Calculating, modelling and understanding turbulence using adaptive wavelet simulation

Nicholas Kevlahan

Department of Mathematics & Statistics

December 2, 2005

Nicholas Kevlahan

McMaster University

Collaborators

Oleg Vasilyev

University of Colorado at Boulder

Dan Goldstein

University of Colorado at Boulder

Jahrul Alam

McMaster University (PhD student)

Nicholas Kevlahan

Outline

Introduction

Adaptive wavelet numerical simulation

Turbulence modelling

Summary

Nicholas Kevlahan

- Flow is characterized by intense localized three-dimensional vorticity.
- Flow is unsteady, and its energy is intermittent in space and scale.
- Fluid properties (diffusion, momentum transfer, drag, lift etc.) differ dramatically from those of laminar flow.

- Flow is characterized by intense localized three-dimensional vorticity.
- Flow is unsteady, and its energy is intermittent in space and scale.
- Fluid properties (diffusion, momentum transfer, drag, lift etc.) differ dramatically from those of laminar flow.

- Flow is characterized by intense localized three-dimensional vorticity.
- Flow is unsteady, and its energy is intermittent in space and scale.
- Fluid properties (diffusion, momentum transfer, drag, lift etc.) differ dramatically from those of laminar flow.

- Flow is characterized by intense localized three-dimensional vorticity.
- Flow is unsteady, and its energy is intermittent in space and scale.
- Fluid properties (diffusion, momentum transfer, drag, lift etc.) differ dramatically from those of laminar flow.

We should be able to calculate this curve!

Nicholas Kevlahan

$Re = 15\,000$ turbulent wake

(ONERA, Werle 1980 from www.efluids.net)

 $Re = 30\,000$ turbulent boundary layer (tripped)

Nicholas Kevlahan

 $Re = 15\,000$ turbulent wake

 $Re = 30\,000$ turbulent boundary layer (tripped)

(ONERA, Werle 1980 from www.efluids.net)

We would also like to control turbulence.

Nicholas Kevlahan

- 1. No general theory of turbulence exists.
- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

1. No general theory of turbulence exists.

- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

- 1. No general theory of turbulence exists.
- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

- 1. No general theory of turbulence exists.
- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

- 1. No general theory of turbulence exists.
- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

- 1. No general theory of turbulence exists.
- 2. Few theorems have been proved for the Navier–Stokes equations on bounded domains at high Reynolds numbers.
- 3. Model-free computations are limited to moderate Reynolds numbers $(O(10^4))$ and simple geometries (homogeneous isotropic turbulence or channel flows).
- 4. Experiments are expensive, and produce only a partial picture of the flow.

Unfortunately, most engineering, geophysical and physiological flows are strongly turbulent!

Why is turbulence difficult to compute?

Continuous range of active wavenumbers that increases with Reynolds number: $k_{\eta}/k_L \sim Re^{3/4}$.

- Number of spatial degrees of freedom is $(L/\eta)^3 \sim Re^{9/4}$.
- If $\Delta t \sim \eta/L$, total computational complexity is $\propto Re^3$.
- For typical aerodynamical flows Re ≈ 10⁶, and we might expect O(10¹⁸) computational elements!
- Is this the best we can hope for?

• Number of spatial degrees of freedom is $(L/\eta)^3 \sim Re^{9/4}$.

- If $\Delta t \sim \eta/L$, total computational complexity is $\propto Re^3$.
- For typical aerodynamical flows Re ≈ 10⁶, and we might expect O(10¹⁸) computational elements!
- Is this the best we can hope for?

- Number of spatial degrees of freedom is $(L/\eta)^3 \sim Re^{9/4}$.
- If $\Delta t \sim \eta/L$, total computational complexity is $\propto Re^3$.
- For typical aerodynamical flows Re ≈ 10⁶, and we might expect O(10¹⁸) computational elements!
- Is this the best we can hope for?

- Number of spatial degrees of freedom is $(L/\eta)^3 \sim Re^{9/4}$.
- If $\Delta t \sim \eta/L$, total computational complexity is $\propto Re^3$.
- For typical aerodynamical flows Re ≈ 10⁶, and we might expect O(10¹⁸) computational elements!

Is this the best we can hope for?

- Number of spatial degrees of freedom is $(L/\eta)^3 \sim Re^{9/4}$.
- If $\Delta t \sim \eta/L$, total computational complexity is $\propto Re^3$.
- For typical aerodynamical flows Re ≈ 10⁶, and we might expect O(10¹⁸) computational elements!
- Is this the best we can hope for?

