
Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

Calculating, modelling and understanding
turbulence using adaptive wavelet simulation

Nicholas Kevlahan

Department of Mathematics & Statistics

December 2, 2005

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

Collaborators

I Oleg Vasilyev
University of Colorado at Boulder

I Dan Goldstein
University of Colorado at Boulder

I Jahrul Alam
McMaster University (PhD student)

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

Outline

Introduction

Adaptive wavelet numerical simulation

Turbulence modelling

Summary

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

What is turbulence?

Smooth flow is not possible for Re = UL/ν � 1, and at
Re = O(104) it becomes turbulent:

I Flow is characterized by intense localized three-dimensional
vorticity.

I Flow is unsteady, and its energy is intermittent in space and
scale.

I Fluid properties (diffusion, momentum transfer, drag, lift etc.)
differ dramatically from those of laminar flow.
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Drag on a sphere: effect of turbulence

Stokes theory

boundary layer
turbulent

(laminar flow)

vortex shedding

turbulent wake

Re
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Drag on a sphere: effect of turbulence

Stokes theory

boundary layer
turbulent

(laminar flow)

vortex shedding

turbulent wake

Re

Cd

We should be able to calculate this curve!
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Drag on a sphere: effect of turbulence

Re = 15 000 Re = 30 000
turbulent wake turbulent boundary layer (tripped)

(ONERA, Werle 1980 from www.efluids.net)
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Drag on a sphere: effect of turbulence

Re = 15 000 Re = 30 000
turbulent wake turbulent boundary layer (tripped)

(ONERA, Werle 1980 from www.efluids.net)

We would also like to control turbulence.
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The challenges of turbulence

1. No general theory of turbulence exists.

2. Few theorems have been proved for the Navier–Stokes
equations on bounded domains at high Reynolds numbers.

3. Model-free computations are limited to moderate Reynolds
numbers (O(104)) and simple geometries (homogeneous
isotropic turbulence or channel flows).

4. Experiments are expensive, and produce only a partial picture
of the flow.
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The challenges of turbulence

1. No general theory of turbulence exists.

2. Few theorems have been proved for the Navier–Stokes
equations on bounded domains at high Reynolds numbers.

3. Model-free computations are limited to moderate Reynolds
numbers (O(104)) and simple geometries (homogeneous
isotropic turbulence or channel flows).

4. Experiments are expensive, and produce only a partial picture
of the flow.

Unfortunately, most engineering, geophysical and physiological
flows are strongly turbulent!
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Why is turbulence difficult to compute?

Turbulence energy spectrum at Re ≈ 106
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Continuous range of active wavenumbers that increases with
Reynolds number: kη/kL ∼ Re3/4.
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Upper bound on computational complexity

I Number of spatial degrees of freedom is (L/η)3 ∼ Re9/4.

I If ∆t ∼ η/L, total computational complexity is ∝ Re3.

I For typical aerodynamical flows Re ≈ 106, and we might
expect O(1018) computational elements!

I Is this the best we can hope for?
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Turbulence is intermittent in space and time

DNS of homogeneous isotropic turbulence at Reλ = 1 217
(Yokokawa et al. 2002). Vortices are intermittent and multiscale.
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Hypotheses for efficient simulation of turbulence

1. Turbulence is highly intermittent in both space and time: the
actual number of degrees of freedom is much less than
O(Re3).

2. Turbulence may be divided into an organized part (coherent
vortices), and a stochastic part (random noise).

3. The coherent vortices must be resolved, but the noise may be
modelled (or neglected entirely).

4. The coherent vortices may be extracted using adaptive
wavelet filtering.
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Hypotheses for efficient simulation of turbulence

1. Turbulence is highly intermittent in both space and time: the
actual number of degrees of freedom is much less than
O(Re3).

