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Motivation
e Engineering problems: — partial differential equations.
e Localized structures:

— might occur intermittently anywhere
— might change their location and scales

e Example:

1. Turbulence computation
2. Meteorology: storm, surge, tide...
3. Bio-medical engineering, Nano-technology

e Uniform grid for such a problem is not suitable
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Motivation: wavelet decomposition

« What are wavelets?
A set of basis functions that are localized in space and scale

e Represent a function in terms of wavelet basis:
u(z) =Y diyia)
J=0 keki

e Wavelets:

— follow intermittency in position and scale
— provide automatic grid adaptation
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Adaptive wavelet collocation method:
Cont’d...

e Nested dyadic grid:
G = {2z e R: z] = 2 VE EICE N

"
.\k

e Easy to see the nestedness property:

‘ Ny N
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Adaptive wavelet collocation method:
Cont’d...

e Adaptive wavelet grid:

=22 4%

j=0 keKi

) L ez icZ |d|>e)
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Application to PDEs

e Consider a PDE:
Lu = [N rk=ntl

where £ is any partial differential operator.
Boundary conditions

Bu=uy x € 0f)

« Example:

1. Elliptic:
IEES 0,. + Oy

2. Parabolic:
I\ — @, = (9m

e Classical solution procedure
Sequence of algebraic problem (via ODE solver)

e Our goal
A single algebraic problem
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Application to PDEs: Cont’d...

e Wavelet transform:
O(N)

\

Ve

e Calculating derivatives:

O(N)

7\

~

uz) = & = ——(5)

e Reduce to an algebraic system:

i — f

e Solve the system: Multilevel adaptive wavelet solver
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Application to PDEs: Cont’d...

e Wavelet grid: internal points, boundary points

e Internal points
o Boundary points

Solve DE on internal points
Implement BC on Boundary points
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Application to PDEs: Elliptic problems

e Poisson equation

0*u
@ = f, INE Q,
U = Ug, TENY
Y
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Application to PDEs: Elliptic problems

e Poisson equation
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Nonlinear evolution problem

e Example:
Navier-Stokes

V-u

1
ou+u-Vu=—-VP +vVu
0

Kuramoto-Sivashinsky

e Can we reduce to an algebraic problem?

YES

e What is the boundary condition at fixed time?

We propose:
;C’U/—f:O for t:tmax

evolution type boundary condition.



Multilevel elliptic solver
V-cycle:

e £/ — Lu’
foralllevels j=J : =1 : Jun +1

do v; steps of approximate solver for Lv’ = r/

/=t = [ (1! — LvY)

enddo
end
Solve for j = jpm level: Lv? = 1/
forall levels j = jpin +1 : +1 @ J

v/ = v 4wyl viTt

do v, steps of approximate solver for Lv/ = r/ enddo
end
uw =u/ +wv
do ;5 steps of exact solver for Lu’ = f/ enddo

o



Adaptive nonlinear solver
V-cycle:

r/ =f/ — Lu’/
foralllevels j=J : =1 : Jun +1

do v; steps of approximate solver for J(u)v? = r’

/7t = [ (7 — J(u)v?)

enddo
end
Solve for j = ju level: J(u)v? =1/
forall levels j = jpin +1 : +1 @ J

v/ = v 4wyl viTt

do v, steps of approximate solver for J(u)v/ = r/ enddo
end
uw =u/ +wv

enddo

o
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e Adaptive nonlinear solver

Oyt + Oprprth + Opptt + u0,u = 0

Global erar
T

molﬂe@e%\i !
0L L AR R A

ILu-]l,

L !
20 25 30 40 45 50
Multigrid iteration

L, norm of residual as a function of multigrid iteration
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e Burgers equation

ou ou 0*u

) 0 S QCRX[0,tn], Q=[0,1
6t+u6’x Vo TEQC XA [0 [0, 1]
w(0,t) = u(l, 1), u(z, OR=NETIZE
T, v =10
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e Burgers equation

du  Ou O
E—'_U%ZV@, ZUEQCRX[O;tmaXLQ:[(Ll]

N w(0,t) = u(l, 1), u(z, OR=NETIZE

0 v =102
T

Initial condition Grid
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e Burgers equation

du  Ou O
E—'_U%ZV@, ZUEQCRX[O;tmaXLQ:[(Ll]

w(0,t) = u(l, 1), u(z, OR=NETIZE

Computed solution Adapted grid



Result and discussion: Cont’d...

e Burgers equation

U

ou ou 0*u

u—=v—, TEQCRX|0,tnx), 2=1[0,1]

ot & ox Ox?’
u(0,t) = u(1,1),

L \

. s & 5 o o o o o
o ® @ = N o N R o ® =
N [ — [ I S I

Solution surface
(Space-time domain)

u(z,0) = sin(2mx)

Adapted grid



Result and discussion: Cont’d...

e Burgers equation

@ S @ N 82_’& = (_ )
9t or ) G
u(_ﬂ-:t) N U’(ﬂ-7t)

u(z,0) = sin(z)

Solution of Burge:
m@ @
k4

R
- -

)
[ &
B n
+

Compare wavelet solution with a spectral code.
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Result and discussion: Cont’d...
e Moving shock

ou ou 0*u

8t+(u+v)8x et z € Q|- (0,2)
T w20 = —1, o) (fc - x)
1%
S A= 1072\
[ N
04 \0.5

Initial condition
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e Moving shock

ou ou 0*u

E—F(U‘FU)%:V@, $€QX[O;tmax]7Q:(O72>
U(O,t) S 17 U’(27t) N _1’ U,(Q], O) = (ZU 2_ xo)
14
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e Moving shock

ou ou 0*u
E‘i_(u—i—v)%zyﬁ’ ECGQX[O,tmaX],Q:(O,2>
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Result and discussion: Cont’d...
e Moving shock

ou ou 0*u
E—F(U‘FU)%:V@, erX[O;tmax]aﬂ:(())Q)

w(0,8) =1, w(2,t) = —1, u(z,0)= —tanh (50 N xo)

22U

Solution Adapted grid



Result and discussion: Cont’d...

e Kuramoto-Sivashinsky equation

0
a_? +vs0iu+ Oju+udu =0, € QX [0, ], @ =[0,2a]

Sphid i § ki a2 S Kursen 15 Soviiini oy dpaiian
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e
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Space-time solution surface and corresponding grid
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Result and discussion: Cont’d...

e Kuramoto-Sivashinsky equation

% + v 05u + Fu+udu =0, =€ QX [0, tn], Q= [0,27]

sl Kuramete—Svash rehy squston o

Fixed time solution and corresponding grid
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Conclusion and Future direction
e Conclusion

— An adaptive numerical method is developed
— An evolution type boundary condition is proposed
— A multilevel adaptive solver has been developed

e Future plan

— Drawback?

* Simulation to carry out for large ¢
x Better time stepping

— Solution

x flip and solve method
« Lagrangian or variational idea
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