Summary

Turbulence is intermittent in space and time

DNS of homogeneous isotropic turbulence at $\text{Re}_{\lambda} = 1217$ (Yokokawa et al. 2002). Vortices are intermittent and multiscale.

Nicholas Kevlahan

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be resolved, but the noise may be modelled (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be resolved, but the noise may be modelled (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be **resolved**, but the noise may be **modelled** (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be resolved, but the noise may be modelled (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be **resolved**, but the noise may be **modelled** (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

- 1. Turbulence is highly intermittent in both space and time: the actual number of degrees of freedom is much less than $O(Re^3)$.
- 2. Turbulence may be divided into an organized part (coherent vortices), and a stochastic part (random noise).
- 3. The coherent vortices must be resolved, but the noise may be modelled (or neglected entirely).
- 4. The coherent vortices may be extracted using adaptive wavelet filtering.

This is the basis of Coherent Vortex Simulation which was developed in collaboration with Marie Farge and Kai Schneider.

- 1. Adaptive time step.
- 2. Dynamically adaptive grid.
- 3. Simultaneous space-time adaptivity.

1. Adaptive time step.

- 2. Dynamically adaptive grid.
- 3. Simultaneous space-time adaptivity.

Nicholas Kevlahan Adaptive wavelet methods for turbulence

- 1. Adaptive time step.
- 2. Dynamically adaptive grid.
- 3. Simultaneous space-time adaptivity.

Nicholas Kevlahan

- 1. Adaptive time step.
- 2. Dynamically adaptive grid.
- 3. Simultaneous space-time adaptivity.

Nicholas Kevlahan

Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(\mathcal{N})$ transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast $O(\mathcal{N})$ transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).
Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast O(N) transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(\mathcal{N})$ transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(\mathcal{N})$ transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \} \text{ s.t.}$

▶ $V^j \subset V^{j+1}$ (subspaces are nested).

▶ $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \} \text{ s.t.}$

• $V^j \subset V^{j+1}$ (subspaces are nested).

▶ $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J}\}$ s.t.

• $V^j \subset V^{j+1}$ (subspaces are nested).

▶
$$\cup_{j \in \mathcal{J}} V^j$$
 is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \}$ s.t.

• $V^j \subset V^{j+1}$ (subspaces are nested).

►
$$\cup_{j \in \mathcal{J}} V^j$$
 is dense in $L^2(\mathbb{R})$.

► Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \}$ s.t.

- $V^j \subset V^{j+1}$ (subspaces are nested).
- ► $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

► Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

Wavelets ψ_k^j span the complement space W^j , where $V^{j+1} = V^j \oplus W^j$, i.e. wavelet coefficients give the detail.

Biorthogonal second generation wavelets

- Constructed in the spatial domain.
- Form a collocation basis.
- Can be custom designed for complex domains and irregular sampling intervals.
- Wavelet transform is done in place.
- Both forward and inverse wavelet transforms exist on an adapted grid.
- Order of approximation can be varied easily.

- ▶ Not translations and dilations of a single wavelet.
- ► Form a Riesz basis of linearly independent vectors:

$$A||f||^2 \le \sum_k |\langle f, \phi_k^j \rangle|^2 \le B||f||^2,$$

where $A \leq 1 \leq B$. There is an associated dual basis $\{\tilde{\phi}'_k\}$ s.t.

$$\frac{1}{B}||f||^2 \leq \sum_k |\langle f, \tilde{\phi}_k^j \rangle|^2 \leq \frac{1}{A}||f||^2,$$

and

$$f = \sum_{k} \langle f, \tilde{\phi}_{k}^{j} \rangle \phi_{k}^{j}, \text{ where } \langle \phi_{p}^{j}, \tilde{\phi}_{n}^{j} \rangle = \delta[p - n].$$

Parseval relation does not hold.

- ► Not translations and dilations of a single wavelet.
- ► Form a Riesz basis of linearly independent vectors:

$$A||f||^2 \le \sum_k |\langle f, \phi_k^j \rangle|^2 \le B||f||^2,$$

where $A \leq 1 \leq B$. There is an associated dual basis $\{\tilde{\phi}_k^{\prime}\}$ s.t.

$$\frac{1}{B}||f||^2 \leq \sum_k |\langle f, \tilde{\phi}_k^j \rangle|^2 \leq \frac{1}{A}||f||^2,$$

and

$$f = \sum_{k} \langle f, \tilde{\phi}_{k}^{j} \rangle \phi_{k}^{j}, \text{ where } \langle \phi_{p}^{j}, \tilde{\phi}_{n}^{j} \rangle = \delta[p - n].$$

Parseval relation does not hold.

