

Topology change of vortices weak and strong solutions

Nicholas Kevlahan

kevlahan@mcmaster.ca

Department of Mathematics & Statistics

Outline

Outline

- SDE model for vortex filament interaction

Outline

- SDE model for vortex filament interaction
- Numerical method

Outline

- SDE model for vortex filament interaction
- Numerical method
- 2D vortex merging

Outline

- SDE model for vortex filament interaction
- Numerical method
- 2D vortex merging
- 3D vortex reconnection

Outline

- SDE model for vortex filament interaction
- Numerical method
- 2D vortex merging
- 3D vortex reconnection
- Conclusions

SDE model for vortex filaments

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

+

Nonlinear potential vortex interaction in layers

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

+

Nonlinear potential vortex interaction in layers

- Assumes that point vortex interaction dominates self-induction nonlinearity and nonlocal induction terms:

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

+

Nonlinear potential vortex interaction in layers

- Assumes that point vortex interaction dominates self-induction nonlinearity and nonlocal induction terms:
valid for nearly parallel vortex filaments with filament separation much greater than width of vortex core.

SDE model for vortex filaments

- Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

+

Nonlinear potential vortex interaction in layers

- Assumes that point vortex interaction dominates self-induction nonlinearity and nonlocal induction terms:
valid for nearly parallel vortex filaments with filament separation much greater than width of vortex core.
- Topology change is **impossible** in this approximation.

SDE model for vortex filaments

SDE model for vortex filaments

Idea: extend model to include viscosity and topology change by using a **stochastic differential equation (SDE)**.

SDE model for vortex filaments

Idea: extend model to include viscosity and topology change by using a **stochastic differential equation (SDE)**.

SDE model for N interacting viscous vortex filaments:

$$\frac{\partial \mathbf{X}_j}{\partial t} = \underbrace{J \left[\Gamma_j \frac{\partial^2 \mathbf{X}_j}{\partial z^2} \right]}_{\text{linear self-induction}} + \underbrace{J \left[\sum_{k \neq j}^N 2\Gamma_k \frac{(\mathbf{X}_j - \mathbf{X}_k)}{|\mathbf{X}_j - \mathbf{X}_k|^2} \right]}_{\text{point vortex interaction}}$$

SDE model for vortex filaments

Idea: extend model to include viscosity and topology change by using a **stochastic differential equation (SDE)**.

SDE model for N interacting viscous vortex filaments:

$$\frac{\partial \mathbf{X}_j}{\partial t} = \underbrace{J \left[\Gamma_j \frac{\partial^2 \mathbf{X}_j}{\partial z^2} \right]}_{\text{linear self-induction}} + \underbrace{J \left[\sum_{k \neq j}^N 2\Gamma_k \frac{(\mathbf{X}_j - \mathbf{X}_k)}{|\mathbf{X}_j - \mathbf{X}_k|^2} \right]}_{\text{point vortex interaction}} + \underbrace{\sqrt{2\nu} \mathbf{b}_j(z, t)}_{\text{white noise}}$$

SDE model for vortex filaments

Idea: extend model to include viscosity and topology change by using a **stochastic differential equation (SDE)**.

SDE model for N interacting viscous vortex filaments:

$$\frac{\partial \mathbf{X}_j}{\partial t} = \underbrace{J \left[\Gamma_j \frac{\partial^2 \mathbf{X}_j}{\partial z^2} \right]}_{\text{linear self-induction}} + \underbrace{J \left[\sum_{k \neq j}^N 2\Gamma_k \frac{(\mathbf{X}_j - \mathbf{X}_k)}{|\mathbf{X}_j - \mathbf{X}_k|^2} \right]}_{\text{point vortex interaction}} + \underbrace{\sqrt{2\nu} \mathbf{b}_j(z, t)}_{\text{white noise}}$$

where $\mathbf{X}_j(z, t) = (x_j(z, t), y_j(z, t))$ are the coordinates of the vortex centrelines, Γ_j are their circulations, $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and $\mathbf{b}_j(z, t)$ are independent Gaussian random variables.

SDE model for vortex filaments

We now consider the case of **two** filaments:

$$\frac{\partial \psi_1}{\partial t} = \frac{\partial^2 \psi_1}{\partial z^2} + 2\Gamma \frac{\psi_1 - \psi_2}{|\psi_1 - \psi_2|^2} + \sqrt{2\nu'} b_1$$

$$\frac{\partial \psi_2}{\partial t} = \frac{\partial^2 \psi_2}{\partial z^2} - 2 \frac{\psi_1 - \psi_2}{|\psi_1 - \psi_2|^2} + \sqrt{2\nu'} b_2$$

where $\psi_j = x_j(z, t) + i y_j(z, t)$, $b_j(z, t) = b_{j1} + i b_{j2}$, we have set $\Gamma_1 = 1$, $\Gamma = \Gamma_2/\Gamma_1$, and time has been re-scaled by 4π so $\nu' = 4\pi\nu$.

SDE model for vortex filaments

We now consider the case of **two** filaments:

$$\begin{aligned}\frac{\partial \psi_1}{\partial t} &= 2\Gamma \frac{\psi_1 - \psi_2}{|\psi_1 - \psi_2|^2} + \sqrt{2\nu'} b_1 \\ \frac{\partial \psi_2}{\partial t} &= -2 \frac{\psi_1 - \psi_2}{|\psi_1 - \psi_2|^2} + \sqrt{2\nu'} b_2\end{aligned}$$

- The **curvature** term is not present in **two dimensions**.

SDE model for vortex filaments

Properties of the SDE model:

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of **two vortices** and **two dimensions**

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- \mathbf{X}_j are **random variables**

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- X_j are random variables
- Actual **vorticity field** is given by the **probability density function** of X_j

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- \mathbf{X}_j are random variables
- Actual vorticity field is given by the probability density function of \mathbf{X}_j
- **Vortex centres** are given by $\langle \mathbf{X}_j \rangle$

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- X_j are random variables
- Actual vorticity field is given by the probability density function of X_j
- Vortex centres are given by $\langle X_j \rangle$
- Model gives a **stochastic weak solution** for viscous vortex filament interaction.

