

Adaptive wavelet simulation of fluid–structure interaction in 2D and 3D

Nicholas Kevlahan

kevlahan@mcmaster.ca

Department of Mathematics & Statistics

Inspiring Innovation and Discovery

Collaborators

- O.V. Vasilyev (University of Colorado at Boulder)
- D. Goldstein (University of Colorado at Boulder)
- A. Jay (École MatMéca, Bordeaux)

Outline

1. Motivation for adaptive wavelets

Outline

1. Motivation for adaptive wavelets
2. Adaptive wavelet collocation method
 - Construction of second generation wavelets
 - Adaptive wavelet collocation method
 - One-dimensional examples: Burgers equation and moving shock

Outline (cont.)

3. Fluid–structure interaction

- Adaptive wavelet collocation
- Brinkman penalization
- Elliptic solver for pressure

Outline (cont.)

3. Fluid–structure interaction

- Adaptive wavelet collocation
- Brinkman penalization
- Elliptic solver for pressure

4. Results

- Flow past cylinders (2D)
- Flow past a sphere (3D)

Outline (cont.)

3. Fluid–structure interaction

- Adaptive wavelet collocation
- Brinkman penalization
- Elliptic solver for pressure

4. Results

- Flow past cylinders (2D)
- Flow past a sphere (3D)

5. Conclusions

Motivation: vortices

Forced isotropic turbulence, $Re_\lambda = 72$, maximum resolution
= 128^3 , iso-surface of vorticity at 30% $\|\vec{\omega}\|_\infty$.

Motivation: complex geometry

Moving cylinder at $Re = 100$, effective grid = $3\,584 \times 1\,792$.

Why wavelets?

1. High rate of data compression (e.g. jpeg2000 image compression)

Why wavelets?

1. High rate of data compression (e.g. jpeg2000 image compression)
2. Fast $O(\mathcal{N})$ transform

Why wavelets?

1. High rate of data compression (e.g. jpeg2000 image compression)
2. Fast $O(\mathcal{N})$ transform
3. Fast signal de-noising (optimal for additive Gaussian noise)

Why wavelets?

1. High rate of data compression (e.g. jpeg2000 image compression)
2. Fast $O(\mathcal{N})$ transform
3. Fast signal de-noising (optimal for additive Gaussian noise)
4. Easy to control wavelet properties (e.g. smoothness, boundary conditions)

What are Wavelets?

Basic property:

A set of basis functions that are localized in physical and wavenumber spaces.

What are Wavelets?

Definition:

A *second-generation multi-resolution analysis* \mathbf{M} of a function space \mathbf{L} consists of a sequence of closed subspaces $\mathbf{M} = \{\mathcal{V}^j \subset \mathbf{L} \mid j \in \mathcal{J}\}$ such that

1. $\mathcal{V}^j \subset \mathcal{V}^{j+1}$,
2. $\bigcup_{j \in \mathcal{J}} \mathcal{V}^j$ is dense in \mathbf{L} , and
3. for each $j \in \mathcal{J}$, \mathcal{V}^j has a Reisz basis given by scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

Construction of wavelet families

Which wavelet family to choose?

- Collocation or Galerkin method?
- Cost of calculating nonlinear terms?
- General boundary conditions?
- Cost of dynamic grid adaptation?
- Cost of calculating spatial operators on an adaptive grid?
- Ease of generalizing to complex geometries?