- ► Not translations and dilations of a single wavelet.
- ► Form a Riesz basis of linearly independent vectors:

$$A||f||^2 \leq \sum_k |\langle f, \phi_k^j \rangle|^2 \leq B||f||^2,$$

where $A \leq 1 \leq B$. There is an associated dual basis $\{\tilde{\phi}_k^j\}$ s.t.

$$\frac{1}{B}||f||^2 \leq \sum_k |\langle f, \tilde{\phi}^j_k \rangle|^2 \leq \frac{1}{A}||f||^2,$$

and

$$f = \sum_{k} \langle f, \tilde{\phi}_{k}^{j} \rangle \phi_{k}^{j}, \text{ where } \langle \phi_{p}^{j}, \tilde{\phi}_{n}^{j} \rangle = \delta[p - n].$$

Parseval relation does not hold.

- ► Not translations and dilations of a single wavelet.
- ► Form a Riesz basis of linearly independent vectors:

$$A||f||^2 \leq \sum_k |\langle f, \phi_k^j \rangle|^2 \leq B||f||^2,$$

where $A \leq 1 \leq B$. There is an associated dual basis $\{\tilde{\phi}_k^j\}$ s.t.

$$\frac{1}{B}||f||^2 \leq \sum_k |\langle f, \tilde{\phi}^j_k \rangle|^2 \leq \frac{1}{A}||f||^2,$$

and

$$f = \sum_{k} \langle f, \tilde{\phi}_{k}^{j} \rangle \phi_{k}^{j}, \text{ where } \langle \phi_{p}^{j}, \tilde{\phi}_{n}^{j} \rangle = \delta[p - n].$$

Parseval relation does not hold.

Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree 2N - 1 on nested grids:

$$\mathcal{G}^j = \left\{ x^j_k \in \Omega : \; x^j_k = x^{j+1}_{2k}, \; k \in \mathcal{K}^j \right\}$$

Collocation: each scaling function and wavelet is associated to a unique grid point.

Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree 2N - 1 on nested grids:

$$\mathcal{G}^j = \left\{ x^j_k \in \Omega : \; x^j_k = x^{j+1}_{2k}, \; k \in \mathcal{K}^j \right\}$$

Collocation: each scaling function and wavelet is associated to a unique grid point.

$$u(x) = \sum_{k \in \mathcal{K}^J} u(x_k^J) \phi_k^J(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{L}^j} d_k^j \psi_k^j(x)$$

Wavelet compression

$$u(\mathbf{x}) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(\mathbf{x}) + \sum_{\mathbf{j}=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{L}^j} d_k^{\mathbf{j}} \psi_k^{\mathbf{j}}(\mathbf{x})$$

Nicholas Kevlahan

McMaster University

Wavelet compression

$$u_{\geq}(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{\substack{j=0\\ |\mathbf{d}^j_k| \geq \epsilon}}^{J-1} \sum_{\substack{k \in \mathcal{L}^j\\ |\mathbf{d}^j_k| \geq \epsilon}} d_k^j \psi_k^j(x)$$

Nicholas Kevlahan

Wavelet compression

$$||u(x) - u_{\geq}(x)||_{2} = O(\epsilon)$$

$$\mathcal{N} = O(\epsilon^{-1/2N})$$

$$||u(x) - u_{\geq}(x)||_{2} = O(\mathcal{N}^{-2N})$$

Nicholas Kevlahan

McMaster University

$$F\left(\frac{\partial u}{\partial t},\frac{\partial^n u}{\partial x^n},x,t\right) = 0$$

Nicholas Kevlahan

$$F\left(\frac{\partial u}{\partial t},\frac{\partial^n u}{\partial x^n},x,t\right)=0$$

$$u(x^{j}_{k}) \Longrightarrow d_{k}^{j} \Longrightarrow \frac{\partial^{n} u}{\partial x^{n}}(x^{j}_{k}), \quad O(\mathcal{N}) \text{ complexity}$$

