

Simultaneous Space-Time Adaptive Solution of Partial Differential Equations *

Jahrul Alam

Department of Mathematics and Statistics
McMaster University, Canada

and

Nicholas Kevlahan

Department of Mathematics and Statistics
McMaster University, Canada

*Adaptive wavelet and multiscale methods for partial differential equations June 3 - 5, 2004, Banff International Research Station

Collaborators

- O. V. Vasilyev (University of Colorado at Boulder)
- D. Goldstein (University of Colorado at Boulder)

Outline

Outline

- Motivation

Outline

- Motivation
- Adaptive wavelet collocation method

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- **Results and discussion**

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
 - Elliptic problem
 - Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

Motivation

Motivation

- Engineering problems: → partial differential equations.

Motivation

- Engineering problems: → partial differential equations.
- **Localized structures:**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - **might change their location and scales**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology:**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm,**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm, surge,**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm, surge, tide...**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm, surge, tide...**
 3. **Bio-medical engineering**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm, surge, tide...**
 3. **Bio-medical engineering, Nano-technology**

Motivation

- Engineering problems: → partial differential equations.
- Localized structures:
 - might occur intermittently anywhere
 - might change their location and scales
- Example:
 1. **Turbulence computation**
 2. **Meteorology: storm, surge, tide...**
 3. **Bio-medical engineering, Nano-technology**
- **Uniform grid for such a problem is not suitable**

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

← **Space-time adaptive grid**

Motivation: wavelet decomposition

Motivation: wavelet decomposition

- What are wavelets?

Motivation: wavelet decomposition

- **What are wavelets?**

A set of basis functions that are

Motivation: wavelet decomposition

- **What are wavelets?**

A set of basis functions that are localized in space and scale

Motivation: wavelet decomposition

- **What are wavelets?**

A set of basis functions that are localized in space and scale

- **Represent a function in terms of wavelet basis:**

Motivation: wavelet decomposition

- **What are wavelets?**

A set of basis functions that are localized in space and scale

- **Represent a function in terms of wavelet basis:**

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

Motivation: wavelet decomposition

- **What are wavelets?**

A set of basis functions that are localized in space and scale

- **Represent a function in terms of wavelet basis:**

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

- **Wavelets:**

- follow intermittency in position and scale
- provide automatic grid adaptation

Adaptive wavelet collocation method

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

- Grid refinement is not required everywhere

Adaptive wavelet collocation method

- Sampling a function on a grid

- Grid refinement is not required everywhere

Adaptive wavelet collocation method: Cont'd...

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$G^j = \{x_k^j \in \mathbb{R} :$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$G^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$G^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$G^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

- Easy to see the nestedness property:

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$G^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

- Easy to see the nestedness property:

$$G^j \subset G^{j+1} \quad \text{i.e.} \quad x_{2k}^{j+1} = x_k^j$$

Adaptive wavelet collocation method: Cont'd...

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

$$G^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}\}$$

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$u(x) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^j} d_k^j \psi_k^j(x)$$

$$G_a^j = \{x_k^j \in \mathbb{R} : x_k^j = 2^{-j}k, k \in \mathcal{Z}, j \in \mathcal{Z}, |d_k^j| \geq \epsilon\}$$

Application to PDEs

Application to PDEs

- Consider a PDE:

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial\Omega$$

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial\Omega$$

- Example:

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial\Omega$$

- Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial\Omega$$

- Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

2. Parabolic:

$$\mathcal{L} := \partial_t - \partial_{xx}$$

Application to PDEs

- Consider a PDE:

$$\mathcal{L}u = f, \quad x \in \Omega,$$

where \mathcal{L} is any partial differential operator.

Boundary conditions

$$\mathcal{B}u = u_0 \quad x \in \partial\Omega$$

- Example:

1. Elliptic:

$$\mathcal{L} := \partial_{xx} + \partial_{yy}$$

2. Parabolic:

$$\mathcal{L} := \partial_t - \partial_{xx}$$

- Classical solution procedure

Sequence of algebraic problem (via ODE solver)

- Our goal

A single algebraic problem

Application to PDEs: Cont'd...

Application to PDEs: Cont'd...

- Wavelet transform:

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

- Calculating derivatives:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j \implies \overbrace{\frac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

- Calculating derivatives:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j \implies \overbrace{\frac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

- Reduce to an algebraic system:

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

- Calculating derivatives:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j \implies \overbrace{\frac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

- Reduce to an algebraic system:

$$Lu = f$$

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

- Calculating derivatives:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j \implies \overbrace{\frac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

- Reduce to an algebraic system:

$$Lu = f$$

- Solve the system:

Application to PDEs: Cont'd...