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- \mathbf{X}_j are random variables
- Actual vorticity field is given by the probability density function of \mathbf{X}_j
- Vortex centres are given by $\langle \mathbf{X}_j \rangle$
- Model gives a stochastic weak solution for viscous vortex filament interaction
- Model is **computationally efficient**

SDE model for vortex filaments

Properties of the SDE model:

- Reduces to model proposed by Agullo & Verga (1997) in the case of two vortices and two dimensions
- \mathbf{X}_j are random variables
- Actual vorticity field is given by the probability density function of \mathbf{X}_j
- Vortex centres are given by $\langle \mathbf{X}_j \rangle$
- Model gives a stochastic weak solution for viscous vortex filament interaction
- Model is computationally efficient
- Model can be analyzed **mathematically** (Agullo & Verga have given an exact solution in the special case they considered)

SDE model for vortex filaments

Question:

- How does the SDE model **weak** solution differ from the **strong** solution of the vorticity equation?

SDE model for vortex filaments

Question:

- How does the SDE model **weak** solution differ from the **strong** solution of the vorticity equation?
- What is the main source of **error**?

SDE model for vortex filaments

Question:

- How does the SDE model **weak** solution differ from the **strong** solution of the vorticity equation?
- What is the main source of **error**?

→ Analyze **symmetric vortex merging** interactions in 2D and **symmetric vortex reconnection** in 3D.

Numerical method

Numerical method

1. Solve **exactly** for point vortex motion in layers.

Numerical method

1. Solve **exactly** for point vortex motion in layers.
2. Add **white noise** via Euler approximation for stochastic term.

Numerical method

1. Solve **exactly** for point vortex motion in layers.
2. Add **white noise** via Euler approximation for stochastic term.
3. Transform to **Fourier space** in z and use **exact** integration to solve for effect of curvature term:

$$\begin{aligned}\hat{\psi}_1(t + \Delta t) &= \hat{\psi}_1(t) \exp[-i \Delta t k^2] \\ \hat{\psi}_2(t + \Delta t) &= \hat{\psi}_2(t) \exp[-i \Gamma \Delta t k^2]\end{aligned}$$

and transform back.

Numerical method

1. Solve **exactly** for point vortex motion in layers.
2. Add **white noise** via Euler approximation for stochastic term.
3. Transform to **Fourier space** in z and use **exact** integration to solve for effect of curvature term:

$$\begin{aligned}\hat{\psi}_1(t + \Delta t) &= \hat{\psi}_1(t) \exp[-i \Delta t k^2] \\ \hat{\psi}_2(t + \Delta t) &= \hat{\psi}_2(t) \exp[-i \Gamma \Delta t k^2]\end{aligned}$$

and transform back.

4. **Repeat** for each **realization** to build up pdf.

2D vortex merging

Case:

2D vortex merging

Case:

- $N = 2$, $\Gamma = 1$, initial separation $r = 2$.

2D vortex merging

Case:

- $N = 2$, $\Gamma = 1$, initial separation $r = 2$.
- $Re = \Gamma/\nu = 1\,000$.

2D vortex merging

Case:

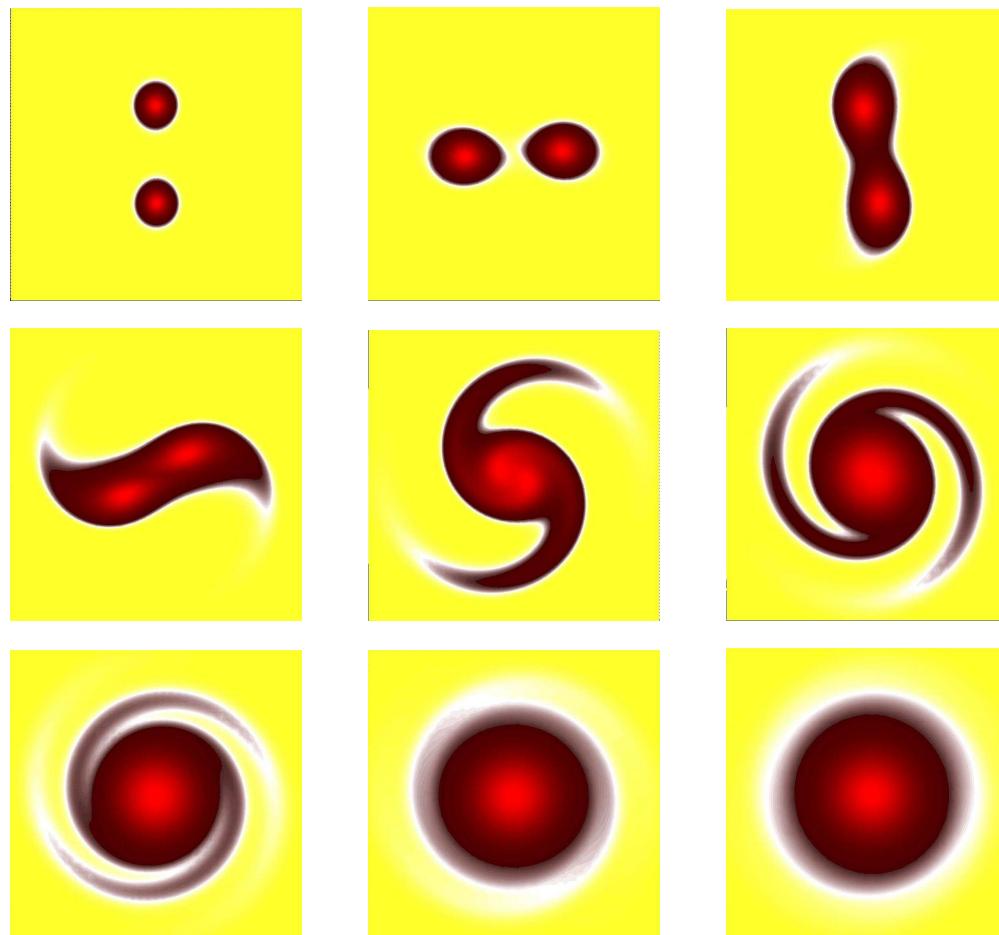
- $N = 2$, $\Gamma = 1$, initial separation $r = 2$.
- $Re = \Gamma/\nu = 1\,000$.
- Point vortices **never merge**.

