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Abstract. An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical
geodesic grid is developed. The method is based on second-generation spherical wavelets on almost
uniform optimal spherical geodesic grids. It is an extension of the adaptive multilevel wavelet solver
[O. V. Vasilyev and N. K.-R. Kevlahan, J. Comput. Phys., 206 (2005), pp. 412–431] to curved
manifolds. Wavelet decomposition is used for grid adaption and interpolation. A hierarchical finite
difference scheme based on the wavelet multilevel decomposition is used to approximate the Laplace–
Beltrami operator. The optimal spherical geodesic grid [Internat. J. Comput. Geom. Appl., 16
(2006), pp. 75–93] is convergent in terms of local mean curvature and has lower truncation error
than conventional spherical geodesic grids. The overall computational complexity of the solver is
O(N ), where N is the number of grid points after adaptivity. The accuracy and efficiency of the
method is demonstrated for the spherical Poisson equation. Although the present paper considers the
sphere, the strength of this new method is that it can be extended easily to other curved manifolds
by choosing an appropriate coarse approximation and using recursive surface subdivision.
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1. Introduction. Partial differential equations (PDEs) defined on the sphere
and other curved manifolds are common in scientific computation, especially in geo-
physical fluid dynamics. However, current climate and weather models are not adap-
tive, which means local features (e.g., hurricanes) are not resolved properly and must
be parameterized. The numerical solution of such problems on uniform grids is im-
practical since high-resolution computations are required only in regions where sharp
transitions occur. In particular, there is a need for efficient techniques for the solution
of elliptic equations on the sphere (e.g., the Poisson equation for the streamfunction
in the quasi-geostrophic equations). In recent years, there has been a growing interest
in developing wavelet-based adaptive numerical algorithms for solving elliptic prob-
lems [20, 4] and parabolic problems [13, 11, 19, 18, 12]. However, until now these
adaptive wavelet methods have been limited to flat geometries (i.e., manifolds with
zero curvature).

Efficient and accurate numerical solution of PDEs requires appropriate compu-
tational grids. However, on curved manifolds (such as the sphere) the best choice
for the computational grid is not obvious. The traditional partition of the sphere
is not ideal due to the singularities at the poles which lead to a variety of numeri-
cal difficulties, including a severe limitation on the time step unless special measures
are undertaken (such as local rescaling of the equations). Because they avoid this
problem, quasi-uniform triangulations are gaining popularity in the climate modeling
community. Many studies have been made of the development of finite difference and
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finite volume approximation using various spherical triangular grids [10, 23, 14, 7].
Nevertheless, these methods are still nonadaptive.

In a companion paper [16], we developed an adaptive wavelet collocation method
for the representation of the Laplace–Beltrami, Jacobian, and flux divergence opera-
tors on the sphere. We also demonstrated the accuracy and efficiency of this approach
for the adaptive solution of the advection and diffusion equations on the sphere.

The first goal of the present paper is to adapt our approach to use the optimal
spherical geodesic grid proposed by Xu [27]. The optimal grid is convergent in the
sense of local mean curvature (the standard grid is not convergent) and has lower
truncation error for the Laplace–Beltrami operator. Our second goal is to develop an
adaptive wavelet multilevel solver for elliptic equations on the sphere using the optimal
spherical geodesic grid. We limit ourselves here to the construction of wavelet bases
arising from interpolating subdivision schemes. Wavelets are used to adapt the com-
putational grid (and hence compress the solution), while finite differences are used to
approximate Laplace–Beltrami operator. The L2 norm accuracy of both the solution
and derivatives are controlled by a tolerance parameter ε. This work is an extension of
[20] to curved geometries. The elliptic solver can be used for the PDE constraints in
evolution problems, such as the Poisson equation in the pressure correction method for
the incompressible Navier–Stokes equations. Together, our previous article [16] and
the present paper thus provide a complete set of tools for the efficient and accurate
adaptive solution of PDEs on the sphere. In particular, we can now solve the full in-
compressible Navier–Stokes equations on the sphere, taking advantage of wavelet mul-
tilevel decomposition and compression. Although we consider the sphere, the strength
of this new method is that it can be extended easily to other curved manifolds by
choosing an appropriate coarse approximation and using recursive surface subdivision.

