this section,
we consider the special challenges arising from the non-uniform
discrete C-grid on the sphere. In particular, due to fact that the
weights and stencil geometry for discrete differential operators
depend on position, the hexagonal grids on successive levels
have complicated overlap regions and the convergence behaviour
of operators is affected. In the present method, all areas are
computed as spherical polygons, edges are spherical arcs and
lengths are computed as arc lengths on the sphere. In contrast to
the plane, where only hexagonal cells occurred in the dual grid
to the triangular primal grid, the sphere includes 12 exceptional
pentagonal cells, corresponding to the 12 vertices of the original
icosahedron.

As in the planar version, the velocity requires a non-separable
vector-valued wavelet transformation. This transformation
involves interpolating the velocity at the mid-point of an edge of
a fine-level triangle j + 1 from values of the edges on the coarser
level j. Interpolation is carried out as a linear combination of the
velocity values on the coarse edges, where the (local) weights are

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

pre-computed to guarantee second-order accuracy. At least six
edges are required theoretically for second-order accuracy, but
the model uses 12 edges in a symmetric stencil to gain stability
and higher accuracy (see Dubos and Kevlahan, 2013 for more
details). On the sphere, every edge needs to compute and store its
own weights, which are obtained by solving two 6 × 6 systems of
linear equations.

Combining Eqs (2) and (3) gives the action of the height-

restriction operator Rhh
j+1
k = h

j
k as

h
j
k =h

j+1
k +

∑
m∈Mj

k

s
j
kmhj+1

m −
∑

m∈Mj
k

∑
k′∈Kj

m

s
j
kms̃

j
k′mh

j+1
k′ . (6)

The scaling function coefficient at node k on level j, h
j
k,

corresponds to the average height on the hexagon with centre
node k. The filter coefficients s̃ and s are chosen such that the
restriction from level j + 1 to level j conserves total height (i.e.
conserves mass):∑

k∈K(j)

A
j
kh

j
k =

∑
k∈K(j+1)

A
j+1
k h

j+1
k

(
=

∫
Sphere

h

)
, (7)

where h is the continuous height, defined as the result of an
inverse wavelet transform to infinite resolution. Using Eqs (3)

and (2) to express h
j+1
k from h

j
k and h̃

j
m, then setting to zero all

but one coefficient from among h
j
k and h̃

j
m yields the following

conditions:

Aj+1
m =

∑
k∈Kj

m

s
j
kmA

j
k,

A
j
k = A

j+1
k +

∑
m∈Mj

k

s̃
j
kmA

j+1
k .

These conditions are satisfied by letting

s̃
j
km = A

j+1
km

A
j+1
m

, s
j
km = A

j+1
km

A
j
k

,

where A
j+1
km is the area shared by the coarse-level hexagon A

j
k and

the fine-level hexagon A
j+1
m (see Figure 3). Note that partial areas

A
j+1
km cover the fine- and coarse-scale hexagons, ensuring that

s
j
km and s̃

j
km are indeed weights. Thus, it is necessary to compute

the areas of intersection of spherical polygons. Hexagonal cells
(and pentagons) are subdivided into six (or five) triangles using
the central point (i.e. the barycentre). Since the types of triangle

intersections that can appear during the A
j
mk computation are

only a subset of all possible intersection cases, the intersection
computation is optimized to account only for cases that can
occur. The points of intersection of triangle edges are computed
as spherical arc (great circle) intersections.

As in the planar case (Dubos and Kevlahan, 2013), in order to
guarantee mass conservation the fluxes need to be restricted and
the restriction operators must satisfy the commutation relation:

Rh ◦ divj+1 = divj ◦ RF. (8)

On the sphere the construction of a flux-restriction oper-
ator RF that guarantees this commutation property for a
given height-restriction operator Rh poses additional difficul-
ties, due to location-dependent discrete geometry and the
problem of overlapping hexagons at successive levels described
above.

We use the strategy proposed by Dubos and Kevlahan (2013)
to split the height- and flux-restriction operators into a basic and
correction part:

RF = RF0 + R′
F. (9)

The more complicated basic and corrective flux restrictions RF0

and R′
f needed in spherical geometry are described in the following

two subsections.

Figure 3. Arrangement of fine- and coarse-scale height nodes used in the
calculation of the corrective flux restriction through coarse edge kl2j (indicated by

the arrow). The figure also shows the two partial areas A
j+1
km and A

j+1
lm used in the

calculation of the flux restriction (A
j+1
m is the complete fine-scale hexagon (green

in the online version) with partial areas A
j+1
km and A

j+1
lm).

4.2. Basic flux restriction

In the following, notation from Figure 4 will be used, where all
quantities (particularly u, v, w, x and F) are integrated fluxes (total
flux through an edge or part of an edge), except that A stands
for area. As shown in Figure 4, the total area A of the central
(green in the online article) fine-scale hexagon is decomposed as
A = A1 + A2 + A3 + A4 according to the way it overlaps with
the two adjacent coarse-scale hexagons (red in the online article)
sharing the solid (red) edge.

We assume that we are given all fluxes u, v, w on the fine grid
(green) and want to compute the flux through the solid (red)
coarse edge F = F1 + F2 shown in Figure 4. F2 is the flux through
the part of the coarse edge outside the (green) fine hexagon and
F1 is the flux through the part of the coarse edge inside the (green)
fine hexagon. Here we consider the case where one end of the
coarse edge is inside the fine (green) hexagon and the other end is
outside. In this way, the procedure for both cases (ending inside
and ending outside) is explained. In the case in which both or no
edges are inside the fine hexagon, the same procedure is simply
applied at both ends.

