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1. Motivation for adaptive wavelets
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1. Motivation for adaptive wavelets

2. Adaptive wavelet collocation method

 Construction of second generation
wavelets

- Adaptive wavelet collocation method

- One-dimensional examples: Burgers
equation and moving shock
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Outline (cont.)

3. Fluid—structure interaction
- Adaptive wavelet collocation
» Brinkman penalization
- Elliptic solver for pressure
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Outline (cont.)

3. Fluid—structure interaction
- Adaptive wavelet collocation
» Brinkman penalization
- Elliptic solver for pressure

4. Results
 Flow past cylinders (2D)
- Flow past a sphere (3D)
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Outline (cont.)

3. Fluid—structure interaction
- Adaptive wavelet collocation
» Brinkman penalization
- Elliptic solver for pressure

4. Results
 Flow past cylinders (2D)
- Flow past a sphere (3D)

5. Conclusions
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Motivation: vortices

Forced isotropic turbulence, Re, = 72, maximum resolution

= 1283, iso-surface of vorticity at 30% ||&||so-
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Motivation: complex geometry
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Moving cylinder at Re = 100, effective grid = 3 584 x 1 792.
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Why wavelets?

1. High rate of data compression (e.g. jpeg2
2000 image compression)
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Why wavelets?

1. High rate of data compression (e.g. jpeg2
2000 image compression)

2. Fast O(N) transform

3. Fast signal de-noising (optimal for additive
Gaussian noise)

4. Easy to control wavelet properties (e.qg.
smoothness, boundary conditions)
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What are Wavelets?

Basic property:

A set of basis functions that are localized in phys-
ical and wavenumber spaces.
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What are Wavelets?

Definition:

A second-generation multi-resolution analysis M of a
function space L consists of a sequence of closed
subspaces M = {V’ Cc L | j € J} such that

1.V c it
2. U.c,V’ isdensein L, and

3. for each j € 7, V’ has a Reisz basis given by scaling
functions {¢], | k € K7}.
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Construction of wavelet families

dilation
, translation

y(x) \ = /\w(xb) |
DVARVEVIAVEE

dilation ||
N W(x/a)
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Which wavelet family to choose?

* Collocation or Galerkin method?

* Cost of calculating nonlinear terms?
* General boundary conditions?

* Cost of dynamic grid adaptation?

* Cost of calculating spatial operators on an adaptive
grid?

* Ease of generalizing to complex geometries?
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Second Generation Wavelet*

* Collocation or Galerkin method? Collocation
 Cost of calculating nonlinear terms? O(\), easy
* General boundary conditions? Siraightiorward
 Cost of dynamic grid adaptation? O(\)

* Cost of calculating spatial operators on an adaptive
grid? O(N)

* Ease of generalizing to complex geometries? Feasible

* (Sweldens, 1996)
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Second Generation Wavelets

Main properties

* Constructed in spatial domain

* Can be custom designed for complex domains and
irregular sampling intervals

* No auxiliary memory is required and the original signal
can be replaced with its wavelet transform

* Allows to perform wavelet transform (both forward and
inverse) on an adaptive grid
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Wavelet Construction

Nested wavelet grids

..................................

..................

Uniform Grid Nonuniform Grid
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Second Generation Wavelets
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression
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Solving PDEs

F (%—Tz,u,Vu,q,X,t) =0

® (u,Vu,q,x,t) =0 | | o |
u(x) = & = (%)
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Solving PDEs
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Solving PDEs
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Solving PDEs
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Solving PDEs
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Numerical Algorithm

Evolution problems

1. Perform the wavelet transform of uy(¢) on G

2. Update G5

3. If G52 =G, gotostep 5

4. Interpolate uy(t) to G

5. Integrate the system of equations to obtain uy (¢t + At)

and go back to step 1

G. - computational grid at time ¢
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Test Problem: Burgers Equation

%—F @— @ c(—-1,1),t>0
Ot ué’x_yé‘$2 * L

u(x,0) = —sin(rz), wu(+l,t)=0
Analytical Solution:

fj;o sin (7 (z — n)) exp (_008(27;(5_77))> exp <—&) dn

J23 exp (— =G0 ) exp (57 ) dn
Parameters: v = 1072 /7, ¢ = 1074

u(x,t) = —
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Test Problem: Burgers Equation

Solution Grid

.........................................
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Test Problem: Burgers Equation

||u(£lﬁ, t) o ueX(xa t)HOO? €

N N N N N N N N I
10° 10°

Fig: The pointwise L,-error of the sofution (solid line) attime t =2 /7
for different choices of e, Nand N: N =N =2 (o); N =2, N = 0 (+);
N =N =3 (e); N = N = 4 (0). The dashed line shows the value of ¢
as a function of V.
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Test Problem: Moving Shock

Ou Ou 0w
= S - t >0
at+(v+u)am e r € (—o00,400), t >
L — X
_ — T ::_]_
u (x,0) tanh( 5 ), u (F00, 1)

Analytical Solution:

— 20 — vt
uip (z,t) = — tanh (x QQjOy v)

Parameters: v = 1072, 2= —1/2,v=1,¢ = 10~
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Test Problem: Moving Shock

Solution Grid
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Fluid—structure interaction

» Moderate to high Reynolds number flow
around solid obstacles.
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Fluid—structure interaction

» Moderate to high Reynolds number flow
around solid obstacles.

- Obstacle may be fixed, or may move or
deform (e.g. in response to fluid forces).
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Fluid—structure interaction

» Moderate to high Reynolds number flow
around solid obstacles.

- Obstacle may be fixed, or may move or
deform (e.g. in response to fluid forces).