The multigrid method is the most efficient method for solving the general systems
of algebraic equations obtained from discretizing PDEs. The origin of the multigrid
method is found in the papers of Fedorenko [9] and Bakhvalov [1] and in the work of
Brandt [2]. The similarities between the multigrid method and the wavelet multires-
olution analysis were pointed out by Briggs and Henson [3]. They observed that the
space of highest resolution in multiresolution is analogous to the space of fine grid
vectors in the multigrid scheme. They also showed that the use of linear interpola-
tion in multigrid schemes corresponds to a representation of the solution in terms of
piecewise hat scaling function and that a basis for the null space of the restriction
operator spans the wavelet space corresponding to the hat function. In this paper,
we exploit the idea of Briggs to develop wavelet-based interpolation (e.g., butterfly
interpolation) and restriction operators on an adaptive optimal spherical geodesic grid
which is used to construct an adaptive multilevel elliptic solver on the sphere.

The paper is organized as follows. The approximation of the Laplace–Beltrami
operator on an optimal spherical geodesic grid and its truncation error compared with
the standard spherical geodesic grid are given in section 2. In section 3 an adaptive
multilevel wavelet collocation method for solving elliptic PDEs on the optimal grid is
described. Finally, section 4 presents the application of the method to the solution of
the spherical Poisson equation. The main results are summarized and future directions
are outlined in section 5.

2. Approximation of the Laplace–Beltrami operator on an adaptive
optimal spherical geodesic grid.

2.1. Wavelets on the sphere. We use the spherical wavelet multiresolution
analysis, derivative approximation, and grid adaptation strategy described in [16].
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We recall briefly the fundamental ideas underlining the construction of wavelets on
the sphere. The interested reader is referred to [16] and [21] for further details.

The construction of spherical wavelets in [21] relies on a recursive partitioning of
the sphere into spherical triangles. This is done starting from a platonic solid whose
faces are spherical triangles. Successive levels are generated by cutting each triangle
into four children. This is accomplished by adding vertices at the midpoint of edges
and connecting them with geodetics. Choosing the icosahedron as the starting point,
the resulting triangulation has the least imbalance in area between its constituent
triangles. Such imbalances, starting from the tetrahedron or octahedron, can lead to
visible artifacts. Here we will consider only the icosahedral subdivision for which the
number of vertices #Kj = 10 × 4j + 2 at subdivision level j.

Let S be a triangulation of the sphere S and denote the set of all vertices obtained
after subdivisions with Sj = {pjk ∈ S|k ∈ Kj}, where Kj is an index set. The
vertices of the original platonic solid are in S0, and S1 contains those vertices and
all new vertices on the edge midpoints. Since Sj ⊂ Sj+1 we also let Kj ⊂ Kj+1.
Let Mj = Kj+1/Kj be the indices of the vertices added when going from level j
to j + 1.

A second generation multiresolution analysis of the sphere provides a sequence of
subspaces Vj ⊂ L2(S) with j ≥ 0 and sphere S = {p = (px, py, pz) ∈ R

3 : ‖p‖ = a}
such that

• Vj ⊂ Vj+1 (subspaces are nested),

•
⋃

j≥0 Vj = L2(S),

• each Vj has a Riesz basis of scaling functions {φj
k|k ∈ Kj}.

Since φj
k ∈ Vj ⊂ Vj+1, for every scaling function φj

k filter coefficients hj
k,l exist

such that

(2.1) φj
k =

∑
l∈Kj+1

hj
k,lφ

j+1
l .

Note that the filter coefficients hj
k,l can be different for every k ∈ Kj at a given level

j ≥ 0. Therefore each scaling function satisfies a different refinement relation. Each
multiresolution analysis is accompanied by a dual multiresolution analysis consisting
of nested spaces Ṽj with bases given by the dual scaling functions φ̃j

k, which are
biorthogonal to the scaling functions:

(2.2) 〈φj
k, φ̃

j

k′ 〉 = δk,k′ for k, k
′ ∈ Kj ,

where 〈f, g〉 =
∫ ∫

S
fg dw is the inner product on the sphere. The dual scaling

functions satisfy refinement relations with coefficients h̃j
k,l.