The sum of fluxes entering the fine (green) hexagon on the left
of the F1 + x−1 connection is defined as Fin and the flux leaving
on the right is defined as Fout:

Fin = −w−1,1 + u−1,0 − v−1,−1 + w′
−1,1, (10)

Fout = −v1,1 + u1,0 − w−1,1 + w′
−1,1. (11)

The divergence theorem says that the average divergence of a
vector field over an area A, divA, is equal to the net flux through
the boundary of A divided by A,

divA = (Fout − Fin) /A. (12)

Therefore, average divergence over the small area shown in
Figure 4 may be written as

divA1+A2 = (F1 + x−1) − Fin

A1 + A3
= Fout − (F1 + x−1)

A2 + A4
.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

Figure 4. Small overlap regions between hexagons at successive levels need to
be accounted for when restricting the thickness flux. In the online article, the
coarse-level hexagons are red and the fine-level hexagons are green. The inset
figures show close-up views of the small overlapping areas due to the non-uniform
C-grid structure on the sphere.

The above expression can be solved for the flux F1 + x−1, using
A2 + A4 + A1 + A3 = A, to find

F1 + x−1 = Fin (A2 + A4) + Fout (A1 + A3)

A
.

An expression similar to Eq. (12) also holds for the small triangle
associated with area A−1,

A−1divA−1 = −F2 − w′
−1,1 − x1.

Solving for F2 yields an expression for the flux F2,

F2 = −A−1divA−1 − w′
−1,1 − x1.

Combining these results, w′−1,1 cancels and we find that the total
basic restricted flux F0 corresponding to the action of the operator
RF0 on the fine-scale fluxes is

F0 = F1 + F2

= A2 + A4

A

(−w−1,1 + u−1,0 − v−1,−1

)
+ A1 + A3

A

(−v1,1 + u1,0 − w−1,1

)
− A−1divA−1 − x1 − x−1. (13)

The remaining step is to compute the fluxes x1 and x−1

through the small boundaries shown in the zooms in Figure 4.
The flux through boundary x1 is interpolated using the fluxes at
fine edges on the upper half u0,1, v1,1, w−1,1, u−1,0 − v−1,1, v−1,2 −
w1,2, w1,1 − u1,0. The flux on the lower half through x−1 is found
in the same way from the fluxes u0,−1, w−1,1, v−1,−1, u−1,0 −
w−1,−1, w−1,−2 − v1,−2, v1,−1 − u1,0. We employ the interpola-
tion formula used for interpolating velocities in Dubos and
Kevlahan (2013), which has the following advantages:

(1) second-order accurate;
(2) reliable in the case of equilateral triangles; and
(3) computationally efficient, as it reuses components.

Note that the commutation relation (Eq. (8)) is satisfied
irrespective of the interpolation formula used to compute the
fluxes x1 and x−1.

This completes the computation of the restricted flux obtained
from the basic operator RF0 in Eq. (9). We now explain how to
compute the corrective part R′

F of the flux restriction in Eq. (9),
in order to obtain the full flux-restriction operator RF.

4.3. Corrective flux restriction

The operator R′
F that guarantees the commutation property (Eq.

(8)) can be computed from the hexagon intersection areas above,
where F′ is the part of the restricted flux obtained from the
corrective operator R′

F.
We assume that the hexagonal cell k has N edges (where N = 5

for pentagons and N = 6 for hexagons). The nearest-neighbour
fine-scale neighbours are denoted by m0, m2, . . . , m2N−2 and
the second nearest neighbour fine-scale neighbours are denoted
by m1, m3, . . . , m2N−1. The nearest-neighbour coarse-scale
neighbours are denoted by l0, l2, . . . l2N−2 and the second
nearest neighbour coarse-scale neighbours are denoted by
l1, l3, . . . , l2N−1. They are arranged in such a way that the following
holds:

• m2j is the midpoint of the edge joining nodes k and l2j;
the second nearest coarse neighbours of m2j are l2j−2, l2j+2;
and

• m2j+1 is the midpoint of the edge joining nodes l2j and
l2j+2; the second nearest coarse neighbours of m2j+1 are k
and l2j+1.

The arrangement of the nodes, points and edges used the
calculation of the corrective flux restriction is shown in Figure 3.

Using the notation in Figure 3, the definition of the height
restriction Rh and the relation between cell areas at coarse and
fine scales, the corrective part of the restricted flux F′ for cell k is
given by

F′ =
N−1∑
j=0

(km2jl2j) + (km2j+2l2j) + (km2j−2l2j)

+ (km2j+1l2j) + (km2j−1l2j)

+ 1

2
(km2j+1l2j+1) + 1

2
(km2j−1l2j−1)

+ 1

2
(l2j+4m2j+2l2j) + 1

2
(l2j−4m2j−2l2j), (14)

where

(kml) = A
j+1
km A

j+1
lm

A
j+1
m

(
c

j+1
k − c

j+1
l

)
(15)

and c
j+1
k = div

j+1
k F

j+1
k is the divergence of flux on the fine grid.

In summary, the restricted flux RFF
j+1
k = F

j
k is found by adding

the basic restricted flux found using Eq. (13) to the corrective
flux restriction found using Eqs (14) and (15). Note that to
find the corrective flux restriction we must first calculate the
local areas A

j
k and A

j+1
km associated with all active height nodes

x
j+1
k on the fine grid. Using the height restriction (Eq. (6)),

it is relatively straightforward to verify that the complete flux
restriction defined in Eqs (13) and (14) satisfies the commutation
relation (Eq. (8)).

5. Implementation and performance

5.1. General considerations

The algorithm, which was previously implemented in Matlab
for planar geometry by Dubos and Kevlahan (2013), has been
completely reimplemented in Fortran 95 with the goal of
producing a code that is computationally efficient and scales well
for parallel computation on large numbers of central processing
unit (cpu) cores. We have also made changes to the algorithm
itself: the prognostic variables are stored in physical space instead
of in wavelet space. Since most operators act in physical space,
this saves operations.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

Because of the irregular geometry, most quantities (lengths,
areas, weights, etc.) must be calculated individually for each
computational element. Pre-computing these quantities increases
memory use (which indirectly increases cpu time), while
computing them as needed considerably increases cpu time.
We therefore decided which quantities to compute when a
node becomes active and which to compute as needed in order
to optimize total efficiency. Additionally, quantities for which
precision affects the mimetic properties (like mass conservation)
are stored in double precision, while values that are already lower
accuracy due to truncation error and do not affect the mimetic
properties are stored in single precision.