2. Turbulence may be divided into an organized part (coherent
vortices), and a stochastic part (random noise).

3. The coherent vortices must be resolved, but the noise may be
modelled (or neglected entirely).

4. The coherent vortices may be extracted using adaptive
wavelet filtering.

This is the basis of Coherent Vortex Simulation which was
developed in collaboration with Marie Farge and Kai Schneider.
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Three levels of adaptivity:

1. Adaptive time step.

2. Dynamically adaptive grid.

3. Simultaneous space–time adaptivity.
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Why use a wavelet basis for adaptivity?

I High rate of data compression (e.g. jpeg2 2000 image
compression).

I Fast O(N ) transform.

I Fast signal de-noising (optimal for additive Gaussian noise).

I Easy to control wavelet properties (e.g. smoothness, boundary
conditions).
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Wavelet multiresolution analysis of L2(R)

A sequence of approximation subspaces
M = {V j ⊂ L2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈JV j is dense in L2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.
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Wavelet multiresolution analysis of L2(R)

A sequence of approximation subspaces
M = {V j ⊂ L2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈JV j is dense in L2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Wavelets ψj
k span the complement space W j , where

V j+1 = V j ⊕W j , i.e. wavelet coefficients give the detail.
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Biorthogonal second generation wavelets

I Constructed in the spatial domain.

I Form a collocation basis.

I Can be custom designed for complex domains and irregular
sampling intervals.

I Wavelet transform is done in place.

I Both forward and inverse wavelet transforms exist on an
adapted grid.

I Order of approximation can be varied easily.
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Biorthogonal wavelets differ from orthogonal wavelets

I Not translations and dilations of a single wavelet.
I Form a Riesz basis of linearly independent vectors:

A||f ||2 ≤
∑

k

|〈f , φj
k〉|2 ≤ B||f ||2,

where A ≤ 1 ≤ B. There is an associated dual basis {φ̃j
k} s.t.

1

B
||f ||2 ≤

∑

k

|〈f , φ̃j
k〉|2 ≤

1

A
||f ||2,

and

f =
∑

k

〈f , φ̃j
k〉φ

j
k , where 〈φj

p, φ̃
j
n〉 = δ[p − n].

I Parseval relation does not hold.
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Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of
degree 2N − 1 on nested grids:

Gj =
{

x j
k ∈ Ω : x j

k = x j+1
2k , k ∈ Kj

}

Collocation: each scaling
function and wavelet is
associated to a unique grid point.

 

0

1

2

3

4

   x j
k

   j
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u(x) =
∑

k∈KJ

u(xJ
k )φJ

k (x) =
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k∈K0

u(x0
k )φ0

k (x) +
J−1∑

j=0

∑

k∈Lj

d j
kψ

j
k(x)
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Wavelet compression

u(x) =
∑

k∈K0

u(x0
k )φ0

k (x)+
+∞∑

j=0

∑

k∈Lj

dk
jψk

j (x)
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Wavelet compression

u≥(x) =
∑

k∈K0

u(x0
k )φ0
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k |≥ε

dk
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Wavelet compression
||u(x)− u≥(x)||2 = O(ε)

N = O(ε−1/2N )

||u(x)− u≥(x)||2 = O(N−2N)
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Solving a PDE by time marching

F

(
∂u

∂t
,
∂nu

∂xn
, x , t

)
= 0
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u(x j
k ) =⇒ dk
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∂xn
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k), O(N ) complexity
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Solving a PDE by time marching
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Burgers equation: steepening shock

∂u
∂t + u ∂u

∂x = ν ∂
2u
∂x2 , x ∈ (−1, 1), t > 0,

u(x , 0) = − sin(πx), u(±1, t) = 0

Parameters: ν = 10−2/π, ε = 10−5.
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Burgers equation: moving shock

∂u
∂t + (1 + u)∂u

∂x = ν ∂
2u
∂x2 , x ∈ (−∞,∞), t > 0,

u(x , 0) = − tanh((x + 1/2)/(2ν)), u(±∞, t) = ∓1

Parameters: ν = 10−2, ε = 10−5.
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Fluid–structure interaction

I Moderate to high Reynolds number flow around solid
obstacles.

I Obstacle may be fixed, move or deform (e.g. in response to
fluid forces).

I Applications: wind engineering of tall buildings, heat
exchangers, underwater pipes, aeronautics.

