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Abstract

A two-compartment model of cancer cells population dynamics proposed by Gyllenberg and Webb

includes transition rates between proliferating and quiescent cells as non-specified functions of the total

population, N . We define the net inter-compartmental transition rate function: UðNÞ. We assume that the
total cell population follows the Gompertz growth model, as it is most often empirically found and derive

UðNÞ. The Gyllenberg–Webb transition functions are shown to be characteristically related through UðNÞ.
Effectively, this leads to a hybrid model for which we find the explicit analytical solutions for proliferating

and quiescent cell populations, and the relations among model parameters. Several classes of solutions are

examined. Our model predicts that the number of proliferating cells may increase along with the total

number of cells, but the proliferating fraction appears to be a continuously decreasing function. The net

transition rate of cells is shown to retain direction from the proliferating into the quiescent compartment.

The death rate parameter for quiescent cell population is shown to be a factor in determining the prolif-
eration level for a particular Gompertz growth curve.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The Gompertz model of growth has been widely and successfuly used as a simple, yet adequate
descriptor of tumor growth curves [1–11]. Possible theoretical bases of this model have been
addressed in the literature from various points of view, and it remains to be a topic of investi-
gation [9,12–24]. Most of the authors have attempted to derive the Gompertz model as an
* Corresponding authors. Tel.: +1-757 727 5352 (F. Kozusko); Tel.: +1-507 284 8584 (�ZZ. Bajzer).
E-mail addresses: frank.kozusko@hamptonu.edu (F. Kozusko), bajzer@mayo.edu (�ZZ. Bajzer).

0025-5564/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0025-5564(03)00094-4

mail to: frank.kozusko@hamptonu.edu


154 F. Kozusko, �ZZ. Bajzer / Mathematical Biosciences 185 (2003) 153–167
approximation (or a special case) of more general models, which are deemed to be based on
accepted biological foundations. A somewhat similar approach is pursued in this paper: the
Gompertz model is postulated (based on its empirical justification) and then the more general
model is specified to yield the Gompertz model.

We explore the possibility of embedding the Gompertz model in the well-known two-com-
partment models of cell population dynamics [16,25–27]. More specifically we will consider the
two-compartment model of tumor growth proposed by Gyllenberg and Webb [16]. This model is
rather general in a sense that it explicitely incorporates all biologically essential phenomena of cell
population dynamics, i.e. proliferation, quiescence and cell loss. Furthermore, the rates for
transition from quiescent to proliferative cell subpopulation and the transition from proliferative
to quiescent subpopulation are not described just by rate constants, but by two different (un-
specified) functions of the total cell population, which can possibly describe regulatory mecha-
nisms in tumor growth. Gyllenberg and Webb found very specific and simple functions for these
transition rates, which yield the Gompertz model or the logistic model. Expanding on this idea in
the present paper, we define a net inter-compartmental transition rate function whose exact form
emerges from the assumption that the total cell population is governed by the Gompertz model.
This leads to a general relationship between the individual transition rates. Under this assumption
we then solve Gyllenberg–Webb model analytically, and obtained expressions for the quiescent
and proliferating subpopulations as functions of time. Further, we determine the expression for
the growth fraction, and study its properties. We also explore various relations among parameters
of the Gompertz and the Gyllenberg–Webb model. It is shown that transition rates do not
necessarily have to be non-decreasing or non-increasing functions as Gyllenberg and Webb
assumed.

In the present approach, on one hand we can consider the Gompertz model for total cell
population as biologically interpretable within the context of two-compartment cell population
dynamics. On the other hand we have determined the unknown transition rates of Gyllenberg–
Webb model in such a way that it automatically describes the wealth of tumor growth curves
being fitted by the Gompertz model. This is by no means trivial, because some complex mod-
els with more free parameters than the Gompertz model could not fit some tumor growth
data adequately [9]. In fact many of those more complex models were not validated against data,
as it is tacitly assumed that they have enough free parameters to fit simple sigmoidal growth
curves.