2D vortex merging

Case:

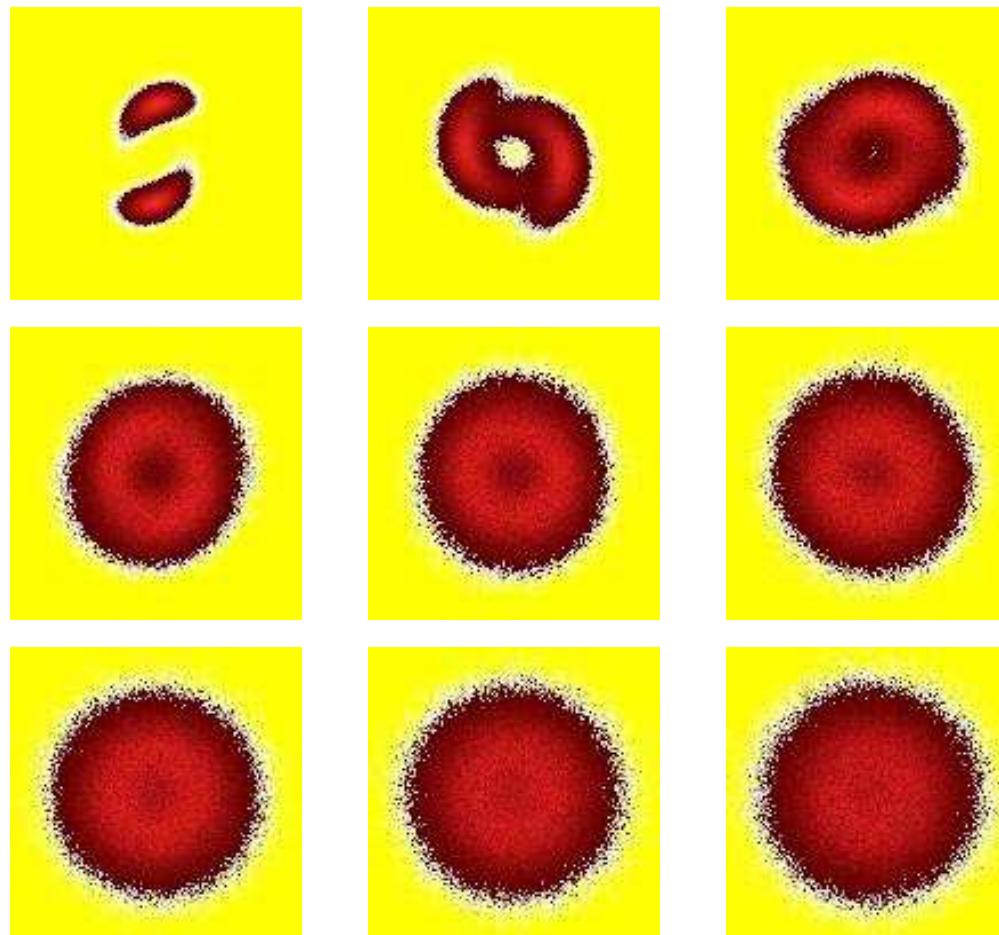
- $N = 2$, $\Gamma = 1$, initial separation $r = 2$.
- $Re = \Gamma/\nu = 1\,000$.
- Point vortices **never merge**.
- **Compare** SDE model with high resolution adaptive wavelet numerical solution of full 2D vorticity equations.

2D vortex merging



Vortex merging at $Re = 1\,000$, full adaptive wavelet solution

2D vortex merging



Vortex merging at $Re = 1\,000$, weak stochastic solution

2D vortex merging

SDE model is qualitatively and quantitatively **incorrect**
(although it does eventually produce merging).

2D vortex merging

SDE model is qualitatively and quantitatively **incorrect**
(although it does eventually produce merging).

How could it be improved?

2D vortex merging

SDE model is qualitatively and quantitatively **incorrect** (although it does eventually produce merging).

How could it be improved?

- Use velocity field of **Gaussian** vortices at point vortex positions.

2D vortex merging

SDE model is qualitatively and quantitatively **incorrect** (although it does eventually produce merging).

How could it be improved?

- Use velocity field of **Gaussian** vortices at point vortex positions.
- Use a **single** Gaussian vortex at centre of rotation once Gaussian vortices overlap sufficiently.

