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Vorticity-based mathematical representation

◮ Since work of Helmholtz (1858), the
primary description.

◮ Controversy: Bertrand rejected
Helmholtz’s interpretation of 1/2∇× u as
rotation velocity of a fluid element!

◮ Production of vorticity at a boundary
remains a tricky issue. . . Helmholtz
considered vortex motion in an infinite
fluid.
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Important vorticity-based mathematical results

Vortex motion controls flow properties

◮ Helmholtz’s theorem, Kelvin’s Circulation theorem, helicity
conservation theorem.

◮ Force on an obstacle:

F(t) = −
1

2

d

dt

∫
V∞
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◮ Far field sound:
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where the Q’s are moments of the vorticity distribution.
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Vortex-based flow descriptions

◮ Helmholtz showed that a mixing
layer (i.e. unstable vortex sheet) is
the driving force of a organ pipe.

◮ First explanation of flow dynamics
using coherent vortices.

◮ Lift generated by a wing can be
explained by a system of line
vortices.
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Vortex dynamics qualitatively describes fluid flow

It is therefore natural to try to use vorticity and vortices
as the basis for numerical simulations of fluid flow. . .
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Vortex-based numerical methods

Vorticity and vortices can also be used to calculate the flow.

1. Discretize the vorticity field.

2. Decompose the flow in coherent vortices, either
instantaneously or statistically.
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Proper orthogonal decomposition (POD)
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Proper orthogonal decomposition (POD)

◮ Decomposes turbulent velocity field
in orthogonal eigenfunctions

∫
Rij(x, x

′)φ
(n)
j (x′)dx

′ = λ(n)φ
(n)
i (x)

Rij(x, x
′) = 〈ui (x)uj(x

′)〉 is
two-point correlation tensor.
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in orthogonal eigenfunctions

∫
Rij(x, x

′)φ
(n)
j (x′)dx

′ = λ(n)φ
(n)
i (x)

Rij(x, x
′) = 〈ui (x)uj(x

′)〉 is
two-point correlation tensor.

◮ If flow is periodic or statistically
stationary, first eigenmode is
typical coherent vortex.

◮ Construct reduced model of flow
using first few eigenmodes.

Helical coherent vortex in jet from
first POD mode (Iqbal & Thomas
2007).
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Vortex methods

◮ Date to Prager (1928) and Rosenhead
(1931).

◮ Discretize the circulation of vorticity
field onto N vortex particles.

◮ Vorticity equation integrated in two
steps:

1. Inviscid step Lagrangian advection by
velocity field of other particles
(Kelvin’s Circulation Theorem).

2. Viscous step Diffusion modelled by
exchanging circulation or Brownian
motion.

◮ Vortex particles are not coherent
vortices. . .
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Vortex methods

◮ Date to Prager (1928) and Rosenhead
(1931).

◮ Discretize the circulation of vorticity
field onto N vortex particles.

◮ Vorticity equation integrated in two
steps:

1. Inviscid step Lagrangian advection by
velocity field of other particles
(Kelvin’s Circulation Theorem).

2. Viscous step Diffusion modelled by
exchanging circulation or Brownian
motion.

◮ Vortex particles are not coherent
vortices. . .

(Protas & Wesfreid 2002)
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Coherent Vortex Simulation

◮ Use wavelet denoising to decompose flow into incoherent part
and coherent part (the rest).

◮ Coherent part corresponds to a tiny portion (< 1%) of total
modes and is multiscale.

◮ Effect of incoherent part modelled (e.g. Gaussian noise), or
neglected entirely.

◮ Coherent modes are integrated exactly.
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Coherent Vortex Simulation

◮ Use wavelet denoising to decompose flow into incoherent part
and coherent part (the rest).

◮ Coherent part corresponds to a tiny portion (< 1%) of total
modes and is multiscale.

◮ Effect of incoherent part modelled (e.g. Gaussian noise), or
neglected entirely.

◮ Coherent modes are integrated exactly.

Generalization of qualitative coherent vortex models for flow
visualization.
(See Farge, Schneider & Kevlahan 1999)
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Coherent Vortex Simulation

(c)(a) (b)

Vorticity field of 2-D turbulence at Re = 40 400. (a) 263 169 Fourier modes using the

pseudo-spectral method, (b) 7 895 coherent wavelet modes, (c) energy spectra: - - -,

wavelet, — pseudo-spectral.
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2D fluid–structure interaction: moving cylinder, Re = 100
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Computational vortices reveal turbulence structure

Can we construct a dynamical coherent vortex model of
fully developed homogeneous turbulence?
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Intermittency and turbulence

◮ The active regions of turbulence are distributed
inhomogeneously in space and time.

◮ The active proportion of the flow is believed to decrease with
Reynolds number.

