
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Simultaneous Space-Time Adaptive
Solution of Partial Differential Equations ∗

Jahrul Alam
Department of Mathematics and Statistics

McMaster University, Canada

and

Nicholas Kevlahan
Department of Mathematics and Statistics

McMaster University, Canada

∗Adaptive wavelet and multiscale methods for partial differential equations June 3 - 5, 2004, Banff International Research
Station

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Collaborators
• O. V. Vasilyev (University of Colorado at Boulder)

• D. Goldstein (University of Colorado at Boulder)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•Multilevel elliptic solver

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•Multilevel elliptic solver

• Adaptive nonlinear solver

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•Multilevel elliptic solver

• Adaptive nonlinear solver

• Results and discussion

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•Multilevel elliptic solver

• Adaptive nonlinear solver

• Results and discussion

• Conclusion and future direction

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline
•Motivation

• Adaptive wavelet collocation method

• Application to PDEs

– Elliptic problem

– Nonlinear evolution problem

•Multilevel elliptic solver

• Adaptive nonlinear solver

• Results and discussion

• Conclusion and future direction

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm,

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge,

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge, tide...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge, tide...

3. Bio-medical engineering

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge, tide...

3. Bio-medical engineering, Nano-technology

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge, tide...

3. Bio-medical engineering, Nano-technology

• Uniform grid for such a problem is not suitable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

∆t2

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

∆t2

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

∆t2

∆t1

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

∆t2

∆t1

∆t2

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation
• Grid should adapt in space and time

x

t

∆t1

∆t2

∆t1

∆t2

t

x

←− Space-time adaptive grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are localized in space and scale

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

•Wavelets:

– follow intermittency in position and scale

– provide automatic grid adaptation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method
• Sampling a function on a grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method
• Sampling a function on a grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method
• Sampling a function on a grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method
• Sampling a function on a grid

• Grid refinement is not required everywhere

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method
• Sampling a function on a grid

• Grid refinement is not required everywhere

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:
Gj = {xj

k ∈ R :

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

• Easy to see the nestedness property:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Nested dyadic grid:

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

• Easy to see the nestedness property:

Gj ⊂ Gj+1 i.e. xj+1
2k = xj

k

.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

Gj
a = {xj

k ∈ R : xj
k = 2−jk, k ∈ Z, j ∈ Z, |dj

k| ≥ ε}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•Example:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•Example:
1. Elliptic:

L := ∂xx + ∂yy

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•Example:
1. Elliptic:

L := ∂xx + ∂yy

2. Parabolic:
L := ∂t − ∂xx

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•Example:
1. Elliptic:

L := ∂xx + ∂yy

2. Parabolic:
L := ∂t − ∂xx

• Classical solution procedure
Sequence of algebraic problem (via ODE solver)

• Our goal
A single algebraic problem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

• Reduce to an algebraic system:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

• Reduce to an algebraic system:

Lu = f

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

• Reduce to an algebraic system:

Lu = f

• Solve the system:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet transform:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N)︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

• Reduce to an algebraic system:

Lu = f

• Solve the system: Multilevel adaptive wavelet solver

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points

Solve DE on internal points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points

Solve DE on internal points
Implement BC on Boundary points

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

 x

j

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f

Adjacent zone:

 k
 j+1

 j−1

 j

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

 x

j

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f

Adjacent zone:

 k
 j+1

 j−1

 j

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

 x

j

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•What is the boundary condition at fixed time?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•What is the boundary condition at fixed time?

We propose:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•What is the boundary condition at fixed time?

We propose:
Lu− f = 0 for t = tmax

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•What is the boundary condition at fixed time?

