Simultaneous Space-Time Adaptive Solution of Partial Differential Equations *

Jahrul Alam

Department of Mathematics and Statistics McMaster University, Canada

and

Nicholas Kevlahan

Department of Mathematics and Statistics McMaster University, Canada

^{*}Adaptive wavelet and multiscale methods for partial differential equations June 3 - 5, 2004, Banff International Research Station

Collaborators

- O. V. Vasilyev (University of Colorado at Boulder)
- D. Goldstein (University of Colorado at Boulder)

• Motivation

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

- Motivation
- Adaptive wavelet collocation method

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

• Engineering problems: \longrightarrow partial differential equations.

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:

- \bullet Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales

- \bullet Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation

- \bullet Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology:

- \bullet Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm,

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm, surge,

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm, surge, tide...

- \bullet Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm, surge, tide...
 - 3. Bio-medical engineering

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm, surge, tide...
 - 3. Bio-medical engineering, Nano-technology

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 - 1. Turbulence computation
 - 2. Meteorology: storm, surge, tide...
 - 3. Bio-medical engineering, Nano-technology
- Uniform grid for such a problem is not suitable

Motivation: wavelet decomposition

Motivation: wavelet decomposition • What are wavelets?

A set of basis functions that are

A set of basis functions that are localized in space and scale

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

- Wavelets:
 - follow intermittency in position and scale
 - provide automatic grid adaptation

Adaptive wavelet collocation method • Sampling a function on a grid

• Sampling a function on a grid

• Sampling a function on a grid

• Sampling a function on a grid

• Grid refinement is not required everywhere

• Sampling a function on a grid

• Grid refinement is not required everywhere

$$G^j = \{x_k^j \in \mathbb{R} :$$

$$G^{j} = \{x_{k}^{j} \in \mathbb{R} : x_{k}^{j} = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

• Nested dyadic grid:

• Easy to see the nestedness property:

• Nested dyadic grid:

.

• Easy to see the nestedness property:

$$G^j \subset G^{j+1}$$
 i.e. $x_{2k}^{j+1} = x_k^j$

• Adaptive wavelet grid:

• Adaptive wavelet grid:

• Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

• Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

 $G^{j} = \{ x_{k}^{j} \in \mathbb{R} : x_{k}^{j} = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z} \}$

• Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

 $G_a^j = \{ x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathbb{Z}, j \in \mathbb{Z}, |d_k^j| \ge \epsilon \}$

• Consider a PDE:

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator.

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator. Boundary conditions

 $\mathcal{B}u = u_0 \quad x \in \partial \Omega$

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial \Omega$$

• Example:

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial \Omega$$

• Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial \Omega$$

• Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

2. Parabolic:

$$\mathcal{L} := \partial_t - \partial_{xx}$$

• Consider a PDE:

 $\mathcal{L}u = f, \quad x \in \Omega,$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial \Omega$$

• Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

2. Parabolic:

$$\mathcal{L} := \partial_t - \partial_{xx}$$

• Classical solution procedure Sequence of algebraic problem (via ODE solver)

• Our goal A single algebraic problem

• Wavelet transform:

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Calculating derivatives:

$$\overbrace{u(x_k^j) \implies d_k^j \implies rac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Calculating derivatives:

$$\overbrace{u(x_k^j) \implies d_k^j \implies rac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

• Reduce to an algebraic system:

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Calculating derivatives:

$$\overbrace{u(x_k^j) \implies d_k^j \implies rac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

• Reduce to an algebraic system:

$$Lu = f$$

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Calculating derivatives:

$$\overbrace{u(x_k^j) \implies d_k^j \implies rac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

• Reduce to an algebraic system:

$$Lu = f$$

• Solve the system:

• Wavelet transform:

$$\overbrace{u(x_k^j) \implies d_k^j}^{\mathcal{O}(\mathcal{N})}$$

• Calculating derivatives:

$$\overbrace{u(x_k^j) \implies d_k^j \implies rac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