We wish to point out that our approach is not restricted to tumor growth only. The Gompertz
model have been almost universally used to describe the growth of organisms, tissues, and
populations of single cell organisms. Additionally the biological assumptions and mathematical
generality of the Gyllenberg–Webb model are sufficient to warrant its application to growth in
general.

In Section 2 we briefly introduce the Gompertz model to set the notation and to point out some
characteristic features. Similarly, in Section 3 we introduce the Gyllenberg–Webb model, and then
in Section 4 we propose a way to combine these two models. The main analytical results of this
hybridization (relations among transition rates and model parameters, analytical expressions for
proliferating and quiescent subpopulations) are presented in Section 5. Section 6 is devoted to
discussion of obtained analytical results in the context of simulations. In two appendices we
present details of two proofs.
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2. The Gompertz function

The Gompertz function, which can be expressed as
Fig. 1

(carry
NðtÞ ¼ N0 exp
kþ
k�

ð1
�

� e�k�tÞ
�
; Nð0Þ ¼ N0; ð1Þ
generates a sigmoidal curve as exemplified in Fig. 1. For tumor growth modeling, NðtÞ describes
the number of cells in the tumor at time t (cellularity). N0 represents the initial cellularity. In
natural tumors N0 can well be just one cell. For computational convenience in the following, we
normalize NðtÞ with N0. For the normalized NðtÞ, which we will not denote differently, obviously it
follows Nð0Þ ¼ 1. Parameter kþ effectively represents growth rate constant, while k� describes the
retardation of growth. Both parameters have the dimension of inverse time. Normalized NðtÞ is
the solution of differential equation
_NN ¼ kþN � k�N lnN ; Nð0Þ ¼ 1; ð2Þ
which more explicitly shows the meanings of kþ and k�.
The Gompertz function has been analyzed in various ways (see e.g. [9]). Here we briefly explore

some less known relations between kþ and k�, and the characteristic features of the growth curve:
the carrying capacity and the inflection point. The carrying capacity Nð1Þ � N1 is naturally
assumed to be finite and non-zero. Then, from (1) it follows k� > 0, and further, assuming growth
(not degradation) it follows
N1 ¼ e
kþ
k� > 1; ð3Þ
and consequently kþ > 0 as expected.
The inflection point signifies the start of tumor growth deceleration when the maximal rate of

growth was achieved. Biological growth as, empirically known, always eventually slows down due
to external factors and possible internal growth control. To find the inflection point of the
. Typical Gompertz sigmoidal growth curve. N0 is the initial number of cells, N1 is the maximal number of cells

ing capacity), and Ni is the population size at the inflection point achieved at time ti.



156 F. Kozusko, �ZZ. Bajzer / Mathematical Biosciences 185 (2003) 153–167
Gompertz curve, Ni, it is required that €NN ¼ fkþ � k� lnN � k�g _NN ¼ 0 and therefore, because
_NN > 0 for finite t,
Fig. 2

subpo
lnNi ¼
kþ
k�

� 1; ti ¼
1

k�
ln
kþ
k�

; ð4Þ
where ti is the time when the infection point is achieved. If kþ < k�, obviously, no inflection point
exists, because that would imply decreasing N and Ni < 1. From Eqs. (4) and (3) it follows
Ni ¼ exp
kþ
k�

�
� 1

�
; N1 ¼ eNi: ð5Þ
Thus the tumor can maximally outgrow its size at inflection point by a factor of e. For times that
exceed ti (i.e. for times t such that €NNðtÞ < 0), it follows NðtÞ > Ni and (5) implies the inequality
N1 < eNðtÞ; ð6Þ

which provides an estimate of the upper limit of the carrying capacity if the growth appears to
decelerate after reaching the maximal rate. It has to be noted that Gompertz growth curve de-
scribes only the trend of growth and does not account for observed stochastic irregularities. Thus
the inflection point obtained is just an estimate of the turning point in growth when the observed
trend shows decreasing growth rate. Similarly the carrying capacity N1 just estimates the maximal
tumor size which in clinical setting may not be achieved.
3. Two-compartment population dynamics

A two-compartment model of cell population growth dates back at least 40 years [25]. More
recently Gyllenberg and Webb [16] (whose variable/parameter notation will be used here for
consistency) have used such a model to show that it yields Gompertz or logistic growth under
special parameter selection. The model (Fig. 2) consists of proliferating and quiescent cell com-
partments; it allows for transition between the compartments and cell death from either com-
partment. Transition rate functions are considered to be functions of the total number of cells.

