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Motivation
• Engineering problems: −→ partial differential equations.

• Localized structures:

– might occur intermittently anywhere

– might change their location and scales

• Example:

1. Turbulence computation

2. Meteorology: storm, surge, tide...

3. Bio-medical engineering, Nano-technology

• Uniform grid for such a problem is not suitable
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←− Space-time adaptive grid
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Motivation: wavelet decomposition
•What are wavelets?

A set of basis functions that are localized in space and scale

• Represent a function in terms of wavelet basis:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

•Wavelets:

– follow intermittency in position and scale

– provide automatic grid adaptation
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Cont’d...

• Nested dyadic grid:

Gj = {xj
k ∈ R : xj

k = 2−jk, k ∈ Z, j ∈ Z}

• Easy to see the nestedness property:

Gj ⊂ Gj+1 i.e. xj+1
2k = xj

k

.
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• Adaptive wavelet grid:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
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j
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Gj = {xj
k ∈ R : xj
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Adaptive wavelet collocation method:
Cont’d...

• Adaptive wavelet grid:

u(x) =

∞∑
j=0

∑
k∈Kj

dj
kψ

j
k(x)

Gj
a = {xj

k ∈ R : xj
k = 2−jk, k ∈ Z, j ∈ Z, |dj

k| ≥ ε}
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Application to PDEs
• Consider a PDE:

Lu = f, x ∈ Ω,

where L is any partial differential operator.

Boundary conditions

Bu = u0 x ∈ ∂Ω

•Example:
1. Elliptic:

L := ∂xx + ∂yy

2. Parabolic:
L := ∂t − ∂xx

• Classical solution procedure
Sequence of algebraic problem (via ODE solver)

• Our goal
A single algebraic problem
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Application to PDEs: Cont’d...
•Wavelet transform:

O(N )︷ ︸︸ ︷
u(xj

k) =⇒ dj
k

• Calculating derivatives:

O(N )︷ ︸︸ ︷
u(xj

k) =⇒ dj
k =⇒ ∂u

∂x
(xj

k)

• Reduce to an algebraic system:

Lu = f

• Solve the system: Multilevel adaptive wavelet solver



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid:



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points

Solve DE on internal points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Cont’d...
•Wavelet grid: internal points, boundary points

• Internal points
� Boundary points

Solve DE on internal points
Implement BC on Boundary points



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Application to PDEs: Elliptic problems
• Poisson equation

∂2u

∂x2
= f, x ∈ Ω,

u = u0, x ∈ ∂Ω

⇓
Lu = f

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

   x

   
j



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
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• Poisson equation
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⇓
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Nonlinear evolution problem
• Example:

Navier-Stokes
∇ · u

∂tu + u · ∇u = −1

ρ
∇P + ν∇2u

Kuramoto-Sivashinsky

∂tu + ∂xxxxu + ∂xxu + u∂xu = 0

• Can we reduce to an algebraic problem?

YES

•What is the boundary condition at fixed time?

We propose:
Lu− f = 0 for t = tmax

evolution type boundary condition.
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Multilevel elliptic solver
V-cycle:

rJ = fJ − LuJ

for all levels j = J : −1 : jmin + 1
do ν1 steps of approximate solver for Lvj = rj

rj−1 = I j−1
w (rj − Lvj)

enddo
end
Solve for j = jmin level: Lvj = rj

for all levels j = jmin + 1 : +1 : J
vj = vj + ω0I

j
wv

j−1

do ν2 steps of approximate solver for Lvj = rj enddo
end
uJ = uJ + ω1v

J

do ν3 steps of exact solver for LuJ = fJ enddo
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Adaptive nonlinear solver
V-cycle:

rJ = fJ − LuJ

for all levels j = J : −1 : jmin + 1
do ν1 steps of approximate solver for J(u)vj = rj

rj−1 = I j−1
w (rj − J(u)vj)

enddo
end
Solve for j = jmin level: J(u)vj = rj

for all levels j = jmin + 1 : +1 : J
vj = vj + ω0I

j
wv

j−1

do ν2 steps of approximate solver for J(u)vj = rj enddo
end
uJ = uJ + ω1v

J

enddo
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Result and discussion
• Adaptive nonlinear solver
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L2 norm of residual as a function of multigrid iteration
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Result and discussion: Cont’d...
• Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−π, π)

u(−π, t) = u(π, t)

u(x, 0) = sin(x)

Compare wavelet solution with a spectral code.
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xu + u∂xu = 0, x ∈ Ω× [0, tmax], Ω = [0, 2π]

Fixed time solution and corresponding grid
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– An evolution type boundary condition is proposed

– A multilevel adaptive solver has been developed

• Future plan

– Drawback?

∗ Simulation to carry out for large t
∗ Better time stepping

– Solution

∗ flip and solve method
∗ Lagrangian or variational idea
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