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SDE model for vortex filaments

 Start with inviscid model of Klein et al. (1995):

inearized self-induction of filament

_|_

Nonlinear potential vortex interaction in layers

* Assumes that point vortex interaction dominates
self-induction nonlinearity and nonlocal induction terms:

valid for nearly parallel vortex filaments with filament
separation much greater than width of vortex core.

* Topology change is impossible in this approximation.
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SDE model for vortex filaments
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by using a stochastic differential equation (SDE).
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|dea: extend model to include viscosity and topology change
by using a stochastic differential equation (SDE).

SDE model for NV interacting viscous vortex filaments:
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SDE model for vortex filaments

|dea: extend model to include viscosity and topology change
by using a stochastic differential equation (SDE).

SDE model for NV interacting viscous vortex filaments:

0X 02X ; Y (X=X —
~ I' ~~ N N o 1, white noise
inear

point vortex

self-induction . .
Interaction

where X(z,t) = (z;(2,1),yj(2,t)) are the coordinates of the

_ o . 0 —1
vortex centrelines, ['; are their circulations, J = [ ] and
1 0

b;(z,t) are independent Gaussian random variables.
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SDE model for vortex filaments

We now consider the case of two filaments:

2
o1 _ a¢1+21“ VIV by

ot |11 — ¢2|2
O %y 5 V1
F R = W*F”?

where 1); = CL‘j(Z,t) + z'yj(z,t), bj(z,t) = bj1 + 1 b2, we have
set 'y =1, ' =T'y/I'1, and time has been re-scaled by 47 so
Vv =47
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SDE model for vortex filaments

We now consider the case of two filaments:

oY1 ¢1
ot Wl ¢2|2 V2
Oy ¢1
ot Wl ¢2’2 + Vb,

* The curvature term is not present in two dimensions.
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SDE model for vortex filaments

Properties of the SDE model:

* Reduces to model proposed by Agullo & Verga (1997) in
the case of two vortices and two dimensions

o Xj are random variables

* Actual vorticity field is given by the probability density
function of X,

* Vortex centres are given by <X9>
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SDE model for vortex filaments
Properties of the SDE model:

* Model gives a stochastic weak solution for viscous vortex
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SDE model for vortex filaments
Properties of the SDE model:

Reduces to model proposed by Agullo & Verga (1997) in
the case of two vortices and two dimensions

Xj are random variables

Actual vorticity field is given by the probability density
function of X,

Vortex centres are given by (X;)

Model gives a stochastic weak solution for viscous vortex
fillament interaction

Model is computationally efficient
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SDE model for vortex filaments
Properties of the SDE model:

* Model can be analyzed mathematically (Agullo & Verga
have given an exact solution in the special case they
considered)
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SDE model for vortex filaments

Question:

* How does the SDE model weak solution differ from the
strong solution of the vorticity equation?
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SDE model for vortex filaments

Question:

* How does the SDE model weak solution differ from the
strong solution of the vorticity equation?

e \What is the main source of error?

— Analyze symmetric vortex merging interactions in 2D and

symmetric vortex reconnection in 3D.
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Numerical method

1. Solve exactly for point vortex motion in layers.

. Add white noise via Euler approximation for stochastic
term.

. Transform to Fourier space in z and use exact
integration to solve for effect of curvature term:

D1t + At) = ¢1(t) exp[—i At k?]

o (t 4+ At) o (t) exp[—i DAL k2]

and transform back.
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Numerical method

1. Solve exactly for point vortex motion in layers.

. Add white noise via Euler approximation for stochastic
term.

. Transform to Fourier space in z and use exact
integration to solve for effect of curvature term:

D1t + At) = ¢1(t) exp[—i At k?]

o (t 4+ At) o (t) exp[—i DAL k2]

and transform back.

. Repeat for each realization to build up pdf.
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2D vortex merging

Case:
e N =2, I'=1, initial separation r = 2.
* Re=1T/v=1000.
* Point vortices never merge.

* Compare SDE model with high resolution adaptive
wavelet numerical solution of full 2D vorticity equations.
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2D vortex merging
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Vortex merging at Re = 1000, full adaptive wavelet solution
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2D vortex merging

Vortex merging at Re = 1000, weak stochastic solution

Euromech 448, September 6-10 2004 — p.11/20



2D vortex merging

SDE model is qualitatively and quantitatively incorrect
(although it does eventually produce merging).
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2D vortex merging

SDE model is qualitatively and quantitatively incorrect
(although it does eventually produce merging).

How could it be improved?

* Use velocity field of Gaussian vortices at point vortex
positions.

* Use a single Gaussian vortex at centre of rotation once
Gaussian vortices overlap sufficiently.

* This correction models the continuous vorticity
distribution.
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2D vortex merging

Vortex merging at Re = 1000, Gaussian velocity field
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2D vortex merging

Effect of continuous vorticity on merging: which part of the
continuous vorticity field is most important?
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2D vortex merging
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2D vortex merging

exact neither other self both

Gaussian Gaussian Gaussian Gaussian

Effect of continuous vorticity on merging: which part of the
continuous vorticity field is most important?
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3D vortex reconnection

Case:

e N=2,T=-1, Re=1500, At = 1073, initial
separation » = 1, 2 x 10° realizations
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3D vortex reconnection

Case:

e N=2,T=-1, Re=1500, At =107, initial
separation » = 1, 2 x 10° realizations

* Symmetrical sinusoidal perturbation at angles of 4+45°
with amplitude A = 0.2 and wavelength A = 7.3
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3D vortex reconnection

Case:

e N=2,T=-1, Re=1500, At =107, initial
separation » = 1, 2 x 10° realizations
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with amplitude A = 0.2 and wavelength A = 7.3
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3D vortex reconnection

Case:

e N=2,T=-1, Re=1500, At =107, initial
separation » = 1, 2 x 10° realizations

* Symmetrical sinusoidal perturbation at angles of 4+45°
with amplitude A = 0.2 and wavelength A = 7.3

* Periodic boundary conditions in z, N, = 128, length of
domain = A

Initial condition
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3D vortex reconnection

Comparison of SDE and inviscid models at ¢ = 0.51

—— SDE
inviscid

Only positive vortex is shown. Inviscid solution breaks down at

t =~ 0.522 as vortices develop kinks and touch.
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3D vortex reconnection

SDE model simulation of vortex reconnection at Re = 1 5000.
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3D vortex reconnection
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DNS (Marshall et al. 2001) SDE model
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3D vortex reconnection

Vorticity contours in z = \/2 plane

SDE

t=0.27 t=059 t=0.92

(At £ = 0 the DNS vortices have a finite radius oy = 0.2.)
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Conclusions
2D Vortex Merging

* uncorrected SDE model is incorrect qualitatively and
quantitatively

°* most important source of error is absence of
self-interaction

* simple correction to velocity field gives good qualitative
and quantitative agreement

3D Vortex Reconnection

e complete reconnection is impossible (self-induction
approximation constrains vorticity to z—direction)

* qualitative agreement is reasonable for times
t > t. ~ 0.522 where inviscid theory fails

* 3D model is much better than uncorrected 2D
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