 Applications: wind engineering of tall
buildings, heat exchangers, underwater pipes,
aeronautics.
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Fluid—structure interaction

Goal

To develop a general code for calculating all kinds
of fluid—structure interaction
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Fluid—structure interaction

Combine two methods:
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Fluid—structure interaction

Combine two methods:

1. Adaptive wavelet collocation for grid
adaptation and derivatives.
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Fluid—structure interaction

Combine two methods:

1. Adaptive wavelet collocation for grid
adaptation and derivatives.

2. Brinkman penalization to impose no-slip
boundary conditions at the surface of an
obstacle of arbitrary shape.
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Fluid—structure interaction

Brinkman penalization of Navier-Stokes

equations

%—?+(u+U)-VU + VP =vAu

—%X(X, t)(u+U —U,)
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Fluid—structure interaction

where the solid is defined by

(1 ifx e solid.

) = ,
X(%,1) <\ 0 otherwise.

» The upper bound on the global error of this
penalization was shown to be (Angot et al.

1999) O(n'/*).
- We observe an error of O(n).
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Fluid—structure interaction

Cylinder response

Cylinder is modelled as a damped harmonic
oscillator

mi,(t) + bx,(t) + kx, = F(1),
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Fluid—structure interaction

Cylinder response

Cylinder is modelled as a damped harmonic
oscillator

mi,(t) + bx,(t) + kx, = F(1),

where the force F'(t) is calculated from the
penalization

1

F(t):;/X(X,t)(u—FU—UO)dX.

CIRM, April 15 2004 — p.27/4¢



Fluid—structure interaction

Time scheme

» Second order backwards difference
- Semi-implicit discretization of convection term
» Split-step to enforce divergence free velocity
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Fluid—structure interaction

Time scheme

» Second order backwards difference
- Semi-implicit discretization of convection term

» Split-step to enforce divergence free velocity
Poisson equation solved using adaptive
wavelet multilevel method
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Elliptic Solver:

V-cycle:

r/ =f/ — Lu/
for alllevels j=J : -1 : jqnin+1

do v, steps of approximate solver for Lv’ = r’

r/—t =]/t (rj — ij)

enddo
end
Solve for j = jmin level: Lv/ =1J
for all levels j = jin +1 ¢ +1 : J

vl =vI +wgl! vi~1

do 1, steps of approximate solver for Lv/ = r/ enddo
end
u/ =u’ + W1V
do vs5 steps of exact solver for Lu’ = f/ enddo

J
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2D Fluid-structure interaction
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Moving cylinder at Re = 100.
* Full domain 3 584 x 1 792.

- Zoom.
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2D Fluid-structure interaction
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2D Fluid-structure interaction

10 10 10 10
dx

Number of grid points as a function of grid size for fixed cylinder at

Re = 100. The grid size Ax = Lx/(14 x 2~1) where j is the scale.

Note that most grid points are near the Taylor scale Re~1/2 = 0.1.




2D Fluid-structure interaction
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Compression

150
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t

Compression for fixed cylinder at Re = 100 as a function of time. The

average compression ratio is about 270.
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2D Fluid-structure interaction
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Lift and drag for a fixed cylinder at Re = 100. Average drag during the

shedding phase is C'p = 1.35, Strouhal number is St = 0.168.




2D Fluid-structure interaction

o Vortex method
1.8 - - - Asymptotic
—— Adaptive wavelet

1.6

t

Drag cylinder at Re = 3000 compared to Bar-Lev & Yang (1975), and

the vortex method of Koumoutsakos & Leonard (1995).
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2D Fluid-structure interaction
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Periodic cylinder array at Re = 10%, t = 3.5. (a) Vorticity. (b) Grid.
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2D Fluid-structure interaction

(a)

10° 10° 10* 10
Re

Re

Compression

Complexity

Scaling for cylinder array.
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3D Fluid-structure interaction

Solution

120

Flow around a sphere at Re=550, max grid 256°

Vorticity isosurface (30% ||w||~) and grid at t = 16.
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3D Fluid-structure interaction

Flow around a sphere at Re=550, max grid 256°

Vorticity isosurface (30% ||w||~) and grid at t = 16.
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3D Fluid-structure interaction

W, entire grid grid points > ¢
Z-slices through sphere at ¢t = 16.
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3D Fluid-structure interaction
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Wavelet compression for sphere array at Re = 550.

CIRM, April 15 2004 — p.40/4



3D Fluid-structure interaction

0.4r
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Drag for sphere array at Re = 550.
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Conclusions

1. Adaptive wavelet collocation method
» Developed general purpose solver

» Used for elliptic and time evolution
problems

» Verified accuracy and grid compression on
1D test problems
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Conclusions (cont.)

3. 2D fluid—structure interaction
 Accurate and efficient results
+ Grid compression of 270 x
» Works well for moving cylinder
« Complexity scales like Re
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Conclusions (cont.)

3. 2D fluid—structure interaction
» Accurate and efficient results
+ Grid compression of 270 x
» Works well for moving cylinder
- Complexity scales like Re

4. 3D fluid—structure interaction
- Number of grid points scales like Re'/2S
- Drag accurate
» Compression of 40 to 170 x
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1. Parallelize wavelet transform

2. Implement efficient data structure

3. Extend to compressible flows (underway)

4. Measure 3D scaling of number of grid points
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o=

Parallelize wavelet transform
Implement efficient data structure
Extend to compressible flows (underway)

Measure 3D scaling of number of grid points
Does it retain A < Re'/? behaviour?

. Turbulence modelling
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Parallelize wavelet transform
Implement efficient data structure
Extend to compressible flows (underway)

Measure 3D scaling of number of grid points
Does it retain A < Re'/? behaviour?

5. Turbulence modelling
Dan Goldstein — next talk

o=
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