We propose:
Lu− f = 0 for t = tmax

evolution type boundary condition.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Multilevel elliptic solver
V-cycle:

rJ = fJ − LuJ

for all levels j = J : −1 : jmin + 1
do ν1 steps of approximate solver for Lvj = rj

rj−1 = I j−1
w (rj − Lvj)

enddo
end
Solve for j = jmin level: Lvj = rj

for all levels j = jmin + 1 : +1 : J
vj = vj + ω0I

j
wv

j−1

do ν2 steps of approximate solver for Lvj = rj enddo
end
uJ = uJ + ω1v

J

do ν3 steps of exact solver for LuJ = fJ enddo

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adaptive nonlinear solver
V-cycle:

rJ = fJ − LuJ

for all levels j = J : −1 : jmin + 1
do ν1 steps of approximate solver for J(u)vj = rj

rj−1 = I j−1
w (rj − J(u)vj)

enddo
end
Solve for j = jmin level: J(u)vj = rj

for all levels j = jmin + 1 : +1 : J
vj = vj + ω0I

j
wv

j−1

do ν2 steps of approximate solver for J(u)vj = rj enddo
end
uJ = uJ + ω1v

J

enddo

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion
• Adaptive nonlinear solver

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion
• Adaptive nonlinear solver

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

L2 norm of residual as a function of multigrid iteration

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

→ x↑
u

Initial condition

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

→ x↑
u

Initial condition Grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

→ x↑
u

Computed solution Adapted grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

Solution of Burgers equation at fixed time

initial
t=0.2

→ x↑
u

Computed solution Adapted grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω ⊂ R× [0, tmax], Ω = [0, 1]

u(0, t) = u(1, t), u(x, 0) = sin(2πx)

ν = 10−2

→ x↑
u

Solution surface
(Space-time domain)

Adapted grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−π, π)

u(−π, t) = u(π, t)

u(x, 0) = sin(x)

Compare wavelet solution with a spectral code.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

∂u

∂t
+ (u + v)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω× [0, tmax], Ω = (0, 2)

u(0, t) = 1, u(2, t) = −1, u(x, 0) = − tanh

(
x− x0

2ν

)
ν = 10−2, x0 = 0.5

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

∂u

∂t
+ (u + v)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω× [0, tmax], Ω = (0, 2)

u(0, t) = 1, u(2, t) = −1, u(x, 0) = − tanh

(
x− x0

2ν

)
ν = 10−2, x0 = 0.5

→ x↑
u

Initial condition

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

∂u

∂t
+ (u + v)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω× [0, tmax], Ω = (0, 2)

u(0, t) = 1, u(2, t) = −1, u(x, 0) = − tanh

(
x− x0

2ν

)
ν = 10−2, x0 = 0.5

→ x↑
u

Solution at t = 1.0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

∂u

∂t
+ (u + v)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω× [0, tmax], Ω = (0, 2)

u(0, t) = 1, u(2, t) = −1, u(x, 0) = − tanh

(
x− x0

2ν

)
ν = 10−2, x0 = 0.5

→ x↑
u

Solution at t = 1.0 Adapted grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Moving shock

∂u

∂t
+ (u + v)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ Ω× [0, tmax], Ω = (0, 2)

u(0, t) = 1, u(2, t) = −1, u(x, 0) = − tanh

(
x− x0

2ν

)
ν = 10−2, x0 = 0.5

→ x↑
u

Solution Adapted grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Kuramoto-Sivashinsky equation

∂u

∂t
+ ν4∂

4
xu + ∂2

xu + u∂xu = 0, x ∈ Ω× [0, tmax], Ω = [0, 2π]

Space-time solution surface and corresponding grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Result and discussion: Cont’d...
• Kuramoto-Sivashinsky equation

∂u

∂t
+ ν4∂

4
xu + ∂2

xu + u∂xu = 0, x ∈ Ω× [0, tmax], Ω = [0, 2π]

Fixed time solution and corresponding grid

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t
∗ Better time stepping

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t
∗ Better time stepping

– Solution

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t
∗ Better time stepping

– Solution

∗ flip and solve method

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion and Future direction
• Conclusion

– An adaptive numerical method is developed

– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t
∗ Better time stepping

– Solution

∗ flip and solve method
∗ Lagrangian or variational idea

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Thank You