A function u(p) ∈ L2(S) can be approximated adaptively by filtering the wavelet
coefficients djm nonlinearly using a threshold parameter ε,

(2.3) u≥(p) =
∑
k∈K0

cJ0

k φJ0

k (p) +

∞∑
j=J0

∑
m∈Mj

|dj
m|≥ε

djmψj
m(p).

Donoho [6] has shown that for smooth enough u,

(2.4) ||u(p) − u≥(p)||2 ≤ c1ε .
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Fig. 1. The definition of the angles αi,j , βi,j and neighboring vertices for evaluating the
Laplace–Beltrami operator on a spherical triangulation of a surface. Note that these angles include
information about the local curvature of the surface.

Note that removing a wavelet also removes the associated grid point, and so we obtain
an approximation to u(p) with L2 norm accuracy ε on an adapted grid. Differential
operators are calculated recursively on the adapted grid, starting at the coarsest level.
At each level a finite difference approximation using an appropriate weighted sum of
neighboring collocation points is used.

When solving PDEs numerically, it is necessary to approximate differential op-
erators of a function from the value of the function at collocation points. We will
consider the spherical Poisson equation in the following section. Therefore, we out-
line the procedure for approximating the Laplace–Beltrami operator on an adaptive
optimal spherical geodesic grid in three steps. In sections 2.2 and 2.3, we briefly out-
line the procedure for numerical approximation of the Laplace–Beltrami operator on
a spherical geodesic grid [17] and on an optimal spherical geodesic grid [27], respec-
tively. Finally, in section 2.4 we combine these two ideas to propose the numerical
approximation of the Laplace–Beltrami operator on an adaptive optimal spherical
geodesic grid.

2.2. Step 1: Calculation of Laplace–Beltrami operator on a spherical
geodesic grid. We first review the calculation of the Laplace–Beltrami operator on
a standard spherical geodesic grid as described in [16]. For any point p on the surface
of S, it is known that [26]

(2.5) ΔSp = 2H(p) ∈ R
3,

where H(p) is the mean curvature normal at p, i.e., ‖H(p)‖ is the mean curvature and
H(p)/‖H(p)‖ is the unit surface normal. Let pji be a vertex of the triangulation at

resolution j and let pjk, k ∈ N(i) be the neighboring vertices around pji . The numerical
approximation of the Laplace–Beltrami operator on the sphere ΔS as proposed in [17]
is then

(2.6) ΔSu(pji ) =
1

AS(pji )

∑
k∈N(i)

cotαi,k + cotβi,k

2
[u(pjk) − u(pji )],

where αi,k and βi,k are the angles shown in Figure 1 and N(i) is the set of nearest

neighbor vertices of the vertex pji . AS(pji ) is the area of the one-ring neighborhood
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given by

(2.7) AS(pji ) =
1

8

∑
k∈N(i)

(cotαi,k + cotβi,k)‖pjk − pji‖2.

Although this construction has been used in practice, it suffers from the fact that
the approximation to the local mean curvature of the sphere does not converge. In
addition, its truncation error is quite large. We will see that these two faults lead
to much larger errors compared with the optimal spherical geodesic grid described in
the following section.

2.3. Step 2: Calculation of Laplace–Beltrami operator on an optimal
spherical geodesic grid. We start from the spherical geodesic grid described in
the previous section. This provides a grid Sj at level j. The corresponding optimal
spherical geodesic grid at level j, denoted as Sj

optm, is computed using Algorithm 1
(introduced in [27]).

Algorithm 1. Optimal spherical geodesic grid (Sj
optm).