- Wavelet transform:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j$$

- Calculating derivatives:

$$\overbrace{u(x_k^j)}^{\mathcal{O}(\mathcal{N})} \implies d_k^j \implies \overbrace{\frac{\partial u}{\partial x}(x_k^j)}^{\mathcal{O}(\mathcal{N})}$$

- Reduce to an algebraic system:

$$Lu = f$$

- Solve the system: **Multilevel adaptive wavelet solver**

Application to PDEs: Cont'd...

Application to PDEs: Cont'd...

- Wavelet grid:

Application to PDEs: Cont'd...

- Wavelet grid: internal points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

- *Internal points*

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

- *Internal points*
- ◊ *Boundary points*

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

- *Internal points*
- ◊ *Boundary points*

Solve DE on internal points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

- *Internal points*
- ◊ *Boundary points*

Solve DE on internal points
Implement BC on Boundary points

Application to PDEs: Elliptic problems

Application to PDEs: Elliptic problems

- Poisson equation

$$\begin{aligned}\frac{\partial^2 u}{\partial x^2} &= f, \quad x \in \Omega, \\ u &= u_0, \quad x \in \partial\Omega\end{aligned}$$

Application to PDEs: Elliptic problems

- Poisson equation

$$\begin{aligned}\frac{\partial^2 u}{\partial x^2} &= f, \quad x \in \Omega, \\ u &= u_0, \quad x \in \partial\Omega \\ &\Downarrow \\ Lu &= f\end{aligned}$$

Application to PDEs: Elliptic problems

- Poisson equation

$$\begin{aligned}\frac{\partial^2 u}{\partial x^2} &= f, \quad x \in \Omega, \\ u &= u_0, \quad x \in \partial\Omega \\ &\Downarrow \\ Lu &= f\end{aligned}$$

Application to PDEs: Elliptic problems

- Poisson equation

$$\begin{aligned}\frac{\partial^2 u}{\partial x^2} &= f, \quad x \in \Omega, \\ u &= u_0, \quad x \in \partial\Omega \\ &\Downarrow \\ Lu &= f\end{aligned}$$

Adjacent zone:

Application to PDEs: Elliptic problems

- Poisson equation

$$\begin{aligned}\frac{\partial^2 u}{\partial x^2} &= f, \quad x \in \Omega, \\ u &= u_0, \quad x \in \partial\Omega \\ &\Downarrow \\ Lu &= f\end{aligned}$$

Adjacent zone:

Nonlinear evolution problem

Nonlinear evolution problem

- Example:

Nonlinear evolution problem

- Example:

Navier-Stokes

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

YES

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

We propose:

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

We propose:

$$\mathcal{L}u - f = 0 \quad \text{for } t = t_{\max}$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u}$$

Kuramoto-Sivashinsky

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

We propose:

$$\mathcal{L}u - f = 0 \quad \text{for } t = t_{\max}$$

evolution type boundary condition.

Multilevel elliptic solver

V-cycle:

$$\mathbf{r}^J = \mathbf{f}^J - \mathbf{L}\mathbf{u}^J$$

for all levels $j = J : -1 : j_{\min} + 1$

do ν_1 steps of **approximate** solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$

$$\mathbf{r}^{j-1} = \mathbf{I}_w^{j-1}(\mathbf{r}^j - \mathbf{L}\mathbf{v}^j)$$

enddo

end

Solve for $j = j_{\min}$ level: $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$

for all levels $j = j_{\min} + 1 : +1 : J$

$$\mathbf{v}^j = \mathbf{v}^j + \omega_0 \mathbf{I}_w^j \mathbf{v}^{j-1}$$

do ν_2 steps of **approximate** solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$ **enddo**

end

$$\mathbf{u}^J = \mathbf{u}^J + \omega_1 \mathbf{v}^J$$

do ν_3 steps of **exact** solver for $\mathbf{L}\mathbf{u}^J = \mathbf{f}^J$ **enddo**

Adaptive nonlinear solver

V-cycle:

$$\mathbf{r}^J = \mathbf{f}^J - \mathbf{L}\mathbf{u}^J$$

for all levels $j = J : -1 : j_{\min} + 1$

do ν_1 steps of **approximate** solver for $\mathbf{J}(u)\mathbf{v}^j = \mathbf{r}^j$

$$\mathbf{r}^{j-1} = \mathbf{I}_w^{j-1}(\mathbf{r}^j - \mathbf{J}(u)\mathbf{v}^j)$$

enddo

end

Solve for $j = j_{\min}$ level: $\mathbf{J}(u)\mathbf{v}^j = \mathbf{r}^j$

for all levels $j = j_{\min} + 1 : +1 : J$

$$\mathbf{v}^j = \mathbf{v}^j + \omega_0 \mathbf{I}_w^j \mathbf{v}^{j-1}$$

do ν_2 steps of **approximate** solver for $\mathbf{J}(u)\mathbf{v}^j = \mathbf{r}^j$ **enddo**

end

$$\mathbf{u}^J = \mathbf{u}^J + \omega_1 \mathbf{v}^J$$

enddo

Result and discussion

Result and discussion

- Adaptive nonlinear solver

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

Result and discussion

- Adaptive nonlinear solver

$$\partial_t u + \partial_{xxxx} u + \partial_{xx} u + u \partial_x u = 0$$

L_2 norm of residual as a function of multigrid iteration

Result and discussion: Cont'd...