The following set of ordinary differential equations describes the model:
_PP ¼ ½b� lp � roðNÞ�P þ riðNÞQ; ð7Þ

_QQ ¼ roðNÞP � ½riðNÞ þ lq�Q; ð8Þ

N ¼ P þ Q; P0 þ Q0 ¼ 1: ð9Þ
. Two-compartment model of cell population growth which includes proliferating (P ) and quiescent (Q) cell

pulations. For the meaning of transition rates see text.
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P and Q represent the normalized number of proliferating and non-proliferating (quiescent) cells,
and lp P 0 and lq P 0 represent the death rate parameters for the P and Q compartments, re-
spectively. b > 0 is the proliferation rate parameter. _NN > 0 for t < 1 and _NN1 ¼ 0 requires
b� lp > 0. The transition rate functions are: roðNÞP 0, describing transition from the prolifer-
ation subpopulation into the quiescent subpopulation, and riðNÞP 0 describes the transition into
the proliferation subpopulation from the quiescent subpopulation.
4. Combining the Gompertz and the Gyllenberg–Webb model

Our goal is to construct a two-compartment model that specifically predicts Gompertz growth
for N . This idea was briefly introduced in [9], but mistakes were found in the corresponding
derivations. Here the idea is extended, and related derivations are revised. We start by defining the
net transition rate function:
UðNÞ ¼ roðNÞP � riðNÞQ; ð10Þ

when UðNÞ > 0, the net transition rate is from the proliferating compartment into the quiescent
compartment. Using Eqs. (9) and (10), we reform Eqs. (7) and (8) into
_PP ¼ ½b� lp�P � UðNÞ; ð11Þ
_NN ¼ ½b� lp þ lq�P � lqN : ð12Þ
At this point we introduce our crucial assumption, that the growth function for N is Gompertzian
and therefore satisfies (2). It follows
_NN ¼ NdðNÞ; €NN ¼ ½dðNÞ � k�� _NN ; dðNÞ ¼ kþ � k� lnðNÞ ¼ d ¼ kþek�t: ð13Þ

Taking the time derivative of Eq. (12), using Eq. (11) for _PP , substituting for P from Eq. (12) and
using Eq. (13) for _NN and €NN yields
UðNÞ ¼ N
ðb� lp � lq � dðNÞ þ k�ÞdðNÞ þ lqðb� lpÞ

b� lp þ lq

" #
: ð14Þ
5. Analysis

Eq. (14) establishes the form of UðNÞ that causes the Gyllenberg–Webb model to predict
Gompertz tumor growth. In this section we show implications of this relation to the form of rate
functions riðNÞ and roðtÞ, and subsequently derive relations among parameters of the two models.
Furthermore, using prescription (14) we find analytical solution of The Gyllenberg–Webb model
(i.e. PðtÞ and QðtÞ) and analyze the behavior of this solution in an analytical manner. Finally, we
show that UðNÞP 0 implying that the Gompertz model of growth requires depletion of the
proliferating subpopulation.