Denote the vertex set Sj = {pj(0)k ∈ S|k ∈ Kj}
do while ‖pj(l+1)

k − p
j(l)
k ‖∞ ≤ εoptm

Compute new vertex by p
j(l+1)
k = 1

AS(p
j(l)
i )

∑
k∈N(i)

cotα
(l)
i,k+cot β

(l)
i,k

4 [p
j(l)
k − p

j(l)
i ],

if v(p
j(l)
k ) < 6 (v(p

j(l)
k ) → valence of the vertex p

j(l)
k )

Project p
j(l+1)
k to the unit sphere in the normal direction

end

In Algorithm 1 the norm ‖pj(l+1)
k − p

j(l)
k ‖∞ = maxk∈Kj ‖pj(l+1)

k − p
j(l)
k ‖. Now we

will use the expression (2.6) on Sj
optm to find the Laplace–Beltrami operator on an

optimal spherical geodesic grid.
To check the accuracy of the approximation of the Laplace–Beltrami operator on

the optimal grid we take the test function

(2.8) u(θ, φ) = sin(φ),

where L∞ and L2 norms are computed by

(2.9) ‖u(pjk) − uj(pjk)‖∞ = max
k∈Kj

(u(pjk) − uj(pjk)),

(2.10) ‖u(pjk) − uj(pjk)‖2 =

[
1∑

k∈Kj AS(pjk)

∑
k∈Kj

AS(pjk)(u(pjk) − uj(pjk))
2

]1/2

,

respectively. Figure 2 shows that the L∞ norm fails to converge for scales j > 4 due
to the region around the vertices with valence 5 present in the standard spherical
geodesic grid (Sj). However, in the optimal spherical geodesic grid (Sj

optm) the error
converges in both the norms and with a much smaller truncation error than in the
case of the standard grid. This is because Sj

optm is optimal in the sense that the local
mean curvature becomes exact around those vertices of valence 5. (There are only
12 such points on the sphere no matter how many scales are used.) In both norms
the truncation error is smaller on Sj

optm by about a factor of 10. The L∞ norm has a
convergence rate near 1 and the L2 norm has a slightly better rate. These results are
consistent with the linear truncation error estimate given in [27].
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Fig. 2. Error in Laplace–Beltrami operator as a function of scale j, −− ◦ (L∞ norm on Sj),

−◦ (L∞ norm on Sj
optm), −−� (L2 norm on Sj), −� (L2 norm on Sj

optm), − linear convergence
of the error.

2.4. Step 3: Calculation of Laplace–Beltrami operator on an adap-
tive optimal spherical geodesic grid. A procedure for approximating differen-
tial operators, which takes advantage of multiresolution wavelet decomposition, fast
wavelet transform, and finite difference differentiation, is discussed in detail by Vasi-
lyev and Bowman [19] for the one-dimensional case and by Vasilyev [18] for multiple
dimensions, but is restricted to rectangular domains and flat geometries. The dif-
ferentiation procedure is based on the interpolating properties of second-generation
wavelets. We recall that the wavelet coefficients measure the difference between the
approximations of a function at successive levels of resolution j and j + 1. Thus, if
there are no points in the immediate vicinity of a grid point pji , i.e., |djk| < ε for all

k ∈ N(i), and the points pj+1
k , k ∈ N(i), are not present in Sj+1

optm,≥, then there exists

some neighborhood of pji , Ωj
i , where the function can be interpolated by a wavelet

interpolant based on sjk,m (k ∈ Km),

(2.11)

∣∣∣∣∣u(p) −
∑

k∈Km

sjk,mφj
k(p)

∣∣∣∣∣ ≤ c3ε,

where the coefficients sjk,m can be chosen according as in [16]. The procedure for
finding Laplacian at all grid points is given in Algorithm 2. The wavelets are used
to do what they do well: compress and interpolate. Finite differences do the rest:
differentiate polynomials. At the end of this procedure we have Laplacian at all grid
points with a uniform bound on the approximation error. The computational cost of
calculating Laplacian is the same as the cost of forward and inverse transforms.

Algorithm 2. Approximation of Laplace–Beltrami operator on an

adaptive optimal spherical geodesic grid.