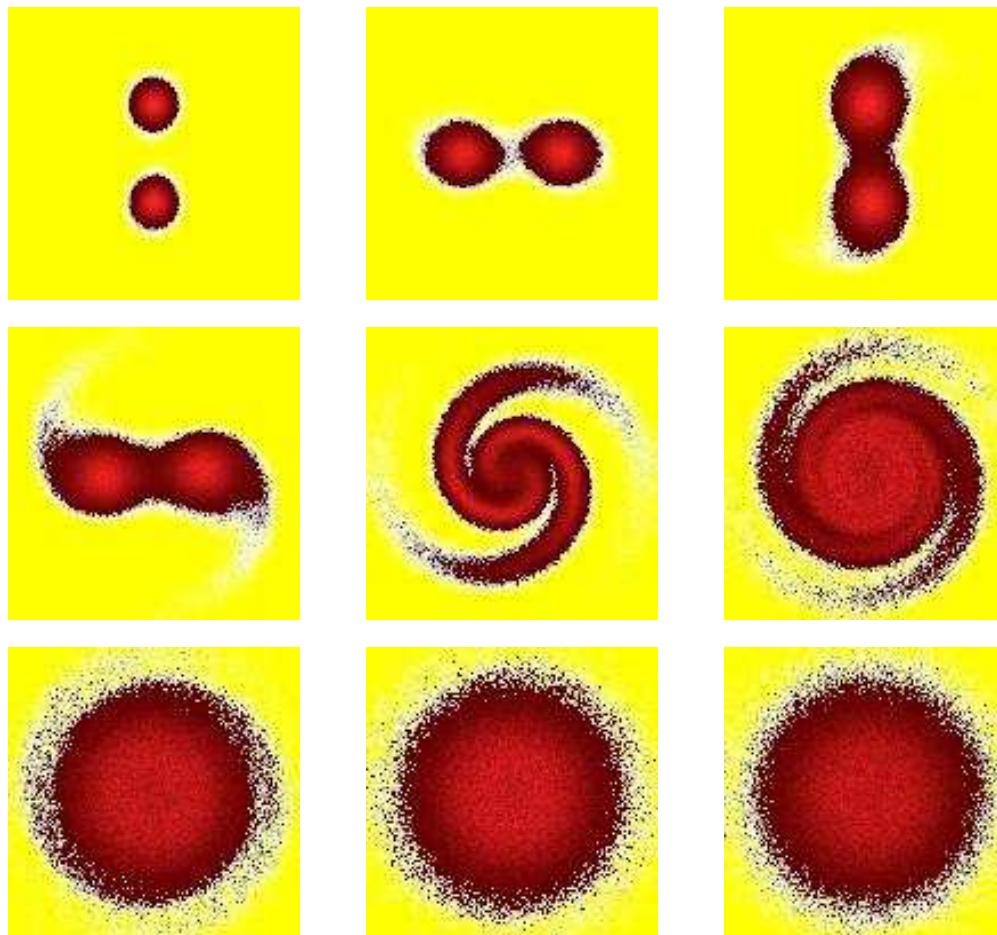
2D vortex merging

SDE model is qualitatively and quantitatively **incorrect** (although it does eventually produce merging).

How could it be improved?

- Use velocity field of **Gaussian** vortices at point vortex positions.
- Use a **single** Gaussian vortex at centre of rotation once Gaussian vortices overlap sufficiently.
- This correction models the **continuous** vorticity distribution.

2D vortex merging

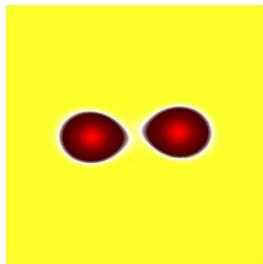
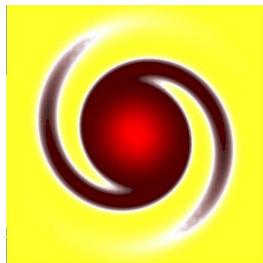
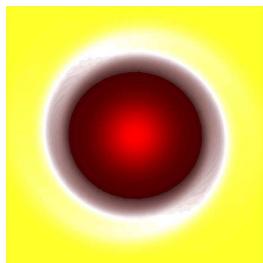


Vortex merging at $Re = 1\,000$, Gaussian velocity field

2D vortex merging

Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

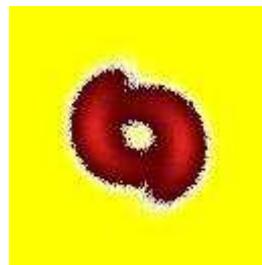
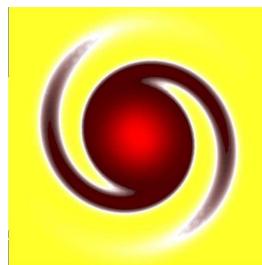
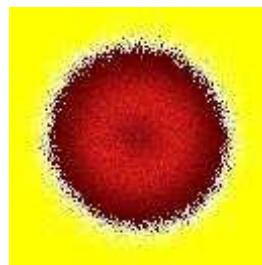
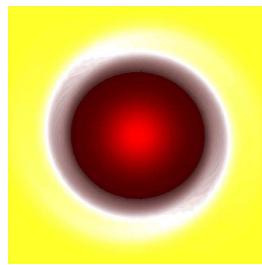
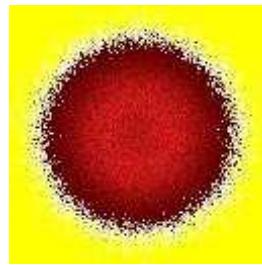
2D vortex merging