I Example of spatial intermittency and complex geometry.
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Fluid–structure interaction

Combine two methods:

1. Adaptive wavelet collocation for grid adaptation and
derivatives.

2. Brinkman penalization to impose no-slip boundary conditions
at the surface of an obstacle of arbitrary shape.

∂u

∂t
+ (u + U) · ∇u + ∇P = ν∆u − 1

η
χ(x, t)(u + U−Uo)

∇ · u = 0
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Fluid–structure interaction

Combine two methods:

1. Adaptive wavelet collocation for grid adaptation and
derivatives.

2. Brinkman penalization to impose no-slip boundary conditions
at the surface of an obstacle of arbitrary shape.

∂u

∂t
+ (u + U) · ∇u + ∇P = ν∆u − 1

η
χ(x, t)(u + U−Uo)

∇ · u = 0

Obstacle response is modelled as a damped harmonic oscillator

mẍo(t) + bẋo(t) + kxo = F(t).
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Fluid–structure interaction: time scheme

I Second order backwards difference.

I Semi-implicit discretization of convection term.

I Split-step to enforce divergence free velocity.

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

Fluid–structure interaction: time scheme

I Second order backwards difference.

I Semi-implicit discretization of convection term.

I Split-step to enforce divergence free velocity.

Poisson equation is solved using an adaptive wavelet
multilevel method with V-cycles.
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2D fluid–structure interaction: moving cylinder, Re = 100
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2D fluid–structure interaction: fixed cylinder, Re = 100

Grid at scales j = 4 to j = 9, compression ratio is 1/270.
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2D fluid–structure interaction

Periodic cylinder array at Re = 104, t = 3.5, 8692. (a) Vorticity. (b) Grid.
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3D fluid–structure interaction

Flow around a sphere at Re = 550, effective grid 2563.
Vorticity isosurface (30% ||ω||∞) and grid at t = 16.
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3D fluid–structure interaction
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Flow around a sphere at Re = 550, effective grid 2563.
Vorticity isosurface (30% ||ω||∞) and grid at t = 16.
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Space–time adaptive wavelet PDE solver (with J. Alam)

Advantages

Open questions
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Space–time adaptive wavelet PDE solver (with J. Alam)

Advantages

I Global error control in time.
Error grows uncontrollably in classical time marching.

I Local time step.

I Potentially optimal complexity for highly intermittent problems

I Grid reveals dynamics of problem.

Open questions

I Efficiency?

Nicholas Kevlahan McMaster University
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Numerical method: pseudo BVP in space–time domain

I Add dynamic pseudo boundary condition for long time
boundary.

I Use adaptive wavelet multilevel solver with V-cycles for BVP.

I FAS approximation to cope with nonlinear equations.

I Iterate until residual satisfies L2 norm tolerance.

I Split space–time domain in time direction into manageable
slices.
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Numerical method: pseudo BVP in space–time domain

I Add dynamic pseudo boundary condition for long time
boundary.

I Use adaptive wavelet multilevel solver with V-cycles for BVP.

I FAS approximation to cope with nonlinear equations.

I Iterate until residual satisfies L2 norm tolerance.

I Split space–time domain in time direction into manageable
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Burgers equation: solution
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Burgers equation: time integration error

0 0.1 0.2 0.3 0.40

1

2

3

4

5

6

7

8 x 10−5

t

E(
t) 

= 
||u

(x
,t)

−u
ex

(x
,t)

|| ∞

Global error in time

0 0.1 0.2 0.3 0.410−6

10−4

10−2

100

t
E(

t)

space−time
spectral−marching
finite−difference
wavelet−marching

Comparison with time marching

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

2D vortex merging

I Solve 2D vorticity equation for merger of identical vortices at
Re = 1 000.

I Use 2D+t domain of size [−2.5, 2.5]× [−2.5, 2.5]× [0, 40].

I Total domain is divided into sub-domains of size
[−2.5, 2.5]× [−2.5, 2.5]× [0, 0.4].