For a function u(p) defined on an adaptive optimal spherical geodesic grid (Soptm,≥),
• Recursively reconstruct the function starting from the coarsest level of res-

olution. On each level j find Laplacian of the function at grid points that
belong to Mj

≥ using the appropriate weighted average (2.6).
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The approximation of the Laplace–Beltrami operator on the adapted optimal grid
Soptm,≥ satisfies the error bound

(2.12) ||ΔSu(p) − ΔSu≥(p)||2 ≤ c4ε ≤ c5N(ε)−q,

where q is the convergence rate for numerical approximation of the Laplace–Beltrami
operator. It also gives us the error bound with q = 1 for the numerical solution of
the Poisson equation using the adaptive multilevel wavelet solver discussed in the
following section.

3. Adaptive multilevel wavelet solver on an optimal spherical geodesic
grid. A linear elliptic PDE can be written in the general form

(3.1) LSu = f,

where LS is a differential operator on the sphere and f is a source term.
Now, we describe an efficient adaptive multilevel wavelet solver on Soptm,≥ for de-

termining u to within a specified residual tolerance which is an extension of adaptive
multilevel solver in [20] from flat geometries. The scheme for the multilevel elliptic
solver on an optimal spherical geodesic grid is presented in Algorithm 3, a graphical
representation of the scheme for the local multilevel elliptic solver is presented in Fig-
ure 3, and a more compact recursive definition of the local multilevel elliptic solver is
given in Algorithm 4, where J0 is the coarsest level of resolution and eJ0 is the solution
of the residual equation at the coarsest level. The symbol u≥,j ← (LS , f

j , u≥,j , ν)
means to relax the algebraic system Lsu≥,j = f j ν times. The integers ν1 and ν2 are
smoothing parameters in the scheme that control the number of relaxation sweeps
before and after the coarse grid. Ij

j−1 is the interpolation operator (based on the
butterfly interpolation presented in [16] and [21]) which takes coarse grid vectors at
level (j − 1) and returns fine grid vectors at level j. Ij−1

j is a restriction (injection)
operator which moves a vector from a fine grid at level j to coarse grid at level (j−1).
An application of this algorithm is presented in the following section.

u
≥,j

 ←(L
S
,fj,v

≥,j
,ν

1
)

fj−1=Ij−1
j

(fj−L
S
u

≥,j
)
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←(L
S
,fj−1,0,ν

1
)

Solve

L
S
ej
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←(L
S
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Fig. 3. Graphical representation of the local multilevel elliptic solver using V-cycles.
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Algorithm 3. Adaptive multilevel wavelet solver on an optimal spherical

geodesic grid.

Choose parameters:

• A coarsest level J0.

• A threshold parameter ε > 0.

• Positive adjacent zone constants M and L.

Iterative grid adaptation:

m = 0

Soptm,≥,m = SJ0
optm

do while m = 0 or Soptm,≥,m �= Soptm,≥,m−1 or ||u≥,m − u≥,m−1||∞ > δ

Sample function u(p) on Soptm,≥,m to give u≥,m.

m = m+1

Forward wavelet transform

Compression: retain only significant coefficients |djk| ≥ ε to initialize Soptm,≥,m.

Reconstruction check: (described in [19])

add grid points needed to calculate significant coefficients.

add all points at coarsest level: SJ0 ⊂ Soptm,≥,m.

Adaptation: add grid points associated with adjacent zone (described in [16, 19]).

Inverse wavelet transform: interpolates u≥,m onto new grid Soptm,≥,m.

do while ‖f − LSu≥,m‖∞ > δ

Local multilevel elliptic solver: V–cycle(fm, u≥,m, m), (Algorithm 4)

end

end

Converged results: Soptm,≥ = Soptm,≥,m, u≥ = u≥,m.

In Algorithm 3 the procedure for grid refinement starts from the coarse grid. Once
the solution is obtained, the computational grid consists of the significant grid points
and those grid points that could become significant during the next iteration. In other
words, at any instant of time the computational grid consists of the N(ε) significant
grid points plus those grid points in an adjacent zone in both position and scale that

could become significant in the next iteration [13]. We say that the wavelet ψj′

l (p)

belongs to the adjacent zone of wavelet ψj
k(p) if the following relations are satisfied:

(3.2) |j − j′| ≤ L, |2j′−jk − l| ≤ M,

where L determines the extent to which coarser and finer scales are included in the
adjacent zone. This allows for the development of details on finer scales such as shocks
or eddies. The parameter M defines the width of the adjacent zone at the same level.