5.2. Hybrid data structure

In terms of grid and data structures, the major difficulties arise
from the spherical geometry (i.e. non-regular domain) and the
locally and dynamically adapted grid. In addition, the grid is
staggered, rather than collocated. Data can be associated with
either triangles/circumcentres, edges or hexagons/nodes. The goal
of this section is to construct a data structure that accommodates
these properties and allows efficient computation of the most
time-critical parts of the method: the differential and interscale
operators.

A naive approach to deal with the triangular staggered grid on
a non-regular domain would be to use a data structure where
different grid entities are connected via coordinate references.
This has the disadvantage that finding second neighbours becomes
expensive, additional data (for the references) have to be stored
and communicated as the grid changes and it is difficult to keep
data locality under control. A better solution is to use a hybrid
data structure.

Ignoring the spherical geometry for the moment, the triangular
staggered grid can be represented within a regular data structure
by grouping one node, two triangles and three edges into one
computational element. Then, unfolding the icosahedron, its grid
is made up of 20 triangles that can be grouped into ten lozenges
see Figure 5, disregarding the refined regions). Therefore, a
grid resulting from refining an icosahedron can be divided into
ten subgrids, each of which can be stored and accessed in a
regular fashion. Note that, at the edges of the lozenges, the two
adjacent regular grids of the original icosahedron are rotated
with respect to each other. This is dealt with by surrounding
the ten lozenge subdomains by ghost/halo cells, where values
are not computed but rather copied from their actual locations.
Alternatively, the nested levels of the adapted grid could be
stored in a quad tree data structure, but computational overhead
during the neighbour search would be higher. Neighbours could
also be linked via references, increasing the overhead in terms of
memory and occasional cleaning and reference updating.

The best way to proceed in our case is to use a hybrid data struc-
ture: a combination of regular and irregular grids. The adapted
data structure, the irregular part, uses patches as the smallest
elements. A patch constitutes a small regular grid. Inside a patch,

Figure 5. Hybrid data structure on an icosahedral grid. It is an irregular tree-like
data structure with patches (red in the online version) as the smallest element
and a regular grid inside each patch. The figure illustrates an example where a
small-scale structure in the centre caused adaptive grid refinement.

computations are efficient. A similar hybrid approach was used by
Behrens (2009) and Hejazialhosseini et al. (2010). In this way, the
references can be used to link patches to neighbours in space and
scale, without introducing too much additional computational or
memory overhead. Since the granularity introduced by the patches
involves computational overhead, a patch size that minimizes the
total overhead needs to be found. Minimum patch sizes of 4 × 4 or
8 × 8 seem preferable, depending on the structure of the solution.
Figure 5 shows an adapted grid with patch size 4 × 4 and Jmin = 0.

Figure 6 shows a section of the grid with two 4 × 4 patches
(red in the online article) which are located at the edge of a
subdomain and therefore have two rows of ghost cells to their
left. Elements in a patch are numbered consecutively, so that
indices of neighbours on the same patch are offset by plus or
minus one if they are in the same row and plus or minus the
number of elements of one row (here 4) if they are above or
below the element. Since patches are linked with each other, the
upper patch in Figure 6 (elements 52–67) and the lower patch
(100–115) know each other’s offset, i.e. the index of the other
patch’s first element. In the same way, a patch knows adjacent
ghost elements, which are also organized as patches. On the other
sides, there could be further patches (not shown) or there might
not be any more patches on this level. As an example, consider
element 52. The offset of its southern neighbour is computed
as 80 (by finding the index 112 through the neighbouring patch
and subtracting 52). The same offset can be used for finding
the southern neighbour of elements 53–55. Note that the choice
of data structure does not affect the computed solution, only
computational and memory efficiency. This means that, on a
patch, only active elements (as determined by the adaptive wavelet
algorithm) are updated.

5.3. Serial performance

In this section, we compare the performance of the serial version
of our adaptive wavelet method with a similar non-adaptive
single-scale implementation of the TRiSK method (Dupos et
al., 2014; personal communication) and a standard spectral
implementation for the shallow-water equations (Rivier et al.,
2002). All calculations were done on the same machine.

Using the non-adaptive TRiSK implementation, a single time
step takes 3.2 × 10−7 s per degree of freedom. The TRiSK
simulation uses a uniform resolution, corresponding to Jmax = 8
levels and 655 362 height nodes (2.6 × 106 total degrees of
freedom) in Table 1.

We now compare the performance of the non-adaptive TRiSK
code with a similar adaptive wavelet code. The adaptive code has
a maximum scale Jmax = 10 and uses five levels of refinement,

Figure 6. Section of the computational grid with ghost cells on the left. A patch
(red in the online version) is a regular grid of elements (green in the online
version). Each regular element is made up of of one node, two triangles and three
edges.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

from J = 6 to J = 10. (The J = 5 grid is first optimized using
the method of Heikes et al. (2013), before being used as the
coarse level for the wavelet method.) The total number of
active height nodes in the Jmax = 10 adaptive wavelet method
is 500 962, roughly equivalent to the non-adaptive method. This
means that the grid compression ratio, which is defined as the
proportion of active grid points, is about 21 for the adaptive
wavelet method. The adaptive wavelet method is 3.4 times slower
per active node than the non-adaptive method. Nevertheless,
since the compression ratio is 21, the adaptive wavelet method
is still about six times faster than the non-adaptive method in
this case. Since the discretizations are identical, this result gives
a good estimate of the total computational overhead, due to
the multiscale wavelet adaptivity. Note that the overhead due
to the wavelet adaptivity increases with the number of levels
of refinement. j = 5 refinement levels corresponds to a local
refinement of 32 times, which is usually sufficient.