The characteristic relationship between ro and ri can be derived by using Eqs. (12)–(14) and
Q ¼ N � P :
ðdþ lqÞro � ðb� lp � dÞri ¼ k�dþ ðdþ lqÞðb� lp � dÞ: ð15Þ
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If we express ro in terms of ri then the requirement
ro ¼
k�dþ ðb� lp � dÞðdþ lq þ riÞ

dþ lq
P 0 ð16Þ
implies that one can choose any riðNÞP 0 (not necessarily non-increasing) as long as
d6 kþ 6 b� lp: ð17Þ
Indeed, assuming kþ > b� lp one would end up in contradiction because by evaluating Eqs. (12)
and (13) at t ¼ 0, it follows from N ¼ 1 and P0 þ Q0 ¼ 1 that
kþ ¼ _NNð0Þ ¼ ðb� lpÞP0 � lqQ0: ð18Þ
From here assumption kþ > b� lp yields ðb� lp þ lqÞQ0 < 0 which contradicts requirements
lp P 0, lq P 0, b� lp P 0 (see Section 3).

Interestingly, if we express ri in terms of ro and require
ri ¼
�k�dþ ðdþ lqÞðdþ lp � bþ roÞ

b� lp � d
P 0; ð19Þ
then it follows that ro is not completely arbitrary, but for kþ Pb� lp should satisfy the inequality
ro P
k�dþ ðdþ lqÞðb� lp � dÞ

dþ lq
: ð20Þ
Stated prescriptions for ri and ro are certainly more general than the ones originally recommended
by Gyllenberg and Webb [16], who assumed that roðNÞ was non-decreasing and riðNÞ non-
increasing and only derived Gompertz growth for roðNÞ ¼ 1þ logðNÞ.

5.1. Expressions for kþ, k� and kþ
k�

Eq. (18) relates Gompertz growth rate kþ to rate parameters of Gyllenberg–Webb model. The
value of kþ is equal to the initial growth rate of NðtÞ which is set by the difference in the net
increase of the proliferating cells and the loss of quiescent cells without the consideration of inter-
compartment transition at t ¼ 0.

Similarly, evaluating €NNð0Þ from (13) yields
k� ¼ _NNð0Þ �
€NNð0Þ
_NNð0Þ

¼ _NNð0Þ � d _NN
dN

 !
t¼0

: ð21Þ
Thus, k� equals the initial growth rate minus the initial rate of change of the growth rate with
respect to the change in N , which includes the effects of the inter-compartment transitions. Eqs.
(21) and (8)–(12) produce a value for k� in terms of the parameters of the Gyllenberg–Webb
model:
k� ¼ ½ðb� lpÞP0 � lqQ0� �
ðb� lpÞ

2P0 þ l2
qQ0 þ ½b� lp þ lq�½ri1Q0 � ro1P0�
ðb� lpÞP0 � lqQ0

( )
; ð22Þ
where ri1 ¼ riðNð0ÞÞ ¼ rið1Þ, ro1 ¼ roðNð0ÞÞ ¼ roð1Þ. From the last two equations we get



F. Kozusko, �ZZ. Bajzer / Mathematical Biosciences 185 (2003) 153–167 159
kþ
k�

¼
½ðb� lpÞP0 � lqQ0�2

½ðb� lpÞP0 � lqQ0�2 � fðb� lpÞ
2P0 þ l2

qQ0 þ ½b� lp þ lq�½ri1Q0 � ro1P0�g

( )
: ð23Þ
As an example, the case: lq ¼ Q0 ¼ 0 and P0 ¼ 1, considered in [16] reduces the above to kþ ¼
b� lp, k� ¼ ro1 and kþ=k� ¼ ðb� lpÞ=ro1. While Gyllenberg and Webb chose specific forms for ro
and ri to get kþ ¼ k� ¼ 1 for b� lp ¼ 1, our analysis shows that any ro and ri satisfying (16),
where ro1 ¼ 1 will be sufficient for this solution.

5.2. Solutions for the proliferating and quiescent subpopulations

By using the characteristic relationship (15) we show (see Appendix A), that Eqs. (11) and (12)
are equivalent. Assuming (13) we can then solve Eq. (12) for P ,
P ¼
lq þ kþe�k�t

b� lp þ lq
N ¼ P0

lq þ kþe�k�t

lq þ kþ
N ; ð24Þ
where
NðtÞ ¼ exp
kþ
k�

½1
�

� e�k�t�
�
: ð25Þ
The solution for quiescent subpopulation is given by
Q ¼ N � P ¼
b� lp � kþe�k�t

b� lp þ lq
N ¼

lqQ0 þ kþ½1� e�k�tð1� Q0Þ�
lq þ kþ

N : ð26Þ
For t ! 1
P1 ¼
lqP0N1

lq þ kþ
; Q1 ¼

lqQ0 þ kþ
lq þ kþ

N1: ð27Þ
Clearly, the normalized final size of proliferating subpopulation, P1=P0, is smaller for faster
growing tumors (larger kþ) with the same death rate lq and the carrying capacity N1.

