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1. Preliminaries on Matrices

Let A be an n× n real matrix and I be the identity matrix of the same size in this section.

Definition 1.1. (a) A real number λ is called a real eigenvalue of A if it is a root of the equation

(1.2) det(A− xI) = 0.

(b) A nonzero column vector V is a real eigenvector of A if AV = λV holds for some real number
λ.

Remark 1.3. In general Eqn.(1.2) may have no real roots. But the fundamental theorem of algebra
guarantees that it has complex roots. These are called eigenvalues of A. We will see shortly that
when A is symmetric, i.e., At = A, then all eigenvalues are real.

Remark 1.4. Now AV = λV is equivalent to (A−λI)V = 0, i.e., V is a nonzero vector in the null
space of A−λI, so this matrix must have zero determinant. This in turn implies that λ is a root of
Eqn. (1.2). Reversing the arguments, a real root of Eqn. (1.2) shows that the real matrix A− λI
has determinant zero, and so there is a real vector V which is an eigenvector with eigenvalue λ.

Definition 1.5. (a) The trace of A is the sum of the diagonal entries of A.
(b) Two square matrices A and B are said to be conjugate if there is an invertible matrix P such

that B = P−1AP . (Some people like to use the term “similar” instead of “conjugate”.)

Remark 1.6. We can define conjugacy between A and B by B = QAQ−1 as well—-just set
P = Q−1. Two conjugate matrices have the same trace and determinant. This is because

tr(P−1AP ) = tr((P−1A)P ) = tr(P (P−1A)) = tr((PP−1)A) = trA

where we have used the important fact that tr(XY ) = tr(Y X) for any two square matrices X,Y . of
the same size. Similarly, since det(XY ) = detX detY (so in particular 1 = det I = detP det(P−1),
we have

det(P−1AP ) = detP detAdet(P−1) = detA.

Definition 1.7. A square matrix is diagonal if the only nonzero entries it has lie in the diagonal.
A square matrix A is called diagonalizable if it is conjugate to a diagonal matrix, i.e., if there is

an invertible matrix P such that P−1AP is diagonal.

Suppose that A is diagonalizable. More specifically, let P−1AP = D, where D is diagonal with
entries λ1, · · · , λn. If we rewrite the above relation as

AP = PD,

note that the RHS can be described as the matrix obtained from P by multiplying the kth column
by λk. So the above equation simply says that the kth column of P is an eigenvector of A with
eigenvalue λk.

Since P is invertible, the columns of P are linearly independent, so we have a basis of Rn

consisting of eigenvectors of A.
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Definition 1.8. A matrix P is orthogonal if P tP = PP t = I. Thus P is invertible by assumption
and P−1 = P t.

Remark 1.9. The usual dot product in Rn between two vectors U, V (thought of as column vectors)
is given by U · V = ⟨U, V ⟩ = U tV , where the RHS uses matrix multiplication between the 1 × n
matrix U t and the n× 1 matrix V .

For vectors W,Z in Cn (thought of again as column vectors but with complex components) their
scalar product is defined by

W · Z := W tZ̄

where Z̄ is the column vector obtained from Z by replacing each component by its complex conju-
gate.

The defining property of an orthogonal matrix P just says that the columns are an orthonormal
basis of Rn and that the rows are an orthonormal basis as well. Orthonormal means that the
vectors have length 1 and are mutually perpendicular.

Proposition 1.10. (i) If P is an orthogonal matrix then for any column vectors U, V ∈ Rn we
have

⟨PU,PV ⟩ = ⟨U, V ⟩.
(ii) If A is a symmetric matrix then for any column vectors U, V ∈ Rn we have

⟨AU, V ⟩ = ⟨U,AV ⟩.

Proof. For part (i), we have (using P tP = I)

⟨PU,PV ⟩ = (PU)t(PV ) = U tP tPV = U t(P tP )V = U tV = ⟨U, V ⟩.
For part (ii), using At = A we have

⟨AU, V ⟩ = (AU)tV = U tAtV = U tAV = ⟨U,AV ⟩.
�

Theorem 1.11. The eigenvalues of a real symmetric matrix are real.

Proof. We start with an eigenvalue λ which is possibly complex, guaranteed by the fundamental
theorem of algebra (see Remark 1.3). This means that there is a nonzero complex vector Z—-a
column vector with complex entries—such that AZ = λZ. We use the usual inner product in Cn

(see Remark 1.9) below, using the fact that A is real and symmetric.

λ(Z · Z) = (AZ) · Z = (AZ)tZ̄ = ZtAtZ̄ = Zt(AZ̄) = Zt(AZ) = Zt(λ̄Z̄) = λ̄ZtZ̄.

Since Z ̸= 0, Z · Z := ZtZ̄ ̸= 0, so upon cancelling, we get λ = λ̄. Hence λ is real. �

2. The Real Spectral Theorem

In this section we will use calculus to prove

Theorem 2.1. Every symmetric real matrix A has a real eigenvalue.

Consider the function

f(X) =
1

2
⟨AX,X⟩

where X is an arbitrary column vector of unit length.
We view f as a function with domain Rn but we restrict attention to those column vectors X

belonging to the unit sphere x21 + · · ·+ x2n = 1 inside Rn. f has the explicit formula

f(X) =
1

2

n∑
i=1

n∑
j=1

xiAijxj
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and so is clearly infinitely differentiable.