Spectral solvers are considered to be the most efficient non-
adaptive solvers (at least for serial implementations) and so give
a good lower bound on computational cost. A time step with the
spherical harmonics spectral solver SWBOB (Rivier et al., 2002)
takes 2.2 × 10−7 s per degree of freedom for a truncation limit
T341 with 465 124 height nodes. Therefore, we can conclude that
the serial adaptive wavelet TRiSK solver is about five times slower
per active node than an equivalent spectral solver with a similar
number of active height nodes. However, when compression is
taken into account, the adaptive wavelet method is about four
times faster than the spectral method, but with a maximum
resolution about four times finer.

It is important to note that the cpu time per grid point is
largely independent of the compression ratio. This is confirmed
in Figure 7, which shows that, while the compression ratio
(b) varies by a factor of more than three, the cpu time (a)
is approximately constant on average. Thus, the computational
overhead of the adaptivity should not depend sensitively on the
degree of compression.

In conclusion, we find that if the compression ratio achieved
is larger than about three times, then the adaptive model will
be faster than an equivalent non-adaptive version. As will be
seen below (e.g. Figure 7(b)), even for statistically homogeneous
flows like turbulence the typical compression ratios achieved are
greater than 10–50. Thus, in the serial case we expect that, in
addition to achieving a uniform error and finer local resolution,
the adaptive wavelet method should be 3–15 times faster than
similar non-adaptive methods. In special cases that are naturally
very sparse, such as tsunami propagation, the adaptive code
could be several hundred times faster than the non-adaptive
code.

Parallelization is vital for high performance in large problems
and the following two sections explain the parallel algorithm and
evaluate its strong and weak parallel scaling performance.

5.4. Grid distribution and parallel algorithm

Our goal is to run on at least several hundred cpu cores in
parallel with a weak parallel scaling efficiency (see below) of at
least 70–80%, in order to assess the potential of our code to run
efficiently on an even larger numbers of cores, O(103)–O(104),
in the future. In particular, we need to identify where the parallel
performance bottlenecks are.

Starting from the ten lozenge subdomains shown in Figure 5,
10 × 4j subdomains can be obtained by dyadic refinement j times
(i.e. using j levels of adaptive resolution). The subdomains are
distributed in parallel over several cpu cores, where each core can
have several domains. Having several small domains, rather than
one large domain, per core can improve cache efficiency through
blocking.

In an adaptive simulation, each subdomain will typically
have a different number of active nodes and thus require
a different amount of communication. The METIS (Karypis
and Kumar, 1995) graph partitioner is used to improve load
balancing amongst the cores. METIS allows us to assign weights
to the graph nodes (representing the subdomains) and graph
edges (representing the number of connections between two
neighbouring domains). When the load distribution becomes
uneven, due to the dynamic adaptivity, the loads can be
redistributed during checkpointing.

Every subdomain is extended to hold as many ghost/halo
cells as necessary for the various required operators. The
values at the ghost cells are communicated as needed.
Intracore communication is performed by copying and intercore
communication is performed using MPI. During grid adaption,
new patches are added as required and grid connectivity between
domains is updated (via MPI as necessary). Communications
occur at each trend computation and at each grid adaptation step,
the latter being less frequent. There is some leeway in the design of
the communication pattern, which we use in order to perform as
much communication as possible at each grid adaptation step, so
that the frequent communications are as light and fast as possible.
In addition, critical communications are carried out locally point-
to-point rather than using global communication, where possible.
Where applicable, communication is non-blocking so that the
computations can continue while communication is taking place
in the background.

5.5. Parallel performance

We quantify parallel performance with respect to both weak and
strong scaling efficiency. All calculations are performed on the
SHARCNET cluster REQUIN, which has 1541 AMD Opteron
cores and a Quadrics Elan4 interconnect. Each processor has two
cores and 8 GB of local memory.

(a) (b)

Figure 7. Turbulence test case with tolerance ε = 5 × 10−2. (a) Cpu time per active grid point and (b) compression ratio based on the maximum scale Jmax = 10.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

Figure 8. Strong parallel efficiency scaling. Perfectly balanced (solid) and realistic
turbulence test case (dashed). N is the total number of degrees of freedom (four
times the number of height nodes) and the numbers on the graph are active
degrees of freedom per core for each case.

Strong scaling efficiency ES is defined as

ES = t1

NtN
≤ 1,

where t1 is the time to perform a given computation on one core,
N the number of cores used and tN the time to perform the
computation on N cores. ES measures how cpu time decreases as
the number of cores increases for a fixed problem size. Ideally,
tN should decrease proportionally with increasing N, since the
processes can divide the (constant) work. However, in practice,
when the portion of the total computation allocated to each
core reaches a lower bound, tN no longer decreases due to the
non-parallelized part of the code (Amdahl’s law) or because of
communications overhead.

Figure 8 shows the strong parallel scaling efficiency for a
perfectly balanced load (solid line) and the turbulence test case
(dashed line). As expected, the unbalanced test case has a lower
efficiency. The reason for the lower efficiency is explained below.
This result suggests that, for both balanced and unbalanced
problems, strong parallel efficiency is acceptable for at least 102

cpus.
In practice, weak scaling efficiency is a more useful measure,

since high-performance codes are intended for large problems.
To measure weak scaling efficiency, the computation per core
is kept approximately constant as the number of processors is
increased. Weak scaling efficiency EW is defined as

EW = t1

tN
≤ 1,

where tN is the time needed when running on N processors.
However, unlike strong parallel efficiency, an efficient parallel
code should maintain EW ≈ 1 independently of the number of
cores used. Weak scaling is shown in Figure 9 for a balanced
test case. It demonstrates that good weak parallel efficiency can
be achieved for at least 640 cores. In particular, if there are at
least 20 000 height nodes per core, the weak scaling efficiency is
90% on 640 cores. For 1344 height nodes per core, an acceptable
efficiency of 70% can still be reached. Scaling for larger numbers
of cpus could not be tested, given resource limitations, although
these results suggest that the code should have acceptable parallel
performance for at least 1000 cores.