Eq. (24) reveals that the growth fraction, Pfrac ¼ P
N, a measurable quantity which characterizes

the growth, is a simple linear combination of a constant and of retardation exponential function:
Pfrac ¼
lq þ kþe�k�t

lq þ kþ
P0: ð28Þ
It is clear from Eq. (28) that Pfrac is a continuously decreasing function of time irrespectively of
whether riðNÞ and roðNÞ are monotone functions or not. This is at variance with the statement in
the paper of Gyllenberg and Webb which required riðNÞ to be non-increasing and roðNÞ non-
decreasing [16, p. 27].

In the following we will explore the behavior of P ðtÞ. Solving Eq. (12) for P ðtÞ and differenti-
ating,
_PPðtÞ ¼
€NN þ lq

_NN

b� lp þ lq
¼

_NNðd� k� þ lqÞ
b� lp þ lq

: ð29Þ
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Since for growth _NNðtÞ > 0 for all finite times, the sign of _PPðtÞ is determined by the term
d� k� � lq ¼ kþ expð�k�tÞ � k� þ lq. If lq > k� � kþ, then _PPð0Þ > 0 and the proliferating sub-
population will grow initially from time t ¼ 0. Tumor growth is implied when kþ > k� and the
inequality lq > k� � kþ is satisfied trivially. If lq P k�, then _PP ðtÞ > 0 for all finite times and P ðtÞ
will increase monotonically to P ð1Þ ¼ P1. However, if lq < k�, then P ðtÞ will reach a peak level
before decreasing to P1. By solving equation kþ expð�k�tÞ � k� þ lq ¼ 0 one finds that the
maximum is obtained at time
tmax ¼
1

k�
ln

kþ
k� � lq

: ð30Þ
Interestingly, the peak in P ðtÞ is obtained after the time ti when the inflection in NðtÞ occurs; from
(4) and (30) it follows
tmax ¼ ti þ
j lnð1� lq=k�Þj

k�
: ð31Þ
The peak in PðtÞ is given by (cf. Eq. (3))
Pmax ¼ P0
k�

lq þ kþ
exp

kþ þ lq � k�
k�

� �
¼ P0N

1þlq=kþ
1

ð1þ lq=kþÞe lnN1
: ð32Þ
The normalized peak, Pmax=P0, considered as a function of kþ > 0 is monotonically decreasing (as
seen by the analysis of the corresponding derivative), i.e. it becomes smaller for faster growing
tumors with the same lq and N1, in parallel to the behavior of P1=P0 noted earlier. Eq. (32) also
shows that because of lq < k�, the peak value is subject to the following upper bound:
Pmax

P0
<

k�
kþ

exp
kþ
k�

� �
¼ N1

lnN1
: ð33Þ
From (27) one can similarly obtain the upper bound for P1

P1
P0

<
N1

1þ lnN1
; ð34Þ
when lq P k� the same right-hand side of (34) becomes the lower bound
P1
P0

P
N1

1þ lnN1
: ð35Þ
Quiescent subpopulation does not exhibit maximum, but rather monotonically increases to-
wards its limiting value. Indeed, Eqs. (29), (9) and (17) imply
_QQ ¼
_NNðb� lp þ k� � dÞ

b� lp þ lq
> 0 ð36Þ
for all finite times.

5.3. Net transition rate

We defined the net transition rate as the difference between the rate at which the cells leave the
proliferating subpopulation (out-rate) and the rate at which the cells enter the proliferating
subpopulation (in-rate) (see Fig. 2):
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UðNÞ ¼ roP � riQ: ð37Þ

Using Eqs. (9), (12) and (13), we can derive
d ¼ ðb� lpÞ
P
N
� lq

Q
N

ð38Þ
and substitute this into Eq. (14) to find
UðNÞ ¼ k�
ðb� lpÞP � lqQ

b� lp þ lq

( )
þ ðb� lp þ lqÞ

PQ
N

� �
: ð39Þ
The right-hand side of Eq. (39) is greater or equal to zero, because ðb� lpÞP � lqQ ¼ _NN P 0 and
lq P 0, b� lp P 0. The net transition is such that it always depletes the proliferating subpopu-
lation, except possibly at t ¼ 1 if lq ¼ 0 since (see Eq. (14))
UðN1Þ ¼
lqðb� lpÞ
b� lp þ lq

" #
N1: ð40Þ
In Appendix B, we show that UðNÞ reaches it maximum value for N > Ni.
6. Simulations and discussion

To illustrate the analytical results obtained, here we show some simulations using the values for
kþ and k� determined by fitting tumor growth data to Gompertz function. We used data from
Table 4 in [8] which summarizes the values of these parameters for parathyroid tumors as well as
for multiple myeloma [3] and testicular tumors [28]. The top panels of Fig. 3 show growth curves
for three combinations of kþ and k� as indicated. The first two panels (parathyroid tumors)
correspond to the same carrying capacity e20:6 but different maximal growth rates (the rates at
inflection points _NNðtiÞ ¼ Niðkþ � k� logNiÞ ¼ k� expðkþ=k� � 1Þ): 4.36� 107 and 1.02� 108 in in-
verse years. The third (multiple myeloma) differs from the first two both in carrying capacity,
(e28:6) and in maximal growth rate (4.15� 1012 yr�1).

The middle panels of Fig. 3, corresponding to the top growth curves, illustrate proliferation
subpopulation profiles for various death rate parameters lq. As lq increases, so does the prolif-
erating subpopulation reflecting the requirement that the total cell population growth is main-
tained. The first set of profiles illustrates that for lq ¼ 0:2 > k� (in yr�1) there is no maximum as
we concluded in Section 5.2. It should be noted that varying lq, while kþ=k� is constant, must
result in changes of b� lq, ri1, ro1 according to (23). When comparing the first two set of profiles
for P ðtÞ (which correspond to the same carrying capacity) we observe that slower growing tumors
have larger proliferating subpopulation at later times in agreement with (27). Consequently,
cancer therapy which affects only proliferating cells may not suffice to eradicate these cells in
slower growing tumors, but could be sufficient to eradicate proliferating cells in faster growing
tumors, which was clinically observed.

The bottom panels of Fig. 3 illustrate monotonically decreasing growth fraction (normalized by
initial proliferation subpopulation) for the same set of lq. The first two cases (Fig. 3(c) and (f))
show that at any given time the growth fraction is larger for the larger death rate of quiescent cells



Fig. 3. Comparison of tumor growth curves (panels a, d, g), corresponding proliferating subpopulations (panels b, e, h)

and growth fractions (panels c, f, i) for various growth rate constants kþ, retardation rate constants k� and death rates

lq. All rates are given in inverse years. Panels (a) and (d) depict growth curves for parathyroid tumors, and panel (g)

corresponds to multiple myeloma. The rate constants are taken from Table 4 in [8] and the values for lq are chosen to

exemplify the influence on P ðtÞ and Pfrac.
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in agreement with the notion that increased cell death drives growth. Of course, the expression
(28) shows this analytically, since the derivative of Pfrac as a function of lq is non-negative. In the
third case (Fig. 3(i)) there seems to be no effect of changing lq at the given scale, which is the
consequence of relatively small values of lq compared to the values of kþ and k�.

Gyllenberg and Webb conservatively assumed that roðNÞ was non-decreasing and riðNÞ non-
increasing. The present model requires only that roðNÞP 0 and riðNÞP 0 obey Eq. (15), or
equivalently, that for any riðNÞP 0, the corresponding roðNÞ is given by (16) assuming necessary
condition b� lp P kþ. We will construct riðNÞ which increases during the early part of the
Gompertz growth reaching the maximum and then decreases. In the following we analyze the
effect of different values of lq, on transition rate function roðNÞ, on complete transition rates
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riðNÞQ, roðNÞP and on net transition rate function UðtÞ. In case lq ¼ 0 it follows that
ri1 ¼ riðN1Þ ¼ 0, i.e. the constructed ri must be zero at t ¼ 1. We use
Fig. 4

ticular

values

cell co

(f) sho

times
riðNÞ ¼ 0:25½1þ 2 lnN �dðNÞ: ð41Þ
. Dependence of transition rates on quiescent cell death rate. Panel (a) shows a Gompertzian growth of a tes-

tumor (kþ and k� from Table 4 of [8]). Panel (b) shows the corresponding proliferating subpopulation for two

of quiescent cell death rate. Panel (c) shows related transition rate functions between proliferating and quiescent

mpartments, while in panels (d) and (e) the corresponding complete transition rates are depicted (see text). Panel

ws that the net transition rate from P to Q is always positive and remains different from zero even for infinite

(see Eq. (40)).
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(Note: dðN1Þ ¼ 0.) For kþ and k� we have chosen values for testicular tumors provided in Table 4
of [8] and in addition we assumed b� lp ¼ 120 yr�1 being greater than kþ ¼ 112 yr�1 as required
by (17). We also assumed that initially the whole cell population is proliferating (P0 ¼ 1, Q0 ¼ 0).
The simulations are presented in Fig. 4. Again as lq increases, P increases and ro decreases in
value, reflecting the system�s need to maintain higher productivity to make up for the increasing
loss, while holding the total number of cells constant at the comparable time. The transition out-
rate of the proliferating compartment, roP , increases with increasing lq to make up for the losses
from the quiescent subpopulation. The transition in-rate, riQ, decreases only slightly reflecting the
decrease in Q for an increasing P , since ri is unchanged by change of lq. The net transition rate
(Fig. 4(f)) shows maximum as analytically predicted, even when the proliferating subpopulation
does not reach its maximum in final times (Fig. 4(b), lq ¼ 5).

The above illustrations exemplify some interesting kinetic features of cell proliferation, when
the Gompertz and Gyllenberg–Webb model are combined. While these features have to be further
investigated in the context of experimental and clinical data, the analytical results obtained
provide relatively simple mathematical basis for quantitative analysis of tumor growth. In par-
ticular, one can fit tumor growth data for total cell population and obtain parameters kþ and k�.
Subsequently one can fit the simple expression (24) for PðtÞ to data for proliferating subpopu-
lation. This would yield values for lq and b� lp. (Note that b and lp cannot be determined
separately by fitting, as already Eqs. (7) and (8) imply.) Once the values of these parameters are
established, one can use the model to simulate tumor growth in response to proposed therapy,
which could change either proliferation rate constant b or induce cell death, thus changing lq and/
or lp.

In the described procedure the model parameters are determined without need to first specify
rate functions roðtÞ and riðtÞ, and then, in the process of fitting, numerically solve the system of
differential Eqs. (7) and (8). This would be the standard approach in application of the original
Gyllenberg–Webb model to tumor growth data. By assuming that the Gompertz model is a good
deterministic descriptor of total tumor cell population growth (which has been reasonably well
verified), we have shown how to obtain information about proliferating and quiescent cell pop-
ulations without the problem of specifying transition rate functions.
7. Conclusion

The hybridization of Gompertz and Gyllenberg–Webb models presented is based on the as-
sumption that the latter should predict Gompertz growth when the net inter-compartmental
transition rate function satisfies relationship Eq. (14). This is a sufficiently general relation to
make the hybrid model robust in the allowable forms of the transition rate functions. Further-
more, this hybrid model provides expressions for Gompertz growth and retardation parameters,
kþ and k� in terms of the cell kinetic parameters defined by Gyllenberg–Webb model. The general
solutions for proliferating and quiescent subpopulations are given in an analytic form, and by
simulations we demonstrated the importance of the the quiescent cell death rate as one of de-
termining factors of the size of these subpopulations. Relationships among kþ, k� and lq deter-
mine whether the proliferating subpopulation grows past its initial level and it also determines the
final equilibrium value. The net inter-compartment transition rate is predicted to always be from
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proliferating compartment to the quiescent compartment. All of these characteristics can be of
interest in modeling response of tumors to therapeutic insult or stimulation of T lymphocytes.

In the final note, we wish to point out that the method implemented here for obtaining the size
of proliferating and quiescent subpopulation, based on postulated total cell population kinetics,
can be modified to incorporate other then the Gompertz model. For example one can assume that
the Bertalanffy–Richards (or modified Verhulst) model best describes growth curves, as suggested
in [29] where primary breast cancer data were analyzed. Then one can combine the Gyllenberg–
Webb model with the Bertalanffy–Richards model for the total cell population, and obtain similar
analytical results for proliferating and quiescent subpopulations.
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Appendix A

We show the equivalence of Eqs. (11) and (12) when the relationship (14) is assumed. To
simplify the notation, we introduce the following: m :¼ b� lp þ lq. Then Eqs. (11), (12) and (15)
become
_PP ¼ ðb� lpÞP � UðNÞ; ðA:1Þ

_NN ¼ mP � lqN ; ðA:2Þ

UðNÞ ¼ N
fk� � lq � dðNÞgdðNÞ

m

� �
þ N

ðb� lpÞðdðNÞ þ lqÞ
m

� �
: ðA:3Þ
Starting with Eq. (A.2) and using Eq. (13), we have
P ¼
_NN þ lqN

m
¼

ðdþ lqÞN
m

; _PP ¼
Nfdðdþ lq � k�Þg

m
: ðA:4Þ
We can now substitute dðdþ lq � k�Þ, appearing in the expression for _PP , from the right-hand side
of Eq. (A.3). Then by the use of Eq. (A.4) for P , we obtain
_PP ¼
ðb� lpÞðNlq þ NdÞ

m
� UðNÞ ¼ ðb� lpÞP � UðNÞ: ðA:5Þ
This is Eq. (A.1). Now starting with Eq. (A.1) and substituting for UðNÞ from Eq. (A.3) we
have
_PP ¼ ðb� lpÞP � N
fk� � lq � dðNÞgdðNÞ

m

� �
� N

ðb� lpÞðdðNÞ þ lqÞ
m

� �
: ðA:6Þ
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Defining X :¼ NðlqþdÞ
m with _XX ¼ Ndðlqþd�k�Þ

m and Y :¼ ðP � X Þ, Eq. (A.6) can be written _YY ¼
ðb� lpÞY . The solution to this equation is in the form
Y ¼ Y0 expfðb� lpÞtg: ðA:7Þ
But Y0 can be shown to be zero using P0 þ Q0 ¼ 1 and Eq. (18). Then P ¼ X and upon using (13),
one obtains (A.2).
Appendix B

We show that UðNÞ reaches a maximum value after the inflection point of N , i.e. for N > Ni.
Differentiating Eq. (14) with respect to time and using Eq. (13) we obtain
_UUðNÞ ¼
_NN
m

h
� ðd� k�Þ2 þ ðb� lp � lq þ k�Þðd� k�Þ þ lqðb� lpÞ þ k2�

i
: ðB:1Þ
Since _NN is always positive, _UUðNÞ gets its sign from the term in the brackets. The bracketed term is
a concave down quadratic in x ¼ d� k� with its vertex in the first quadrant. From Eq. (13) we get
that k� ¼ dðNiÞ. The �y� intercept of the quadratic occurs at the inflection point of N and since d is
a decreasing function of N , the x intercept ( _UUðNÞ ¼ 0) occurs after N has reached inflection.
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