Important Fact: A continuous function on a closed and bounded subset of Rn always has a
minimum and a maximum point.

Apply this fact to f above where the closed and bounded subset is the unit sphere x21+· · ·+x2n = 1.
Let V be a minimum point and let the minimum value of f be f(V ) = m.
Choose any C1 curve X(t) lying in the unit sphere with the property that X(0) = V and X ′(0)

is an arbitrary tangent vector W to the unit sphere at V . Note that

⟨X(t), X(t)⟩ = 1.

Differentiating this equation and setting t = 0 we get

⟨W,V ⟩+ ⟨V,W ⟩ = 2⟨V,W ⟩ = 0.

Since V is a minimum point of the restriction of f to the unit sphere, we can differentiate

f(X(t)) =
1

2
⟨AX(t), X(t)⟩

with respect to t and set t = 0. We get (since A does not depend on t)

0 =
1

2
(⟨AW,V ⟩+ ⟨AV,W ⟩) .

Now use part (ii) of Proposition 1.10 to get

⟨AV,W ⟩ = 0.

Since W is an arbitrary vector tangent to the unit sphere at V and such vectors are perpendicular
to V , it follows from the last equation that AV is proportional to V . In other words, AV = λ1V
for some real λ1, i.e., V is an eigenvector of A.

But

m = f(V ) =
1

2
⟨AV, V ⟩ = λ1

2
⟨V, V ⟩

and since V is a unit vector, λ1 = 2m. In other words, twice the minimum value of f on the unit
sphere is an eigenvalue of A.

We have therefore proved the above theorem.

Remark 2.2. In algebra courses, the above theorem is proved using the fundamental theorem of
algebra. However, you may ask: how does one prove the fundamental theorem of algebra ?

It turns out that most proofs actually use the Important Fact above. So unless one avoids using
the Important Fact, a proof of Theorem 2.1 using the fundamental theorem of algebra is no better
than the calculus proof above. Furthermore, the calculus proof can be generalized to the context of
Hilbert spaces, which is important in quantum mechanics for describing atomic spectra. Essentially,
the quantized energy levels are just the eigenvalues of certain self-adjoint operators on the vector
space of wave functions.

A corollary of Theorem 2.1 is the real spectral theorem for symmetric matrices.

Corollary 2.3. For any real symmetric matrix A one can find an orthogonal matrix P such that
P tAP is a diagonal matrix.

Proof. The proof uses induction on n, the size of the matrix. The assertion is clear if n = 1 as A
is just a 1× 1 matrix.

By Theorem 2.1, we have an eigenvector V with eigenvalue λ1. By Gram-Schmidt, set V = U1

and construct an orthonormal basis of Rn of the form {U1, · · · , Un}. Express the matrix A using
this new basis. Now for j > 1 we have

⟨AUj , U1⟩ = ⟨Uj , AU1⟩ = λ1⟨Uj , U1⟩ = 0.
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This shows that A maps the span of U2, · · · , Un to itself while mapping U1 to λ1U1. Thus, if we
use the above basis, the matrix A is transformed to a block matrix of the form(

λ1 0
0 B

)
.

In other words, there is an orthogonal matrix Q such that QtAQ gives the above block matrix.
Since A is symmetric and Q is orthogonal, the matrix B is an (n − 1) × (n − 1) symmetric real
matrix. One can then use the inductive hypothesis on B to deduce the corollary.

�

3. Diagonalising Quadratic Forms

Suppose we have a quadratic form

q(x) =
1

2

n∑
i=1

n∑
j=1

Aij(xi − ai)(xj − aj)

where the matrix A is symmetric. (For example, this may come from the degree two Taylor
polynomial of a C2 function f at a critical point a = (a1, · · · , an), in which case Aij = fxixj (a).)

Set V = x− a. Then q can be expressed in terms of V succintly as

q(V ) =
1

2
⟨AV, V ⟩.

Let P be an orthogonal matrix such that P tAP = D whereD is diagonal. Then if we setW := P tV ,
we have

⟨AV, V ⟩ = V tAV = (V tP )D(P tV ) = W tDW =

n∑
i=1

λiw
2
i .

Because V and W determine each other, we can now express q as a function of W :

q(W ) =
1

2

n∑
i=1

λiw
2
i .

By permuting the entries of W , we may further assume that λ1 ≤ λ2 ≤ · · · ≤ λn.
Thus if all eigenvalues of A are positive, then (recalling that x− a = V = PW ),

f(x)− f(a) =
1

2

n∑
i=1

λiw
2
i ≥ 0

so that near a we have f(x) ≥ f(a) with equality iff x = a (i.e., a is a strict local minimum.)
Likewise, if all eigenvalues of A are negative then a is a strict local maximum.

If all eigenvalues of A are ≥ 0 then a is a local minimum but not a strict one, i.e., there may be
points nearby a at which f(x) = f(a).

A saddle point of f is a critical point where all eigenvalues are nonzero and they take on both
signs. When n = 2 there is only one type of saddle point (one positive and one negative eigenvalue),
but when n > 2, saddles points are further distinguished by the number of negative eigenvalues—
called the index of the critical point.
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