◮ This intermittency is a fundamental property of turbulence.
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Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at Reλ = 1217 (Yokokawa et

al. 2002). Active regions are intermittent (and fractal?).
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Mathematical estimates of number of turbulence modes

◮ Foias & Prodi (1967) conjectured that solutions of the
Navier–Stokes equations are determined uniquely by a finite
number of spatial modes.

◮ Friz & Robinson (2001) proved this conjecture for stationary
periodic 2D turbulence.

◮ Jones & Titi (1993) found an upper bound on the number of
spatial Fourier required to represent 2D periodic turbulence of
O(Re2).

◮ Galdi (2006) extended this result to 3D flow past bluff bodies.

Nicholas Kevlahan McMaster University

Vortices for computing



Introduction Vortices for computation Vortices and intermittency Conclusions

Computational complexity of turbulence simulations

◮ Assuming homogeneity, the spatial computational complexity
of turbulence scales like Re9/4 (or Re1 in 2D).

◮ Similarly, space–time computational complexity scales like Re3

(or Re3/2 in 2D).

◮ Yakhot & Sreenivasan recently claimed it is even worse: Re4.

◮ However, these estimates ignore intermittency.
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Questions

◮ What is the actual scaling of spatial degrees of freedom with
Reynolds number, Reβ?

◮ What is the actual scaling of space-time degrees of freedom
with Reynolds number, Reα?

◮ Is turbulence more intermittent in space or time?

◮ What is the fractal dimension of the active regions of the
flow? (Assuming the β−model.)

◮ Do coherent vortices provide an effective reduced dynamical
model of two- and three-dimensional homogeneous
turbulence?
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Numerical estimation of space-time modes

◮ Use a simultaneous space–time adaptive wavelet solver.

◮ Take the number of active space–time wavelet modes as an
upper bound on the number of space–time degrees of freedom.

◮ Consider periodic unforced turbulence.

◮ Perform a sequence of simulations over a wide range of
Reynolds numbers.
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Space–time adaptive wavelet turbulence calculation

Advantages
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Vorticity at t = 126
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Adaptive wavelet grids at Re = 40 400

(a)

t

(b)

t

(c)

t ∈ [0, 2.1] t ∈ [123.8, 126.0] Spatial grid only
at t = 126.0
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Adaptive wavelet grids at Re = 40 400

(a)

t

(b)

t

(c)

t ∈ [0, 2.1] t ∈ [123.8, 126.0] Spatial grid only
at t = 126.0

Note the strong time intermittency of the solution: the smallest
time step is strongly localized in space.
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Scaling of modes with Reynolds number
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Note that intermittency reduces the number of modes significantly
compared with the usual computational estimates.
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β-model fractal dimension

The β-model for two-dimensional turbulence implies that the

spatial modes should scale like N ∼ Re

3DF
DF +1 ,

◮ Spatial fractal dimension is DF ≈ 1.2

◮ Temporal fractal dimension is DF ≈ 0.3

◮ Flow appears to be much more intermittent in time
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β-model fractal dimension

The β-model for two-dimensional turbulence implies that the

spatial modes should scale like N ∼ Re

3DF
DF +1 , and temporal modes

should scale like N ∼ Re

3DF
DF +4 .

◮ Spatial fractal dimension is DF ≈ 1.2

◮ Temporal fractal dimension is DF ≈ 0.3

◮ Flow appears to be much more intermittent in time

Assumes that the active proportion of the flow decreases like
lengthscale to the power 2 − DF .

Nicholas Kevlahan McMaster University

Vortices for computing



Introduction Vortices for computation Vortices and intermittency Conclusions

Next step: 3-D turbulence

◮ 3-D turbulence is more
intermittent.

◮ Vortex stretching (“sinews” of
turbulence).

◮ Shape and topology of vortices is
complicated.

◮ Is 4-D space–time simulation
feasible at large Re?

◮ How do we interpret 4-D structure
of space–time dynamics?

Reλ = 72, 100 times compression.
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Next step: 3-D turbulence

◮ 3-D turbulence is more
intermittent.

◮ Vortex stretching (“sinews” of
turbulence).

◮ Shape and topology of vortices is
complicated.

◮ Is 4-D space–time simulation
feasible at large Re?
(Depends on intermittency, and
computational efficiency.)

◮ How do we interpret 4-D structure
of space–time dynamics?
(This is a visualization challenge.)

Reλ = 72, 100 times compression.
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Coherent vortices are an efficient and accurate basis for
turbulence simulation.
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Engines of turbulence

Coherent vortices are an efficient and accurate basis for
turbulence simulation.

The resulting adaptive computational modes provide
insight into the dynamics and measure the
intermittency of turbulence.

Nicholas Kevlahan McMaster University

Vortices for computing


	Introduction
	Vortices for computation
	Vortices and intermittency
	Conclusions