Algorithm 4. Local multilevel elliptic solver using V-cycles.

V-cycle(f j , v≥,j , j)
Relax ν1 times on LSu≥,j = f j with initial guess v≥,j

if (j == J0)
goto label:

else

f j−1 ← Ij−1
j (f j − LSv≥,j)

v≥,j−1 ← 0
v≥,j−1 ← V-cycle(f j−1, v≥,j−1, j − 1)

end

Correct: v≥,j ← v≥,j + Ij
j−1v≥,j−1, goto label:
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Fig. 4. Convergence results for the first test case (a) as a function of N(ε), and (b) as a
function of ε −− � (L2 norm on S≥), −� (L2 norm on Soptm,≥).

label:
Relax ν2 times on LSu≥,j = f j with initial guess v≥,j

4. Results and discussion. To illustrate the accuracy and efficiency of the
proposed numerical method, we will take the Poisson equation (LS = ΔS) with two
different analytical solutions. For the first test case, we take the following analytical
solution:

(4.1) u(θ, φ) = sin(φ).

Next, we study the convergence of the adaptive multilevel wavelet solver with respect
to ε using the butterfly wavelet with lifting. Equation (2.4) predicts that decreasing ε
reduces the error proportionally (by increasing the number of significant grid points
N(ε)). Hence, the approximation of the solver is controlled by ε, d, and q.

In Figure 4(a) the error is presented for different numbers of significant grid points
N(ε). This result also verifies the analytical error estimate (2.12). The analytical error
estimate (2.4) for the solution is verified in Figure 4(b). Both figures show the much
lower error associated with the optimal grid Soptm,≥ compared with the standard grid
S≥. Using the multilevel solver on the adaptive optimal grid Soptm,≥, we achieve the
same numerical accuracy as on the adaptive nonoptimal grid S≥ but with many fewer
significant grid points. The adaptive multilevel solver on Soptm,≥ also shows faster
convergence compared to the adaptive multilevel solver on S≥ (as demonstrated in
Figure 4).

The increase in the number of grid points and the maximum level of resolution j
with the number of global iteration (m) of Algorithm 3 are shown, respectively, in
Figures 5(a) and 5(b) for ε = 10−4. These results show that the solution is obtained
on a near optimal grid: the adaptive multilevel wavelet collocation method uses the
minimal number of grid points necessary to obtain the specified error O(ε).

To demonstrate the efficiency of the adaptive algorithm we need to compare the
number of grid points used in the adaptive and nonadaptive methods. This may be
measured by compression coefficient C = N(ε = 0)/N(ε). The larger the compression
rate, the more efficient the adaptive algorithm. A compression rate of one indicates
that there is no compression (i.e., the grid is nonadaptive). Figure 6 shows that the
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Fig. 5. Number of global iteration (m) (threshold ε = 10−4): (a) as a function of the number
of significant grid points N(ε), and (b) as a function of the maximum level of resolution j.
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Fig. 6. The compression coefficient C as a function of global iteration number (m) for threshold
ε = 10−4.

compression rate converges rapidly to about 16, which is reasonably high for this very
smooth test problem.

In Figure 7 we show how the error converges with respect to global iteration
number m in the L∞ and L2 norms for ε = 10−4. These results show that each V-
cycle reduces the error by a fixed proportion, as expected for a multigrid type method.
Note that the L∞ norm gives an artificially large error due to the 12 valence 5 points
where the local mean curvature does not converge. Since the number of such points is
fixed on the optimal grid (independent of maximum resolution j), the error measured
in the L2 norm converges as expected as j → ∞.