The adaptive algorithm requires a large number of com-
munications, although only the interscale (interpolation and
restriction) operators require communication with distant cores.
Most operators use the results of a previous operator available

Figure 9. Weak parallel efficiency scaling. Good performance is demonstrated
for up to 640 cores (the maximum tested) with this perfectly balanced test case.
Note that, even with only 1344 height nodes per core, this multilevel adaptive
method achieves almost 70% parallel efficiency on 640 cores.

on neighbouring nodes. For the TRiSK operators, it is possible
to communicate only the prognostic variables if we compute
some intermediate quantities on ghost cells. The communica-
tions bottlenecks are the interscale operators: flux restriction,
velocity interpolation and height interpolation. After fluxes have
been restricted from level j + 1 to j, fluxes on level j need to
be communicated before restriction from j to j − 1 is possible
(and similarly for the interpolation). This not only means that
the number of communications grows with the number of levels,
it also poses also a more difficult load-balancing problem. Now,
in order to avoid processors waiting at the communication step
for others to finish, the amount of work on level j should be
equally distributed amongst the cores for each level j. So not only
is it desirable to have the same number of total elements on each
core, but the elements should ideally be equally distributed at
each individual level. This is a significantly more difficult goal to
achieve, especially since the multiscale grid structure changes due
to grid adaptation after each time step.

This communications bottleneck currently limits efficient
strong parallel scaling to about 102 cpus. There is, however,
potential for improvement if multiconstraint load balancing
is used and/or the parallelization is extended to a hybrid
shared/distributed memory approach.

6. Verification

In this section we verify the numerical accuracy, convergence and
error control of the adaptive wavelet method against several test
cases.

We ran test cases 1, 2 and 6 from the standard shallow-water
test suite by Williamson et al. (1992) for different thresholds and
consequentially different numbers of active grid points, in order
to investigate convergence. We also show results from the strongly
nonlinear barotropic instability test case by Galewsky et al. (2004).
All test cases use the following physical parameters appropriate for
the Earth: gravitational acceleration g = 9.80616 m s−2, radius
R = 6.37122 × 106 m and rotation rate � = 7.292 × 10−5 s−1.
Longitude λ and latitude θ coordinates are related to Cartesian
coordinates (x, y, z) by

θ = arcsin(z/R), λ = atan2(y/x).

6.1. Advection: cosine bell (Williamson test case 1) and smooth
bell

This first test case considers only linear advection of a height
field by a prescribed velocity. This case is a good test of the grid

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

(a) (b)

Figure 10. Errors with respect to analytic solution after 12 days (one rotation
around the Earth), for (a) cosine bell and (b) smooth bell.

adaptation routines and grid stability, which is the ability of the
adaptation routine to refine only based on the solution and not as
a result of previous refinements leading to runaway refinement.
The time-independent advecting velocity field is

u(θ , λ) = U (cos θ cos α + sin θ cos λ sin α) ,

v(θ , λ) = −U (sin λ sin α) ,

with U = 2πR/(12 days). Two different initial conditions for the
height perturbation are compared: the cosine bell from test case 1
in Williamson et al. (1992),

h = H

2
(1 + cos(πr/L)) ,

and a smooth bell inspired by Galewsky et al. (2004),

h = Her2/(r2−2L2),

with

r = R arccos (cos θ cos λ)

and H = 1000 and L = R/3. The second initial condition is
included because the the cosine bell is only C1 continuous at
r = L. Because our grid adaptivity routine is based on second-
order interpolation, this non-smoothness at the edge of the cosine
bell could potentially affect grid stability. Both initial conditions
constitute a localized bell that is advected once around the
sphere.

Figure 10(a) shows the convergence results for the cosine bell.
The convergence of the error for increasing number of grid points
corresponds to the expected second-order accuracy. Recall that
the number of active grid points is controlled by the tolerance
ε. The results for the smooth bell shown in Figure 10(b) are
essentially the same as for the cosine bell.

The grid after one rotation (12 days) with the cosine bell, for
a threshold for the trend of ε = 0.02, is shown in Figure 11. The
minimum level has been set to Jmin = 4. The maximum allowed
level was set to Jmax = 10, but only levels up to J = 9 are used.
This shows that the actual maximum level is set by the tolerance
ε (i.e. the simulation is fully adaptive in scale). The prescribed
velocity in this figure goes from right to left. The grid is refined
in the centre, where the cosine bell is located, and leaves a trace
of a refined grid that gradually dissipates. The smooth bell in fact
shows a similar grid structure; grid instability does not seem to
be a problem for the non-smooth cosine bell.

6.2. Test case 2: steady-state geostrophic flow

The second test case uses the full shallow-water equations. Height
h is defined by

gh = gH −
(

R�U + U2

2

)
cos θ

Figure 11. Grid after one rotation with cosine bell in the centre (ε = 0.02, Jmin =
4). The maximum level is determined by the adaption routine.

and velocity as

u = U cos θ ,

with U = 2π/(12 days) and gH = 2.94 × 104 m2 s−2. The flow
is in geostrophic balance, so that the exact solution is equal
to the initial condition at all times (steady solution). Figure
12(a) shows that the convergence of the global time integration
error is approximately first-order accurate. Figure 12(b) and (c)
respectively show that the method is second-order accurate in
space and that the accumulated error after 12 days is controlled
by the tolerance ε, as expected.

6.3. Williamson test case 6: Rossby–Haurwitz wave

Rossby–Haurwitz waves are a standard test case for the full
shallow-water equations. Choosing wave number 4, the initial
conditions are the non-divergent velocity field

u = Rω cos θ + RK cos4−1 θ
(
4 sin2 θ − cos2 θ

)
cos 4λ,

v = −RK4 cos4−1 θ sin θ sin 4λ,

with parameters K = ω = 7.848 × 10−6 s−1 and a height chosen
to ensure the flow is in geostrophic balance. This initial field
rotates without change around the north–south axis.

Since analytical solutions are not available, solutions from
the National Center for Atmospheric Research (NCAR) Spectral
Transform Shallow-Water Model STSWM at resolution T514 are
used as a reference. Figure 13 shows that the convergence of the
spatial error of the method is indeed approximately second-order
for this full shallow-water test case.

6.4. Galewsky disturbed jet

The standard test cases above are supplemented by a strongly
nonlinear test case proposed by Galewsky et al. (2004): a zonal
flow with a height disturbance, which leads to an instability that
eventually develops into turbulence. As suggested in Galewsky et
al. (2004), the simulation is first run without the perturbation, to
assure that the numerical scheme is able to maintain balance for at
least five days. Figure 14 shows the error in height for the first five
days for the non-adaptive TRiSK scheme at resolution Jmax = 7

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

(a) (b) (c)

Figure 12. Test case 2 after 15 days. Errors for (a) height, (b) dependence of grid size on ε and (c) error controlled by ε.

Figure 13. Test case 6. Error of the adaptive wavelet solution compared with the
spectral solver STSWM reference solution for the Rossby–Haurwitz wave test
case as a function of the number of active grid points.

compared with results from the adaptive method with threshold
ε, chosen so that the total degrees of freedom are comparable
to the non-adaptive simulation (6 × 105). These results show
that, for a similar number of degrees of freedom and the same
discretization scheme, the adaptive wavelet method maintains a
significantly lower error (about three times lower).

We now consider the results for the perturbed jet flow after the
instability develops. Results for tolerance ε = 5 × 10−3, coarse
scale Jmin = 7 and finest scale Jmax = 9 are shown in Figure 15.
This simulation uses about 2 × 106 degrees of freedom, for a
compression ratio of 5.25. The contours (solid) of the adaptive
wavelet simulation nearly overlap with those of a reference
simulation with the non-adaptive TRiSK scheme at the finer
uniform resolution Jmax = 10, showing that the adaptive wavelet
simulation is quite accurate, even for this highly nonlinear time-
dependent test case.

We now consider one of the most challenging applications of
a dynamically adaptive method: homogeneous isotropic rotating
turbulence on the sphere.

7. Rotating shallow-water turbulence on the sphere

7.1. Initial condition structure of solution

As a final challenging test case closer to geophysically relevant
applications, we consider initial conditions designed to generate

Figure 14. Unperturbed zonal jet test case (Galewsky et al., 2004). For similar
numbers of active nodes, the adaptive wavelet method maintains a consistently
lower error than the non-adaptive TRiSK scheme.

shallow-water turbulence. The coarsest grid is at level Jmin = 5
and the finest level is determined by the tolerance ε (it turns
out the finest level required is Jmax = 10). Both inviscid and
viscous (ν = 104) simulations are run with the same tolerance
ε = 5 × 10−2, corresponding to about 2 × 106 degrees of
freedom.

The initial condition is made up of several zonal jets similar
to the zonal flow in section 6.4, arranged from north to south
as shown in Figure 16. Each zonal jet is perturbed to trigger an
instability. After two days, vortices form on each of the jets that
then interact to generate the approximately homogeneous and
isotropic turbulence shown in Figures 17 and 18.

Figures 17 and 18 show the simulation results after 132 h
for the inviscid and viscous runs, respectively. Panel (a) shows
the relative vorticity and (b) shows the adapted grid. Each
grid level is identified by a distinct colour. The most refined
regions corresponding to the darkest colours and are located near
the intense vorticity filaments that characterize two-dimensional
turbulence.

Figure 7 shows that the compression ratio at t = 132 h is about
15 for the inviscid case (17) and 21 for the viscous case (18). It is
important to note that at this time the compression ratio is at its
lowest level since the turbulence is most intense (compared with
both the initial conditions and dissipated flow at later times).
Figure 7 also shows that the cpu time per active point remains
roughly constant (a), even though the compression ratio changes

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Test case with tolerance ε = 5 × 10−3 and Jmax = 9. Height perturbation at (a) 2, (c) 4 and (e) 6 h and relative vorticity at (b) 4, (d) 5 and (f) 6 days. The
solution of the Jmax = 10 non-adaptive reference simulation is dashed, but the lines are mostly indistinguishable.

(a)

(b)

Figure 16. Initial conditions for (a) zonal velocity and (b) height for the
turbulence test case.

significantly when turbulence first develops and then decays
again (b). This shows that there is no appreciable computational
overhead associated with the degree of grid compression (sparse
or dense grids). Not surprisingly, the compression ratio is lowest
when the flow is most turbulent. Nevertheless, the viscous adaptive
wavelet code is still about four times faster than the spectral
code and six times faster than the non-adaptive TRiSK code
at this time for an equivalent maximum resolution. This result

confirms that adaptive methods can still be advantageous for
statistically homogeneous and isotropic flows, like fully developed
two-dimensional turbulence.

7.2. Energy and spectrum

The total energy E(t) is defined as

E(t) = 1

2

∫
gh

(
gh + |u|2

)
dS − 1

2
c4

waveAS,

where AS is the area of the sphere and the wave speed cwave is

cwave =
√

g

AS

∫
h dS.

Due to mass conservation, cwave is constant. Figure 19(a) shows
that the total energy for both viscous and inviscid runs first
decreases and then stays at about the same level once the
turbulence has developed.

The energy spectrum of the turbulent flows can be estimated
by interpolating the adaptive results on a uniform grid and using
spherical harmonics

f =
N∑

l=0

l∑
m=−l

FlmYlm.

The power spectrum is then defined as

Sf (l) =
l∑

m=−l

|Flm|2.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

(a) (b)

Figure 17. Inviscid shallow-water turbulence with tolerance ε = 5 × 10−2 at time t = 132 h. (a) Relative vorticity and (b) adapted grid.

(a) (b)

Figure 18. Viscous shallow-water turbulence with tolerance ε = 0.05 and viscosity ν = 104 at time t = 132 h. (a) Relative vorticity and (b) adapted grid.

Figure 19(b) show the spectrum of the rotational part of the
velocity ωv = curlv u. The energy spectrum has a clearly defined
power-law range, with a slope of about −2.2.

8. Summary, conclusions and perspectives

This article introduces a dynamically adaptive wavelet model
for rotating shallow-water equations on the sphere. This model,
based on the TRiSK discretization (Ringler et al., 2010), is an
extension to spherical geometry of the method developed for the
regular C-grid on the plane by Dubos and Kevlahan (2013). The
extension to the sphere is based on subdivisions of the icosahedron

needed to overcome several challenges to cope with the irregular
local C-grid geometry. In addition to the extension to the sphere,
the code has also been parallelized using MPI, using a highly
efficient hybrid patch-tree data structure. The METIS (Karypis
and Kumar, 1995) graph partitioner is used to improve load
balancing amongst the cores. The model has been implemented
in Fortran 95, in order to optimize computational efficiency.

The current implementation shows good strong parallel
efficiency scaling for real test cases up to O(102) cores and good
weak parallel efficiency scaling for load-balanced scenarios for up
to at least O(103) cores. Acceptable parallel scaling to a larger
number of cores should be possible if the parallel implementation

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

M. Aechtner et al.

(a) (b)

Figure 19. Turbulence with tolerance ε = 5 × 10−2 for the inviscid and viscous runs. (a) Total energy minus the total energy at rest. (b) Energy spectrum for the
rotational part of the velocity averaged over the interval t = (132–136 h).

is optimized further, for example by using measurement-based
multiconstraint load balancing or a hybrid shared/distributed
memory approach. Serial computational performance tests
showed that the adaptive wavelet code is about three times
slower than a non-adaptive TRiSK code and five times slower
than a spectral solver per active node. This suggests that the
adaptive wavelet code should be faster than non-adaptive codes,
provided it achieves a grid compression ratio greater than 5.
However, the adaptive wavelet code also guarantees spatially
uniform error control, which is not possible using non-adaptive
methods.

The convergence, accuracy, error control and efficiency
properties of the adaptive wavelet method were confirmed using
standard smooth test cases from Williamson et al. (1992) and
a nonlinear unstable zonal jet test case proposed by Galewsky
et al. (2004). The method was also used to simulate viscous
and inviscid fully developed and decaying homogeneous and
isotropic shallow-water turbulence. Even in the challenging case
of homogeneous turbulence, the adaptive method was able to
achieve high compression ratios of up to 15–50 times, due to
the fine-scale vorticity filaments that characterize the flow. In this
case, the wavelet method is 3–10 times faster than a spectral code
with the same number of degrees of freedom. This suggests that
the method should be appropriate for high Reynolds number
geophysical flows without obvious large-scale sparsity.

Whether or not a dynamically adaptive method is advantageous
depends on the physical problem and the goals of the simulation.
If the range of active scales of the physical problem is known in
advance and can be fully resolved numerically and the goal is high
numerical accuracy, then a high-order non-adaptive method (e.g.
pseudo-spectral) is ideal. However, if it is impossible to resolve all
active scales fully (or if the active scales are not known a priori),
it is preferable to use a low-order dynamically adaptive method
that tracks the most energetic structures as they move or change
scale. In particular, an adaptive method allows rapidly developing
small-scale structures (like cyclones or vorticity filaments) to be
captured. In this article, we have shown that our wavelet-based
method can control numerical error and achieve high rates of
compression, even for statistically homogeneous turbulence. In
terms of spectra, an adaptive method resolves the full range of
active length-scales, i.e. it resolves the most energetic structures
at all scales. In this article, all computational nodes are evolved
using the same scale-independent time step. In cases where only
a small percentage of nodes are at the smallest scales, a scale-
dependent time step would improve performance significantly
(McCorquodale and Colella, 2011) and is straightforward to
implement.

To the best of our knowledge, the models in St-Cyr et al. (2008)
are the only dynamically adaptive methods for the shallow-water
equations on the sphere comparable to the one we present here.
They analyze an interpolation-based spectral element shallow-
water model on a cubed-sphere grid and a block-structured

finite-volume method in latitude–longitude geometry. It is
instructive to compare and contrast our wavelet approach with
these methods.

In our case, the differential operators are discretized on an
icosahedral grid using the TRiSK approximation proposed by
Ringler et al. (2010) to conserve important mimetic properties of
the shallow-water equations. The grid refinement guarantees
a spatially uniform pointwise error estimated using wavelet
coefficients, while St-Cyr et al. (2008) use an empirical refinement
criterion. When applied to the Galewsky et al. (2004) unstable
zonal jet test problem, our method requires roughly four to five
times the number of degrees of freedom in order to obtain a
similar quality of solution. This is likely due to the fact that the
TRiSK scheme uses only second-order accurate approximations
of the differential operators, while St-Cyr et al. (2008) use fourth-
order accurate approximations (at the cost of more computations
per degree of freedom).