Second Generation Wavelet*

- Collocation or Galerkin method? *Collocation*
- Cost of calculating nonlinear terms? $O(\mathcal{N})$, *easy*
- General boundary conditions? *Straightforward*
- Cost of dynamic grid adaptation? $O(\mathcal{N})$
- Cost of calculating spatial operators on an adaptive grid? $O(\mathcal{N})$
- Ease of generalizing to complex geometries? *Feasible*

* (Sweldens, 1996)

Second Generation Wavelets

Main properties

- Constructed in spatial domain
- Can be custom designed for complex domains and irregular sampling intervals
- No auxiliary memory is required and the original signal can be replaced with its wavelet transform
- Allows to perform wavelet transform (both forward and inverse) on an adaptive grid

Wavelet Construction

Nested wavelet grids

$$\mathcal{G}^j = \{x_k^j \in \Omega : x_k^j = x_{2k}^{j+1}, k \in \mathcal{K}^j\}, \quad j \in \mathcal{J}$$

Uniform Grid

Nonuniform Grid

Second Generation Wavelets

Wavelet

Fourier Transform

Wavelet Compression

$$u(\mathbf{x}) = \sum_{j=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{K}^j} d_{\mathbf{k}}^j \psi_{\mathbf{k}}^j(\mathbf{x})$$

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$

Wavelet Compression

$$u(\mathbf{x}) = \sum_{j=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{K}^j} d_{\mathbf{k}}^j \psi_{\mathbf{k}}^j(\mathbf{x})$$

level

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$

Wavelet Compression

$$u(\mathbf{x}) = \sum_{j=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{K}^j} d_{\mathbf{k}}^j \psi_{\mathbf{k}}^j(\mathbf{x})$$

level → $u(\mathbf{x})$ → location

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$

Wavelet Compression

$$u(\mathbf{x}) = \sum_{j=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{K}^j} d_{\mathbf{k}}^j \psi_{\mathbf{k}}^j(\mathbf{x})$$

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$

Wavelet Compression

$$u_{\geq}(\mathbf{x}) = \sum_{j=0}^{+\infty} \sum_{\mathbf{k} \in \mathcal{K}^j, |d_{\mathbf{k}}^j| \geq \epsilon} d_{\mathbf{k}}^j \psi_{\mathbf{k}}^j(\mathbf{x})$$

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$ $\epsilon = 10^{-3}$

Wavelet Compression

$$|u(\mathbf{x}) - u_{\geq}(\mathbf{x})| \leq C_1 \epsilon$$

$$\mathcal{N}^{1/n} \leq C_2 \epsilon^{-1/p}$$

$$|u(\mathbf{x}) - u_{\geq}(\mathbf{x})| \leq C_3 \mathcal{N}^{-p/n}$$

Function $u(x)$

Wavelet locations $x_{\mathbf{k}}^j$ $\epsilon = 10^{-3}$

Solving PDEs

$$F\left(\frac{\partial u}{\partial t}, u, \nabla u, q, \mathbf{x}, t\right) = 0$$

$$\Phi(u, \nabla u, q, \mathbf{x}, t) = 0$$
$$u(\mathbf{x}_{\mathbf{k}}^j) \implies d_{\mathbf{k}}^j \implies \frac{\partial u}{\partial x_i}(\mathbf{x}_{\mathbf{k}}^j)$$

Solving PDEs

$$\begin{aligned} F \left(\frac{\partial \mathbf{u}}{\partial t}, \mathbf{u}, \nabla \mathbf{u}, \mathbf{q}, \mathbf{x}, t \right) = 0 \\ \Phi (\mathbf{u}, \nabla \mathbf{u}, \mathbf{q}, \mathbf{x}, t) = 0 \end{aligned} \quad \underbrace{\qquad\qquad\qquad}_{\mathcal{O}(\mathcal{N})} \quad \begin{aligned} u(\mathbf{x}_{\mathbf{k}}^j) &\implies d_{\mathbf{k}}^j \implies \frac{\partial u}{\partial x_i}(\mathbf{x}_{\mathbf{k}}^j) \end{aligned}$$

Solving PDEs

$$\begin{aligned} F\left(\frac{\partial u}{\partial t}, u, \nabla u, q, \mathbf{x}, t\right) = 0 \\ \Phi(u, \nabla u, q, \mathbf{x}, t) = 0 \end{aligned} \quad \underbrace{\qquad\qquad\qquad}_{O(\mathcal{N})} \quad \begin{aligned} u(\mathbf{x}_k^j) &\implies d_k^j \implies \frac{\partial u}{\partial x_i}(\mathbf{x}_k^j) \end{aligned}$$