Nicholas Kevlahan

$$F\left(\frac{\partial u}{\partial t},\frac{\partial^n u}{\partial x^n},x,t\right) = 0$$

$$u(x^{j}_{k}) \Longrightarrow d_{k}^{j} \Longrightarrow \frac{\partial^{n} u}{\partial x^{n}}(x^{j}_{k}), \quad O(\mathcal{N}) \text{ complexity}$$

Nicholas Kevlahan

$$F\left(\frac{\partial u}{\partial t},\frac{\partial^n u}{\partial x^n},x,t\right)=0$$

$$u(x^{j}_{k}) \Longrightarrow d_{k}^{j} \Longrightarrow \frac{\partial^{n} u}{\partial x^{n}}(x^{j}_{k}), \quad O(\mathcal{N}) \text{ complexity}$$

Nicholas Kevlahan

McMaster University

Burgers equation: steepening shock

$$rac{\partial u}{\partial t} + u rac{\partial u}{\partial x} =
u rac{\partial^2 u}{\partial x^2}, \quad x \in (-1, 1), \ t > 0,$$

 $u(x, 0) = -\sin(\pi x), \quad u(\pm 1, t) = 0$

Parameters: $\nu = 10^{-2}/\pi$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

Burgers equation: moving shock

$$egin{aligned} &rac{\partial u}{\partial t}+(1+u)rac{\partial u}{\partial x}=
urac{\partial^2 u}{\partial x^2}, \quad x\in(-\infty,\infty), \ t>0, \ &u(x,0)=- anh((x+1/2)/(2
u)), \quad u(\pm\infty,t)=\mp1 \end{aligned}$$

Parameters: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.
- Example of spatial intermittency and complex geometry.

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.
- Example of spatial intermittency and complex geometry.

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.
- Example of spatial intermittency and complex geometry.

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.
- Example of spatial intermittency and complex geometry.

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.
- Example of spatial intermittency and complex geometry.

Combine two methods:

- 1. Adaptive wavelet collocation for grid adaptation and derivatives.
- 2. Brinkman penalization to impose no-slip boundary conditions at the surface of an obstacle of arbitrary shape.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{U}) \cdot \nabla \mathbf{u} + \nabla P = \nu \Delta \mathbf{u} - \frac{1}{\eta} \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_{o})$$
$$\nabla \cdot \mathbf{u} = 0$$

Combine two methods:

- 1. Adaptive wavelet collocation for grid adaptation and derivatives.
- 2. Brinkman penalization to impose no-slip boundary conditions at the surface of an obstacle of arbitrary shape.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{U}) \cdot \nabla \mathbf{u} + \nabla P = \nu \Delta \mathbf{u} - \frac{1}{\eta} \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_o)$$
$$\nabla \cdot \mathbf{u} = 0$$

Combine two methods:

- 1. Adaptive wavelet collocation for grid adaptation and derivatives.
- 2. Brinkman penalization to impose no-slip boundary conditions at the surface of an obstacle of arbitrary shape.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{U}) \cdot \nabla \mathbf{u} + \nabla P = \nu \Delta \mathbf{u} - \frac{1}{\eta} \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_o)$$
$$\nabla \cdot \mathbf{u} = 0$$

Combine two methods:

- 1. Adaptive wavelet collocation for grid adaptation and derivatives.
- 2. Brinkman penalization to impose no-slip boundary conditions at the surface of an obstacle of arbitrary shape.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{U}) \cdot \nabla \mathbf{u} + \nabla P = \nu \Delta \mathbf{u} - \frac{1}{\eta} \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_o)$$
$$\nabla \cdot \mathbf{u} = 0$$

Obstacle response is modelled as a damped harmonic oscillator

$$m\ddot{\mathbf{x}}_{o}(t) + b\dot{\mathbf{x}}_{o}(t) + k\mathbf{x}_{o} = \mathbf{F}(t).$$

Fluid-structure interaction: time scheme

- Second order backwards difference.
- Semi-implicit discretization of convection term.
- Split-step to enforce divergence free velocity.

Fluid-structure interaction: time scheme

- Second order backwards difference.
- Semi-implicit discretization of convection term.
- Split-step to enforce divergence free velocity.

Poisson equation is solved using an adaptive wavelet multilevel method with V-cycles.

2D fluid-structure interaction: moving cylinder, Re = 100

Nicholas Kevlahan

McMaster University
2D fluid-structure interaction: fixed cylinder, Re = 100

Grid at scales j = 4 to j = 9, compression ratio is 1/270.