exact

Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

2D vortex merging



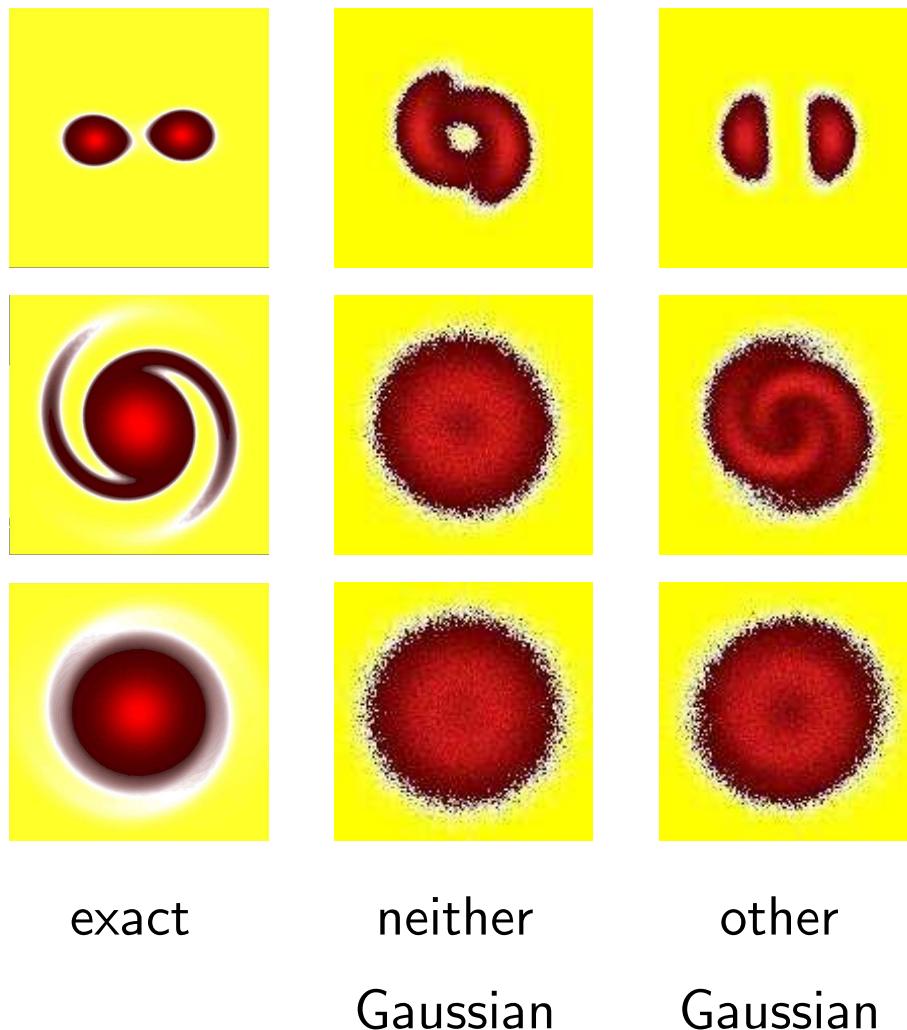
exact

neither

Gaussian

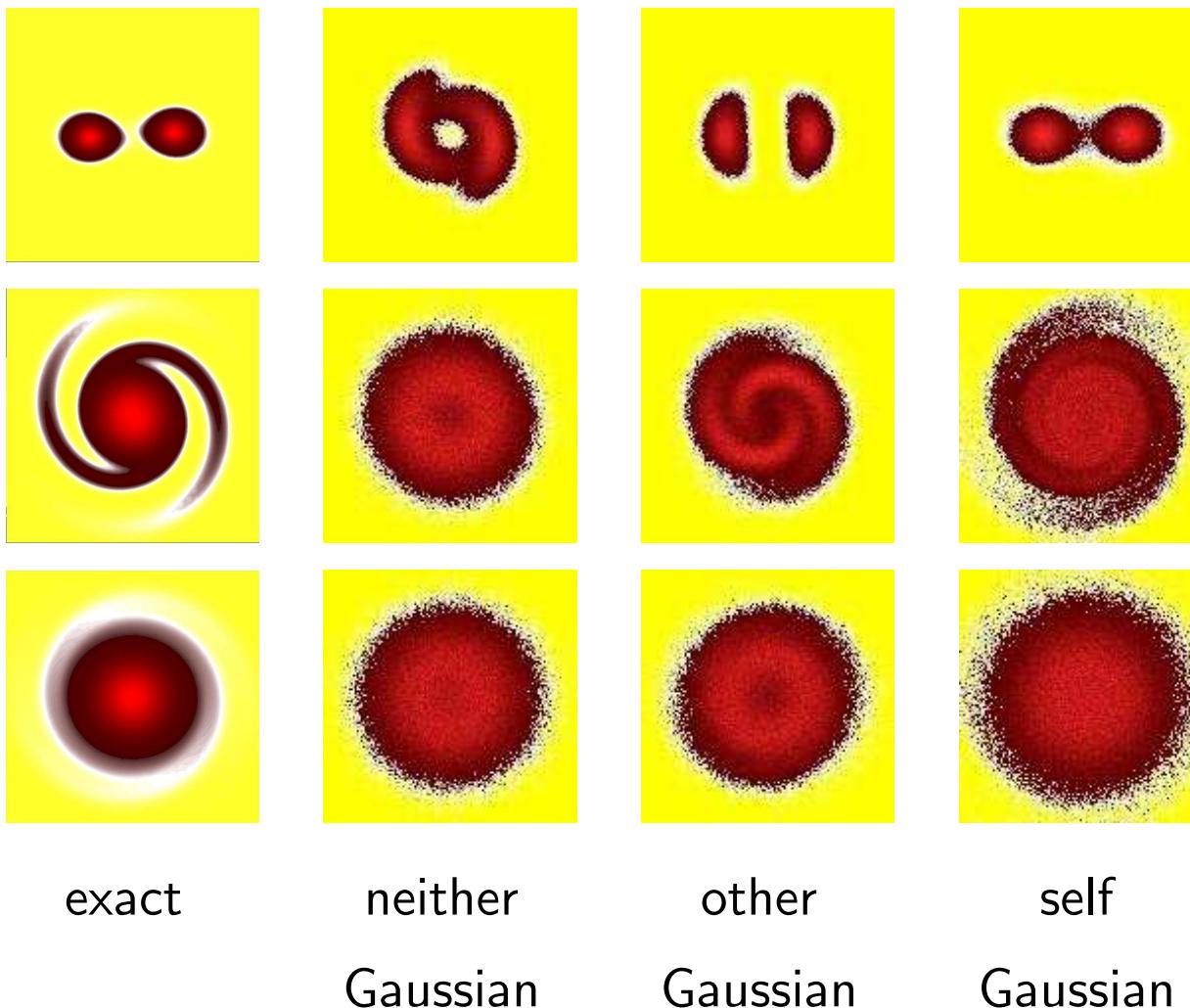
Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

2D vortex merging



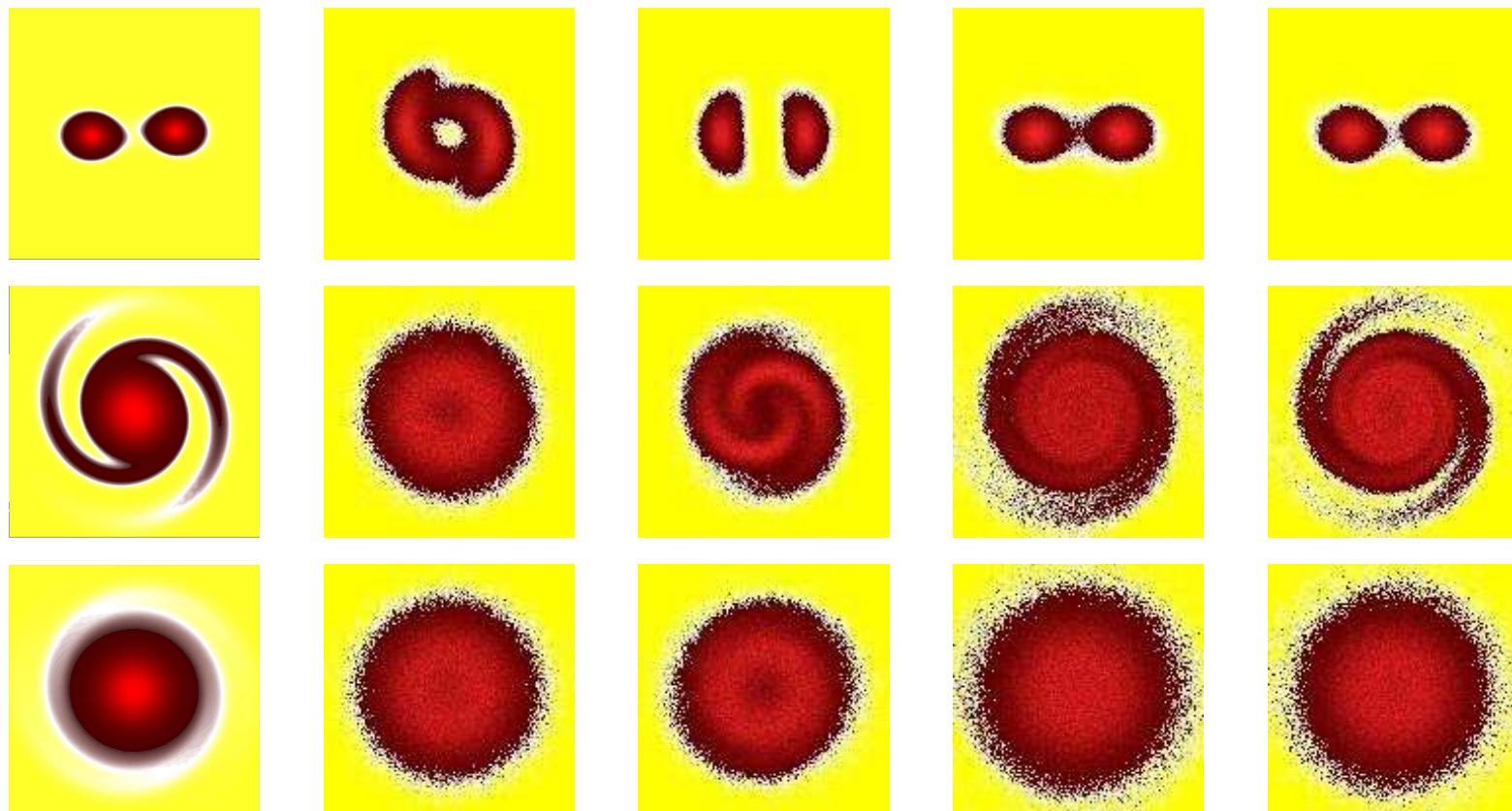
Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