Solving PDEs

$$\begin{aligned} F\left(\frac{\partial u}{\partial t}, u, \nabla u, q, \mathbf{x}, t\right) = 0 \\ \Phi(u, \nabla u, q, \mathbf{x}, t) = 0 \end{aligned} \quad \underbrace{\qquad\qquad\qquad}_{O(\mathcal{N})} \quad \begin{aligned} u(\mathbf{x}_k^j) &\implies d_k^j &\implies \frac{\partial u}{\partial x_i}(\mathbf{x}_k^j) \end{aligned}$$

Adjacent zone:

Solving PDEs

$$\begin{aligned} F \left(\frac{\partial u}{\partial t}, u, \nabla u, q, \mathbf{x}, t \right) = 0 \\ \Phi(u, \nabla u, q, \mathbf{x}, t) = 0 \end{aligned} \quad \underbrace{\qquad\qquad\qquad}_{O(\mathcal{N})} \quad \begin{aligned} u(\mathbf{x}_k^j) &\implies d_k^j &\implies \frac{\partial u}{\partial x_i}(\mathbf{x}_k^j) \end{aligned}$$

Adjacent zone:

Numerical Algorithm

Evolution problems

1. Perform the wavelet transform of $\mathbf{u}_k(t)$ on \mathcal{G}_{\geq}^t
2. Update $\mathcal{G}_{\geq}^{t+\Delta t}$
3. If $\mathcal{G}_{\geq}^{t+\Delta t} = \mathcal{G}_{\geq}^t$, go to step 5
4. Interpolate $\mathbf{u}_k(t)$ to $\mathcal{G}_{\geq}^{t+\Delta t}$
5. Integrate the system of equations to obtain $\mathbf{u}_k(t + \Delta t)$ and go back to step 1

\mathcal{G}_{\geq}^t - computational grid at time t

Test Problem: Burgers Equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \quad x \in (-1, 1), \quad t > 0$$

$$u(x, 0) = -\sin(\pi x), \quad u(\pm 1, t) = 0$$

Analytical Solution:

$$u(x, t) = -\frac{\int_{-\infty}^{+\infty} \sin(\pi(x - \eta)) \exp\left(\frac{-\cos(\pi(x - \eta))}{2\pi\nu}\right) \exp\left(-\frac{\eta^2}{4\nu t}\right) d\eta}{\int_{-\infty}^{+\infty} \exp\left(-\frac{\cos(\pi(x - \eta))}{2\pi\nu}\right) \exp\left(\frac{-\eta^2}{4\nu t}\right) d\eta}$$

Parameters: $\nu = 10^{-2}/\pi$, $\epsilon = 10^{-4}$

Test Problem: Burgers Equation

Solution

Grid

$$\epsilon = 10^{-5}, N = \tilde{N} = 3$$

Test Problem: Burgers Equation

Fig: The pointwise L_∞ -error of the solution (solid line) at time $t = 2/\pi$ for different choices of ϵ , N and \tilde{N} : $N = \tilde{N} = 2$ (\circ); $N = 2$, $\tilde{N} = 0$ ($+$); $N = \tilde{N} = 3$ (\bullet); $N = \tilde{N} = 4$ (\square). The dashed line shows the value of ϵ as a function of N .