Nicholas Kevlahan

2D fluid-structure interaction

Periodic cylinder array at $Re = 10^4$, t = 3.5, 869². (a) Vorticity. (b) Grid.

3D fluid-structure interaction

Flow around a sphere at Re = 550, effective grid 256^3 . Vorticity isosurface (30% $||\omega||_{\infty}$) and grid at t = 16.

3D fluid-structure interaction

Flow around a sphere at Re = 550, effective grid 256^3 . Vorticity isosurface (30% $||\omega||_{\infty}$) and grid at t = 16.

Advantages

Open questions

Nicholas Kevlahan

Adaptive wavelet methods for turbulence

McMaster University

Advantages

- Global error control in time.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Grid reveals dynamics of problem.

Open questions

► Efficiency?

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ▶ FAS approximation to cope with nonlinear equations.
- ▶ Iterate until residual satisfies *L*₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- ▶ Iterate until residual satisfies *L*₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ▶ FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- ▶ Iterate until residual satisfies *L*₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- **Iterate** until residual satisfies L_2 norm tolerance.
- Split space-time domain in time direction into manageable slices.

Burgers equation: solution

Burgers equation: time integration error

2D vortex merging

- Solve 2D vorticity equation for merger of identical vortices at Re = 1000.
- Use 2D+t domain of size $[-2.5, 2.5] \times [-2.5, 2.5] \times [0, 40]$.
- ► Total domain is divided into sub-domains of size [-2.5, 2.5] × [-2.5, 2.5] × [0, 0.4].
- ► Four levels of refinement: max resolution in each subdomain is 256 × 256 × 16.
- Solution converges after 5 iterations.

2D vortex merging: vorticity

t = 0.2t = 9.6t = 25.2Space-time Time marching

Nicholas Kevlahan

McMaster University

2D vortex merging: space-time grid

Nicholas Kevlahan

McMaster University

2D vortex merging: space-time grid

2D vortex merging: space-time grid

2D vortex merging: compression

 $R_{\rm CN}(t)$: grid points used by the Crank-Nicolson time marching method compared to the number of grid points used by the space-time method in each sub-domain. $R_{\rm KRY}(t)$ is the equivalent ratio for the Krylov time marching method.

- ▶ If the threshold is small enough, i.e. $\epsilon \leq 10^{-3}$, the neglected modes are incoherent and need not be modelled.
- What if we want to use a very large threshold: $\epsilon = O(1)$?
- Effect of neglected subgrid scale modes on resolved modes can be modelled using a local form of the dynamic Smagorinsky model.
- This produces a dynamically adaptive form of large eddy simulation (LES) called SCALES.

- If the threshold is small enough, i.e. e ≤ 10⁻³, the neglected modes are incoherent and need not be modelled.
- What if we want to use a very large threshold: $\epsilon = O(1)$?
- Effect of neglected subgrid scale modes on resolved modes can be modelled using a local form of the dynamic Smagorinsky model.
- This produces a dynamically adaptive form of large eddy simulation (LES) called SCALES.

- If the threshold is small enough, i.e. e ≤ 10⁻³, the neglected modes are incoherent and need not be modelled.
- What if we want to use a very large threshold: $\epsilon = O(1)$?
- Effect of neglected subgrid scale modes on resolved modes can be modelled using a local form of the dynamic Smagorinsky model.
- This produces a dynamically adaptive form of large eddy simulation (LES) called SCALES.

- If the threshold is small enough, i.e. e ≤ 10⁻³, the neglected modes are incoherent and need not be modelled.
- What if we want to use a very large threshold: $\epsilon = O(1)$?
- Effect of neglected subgrid scale modes on resolved modes can be modelled using a local form of the dynamic Smagorinsky model.
- This produces a dynamically adaptive form of large eddy simulation (LES) called SCALES.

- If the threshold is small enough, i.e. e ≤ 10⁻³, the neglected modes are incoherent and need not be modelled.
- What if we want to use a very large threshold: $\epsilon = O(1)$?
- Effect of neglected subgrid scale modes on resolved modes can be modelled using a local form of the dynamic Smagorinsky model.
- This produces a dynamically adaptive form of large eddy simulation (LES) called SCALES.