2D vortex merging



Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

2D vortex merging



exact

neither

other

self

both

Gaussian

Gaussian

Gaussian

Gaussian

Effect of continuous vorticity on merging: which part of the continuous vorticity field is most important?

3D vortex reconnection

Case:

3D vortex reconnection

Case:

- $N = 2$, $\Gamma = -1$, $Re = 1500$, $\Delta t = 10^{-3}$, initial separation $r = 1$, 2×10^6 realizations

3D vortex reconnection

Case:

- $N = 2$, $\Gamma = -1$, $Re = 1500$, $\Delta t = 10^{-3}$, initial separation $r = 1$, 2×10^6 realizations
- Symmetrical sinusoidal perturbation at angles of $\pm 45^\circ$ with amplitude $A = 0.2$ and wavelength $\lambda = 7.3$

3D vortex reconnection

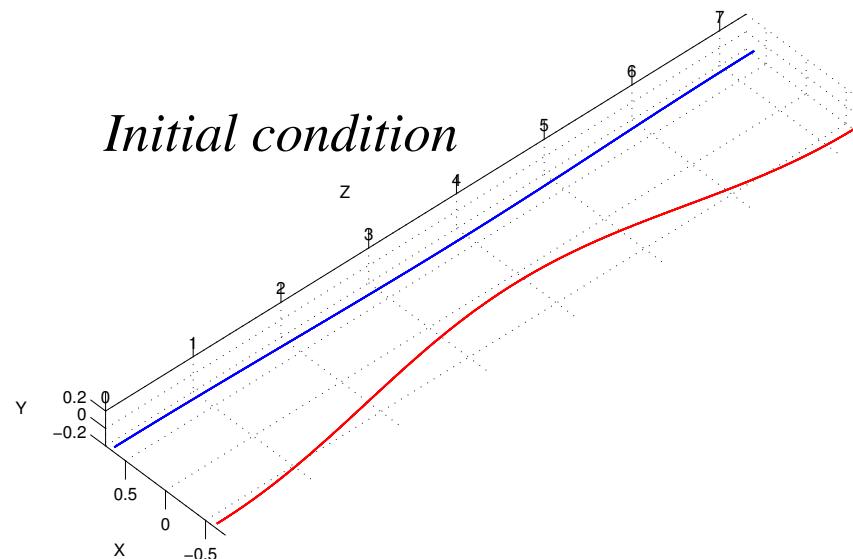
Case:

- $N = 2$, $\Gamma = -1$, $Re = 1500$, $\Delta t = 10^{-3}$, initial separation $r = 1$, 2×10^6 realizations
- Symmetrical sinusoidal perturbation at angles of $\pm 45^\circ$ with amplitude $A = 0.2$ and wavelength $\lambda = 7.3$
- Periodic boundary conditions in z , $N_z = 128$, length of domain = λ

3D vortex reconnection

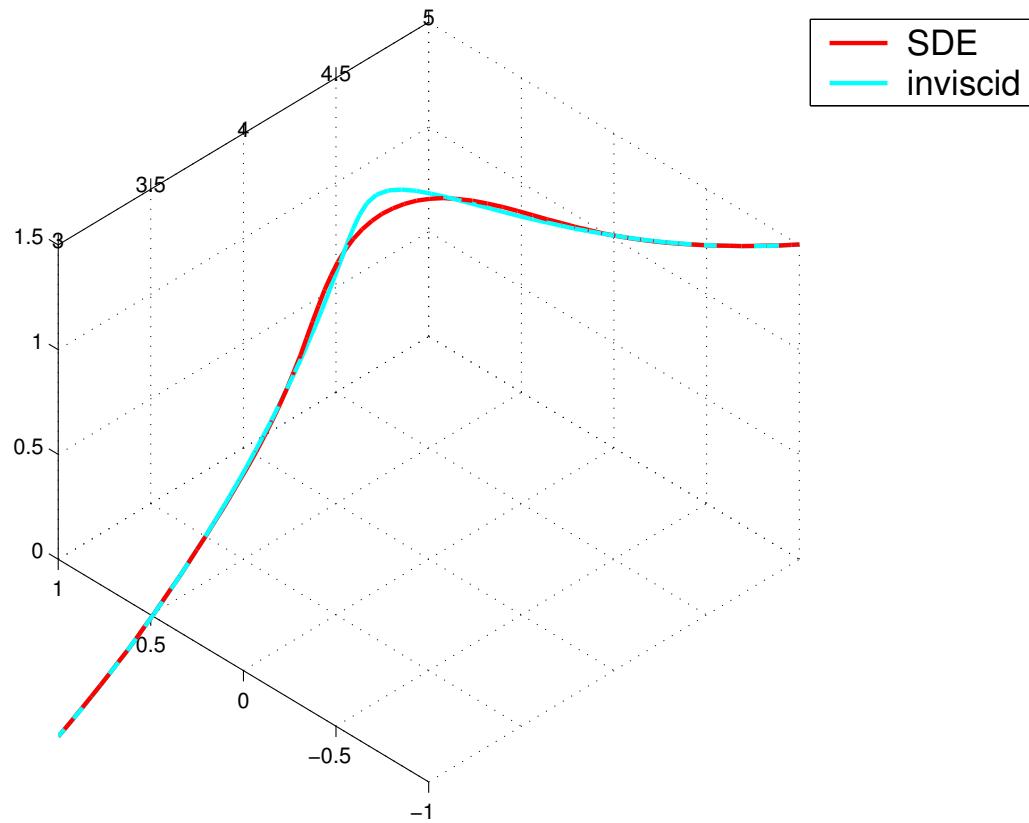
Case:

- $N = 2$, $\Gamma = -1$, $Re = 1500$, $\Delta t = 10^{-3}$, initial separation $r = 1$, 2×10^6 realizations
- Symmetrical sinusoidal perturbation at angles of $\pm 45^\circ$ with amplitude $A = 0.2$ and wavelength $\lambda = 7.3$
- Periodic boundary conditions in z , $N_z = 128$, length of domain = λ



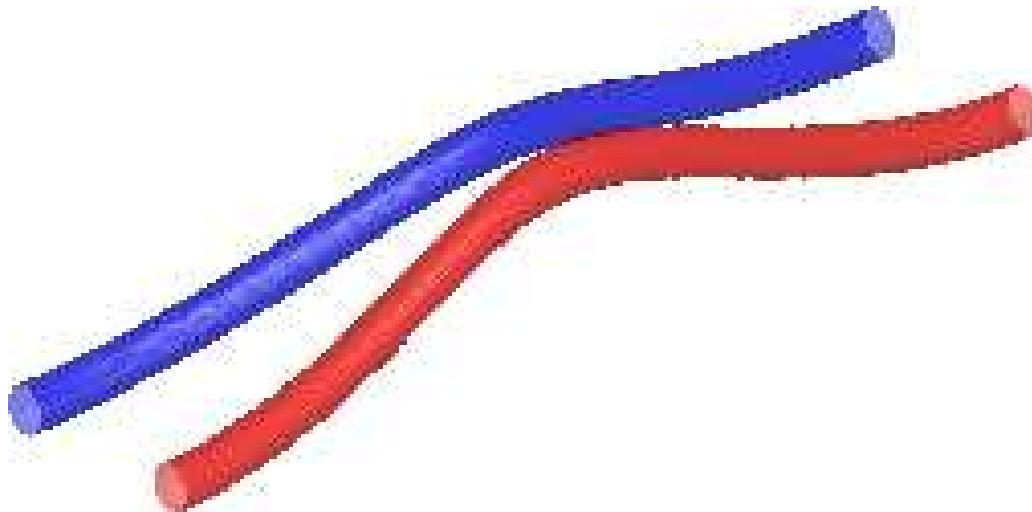
3D vortex reconnection

Comparison of SDE and inviscid models at $t = 0.51$



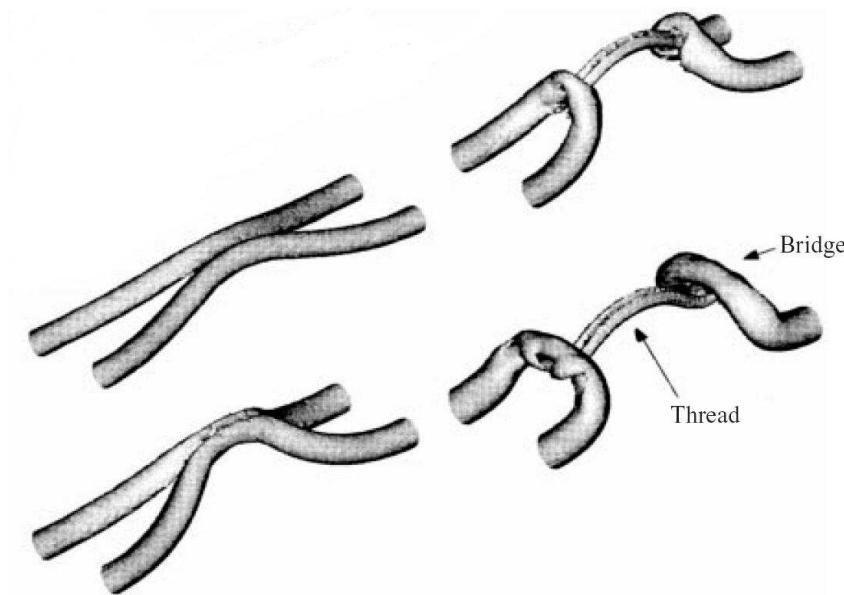
Only positive vortex is shown. Inviscid solution breaks down at $t \approx 0.522$ as vortices develop kinks and touch.

3D vortex reconnection

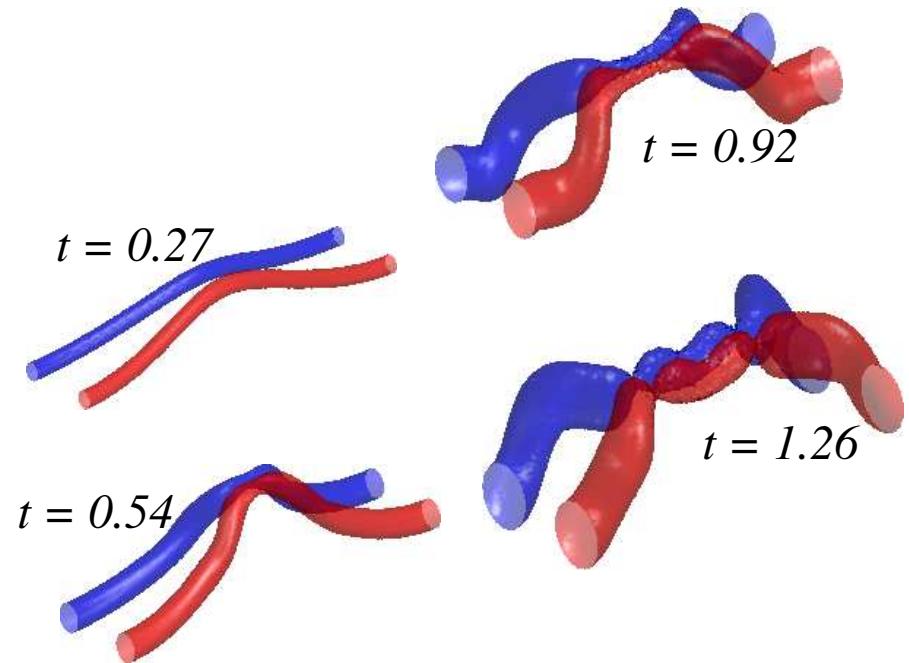


SDE model simulation of vortex reconnection at $Re = 15000$.

3D vortex reconnection



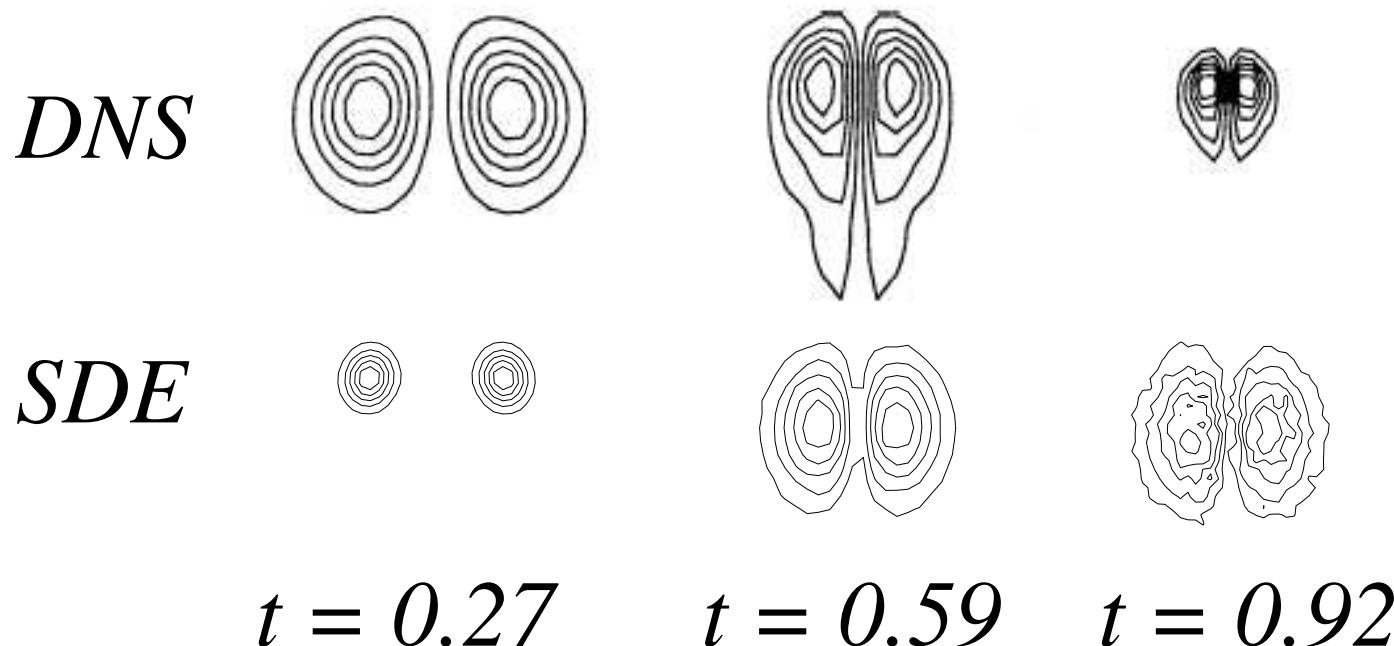
DNS (Marshall et al. 2001)



SDE model

3D vortex reconnection

Vorticity contours in $z = \lambda/2$ plane



(At $t = 0$ the DNS vortices have a finite radius $\sigma_0 = 0.2$.)

Conclusions

2D Vortex Merging

3D Vortex Reconnection

Conclusions

2D Vortex Merging

- uncorrected SDE model is incorrect qualitatively and quantitatively

3D Vortex Reconnection

Conclusions

2D Vortex Merging

- uncorrected SDE model is incorrect qualitatively and quantitatively
- most important source of error is absence of self-interaction

3D Vortex Reconnection

Conclusions

2D Vortex Merging

- uncorrected SDE model is incorrect qualitatively and quantitatively
- most important source of error is absence of self-interaction
- simple correction to velocity field gives good qualitative and quantitative agreement

3D Vortex Reconnection

Conclusions

2D Vortex Merging

- uncorrected SDE model is **incorrect** qualitatively and quantitatively
- most important source of error is absence of **self-interaction**
- **simple correction** to velocity field gives good qualitative and quantitative agreement

3D Vortex Reconnection

- **complete reconnection** is impossible (self-induction approximation constrains vorticity to z -direction)

Conclusions

2D Vortex Merging

- uncorrected SDE model is incorrect qualitatively and quantitatively
- most important source of error is absence of self-interaction
- simple correction to velocity field gives good qualitative and quantitative agreement

3D Vortex Reconnection

- complete reconnection is impossible (self-induction approximation constrains vorticity to z -direction)
- qualitative agreement is reasonable for times $t \gg t_c \approx 0.522$ where inviscid theory fails

Conclusions

2D Vortex Merging

- uncorrected SDE model is **incorrect** qualitatively and quantitatively
- most important source of error is absence of **self-interaction**
- **simple correction** to velocity field gives good qualitative and quantitative agreement

3D Vortex Reconnection

- **complete reconnection** is impossible (self-induction approximation constrains vorticity to z -direction)
- **qualitative agreement** is reasonable for times $t \gg t_c \approx 0.522$ where inviscid theory fails
- 3D model is much **better** than uncorrected 2D