Test Problem: Moving Shock

$$\frac{\partial u}{\partial t} + (v + u) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \quad x \in (-\infty, +\infty), \quad t > 0$$

$$u(x, 0) = -\tanh\left(\frac{x - x_0}{2\nu}\right), \quad u(\pm\infty, t) = \mp 1$$

Analytical Solution:

$$u_{1D}(x, t) = -\tanh\left(\frac{x - x_0 - vt}{2\nu}\right)$$

Parameters: $\nu = 10^{-2}$, $x_0 = -1/2$, $v = 1$, $\epsilon = 10^{-4}$

Test Problem: Moving Shock

Solution

$$\epsilon = 10^{-5}, N = \tilde{N} = 3$$

Grid

Fluid–structure interaction

- Moderate to high Reynolds number flow around solid obstacles.

Fluid–structure interaction

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, or may move or deform (e.g. in response to fluid forces).

Fluid–structure interaction

- Moderate to high Reynolds number flow around solid obstacles.
- Obstacle may be fixed, or may move or deform (e.g. in response to fluid forces).
- Applications: wind engineering of tall buildings, heat exchangers, underwater pipes, aeronautics.

Fluid–structure interaction

Goal

*To develop a general code for calculating all kinds
of fluid–structure interaction*

Fluid–structure interaction

Combine two methods:

Fluid–structure interaction

Combine two methods:

1. *Adaptive wavelet collocation* for grid adaptation and derivatives.

Fluid–structure interaction

Combine two methods:

1. *Adaptive wavelet collocation* for grid adaptation and derivatives.
2. *Brinkman penalization* to impose no-slip boundary conditions at the surface of an obstacle of arbitrary shape.

Fluid–structure interaction

Brinkman penalization of Navier–Stokes equations

$$\begin{aligned}\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{U}) \cdot \nabla \mathbf{u} + \nabla P &= \nu \Delta \mathbf{u} \\ -\frac{1}{\eta} \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_o) \\ \nabla \cdot \mathbf{u} &= 0\end{aligned}$$

Fluid–structure interaction

where the solid is defined by

$$\chi(\mathbf{x}, t) = \begin{cases} 1 & \text{if } \mathbf{x} \in \text{solid}, \\ 0 & \text{otherwise.} \end{cases}$$

- The upper bound on the global error of this penalization was shown to be (Angot et al. 1999) $O(\eta^{1/4})$.
- We observe an error of $O(\eta)$.

Fluid–structure interaction

Cylinder response

Cylinder is modelled as a damped harmonic oscillator

$$m\ddot{\mathbf{x}}_o(t) + b\dot{\mathbf{x}}_o(t) + k\mathbf{x}_o = \mathbf{F}(t),$$

Fluid–structure interaction

Cylinder response

Cylinder is modelled as a damped harmonic oscillator

$$m\ddot{\mathbf{x}}_o(t) + b\dot{\mathbf{x}}_o(t) + k\mathbf{x}_o = \mathbf{F}(t),$$

where the force $\mathbf{F}(t)$ is calculated from the penalization

$$\mathbf{F}(t) = \frac{1}{\eta} \int \chi(\mathbf{x}, t) (\mathbf{u} + \mathbf{U} - \mathbf{U}_o) \, d\mathbf{x}.$$

Fluid–structure interaction

Time scheme

- Second order backwards difference
- Semi-implicit discretization of convection term
- Split-step to enforce divergence free velocity

Fluid–structure interaction

Time scheme

- Second order backwards difference
- Semi-implicit discretization of convection term
- Split-step to enforce divergence free velocity
Poisson equation solved using adaptive
wavelet multilevel method

Elliptic Solver: $\mathbf{L}\mathbf{u} = \mathbf{f}$

V-cycle:

$$\mathbf{r}^J = \mathbf{f}^J - \mathbf{L}\mathbf{u}^J$$

for all levels $j = J : -1 : j_{\min} + 1$

do ν_1 steps of **approximate** solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$

$$\mathbf{r}^{j-1} = \mathcal{I}_w^{j-1} (\mathbf{r}^j - \mathbf{L}\mathbf{v}^j)$$

enddo

end

Solve for $j = j_{\min}$ level: $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$

for all levels $j = j_{\min} + 1 : +1 : J$

$$\mathbf{v}^j = \mathbf{v}^j + \omega_0 \mathcal{I}_w^j \mathbf{v}^{j-1}$$

do ν_2 steps of **approximate** solver for $\mathbf{L}\mathbf{v}^j = \mathbf{r}^j$ **enddo**

end

$$\mathbf{u}^J = \mathbf{u}^J + \omega_1 \mathbf{v}^J$$

do ν_3 steps of **exact** solver for $\mathbf{L}\mathbf{u}^J = \mathbf{f}^J$ **enddo**