I Four levels of refinement: max resolution in each subdomain
is 256× 256× 16.

I Solution converges after 5 iterations.
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2D vortex merging: vorticity

t = 0.2 t = 9.6 t = 25.2
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2D vortex merging: space–time grid
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2D vortex merging: space–time grid
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2D vortex merging: space–time grid
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2D vortex merging: compression
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RCN(t): grid points used by the Crank-Nicolson time marching method

compared to the number of grid points used by the space–time method

in each sub-domain. RKRY(t) is the equivalent ratio for the Krylov time

marching method.
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Stochastic Coherent LES

I If the threshold is small enough, i.e. ε ≤ 10−3, the neglected
modes are incoherent and need not be modelled.

I What if we want to use a very large threshold: ε = O(1)?

I Effect of neglected subgrid scale modes on resolved modes
can be modelled using a local form of the dynamic
Smagorinsky model.

I This produces a dynamically adaptive form of large eddy
simulation (LES) called SCALES.
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Filtered SCALES equations

∂ui
>ε

∂t
+
∂(ui

>ε uj
>ε)

∂xj
= −1

ρ

∂p>ε

∂xi
+ ν

∂2ui
>ε

∂xj∂xj
− ∂τij

>ε

∂xj
,

∂ui
>ε

∂xi
= 0,

where the wavelet filtering corresponding to a given threshold ε is
denoted as (·)>ε, and τij

>ε is the sub-grid scale stress to be
modelled

τij
>ε = ui uj

>ε − ui
>ε uj

>ε
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Sub-grid scale model

The sub-grid scale stress is modelled using the standard
Smagorinsky eddy viscosity model

τij
>ε = νT Sij

>ε

where the eddy viscosity νT = −2CS (t)ε2|S>ε| and Sij
>ε

is the
strain rate of the resolved scales.
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Sub-grid scale model

The sub-grid scale stress is modelled using the standard
Smagorinsky eddy viscosity model

τij
>ε = νT Sij

>ε

where the eddy viscosity νT = −2CS (t)ε2|S>ε| and Sij
>ε

is the
strain rate of the resolved scales.

CS (t) is determined as in dynamic LES, by using the Germano
identity and a test filter of twice the threshold, 2ε.
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Advantages of SCALES compared to LES

I Most energetic part of coherent vortices is resolved at all
scales, rather than just large scales.

I Filter scale adjusts automatically to account for flow
inhomogeneity and intermittency.

I No special treatment of solid boundaries is required.
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SCALES simulation of turbulence

I Decaying homogeneous isotropic turbulence at Reλ = 72.

I Maximum resolution is 2563 (equivalent to pseudo-spectral
1283).

I Initialized using de-aliased pseudo-spectral DNS.

I Threshold is ε = 0.5.

I Compare to full wavelet 2563 DNS and de-aliased 643 LES.
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Results of SCALES for homogeneous isotropic turbulence

Vorticity isosurfaces at 30% ||~ω||∞
Only 1% of modes are resolved, i.e. 100 times compression

Nicholas Kevlahan McMaster University

Adaptive wavelet methods for turbulence



Introduction Adaptive wavelet numerical simulation Turbulence modelling Summary

Comparison of energy spectra
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Comparison of dissipation
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Total model dissipation, viscous dissipation, SGS dissipation, DNS dissipation.
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Summary

I Dynamic adaptivity is necessary for simulation of turbulence.

I Ideally, both spatial and temporal resolution should adapt to
turbulence intermittency.

I Adaptive wavelet methods capture the dynamically important
coherent vortices of the flow.

I The unresolved modes can be neglected (for small thresholds),
or modelled simply (for high thresholds).
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Summary

I Dynamic adaptivity is necessary for simulation of turbulence.

I Ideally, both spatial and temporal resolution should adapt to
turbulence intermittency.

I Adaptive wavelet methods capture the dynamically important
coherent vortices of the flow.

I The unresolved modes can be neglected (for small thresholds),
or modelled simply (for high thresholds).

Successful simulation of high Reynolds number turbulence
may lead to a true theory of turbulence.
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