• Reduce to an algebraic system:

$$Lu = f$$

• Solve the system: Multilevel adaptive wavelet solver

• Wavelet grid:

• Wavelet grid: internal points

Application to PDEs: Cont'd...
Wavelet grid: internal points, boundary points

• Wavelet grid: internal points, boundary points

• Wavelet grid: internal points, boundary points

• Internal points

• Wavelet grid: internal points, boundary points

Internal points
 Boundary points

• Wavelet grid: internal points, boundary points

Solve DE on internal points

• Wavelet grid: internal points, boundary points

Solve DE on internal points Implement BC on Boundary points

• Poisson equation

$$\frac{\partial^2 u}{\partial x^2} = f, \quad x \in \Omega, \\ u = u_0, \quad x \in \partial \Omega$$

• Poisson equation

$$\frac{\partial^2 u}{\partial x^2} = f, \quad x \in \Omega, \\
u = u_0, \quad x \in \partial \Omega \\
\downarrow \\
Lu = f$$

• Poisson equation

$$\frac{\partial^2 u}{\partial x^2} = f, \quad x \in \Omega, \\
u = u_0, \quad x \in \partial \Omega \\
\downarrow \\
Lu = f$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

• Poisson equation

$$\frac{\partial^2 u}{\partial x^2} = f, \quad x \in \Omega, \\
u = u_0, \quad x \in \partial \Omega \\
\downarrow \\
Lu = f$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

• Poisson equation

$$\frac{\partial^2 u}{\partial x^2} = f, \quad x \in \Omega, \\
u = u_0, \quad x \in \partial \Omega \\
\downarrow \\
Lu = f$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quin

• Example:

• Example:

Navier-Stokes

• Example:

Navier-Stokes

• Example:

Navier-Stokes

$$\nabla \cdot \mathbf{u}$$
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -\frac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -\frac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -\frac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

YES

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -\frac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

YES

• What is the boundary condition at fixed time?

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -\frac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

YES

• What is the boundary condition at fixed time? We propose:

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -rac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

YES

• What is the boundary condition at fixed time? We propose:

$$\mathcal{L}u - f = 0$$
 for $t = t_{\max}$

• Example:

Navier-Stokes

$$abla \cdot \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot
abla \mathbf{u} = -rac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

• Can we reduce to an algebraic problem?

YES

• What is the boundary condition at fixed time? We propose:

$$\mathcal{L}u - f = 0$$
 for $t = t_{\max}$

evolution type boundary condition.

Multilevel elliptic solver

V-cycle: $\mathbf{r}^J = \mathbf{f}^J - \mathbf{L}\mathbf{u}^J$ for all levels $j = J : -1 : j_{\min} + 1$ do ν_1 steps of approximate solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$ $\mathbf{r}^{j-1} = I_w^{j-1} \left(\mathbf{r}^j - \mathbf{L} \mathbf{v}^j \right)$ enddo end **Solve** for $j = j_{\min}$ level: $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$ for all levels $j = j_{\min} + 1$: +1 : J $\mathbf{v}^j = \mathbf{v}^j + \omega_0 I^j_m \mathbf{v}^{j-1}$ do ν_2 steps of approximate solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$ enddo end $\mathbf{u}^J = \mathbf{u}^J + \omega_1 \mathbf{v}^J$ do ν_3 steps of exact solver for $\mathbf{Lu}^J = \mathbf{f}^J$ enddo

Adaptive nonlinear solver

V-cycle: $\mathbf{r}^J = \mathbf{f}^J - \mathbf{L}\mathbf{u}^J$ for all levels $j = J : -1 : j_{\min} + 1$ do ν_1 steps of approximate solver for $\mathbf{J}(u)\mathbf{v}^j = \mathbf{r}^j$ $\mathbf{r}^{j-1} = I_w^{j-1} \left(\mathbf{r}^j - \mathbf{J}(u) \mathbf{v}^j \right)$ enddo end **Solve** for $j = j_{\min}$ level: $\mathbf{J}(u)\mathbf{v}^{j} = \mathbf{r}^{j}$ for all levels $j = j_{\min} + 1$: +1 : J $\mathbf{v}^j = \mathbf{v}^j + \omega_0 I^j \mathbf{v}^{j-1}$ do ν_2 steps of approximate solver for $\mathbf{J}(u)\mathbf{v}^j = \mathbf{r}^j$ enddo end $\mathbf{u}^J = \mathbf{u}^J + \omega_1 \mathbf{v}^J$