The overall efficiency of the method depends on the convergence of local multilevel
elliptic solver (Algorithm 4). Figure 8 shows the residual error up to the discretiza-
tion error in both norms as a function of the number of local iterations for different
smoothing parameters ν1 and ν2. We observe from Figure 8 that doubling the relax-
ation parameter gives the same level of residual error in half the number of V-cycles.
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Fig. 7. Convergence results for the first test case as a function of global iteration (m), −◦ (L∞
norm on Soptm,≥), −� (L2 norm on Soptm,≥).
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Fig. 8. Residual error as a function of local iteration number for threshold ε = 10−4 and
different choice of smoothing parameters ν1 and ν2, −◦ (L∞ norm, ν1 = ν2 = 2), − · ◦ (L∞ norm,
ν1 = ν2 = 4), −� (L2 norm, ν1 = ν2 = 2), − · � (L2 norm, ν1 = ν2 = 4).

Next, we consider a second test case with the following localized analytical solution:

(4.2) u(θ, φ) = exp

[
− (θ − θ0)

2 + (φ− φ0)
2

ν

]
,

where ν = 1/4π2, θ0 = 0, and φ0 = 0. Since this solution is more strongly localized
than the first test problem, adaptivity will be even more important for an efficient
solution.

To get a better idea of how the adaptive algorithm follows the region of sharp
transition, we have plotted the solution using the adaptive multilevel wavelet solver
and the corresponding adaptive optimal spherical geodesic grid of solution in Fig-
ure 9 with respect to a different global iteration (m). The adaptive optimal spherical
geodesic grid converges at level of resolution j = 9 and global iteration m = 8. This
indicates that the localized structure has been resolved within the specified toler-
ance ε. Moreover, in this case we find a compression coefficient C ≈ 80 which shows
that the number of grid points in adaptive optimal spherical geodesic grid (Soptm,≥) is
approximately 80 times less than on a similar nonadaptive optimal spherical geodesic
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Fig. 9. Adaptive optimal spherical geodesic grids and corresponding solution of second test case
for different m with ε = 10−4.

grid (Sj
optm for a fixed j). We have thus demonstrated that our method can accu-

rately and efficiently solve highly localized elliptic PDEs on the sphere. For more
comparisons between adaptive and nonadaptive methods, see [16].

We have implemented the adaptive multilevel solver in C++ using the tree data
structure explained in [21]. Since this tree data structure is adaptive, our adaptive
wavelet method uses less memory as well as less CPU time compared to a nonadaptive
elliptic solver.

5. Summary and future work. We have described an adaptive multilevel
wavelet solver for elliptic equations on an optimal spherical geodesic grid. Wavelet
decomposition is used for grid adaption and interpolation, while an O(N ) hierarchical
finite difference scheme based on the wavelet multilevel decomposition is used to
approximate the Laplace–Beltrami operator on an adaptive optimal spherical geodesic
grid. The optimal spherical geodesic grid (proposed by [27]) ensures convergence of
the local mean curvature and a lower truncation error. The improved truncation error
and efficiency of the solver on an optimal spherical geodesic grid is demonstrated using
the Poisson equation.

Our results show that the computational grid adapts efficiently to the local gradi-
ents of the solution, refining or coarsening as necessary to achieve the specified error
tolerance. This error control is done automatically by specifying one parameter at
the beginning of the simulation: the wavelet filtering parameter ε. Furthermore, the
solution is obtained on a near optimal grid: the adaptive multilevel solver uses the
minimal number of grid points necessary to obtain the specified error O(ε).

We studied the compression of model atmospheric turbulence data by spherical
wavelets in our previous work [16] and found that approximately half the modes are
required to achieve 10−2 accuracy in wavelet reconstruction and 1% of the modes
qualitatively capture the energy spectrum at all scales. With the elliptic solver de-
scribed here, we now have all the tools needed to construct fully adaptive solvers
for a wide variety of geophysical fluid dynamics problems (e.g., two-dimensional tur-
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bulence, quasi-geostrophic, shallow water equations). We intend to use our adaptive
wavelet solver to perform large-scale geophysical simulations of atmosphere and ocean
dynamics problems.

To tackle earth-scale problems in geophysical fluid dynamics we need a very effi-
cient numerical implementation of our method. We already use a tree data structure
(to use memory efficiently). The next step is to parallelize the wavelet transform using
mpi to take advantage of processing power of the large parallel machines now avail-
able. We expect parallelization to be relatively straightforward given the multiscale
structure of the wavelet transform.
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