2D Fluid-structure interaction

Moving cylinder at $Re = 100$.

- Full domain $3\,584 \times 1\,792$.
- Zoom.

2D Fluid-structure interaction

Grid at scales $j = 4$ to $j = 9$.

2D Fluid-structure interaction

Number of grid points as a function of grid size for fixed cylinder at $Re = 100$. The grid size $\Delta x = Lx/(14 \times 2^{j-1})$ where j is the scale.

Note that most grid points are near the Taylor scale $Re^{-1/2} = 0.1$.

2D Fluid–structure interaction

Compression for fixed cylinder at $Re = 100$ as a function of time. The average compression ratio is about 270.

2D Fluid-structure interaction

Lift and drag for a fixed cylinder at $Re = 100$. Average drag during the shedding phase is $C_D = 1.35$, Strouhal number is $St = 0.168$.

2D Fluid-structure interaction

Drag cylinder at $Re = 3000$ compared to Bar-Lev & Yang (1975), and the vortex method of Koumoutsakos & Leonard (1995).

2D Fluid–structure interaction

Periodic cylinder array at $Re = 10^4$, $t = 3.5$. (a) Vorticity. (b) Grid.

2D Fluid-structure interaction

Scaling for cylinder array.

3D Fluid-structure interaction

Flow around a sphere at $Re=550$, max grid 256^3

Vorticity isosurface ($30\% \|\omega\|_\infty$) and grid at $t = 16$.

3D Fluid-structure interaction

Flow around a sphere at $Re=550$, max grid 256^3

Vorticity isosurface ($30\% \|\omega\|_\infty$) and grid at $t = 16$.

3D Fluid-structure interaction

ω_z

entire grid

grid points $> \epsilon$

Z-slices through sphere at $t = 16$.

3D Fluid–structure interaction

Wavelet compression for sphere array at $Re = 550$.

3D Fluid-structure interaction

Drag for sphere array at $Re = 550$.

Conclusions

1. Adaptive wavelet collocation method
 - Developed general purpose solver
 - Used for elliptic and time evolution problems
 - Verified accuracy and grid compression on 1D test problems

Conclusions (cont.)

3. 2D fluid–structure interaction

- Accurate and efficient results
- Grid compression of $270\times$
- Works well for moving cylinder
- Complexity scales like Re

Conclusions (cont.)

3. 2D fluid–structure interaction

- Accurate and efficient results
- Grid compression of $270\times$
- Works well for moving cylinder
- Complexity scales like Re

4. 3D fluid–structure interaction

- Number of grid points scales like $Re^{1/2}S$
- Drag accurate
- Compression of 40 to $170\times$

Future work

1. Parallelize wavelet transform
2. Implement efficient data structure
3. Extend to compressible flows (underway)
4. Measure 3D scaling of number of grid points

Future work

1. Parallelize wavelet transform
2. Implement efficient data structure
3. Extend to compressible flows (underway)
4. Measure 3D scaling of number of grid points
Does it retain $\mathcal{N} \propto Re^{1/2}$ behaviour?
5. Turbulence modelling

Future work

1. Parallelize wavelet transform
2. Implement efficient data structure
3. Extend to compressible flows (underway)
4. Measure 3D scaling of number of grid points
Does it retain $\mathcal{N} \propto Re^{1/2}$ behaviour?
5. Turbulence modelling
Dan Goldstein — next talk