Filtered SCALES equations

$$\begin{array}{lll} \displaystyle \frac{\partial \overline{u_i}^{>\epsilon}}{\partial t} + \displaystyle \frac{\partial (\overline{u_i}^{>\epsilon} \, \overline{u_j}^{>\epsilon})}{\partial x_j} & = & \displaystyle -\frac{1}{\rho} \frac{\partial \overline{p}^{>\epsilon}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}^{>\epsilon}}{\partial x_j \partial x_j} - \displaystyle \frac{\partial \overline{\tau_{ij}}^{>\epsilon}}{\partial x_j}, \\ & \displaystyle \frac{\partial \overline{u_i}^{>\epsilon}}{\partial x_i} & = & 0, \end{array}$$

where the wavelet filtering corresponding to a given threshold ϵ is denoted as $\overline{(\cdot)}^{>\epsilon}$, and $\overline{\tau_{ij}}^{>\epsilon}$ is the sub-grid scale stress to be modelled

$$\overline{\tau_{ij}}^{>\epsilon} = \overline{u_i u_j}^{>\epsilon} - \overline{u_i}^{>\epsilon} \overline{u_j}^{>\epsilon}$$

Sub-grid scale model

The sub-grid scale stress is modelled using the standard Smagorinsky eddy viscosity model

$$\overline{\tau_{ij}}^{>\epsilon} = \nu_T \ \overline{S_{ij}}^{>\epsilon}$$

where the eddy viscosity $\nu_T = -2C_S(t)\epsilon^2 |\overline{S}^{>\epsilon}|$ and $\overline{S_{ij}}^{>\epsilon}$ is the strain rate of the resolved scales.

Sub-grid scale model

The sub-grid scale stress is modelled using the standard Smagorinsky eddy viscosity model

$$\overline{\tau_{ij}}^{>\epsilon} = \nu_T \ \overline{S_{ij}}^{>\epsilon}$$

where the eddy viscosity $\nu_{T} = -2C_{S}(t)\epsilon^{2}|\overline{S}^{>\epsilon}|$ and $\overline{S_{ij}}^{>\epsilon}$ is the strain rate of the resolved scales.

 $C_S(t)$ is determined as in dynamic LES, by using the Germano identity and a test filter of twice the threshold, 2ϵ .

Advantages of SCALES compared to LES

- Most energetic part of coherent vortices is resolved at all scales, rather than just large scales.
- Filter scale adjusts automatically to account for flow inhomogeneity and intermittency.
- ▶ No special treatment of solid boundaries is required.

Advantages of SCALES compared to LES

- Most energetic part of coherent vortices is resolved at all scales, rather than just large scales.
- Filter scale adjusts automatically to account for flow inhomogeneity and intermittency.
- ▶ No special treatment of solid boundaries is required.

Advantages of SCALES compared to LES

- Most energetic part of coherent vortices is resolved at all scales, rather than just large scales.
- Filter scale adjusts automatically to account for flow inhomogeneity and intermittency.
- ▶ No special treatment of solid boundaries is required.
Advantages of SCALES compared to LES

- Most energetic part of coherent vortices is resolved at all scales, rather than just large scales.
- Filter scale adjusts automatically to account for flow inhomogeneity and intermittency.
- No special treatment of solid boundaries is required.

SCALES simulation of turbulence

- Decaying homogeneous isotropic turbulence at $Re_{\lambda} = 72$.
- Maximum resolution is 256³ (equivalent to pseudo-spectral 128³).
- Initialized using de-aliased pseudo-spectral DNS.
- Threshold is $\epsilon = 0.5$.
- Compare to full wavelet 256³ DNS and de-aliased 64³ LES.

Results of SCALES for homogeneous isotropic turbulence

 $\label{eq:Vorticity} \mbox{ isosurfaces at } 30\% ~||\vec{\omega}||_{\infty} \\ \mbox{Only 1\% of modes are resolved, i.e. } 100 \mbox{ times compression} \\ \label{eq:Vorticity}$

Nicholas Kevlahan

McMaster University

Comparison of energy spectra

Model energy spectrum compared to filtered DNS, and DNS.

Nicholas Kevlahan

McMaster University

Comparison of dissipation

Total model dissipation, viscous dissipation, SGS dissipation, DNS dissipation.

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

- Dynamic adaptivity is necessary for simulation of turbulence.
- Ideally, both spatial and temporal resolution should adapt to turbulence intermittency.
- Adaptive wavelet methods capture the dynamically important coherent vortices of the flow.
- The unresolved modes can be neglected (for small thresholds), or modelled simply (for high thresholds).

Successful simulation of high Reynolds number turbulence may lead to a true theory of turbulence.

Nicholas Kevlahan