enddo

Result and discussion

Result and discussion

• Adaptive nonlinear solver

 $\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$

Result and discussion

• Adaptive nonlinear solver

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

 L_2 norm of residual as a function of multigrid iteration

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \, \Omega = [0, 1]$$
$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$
$$\nu = 10^{-2}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \, \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

$$\nu = 10^{-2}$$

Initial condition

• Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \, \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

$$\nu = 10^{-2}$$

Solution surface (Space-time domain)

Adapted grid

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

• Burgers equation

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-\pi, \pi) \\ u(-\pi, t) &= u(\pi, t) \\ u(x, 0) &= \sin(x) \end{aligned}$$

Compare wavelet solution with a spectral code.

• Moving shock

• Moving shock

$$\frac{\partial u}{\partial t} + (u+v)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = (0, 2)$$
$$u(0, t) = 1, \ u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$
$$\nu = 10^{-2}, \quad x_0 = 0.5$$

• Moving shock

Initial condition

• Moving shock

 $\frac{\partial u}{\partial t} + (u+v)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = (0, 2)$ $u(0,t) = 1, \ u(2,t) = -1, \ u(x,0) = -\tanh\left(\frac{x-x_0}{2\nu}\right)$ $\nu = 10^{-2}, \quad x_0 = 0.5$ u $\stackrel{\frown}{\rightarrowtail} x$ Solution of modified Burgers equation computed 0.5 -0.5 -1.5 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 Solution at t = 1.0

• Moving shock

 $\frac{\partial u}{\partial t} + (u+v)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = (0, 2)$ $u(0,t) = 1, \ u(2,t) = -1, \ u(x,0) = -\tanh\left(\frac{x-x_0}{2\nu}\right)$ $\nu = 10^{-2}, \quad x_0 = 0.5$ u $\stackrel{\sim}{\rightarrowtail} x$ Solution of modified Burgers equation Grid computed 0.45 0.5 0.3 > 0.25 -0.5 0.15 0.05 -1.5 0.4 0.6 0.8 1.2 1.6 1.8 0.2 0.3 0.4 0.5 0.6 0.7 0.2 1 1.4 0.8 Solution at t = 1.0Adapted grid

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

0.9

• Moving shock

 $\frac{\partial u}{\partial t} + (u+v)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = (0, 2)$ $u(0, t) = 1, \ u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$ $\underset{i \to \infty}{\overset{u}{\longrightarrow}} x \qquad \nu = 10^{-2}, \quad x_0 = 0.5$

Solution

Adapted grid

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quin

• Kuramoto-Sivashinsky equation

 $\frac{\partial u}{\partial t} + \nu_4 \partial_x^4 u + \partial_x^2 u + u \partial_x u = 0, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = [0, 2\pi]$

Space-time solution surface and corresponding grid

• Kuramoto-Sivashinsky equation

 $\frac{\partial u}{\partial t} + \nu_4 \partial_x^4 u + \partial_x^2 u + u \partial_x u = 0, \quad x \in \Omega \times [0, t_{\max}], \ \Omega = [0, 2\pi]$

Fixed time solution and corresponding grid

• Conclusion

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

• Conclusion

- An adaptive numerical method is developed

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
 - Drawback?

• Conclusion

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
 - Drawback?

* Simulation to carry out for large t

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
 - Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping

• Conclusion

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed

• Future plan

- Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping
- Solution

• Conclusion

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed

• Future plan

- Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping
- Solution
 - * flip and solve method

• Conclusion

- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed

• Future plan

- Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping

- Solution

- * flip and solve method
- * Lagrangian or variational idea

Thank You

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui