Simultaneous Space-Time Adaptive Solution of Partial Differential Equations *

Jahrul Alam

Department of Mathematics and Statistics
McMaster University, Canada
and

Nicholas Kevlahan

Department of Mathematics and Statistics
McMaster University, Canada

[^0]
Collaborators

- O. V. Vasilyev (University of Colorado at Boulder)
- D. Goldstein (University of Colorado at Boulder)

Outline

Outline

- Motivation

Outline

- Motivation
- Adaptive wavelet collocation method

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem
- Multilevel elliptic solver

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

Outline

- Motivation
- Adaptive wavelet collocation method
- Application to PDEs
- Elliptic problem
- Nonlinear evolution problem
- Multilevel elliptic solver
- Adaptive nonlinear solver
- Results and discussion
- Conclusion and future direction

Motivation

Motivation

- Engineering problems: \longrightarrow partial differential equations.

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology:

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm,

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm, surge,

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm, surge, tide...

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm, surge, tide...
3. Bio-medical engineering

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm, surge, tide...
3. Bio-medical engineering, Nano-technology

Motivation

- Engineering problems: \longrightarrow partial differential equations.
- Localized structures:
- might occur intermittently anywhere
- might change their location and scales
- Example:

1. Turbulence computation
2. Meteorology: storm, surge, tide...
3. Bio-medical engineering, Nano-technology

- Uniform grid for such a problem is not suitable

Motivation

- Grid should adapt in space and time
t

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

Motivation

- Grid should adapt in space and time

\longleftarrow Space-time adaptive grid

Motivation: wavelet decomposition

Motivation: wavelet decomposition -What are wavelets?

Motivation: wavelet decomposition -What are wavelets?
A set of basis functions that are

Motivation: wavelet decomposition -What are wavelets?
A set of basis functions that are localized in space and scale

Motivation: wavelet decomposition

 -What are wavelets?A set of basis functions that are localized in space and scale

- Represent a function in terms of wavelet basis:

Motivation: wavelet decomposition

-What are wavelets?
A set of basis functions that are localized in space and scale

- Represent a function in terms of wavelet basis:

$$
u(x)=\sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^{j}} d_{k}^{j} \psi_{k}^{j}(x)
$$

Motivation: wavelet decomposition

-What are wavelets?
A set of basis functions that are localized in space and scale

- Represent a function in terms of wavelet basis:

$$
u(x)=\sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^{j}} d_{k}^{j} \psi_{k}^{j}(x)
$$

- Wavelets:
- follow intermittency in position and scale
- provide automatic grid adaptation

Adaptive wavelet collocation method

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

Adaptive wavelet collocation method

- Sampling a function on a grid

- Grid refinement is not required everywhere

Adaptive wavelet collocation method

- Sampling a function on a grid

- Grid refinement is not required everywhere

Adaptive wavelet collocation method: Cont'd...

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}:\right.
$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z}\right\}
$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z}\right\}
$$

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z}\right\}
$$

- Easy to see the nestedness property:

Adaptive wavelet collocation method: Cont'd...

- Nested dyadic grid:

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z}\right\}
$$

- Easy to see the nestedness property:

$$
G^{j} \subset G^{j+1} \quad \text { i.e. } \quad x_{2 k}^{j+1}=x_{k}^{j}
$$

Adaptive wavelet collocation method: Cont'd...

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$
u(x)=\sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^{j}} d_{k}^{j} \psi_{k}^{j}(x)
$$

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$
u(x)=\sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^{j}} d_{k}^{j} \psi_{k}^{j}(x)
$$

$$
G^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z}\right\}
$$

Adaptive wavelet collocation method: Cont'd...

- Adaptive wavelet grid:

$$
u(x)=\sum_{j=0}^{\infty} \sum_{k \in \mathcal{K}^{j}} d_{k}^{j} \psi_{k}^{j}(x)
$$

$$
G_{a}^{j}=\left\{x_{k}^{j} \in \mathbb{R}: x_{k}^{j}=2^{-j} k, k \in \mathcal{Z}, j \in \mathcal{Z},\left|d_{k}^{j}\right| \geq \epsilon\right\}
$$

Application to PDEs

Application to PDEs

- Consider a PDE:

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator.

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$
\mathcal{B} u=u_{0} \quad x \in \partial \Omega
$$

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$
\mathcal{B} u=u_{0} \quad x \in \partial \Omega
$$

- Example:

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$
\mathcal{B} u=u_{0} \quad x \in \partial \Omega
$$

- Example:

1. Elliptic:

$$
\mathcal{L}:=\partial_{x x}+\partial_{y y}
$$

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$
\mathcal{B} u=u_{0} \quad x \in \partial \Omega
$$

- Example:

1. Elliptic:

$$
\mathcal{L}:=\partial_{x x}+\partial_{y y}
$$

2. Parabolic:

$$
\mathcal{L}:=\partial_{t}-\partial_{x x}
$$

Application to PDEs

- Consider a PDE:

$$
\mathcal{L} u=f, \quad x \in \Omega,
$$

where \mathcal{L} is any partial differential operator. Boundary conditions

$$
\mathcal{B} u=u_{0} \quad x \in \partial \Omega
$$

- Example:

1. Elliptic:

$$
\mathcal{L}:=\partial_{x x}+\partial_{y y}
$$

2. Parabolic:

$$
\mathcal{L}:=\partial_{t}-\partial_{x x}
$$

- Classical solution procedure Sequence of algebraic problem (via ODE solver)
- Our goal

A single algebraic problem

Application to PDEs: Cont'd...

Application to PDEs: Cont'd...

- Wavelet transform:

Application to PDEs: Cont'd...

- Wavelet transform:

Application to PDEs: Cont'd...

- Wavelet transform:

- Calculating derivatives:

Application to PDEs: Cont'd...

- Wavelet transform:

$$
\overbrace{u\left(x_{k}^{j}\right)}^{\mathcal{O}(\mathcal{N})} \Longrightarrow d_{k}^{j}
$$

- Calculating derivatives:

- Reduce to an algebraic system:

Application to PDEs: Cont'd...

- Wavelet transform:

$$
\overbrace{u\left(x_{k}^{j}\right)}^{\mathcal{O}(\mathcal{N})} \Longrightarrow d_{k}^{j}
$$

- Calculating derivatives:

- Reduce to an algebraic system:

$$
L u=f
$$

Application to PDEs: Cont'd...

- Wavelet transform:

$$
\overbrace{u\left(x_{k}^{j}\right)}^{\mathcal{O}(\mathcal{N})} \Longrightarrow d_{k}^{j}
$$

- Calculating derivatives:

- Reduce to an algebraic system:

$$
L u=f
$$

- Solve the system:

Application to PDEs: Cont'd...

- Wavelet transform:

$$
\overbrace{u\left(x_{k}^{j}\right)}^{\mathcal{O}(\mathcal{N})} \Longrightarrow d_{k}^{j}
$$

- Calculating derivatives:

- Reduce to an algebraic system:

$$
L u=f
$$

- Solve the system: Multilevel adaptive wavelet solver

Application to PDEs: Cont'd...

Application to PDEs: Cont'd...

- Wavelet grid:

Application to PDEs: Cont'd...

- Wavelet grid: internal points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points
- Internal points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points
- Internal points
\diamond Boundary points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points
- Internal points
\diamond Boundary points

Solve DE on internal points

Application to PDEs: Cont'd...

- Wavelet grid: internal points, boundary points
- Internal points
\diamond Boundary points

Solve DE on internal points Implement BC on Boundary points

Application to PDEs: Elliptic problems

Application to PDEs: Elliptic problems

- Poisson equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in \Omega \\
u & =u_{0}, \quad x \in \partial \Omega
\end{aligned}
$$

Application to PDEs: Elliptic problems

- Poisson equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in \Omega, \\
u & =u_{0}, \quad x \in \partial \Omega \\
& \Downarrow \\
L u & =f
\end{aligned}
$$

Application to PDEs: Elliptic problems

- Poisson equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in \Omega, \\
u & =u_{0}, \quad x \in \partial \Omega \\
& \Downarrow \\
L u & =f
\end{aligned}
$$

Application to PDEs: Elliptic problems

- Poisson equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in \Omega, \\
u & =u_{0}, \quad x \in \partial \Omega \\
& \Downarrow \\
L u & =f
\end{aligned}
$$

Adjacent zone:

Application to PDEs: Elliptic problems

- Poisson equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in \Omega, \\
u & =u_{0}, \quad x \in \partial \Omega \\
& \Downarrow \\
L u & =f
\end{aligned}
$$

Adjacent zone:

Nonlinear evolution problem

Nonlinear evolution problem

- Example:

Nonlinear evolution problem

- Example:

Navier-Stokes

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

YES

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time? We propose:

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

We propose:

$$
\mathcal{L} u-f=0 \quad \text { for } \quad t=t_{\max }
$$

Nonlinear evolution problem

- Example:

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho} \nabla P+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Kuramoto-Sivashinsky

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

- Can we reduce to an algebraic problem?

YES

- What is the boundary condition at fixed time?

We propose:

$$
\mathcal{L} u-f=0 \quad \text { for } \quad t=t_{\max }
$$

evolution type boundary condition.

Multilevel elliptic solver

V-cycle:
$\mathbf{r}^{J}=\mathbf{f}^{J}-\mathbf{L u}{ }^{J}$
for all levels $j=J:-1: j_{\text {min }}+1$
do ν_{1} steps of approximate solver for $\mathbf{L} \mathbf{v}^{j}=\mathbf{r}^{j}$

$$
\mathbf{r}^{j-1}=I_{w}^{j-1}\left(\mathbf{r}^{j}-\mathbf{L} \mathbf{v}^{j}\right)
$$

enddo

end
Solve for $j=j_{\text {min }}$ level: $\mathbf{L} \mathbf{v}^{j}=\mathbf{r}^{j}$
for all levels $j=j_{\text {min }}+1:+1: J$
$\mathbf{v}^{j}=\mathbf{v}^{j}+\omega_{0} I_{w}^{j} \mathbf{v}^{j-1}$
do ν_{2} steps of approximate solver for $\mathbf{L v}^{j}=\mathbf{r}^{j}$ enddo end
$\mathbf{u}^{J}=\mathbf{u}^{J}+\omega_{1} \mathbf{v}^{J}$
do ν_{3} steps of exact solver for $\mathbf{L} \mathbf{u}^{J}=\mathbf{f}^{J}$ enddo

Adaptive nonlinear solver

V-cycle:

$$
\mathbf{r}^{J}=\mathbf{f}^{J}-\mathbf{L u} \mathbf{u}^{J}
$$

$$
\text { for all levels } j=J:-1: j_{\min }+1
$$

do ν_{1} steps of approximate solver for $\mathbf{J}(u) \mathbf{v}^{j}=\mathbf{r}^{j}$

$$
\mathbf{r}^{j-1}=I_{w}^{j-1}\left(\mathbf{r}^{j}-\mathbf{J}(u) \mathbf{v}^{j}\right)
$$

enddo

end
Solve for $j=j_{\text {min }}$ level: $\mathbf{J}(u) \mathbf{v}^{j}=\mathbf{r}^{j}$
for all levels $j=j_{\text {min }}+1:+1: J$
$\mathbf{v}^{j}=\mathbf{v}^{j}+\omega_{0} I_{w}^{j} \mathbf{v}^{j-1}$
do ν_{2} steps of approximate solver for $\mathbf{J}(u) \mathbf{v}^{j}=\mathbf{r}^{j}$ enddo
end
$\mathbf{u}^{J}=\mathbf{u}^{J}+\omega_{1} \mathbf{v}^{J}$
enddo

Result and discussion

Result and discussion

- Adaptive nonlinear solver

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

Result and discussion

- Adaptive nonlinear solver

$$
\partial_{t} u+\partial_{x x x x} u+\partial_{x x} u+u \partial_{x} u=0
$$

L_{2} norm of residual as a function of multigrid iteration

Result and discussion: Cont'd...

- Burgers equation

Result and discussion: Cont'd...

- Burgers equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
\nu=10^{-2}
\end{gathered}
$$

Result and discussion: Cont'd...

- Burgers equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
\nu=10^{-2}
\end{gathered}
$$

Initial condition

Result and discussion: Cont'd...

- Burgers equation

$$
\stackrel{u}{\hookrightarrow} x
$$

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
\nu=10^{-2}
\end{gathered}
$$

Initial condition

Grid

Result and discussion: Cont'd...

- Burgers equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
& u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
& u \\
& \hookrightarrow x
\end{aligned}
$$

Computed solution

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$
\stackrel{u}{\hookrightarrow} x
$$

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
\nu=10^{-2}
\end{gathered}
$$

Computed solution

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$
\stackrel{u}{\uparrow} x
$$

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \subset \mathbb{R} \times\left[0, t_{\max }\right], \Omega=[0,1] \\
u(0, t)=u(1, t), \quad u(x, 0)=\sin (2 \pi x) \\
\nu=10^{-2}
\end{gathered}
$$

Solution surface (Space-time domain)

Adapted grid

Result and discussion: Cont'd...

- Burgers equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in(-\pi, \pi) \\
u(-\pi, t)=u(\pi, t) \\
u(x, 0)=\sin (x)
\end{gathered}
$$

Compare wavelet solution with a spectral code.

Result and discussion: Cont'd...

- Moving shock

Result and discussion: Cont'd...

- Moving shock

$$
\begin{aligned}
\frac{\partial u}{\partial t}+(u+v) \frac{\partial u}{\partial x} & =\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=(0,2) \\
u(0, t)=1, u(2, t) & =-1, \quad u(x, 0)=-\tanh \left(\frac{x-x_{0}}{2 \nu}\right) \\
\nu & =10^{-2}, \quad x_{0}=0.5
\end{aligned}
$$

Result and discussion: Cont'd...

- Moving shock

$$
\begin{gathered}
\frac{\partial u}{\partial t}+(u+v) \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=(0,2) \\
u(0, t)=1, u(2, t)=-1, \quad u(x, 0)=-\tanh \left(\frac{x-x_{0}}{2 \nu}\right) \\
\nu \quad \nu=10^{-2}, \quad x_{0}=0.5
\end{gathered}
$$

Initial condition

Result and discussion: Cont'd...

- Moving shock

$$
\begin{gathered}
\frac{\partial u}{\partial t}+(u+v) \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \times\left[0, t_{\mathrm{max}}\right], \Omega=(0,2) \\
u(0, t)=1, u(2, t)=-1, \quad u(x, 0)=-\tanh \left(\frac{x-x_{0}}{2 \nu}\right) \\
\nu
\end{gathered}
$$

Solution at $t=1.0$

Result and discussion: Cont'd...

- Moving shock

$$
\begin{gathered}
\frac{\partial u}{\partial t}+(u+v) \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=(0,2) \\
u(0, t)=1, u(2, t)=-1, \quad u(x, 0)=-\tanh \left(\frac{x-x_{0}}{2 \nu}\right) \\
u \quad \nu=10^{-2}, \quad x_{0}=0.5
\end{gathered}
$$

Solution at $t=1.0$

Adapted grid

Result and discussion: Cont'd...

- Moving shock

$$
\begin{gathered}
\frac{\partial u}{\partial t}+(u+v) \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=(0,2) \\
u(0, t)=1, u(2, t)=-1, \quad u(x, 0)=-\tanh \left(\frac{x-x_{0}}{2 \nu}\right) \\
u
\end{gathered}
$$

Solution

Adapted grid

Result and discussion: Cont'd...

- Kuramoto-Sivashinsky equation

$$
\frac{\partial u}{\partial t}+\nu_{4} \partial_{x}^{4} u+\partial_{x}^{2} u+u \partial_{x} u=0, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=[0,2 \pi]
$$

Space-time solution surface and corresponding grid

Result and discussion: Cont'd...

- Kuramoto-Sivashinsky equation

$$
\frac{\partial u}{\partial t}+\nu_{4} \partial_{x}^{4} u+\partial_{x}^{2} u+u \partial_{x} u=0, \quad x \in \Omega \times\left[0, t_{\max }\right], \Omega=[0,2 \pi]
$$

Fixed time solution and corresponding grid

Conclusion and Future direction

Conclusion and Future direction

- Conclusion

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?
* Simulation to carry out for large t

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?
* Simulation to carry out for large t
* Better time stepping

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?
* Simulation to carry out for large t
* Better time stepping
- Solution

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?
* Simulation to carry out for large t
* Better time stepping
- Solution
* flip and solve method

Conclusion and Future direction

- Conclusion
- An adaptive numerical method is developed
- An evolution type boundary condition is proposed
- A multilevel adaptive solver has been developed
- Future plan
- Drawback?
* Simulation to carry out for large t
* Better time stepping
- Solution
* flip and solve method
* Lagrangian or variational idea

Thank You

[^0]: *Adaptive wavelet and multiscale methods for partial differential equations June 3-5, 2004, Banff International Research Station

