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Motivation: vortices

Forced isotropic turbulence, Reλ = 72, maximum resolution

= 1283, iso-surface of vorticity at 30% ||~ω||∞.
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Motivation: complex geometry

Moving cylinder at Re = 100, effective grid = 3 584× 1 792.
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Why wavelets?

1. High rate of data compression (e.g. jpeg2
2000 image compression)

2. Fast O(N ) transform

3. Fast signal de-noising (optimal for additive
Gaussian noise)

4. Easy to control wavelet properties (e.g.
smoothness, boundary conditions)
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What are Wavelets?

Basic property:

A set of basis functions that are localized in phys-
ical and wavenumber spaces.
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What are Wavelets?

Definition:

A second-generation multi-resolution analysis M of a
function space L consists of a sequence of closed
subspaces M = {V j ⊂ L | j ∈ J } such that

1. Vj ⊂ Vj+1,

2.
⋃
j∈J Vj is dense in L, and

3. for each j ∈ J , V j has a Reisz basis given by scaling
functions {φjk | k ∈ Kj}.
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Construction of wavelet families
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Which wavelet family to choose?

• Collocation or Galerkin method?

Collocation

• Cost of calculating nonlinear terms?

O(N ), easy

• General boundary conditions?

Straightforward

• Cost of dynamic grid adaptation?

O(N )

• Cost of calculating spatial operators on an adaptive
grid?

O(N )

• Ease of generalizing to complex geometries?

Feasible
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Second Generation Wavelet∗

• Collocation or Galerkin method? Collocation

• Cost of calculating nonlinear terms? O(N ), easy

• General boundary conditions? Straightforward

• Cost of dynamic grid adaptation? O(N )

• Cost of calculating spatial operators on an adaptive
grid? O(N )

• Ease of generalizing to complex geometries? Feasible

∗ (Sweldens, 1996)
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Second Generation Wavelets

Main properties

• Constructed in spatial domain

• Can be custom designed for complex domains and
irregular sampling intervals

• No auxiliary memory is required and the original signal
can be replaced with its wavelet transform

• Allows to perform wavelet transform (both forward and
inverse) on an adaptive grid
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Wavelet Construction

Nested wavelet grids

Gj =
{
xjk ∈ Ω : xjk = xj+1

2k , k ∈ Kj
}
, j ∈ J
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Second Generation Wavelets
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression
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Wavelet Compression

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

   x

   
u(

x)

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

   x

   
j

Function u(x) Wavelet locations xjk ε = 10−3

u≥(x) =
+∞∑

j=0

∑

k ∈ Kj , |djk| ≥ ε

djkψ
j
k(x)

CIRM, April 15 2004 – p.14/44



Wavelet Compression
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Solving PDEs

F

(
∂u

∂t
,u,∇u, q,x, t

)
= 0

Φ (u,∇u, q,x, t) = 0
u(xjk) =⇒ djk =⇒ ∂u

∂xi
(xjk)
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Numerical Algorithm

Evolution problems

1. Perform the wavelet transform of uk(t) on Gt≥
2. Update Gt+∆t

≥

3. If Gt+∆t
≥ = Gt≥, go to step 5

4. Interpolate uk(t) to Gt+∆t
≥

5. Integrate the system of equations to obtain uk(t+ ∆t)

and go back to step 1

Gt≥ - computational grid at time t
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Test Problem: Burgers Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
x ∈ (−1, 1) , t > 0

u (x, 0) = − sin (πx) , u (±1, t) = 0

Analytical Solution:

u (x, t) = −
∫ +∞
−∞ sin (π (x− η)) exp

(
− cos(π(x−η))

2πν

)
exp

(
− η2

4νt

)
dη

∫ +∞
−∞ exp

(
− cos(π(x−η))

2πν

)
exp

(
−η2

4νt

)
dη

Parameters: ν = 10−2/π, ε = 10−4

CIRM, April 15 2004 – p.17/44



Test Problem: Burgers Equation
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Test Problem: Burgers Equation
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Test Problem: Moving Shock

∂u

∂t
+ (v + u)

∂u

∂x
= ν

∂2u

∂x2
x ∈ (−∞,+∞) , t > 0

u (x, 0) = − tanh

(
x− x0

2ν

)
, u (±∞, t) = ∓1

Analytical Solution:

u1D (x, t) = − tanh

(
x− x0 − vt

2ν

)

Parameters: ν = 10−2, x0 = −1/2, v = 1, ε = 10−4
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Test Problem: Moving Shock

Solution Grid
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Fluid–structure interaction

• Moderate to high Reynolds number flow
around solid obstacles.

• Obstacle may be fixed, or may move or
deform (e.g. in response to fluid forces).

• Applications: wind engineering of tall
buildings, heat exchangers, underwater pipes,
aeronautics.
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Fluid–structure interaction

Goal

To develop a general code for calculating all kinds
of fluid–structure interaction
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Fluid–structure interaction

Combine two methods:

1. Adaptive wavelet collocation for grid
adaptation and derivatives.

2. Brinkman penalization to impose no-slip
boundary conditions at the surface of an
obstacle of arbitrary shape.
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Fluid–structure interaction

Brinkman penalization of Navier–Stokes

equations

∂u

∂t
+ (u+U ) · ∇u + ∇P = ν∆u

−1

η
χ(x, t)(u+U −U o)

∇ · u = 0
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Fluid–structure interaction

where the solid is defined by

χ(x, t) =

{
1 if x ∈ solid,
0 otherwise.

• The upper bound on the global error of this
penalization was shown to be (Angot et al.
1999) O(η1/4).

• We observe an error of O(η).
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Fluid–structure interaction

Cylinder response

Cylinder is modelled as a damped harmonic
oscillator

mẍo(t) + bẋo(t) + kxo = F (t),

where the force F (t) is calculated from the
penalization

F (t) =
1

η

∫
χ(x, t)(u+U −U o) dx.
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Fluid–structure interaction

Time scheme

• Second order backwards difference
• Semi-implicit discretization of convection term
• Split-step to enforce divergence free velocity

Poisson equation solved using adaptive
wavelet multilevel method
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Elliptic Solver: Lu = f

V-cycle:

rJ = fJ − LuJ

for all levels j = J : −1 : jmin + 1

do ν1 steps of approximate solver for Lvj = rj

rj−1 = Ij−1
w

(
rj − Lvj

)

enddo

end

Solve for j = jmin level: Lvj = rj

for all levels j = jmin + 1 : +1 : J

vj = vj + ω0I
j
wvj−1

do ν2 steps of approximate solver for Lvj = rj enddo

end

uJ = uJ + ω1v
J

do ν3 steps of exact solver for LuJ = fJ enddo
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2D Fluid–structure interaction

Moving cylinder at Re = 100.
• Full domain 3 584× 1 792.
• Zoom.
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2D Fluid–structure interaction

Grid at scales j = 4 to j = 9.
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2D Fluid–structure interaction

Number of grid points as a function of grid size for fixed cylinder at

Re = 100. The grid size ∆x = Lx/(14 × 2j−1) where j is the scale.

Note that most grid points are near the Taylor scale Re−1/2 = 0.1.
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2D Fluid–structure interaction

Compression for fixed cylinder at Re = 100 as a function of time. The

average compression ratio is about 270.
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2D Fluid–structure interaction

Lift and drag for a fixed cylinder at Re = 100. Average drag during the

shedding phase is CD = 1.35, Strouhal number is St = 0.168.
CIRM, April 15 2004 – p.34/44



2D Fluid–structure interaction

Drag cylinder at Re = 3 000 compared to Bar-Lev & Yang (1975), and

the vortex method of Koumoutsakos & Leonard (1995).
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2D Fluid–structure interaction

Periodic cylinder array at Re = 104, t = 3.5. (a) Vorticity. (b) Grid.
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2D Fluid–structure interaction

Scaling for cylinder array.
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3D Fluid–structure interaction

Flow around a sphere at Re=550, max grid 2563

Vorticity isosurface (30% ||ω||∞) and grid at t = 16.
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3D Fluid–structure interaction
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3D Fluid–structure interaction

ωz entire grid grid points > ε

Z-slices through sphere at t = 16.
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3D Fluid–structure interaction
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3D Fluid–structure interaction
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Conclusions

1. Adaptive wavelet collocation method
• Developed general purpose solver
• Used for elliptic and time evolution

problems
• Verified accuracy and grid compression on

1D test problems
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Conclusions (cont.)

3. 2D fluid–structure interaction
• Accurate and efficient results
• Grid compression of 270×
• Works well for moving cylinder
• Complexity scales like Re

4. 3D fluid–structure interaction
• Number of grid points scales like Re1/2S
• Drag accurate
• Compression of 40 to 170×
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Future work

1. Parallelize wavelet transform

2. Implement efficient data structure

3. Extend to compressible flows (underway)

4. Measure 3D scaling of number of grid points

Does it retain N ∝ Re1/2 behaviour?

5. Turbulence modelling
Dan Goldstein — next talk
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