St-Cyr et al. (2008) measure execution time for the adaptive
mesh refinement (AMR) finite-volume code with three dyadic
refinement levels on 8, 16 and 24 cores. They find that the AMR
code is between 3.9 and 2.2 times slower than the fixed resolution
code, similar to our overhead result with five refinement levels.
However, their strong parallel scaling appears to be weaker than
in our case. The AMR code is only about 67% efficient when
increasing the number of cores from 8 to 24. In comparison, the
adaptive wavelet code is over 95% efficient for the same range
of cores and is 60% efficient when comparing execution time on
one core with execution time on 640 cores.

The model presented here has been implemented for bisections
of an icosahedron. However, the adaptive method, and in
particular the interscale operators for flux restriction and height
and velocity wavelet transform, can in principle be applied to
hierarchical bisections of any Voronoi diagram.

Work is currently under way to incorporate coastlines and
variable bathymetry, with the short-term goal of developing a
shallow-water global oceans model. This model will be applied to
both tsunami propagation and the development and long-term
dynamics of ocean flow, such as wind-driven gyres and western
boundary currents. In the medium-term, the model will be
extended hydrostatically in the vertical direction, while maintain-
ing adaptivity based on horizontal structure. The long-term goal
of this work is to evaluate the potential of dynamically adaptive
wavelet-based multiscale methods as dynamical cores for the next
generation of climate and weather global circulation models.

Acknowledgements

NKRK acknowledges the support of an NSERC Discovery grant,
a Mobility Grant from the French Embassy in Ottawa and a
visiting professorship at École Polytechnique. MA acknowledges
the support of a Mobility Grant from École Polytechnique.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

Adaptive Wavelet Dynamical Core

References

Bauer W, Baumann M, Scheck L, Gassmann A, Heuveline V, Jones SC.
2013. Simulation of tropical-cyclone-like vortices in shallow-water ICON-
hex using goal-oriented r-adaptivity. Theor. Comput. Fluid Dyn. 28:
107–128.

Behrens J. 2009. Adaptive Atmospheric Modelling. Springer: New York, NY.
Dubos T, Kevlahan NR. 2013. A conservative adaptive wavelet method for

the shallow-water equations on staggered grids. Q. J. R. Meteorol. Soc. 139:
1997–2020, doi: 10.1002/qj.2097.

Galewsky J, Scott RK, Polvani LM. 2004. An initial-value problem for testing
numerical models of the global shallow-water equations. Tellus 56A(:):
429–440.

Heikes RP, Randall DA, Konor CS. 2013. Optimized icosahedral grids:
Performance of finite-difference operators and multigrid solver. Mon.
Weather Rev. 141: 4450–4469.

Hejazialhosseini B, Rossinelli D, Bergdorf M, Koumoutsakos P. 2010. High
order finite volume methods on wavelet-adapted grids with local time-
stepping on multicore architectures for the simulation of shock-bubble
interactions. J. Comput. Phys. 229: 8364–8383.

Jablonowski C, Oehmke RC, Stout QF. 2009. Block-structured adaptive meshes
and reduced grids for atmospheric general circulation models. Philos. Trans.
R. Soc. A 367: 4497–4522.

Karypis G, Kumar V. 1995. ‘Metis –unstructured graph partitioning and
sparse matrix ordering system, version 2.0’, Technical Report. Karypis Lab,
University of Minnesota: Minneapolis, MN.

Krinner G, Genthon ZX, Le Van C. 1997. Studies of the Antarctic climate with
a stretched-grid general circulation model. J. Geophys. Res. D: Atmos. 102:
13731–13745.

Liandrat J, Tchamitchian P. 1990. ‘Resolution of the 1d regularized Burgers
equation using a spatial wavelet approximation’, Technical Report. Institute
for Computer Applications in Science and Engineering, NASA Langley
Research Center: Hampton, VA.

McCorquodale P, Colella P. 2011. A high-order finite-volume method for
conservation laws on locally refined grids. Commun. Appl. Math. Comput.
Sci. 6: 1–25.

Reckinger SM. 2011. ‘Adaptive wavelet-based ocean circulation modeling’,
PhD thesis. University of Colorado: Boulder, CO.

Ringler T, Thuburn J, Klemp J, Skamarock W. 2010. Unified approach to energy
conservation and potential vorticity dynamics for arbitrarily-structured
c-grids. J. Comput. Phys. 229: 3065–3090.

Ringler TD, Jacobsen D, Gunzburger M, Ju L, Duda M, Skamarock W. 2011.
Exploring a multiresolution modeling approach within the shallow-water
equations. Mon. Weather Rev. 139: 3348–3368.

Rivier L, Loft R, Polvani LM. 2002. An efficient spectral dynamical core for
distributed memory computers. Mon. Weather Rev. 130: 1384–1396.

Schneider K, Vasilyev OV. 2010. Wavelet methods in computational fluid
dynamics. Annu. Rev. Fluid Mech. 42: 473–503, doi: 10.1146/annurev-
fluid-121108-145637.

Schröder P, Sweldens W. 1995. ‘Spherical wavelets: Efficiently representing
functions on the sphere’. In Computer Graphics Proceedings (SIGGRAPH 95),
161–172. Association for Computing Machinery (ACM): New York, NY.

Skamarock W, Oliger J, Street RR. 1989. Adaptive grid refinement for numerical
weather prediction. J. Comput. Phys. 80: 27–60.

Spiteri R, Ruuth S. 2002. A new class of optimal high-order strong-stability-
preserving time discretization methods. SIAM J. Numer. Anal. 40: 469–491.

St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ. 2008. A comparison
of two shallow-water models with nonconforming adaptive grids. Mon.
Weather Rev. 136: 1898–1922.

Sweldens W. 1996. The lifting scheme: A custom-design construction of
biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3: 186–200.

Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN. 1992. A standard
test set for numerical approximations to the shallow-water equations in
spherical geometry. J. Comput. Phys. 102: 211–224.

Xu G. 2006. Discrete Laplace–Beltrami operator on sphere and optimal
spherical triangulations. Int. J. Comput. Geom. Appl. 16: 75–93.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)