- Burgers equation

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

$$\nu = 10^{-2}$$

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

u
↑
 x

$$\nu = 10^{-2}$$

Initial condition

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

u
↑
 x

$$\nu = 10^{-2}$$

Initial condition

Grid

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

u
↑
 x

$$\nu = 10^{-2}$$

Computed solution

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

u
↑
 x

$$\nu = 10^{-2}$$

Computed solution

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \subset \mathbb{R} \times [0, t_{\max}], \Omega = [0, 1]$$

$$u(0, t) = u(1, t), \quad u(x, 0) = \sin(2\pi x)$$

u
↑
 x

Solution surface
(Space-time domain)

$$\nu = 10^{-2}$$

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-\pi, \pi)$$

$$u(-\pi, t) = u(\pi, t)$$

$$u(x, 0) = \sin(x)$$

Compare wavelet solution with a spectral code.

Result and discussion: Cont'd...

- Moving shock

Result and discussion: Cont'd...

- **Moving shock**

$$\frac{\partial u}{\partial t} + (u + v) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = (0, 2)$$

$$u(0, t) = 1, \quad u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$

$$\nu = 10^{-2}, \quad x_0 = 0.5$$

Result and discussion: Cont'd...

- **Moving shock**

$$\frac{\partial u}{\partial t} + (u + v) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \Omega = (0, 2)$$

$$u(0, t) = 1, \quad u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$

u
↑
 x

$$\nu = 10^{-2}, \quad x_0 = 0.5$$

Initial condition

Result and discussion: Cont'd...

- **Moving shock**

$$\frac{\partial u}{\partial t} + (u + v) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = (0, 2)$$

$$u(0, t) = 1, \quad u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$

u
↑
 x

$$\nu = 10^{-2}, \quad x_0 = 0.5$$

Solution at $t = 1.0$

Result and discussion: Cont'd...

- **Moving shock**

$$\frac{\partial u}{\partial t} + (u + v) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = (0, 2)$$

$$u(0, t) = 1, \quad u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$

u
 x

$$\nu = 10^{-2}, \quad x_0 = 0.5$$

Solution at $t = 1.0$

Adapted grid

Result and discussion: Cont'd...

- Moving shock

$$\frac{\partial u}{\partial t} + (u + v) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = (0, 2)$$

$$u(0, t) = 1, \quad u(2, t) = -1, \quad u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right)$$

u
 x

$$\nu = 10^{-2}, \quad x_0 = 0.5$$

Solution

Adapted grid

Result and discussion: Cont'd...

- Kuramoto-Sivashinsky equation

$$\frac{\partial u}{\partial t} + \nu_4 \partial_x^4 u + \partial_x^2 u + u \partial_x u = 0, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = [0, 2\pi]$$

Space-time solution surface and corresponding grid

Result and discussion: Cont'd...

- Kuramoto-Sivashinsky equation

$$\frac{\partial u}{\partial t} + \nu_4 \partial_x^4 u + \partial_x^2 u + u \partial_x u = 0, \quad x \in \Omega \times [0, t_{\max}], \quad \Omega = [0, 2\pi]$$

Fixed time solution and corresponding grid

Conclusion and Future direction

Conclusion and Future direction

- Conclusion

Conclusion and Future direction

- Conclusion
 - An adaptive numerical method is developed

Conclusion and Future direction

- Conclusion
 - An adaptive numerical method is developed
 - An evolution type boundary condition is proposed

Conclusion and Future direction

- Conclusion
 - An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

Conclusion and Future direction

- Conclusion
 - An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed
- Future plan

Conclusion and Future direction

- Conclusion
 - An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed
- Future plan
 - Drawback?

Conclusion and Future direction

- Conclusion

- An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

- Future plan

- Drawback?

- * Simulation to carry out for large t

Conclusion and Future direction

- Conclusion

- An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

- Future plan

- Drawback?

- * Simulation to carry out for large t
 - * Better time stepping

Conclusion and Future direction

- Conclusion

- An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

- Future plan

- Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping
 - Solution

Conclusion and Future direction

- Conclusion

- An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

- Future plan

- Drawback?
 - * Simulation to carry out for large t
 - * Better time stepping
 - Solution
 - * flip and solve method

Conclusion and Future direction

- Conclusion

- An adaptive numerical method is developed
 - An evolution type boundary condition is proposed
 - A multilevel adaptive solver has been developed

- Future plan

- Drawback?

- * Simulation to carry out for large t
 - * Better time stepping

- Solution

- * flip and solve method
 - * Lagrangian or variational idea

Thank You