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Preface

Analysis is the rigorous and more advanced study of the techniques and re-
sults used in calculus. As is well-known, although calculus was “invented”
by Newton and Leibniz in the 17th century a more precise and rigorous foun-
dation was laid only about 200 years later by Cauchy, Weierstrass Bolzano
Dedekind, Cantor and others. The main difficulty was to give a precise def-
inition of the set of real numbers and understand the notions of infinities,
infinitesimals and limits. Of course, such attempts go back to ancient times
as can be seen in the paradoxes of Zeno of Elea, 5th century B.C.

The main difficulty of modern-day undergraduate students in under-
standing rigorous analysis is the lack of basic training in the nature and
structure of logical arguments and mathematical proofs. This is partly due
to the fact that disciplines like classical Euclidean Geometry, which gener-
ations of human beings have studied, are no longer taught in schools. It is
claimed that after the Bible, Euclid’s Elements is the most widely read book
of western civilization. In any case, proofs not only “scare” many students,
but it is also sometimes hard for students to appreciate why mathemati-
cians go through all that trouble to “prove” what seems like obvious facts.
I do admit that the notation and style of most analysis text books is quite
unappealing, especially to students whose only encounter with mathemat-
ics is a “standardized calculus text-book” where proofs are not rigorous,
definitions are not clearly stated and the emphasis is more on a rather su-
perficial (cook-book-style) mastery of certain techniques. It is therefore not
the fault of the students that they are never exposed to some of the finer
points and perhaps the true nature of mathematical reasoning in the first
year at a University. Education can then degenerate into blindly following
a set of technical instructions (given by instructors (sic)) rather than an
awe-inspiring and mind-opening experience that we all strive for in life. I
admit I’m also not so sure that the prescribed material that I will be teach-
ing you in this course is really that mind-boggling either! ( On a personal
note, I should add that in the early 70’s in Germany, where I was a student,
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there were no credits for courses and also no tuition fees. I never had to
take a written test or examination. All examinations I took were oral and
one-on-one with my professors. It was challenging and a lot of fun!)

These notes are written in an informal and personal style of a “friendly”
mathematician, whose motto is: “It’s better to be approximately right than
exactly wrong”. The notes are by no means a substitute for my live lectures
(which by the way are in general much more entertaining!). They are aimed
to give a somewhat more organized and abbreviated outline of the material
to be discussed in the lectures. The notes (and also the lectures) are not
supposed to be comprehensive. The art of teaching (and learning) consists
in choosing carefully what is relevant and beautiful. My aim is to let you
discover (McMaster motto!) rather than cover the maximum amount of
material. I therefore strongly advise every student to read at least one
other recommended book in Real Analysis. Some are available on reserve in
the Thode library. I apologize for not including too many exercises in the
notes, but I will be making up on that by giving you more exercises and
problems during the term. I also plan to post extra supplementary material
and interesting links related to the course web site. My last (in my opinion,
unforgivable) mistake is the omission of any pictures in these notes. I am a
geometer and I think visually, but I couldn’t bring myself to spend the time
to make the appropriate ps files etc. I will certainly draw some pictures on
the blackboard during the lectures and hopefully, if I am allowed to teach
this course again and if these notes ever become publishable (you will then
have to pay for them!), I will include some pictures, although, Analysis is
still not Geometry!

Yours truly,
Min-Oo
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Chapter 0

Preliminaries

0.1 Some elementary propositional logic

First we address some simple matters of the basic logic used in mathematics
especially for definitions and proofs.

A proposition is a statement which can (only) be either true or false.
For example, the proposition “1 + 2 = 2 + 1” is true, while the proposition
“There is a rational number x such that x2 = 2 ” is false.

If p and q are propositions then the proposition p∧ q ( p AND q) is true
if both p and q are true and false otherwise. The proposition p ∨ q (p OR
q) is true if either p or q (or both) is (are) true and is false otherwise. The
proposition ¬p (read NOT p) is true if p is false and is false if p is true. In
some books this is also written as ∼ p.

The proposition p ⇒ q (p implies q or if p then q) is only false if p is true
and q is false and is true otherwise. In particular, if p is false then p ⇒ q
is true. In other words, p ⇒ q has the same truth value as ¬p ∨ q. The
proposition p ⇔ q (read p is equivalent to q or p if and only if q) is true if
either both p and q are true or both p and q are false and is false otherwise.
In other words, (p ⇔ q) ⇔ (p ⇒ q) ∧ (q ⇒ p). We sometimes write “iff” as
an abbreviation for if and only if.

Many of the propositions we will encounter in this course are constructed
using the quantifiers ∀ and ∃. The symbol ∀ stands for for all or for every
or for each and the symbol ∃ stands for there exists or there is. To make
the expressions with these quantifiers easier to read we also use the phrase
“such that ” (often abbreviated to “s.t.”)quite often. For example:

∀m ∈ Z ∃n ∈ Z s.t. n > m
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which we can read as: For every integer m there is some integer n such that
n > m . This is obviously true. However, the statement:

∃n ∈ Z ∀m ∈ Z s.t. n > m

which we can read as: There is some integer n such that for every integer
m we have n > m is definitely false. So the negation:

∀n ∈ Z ∃m ∈ Z s.t. n ≤ m

is true. Note how we switched the quantifiers to negate a given proposition.
The main message here is that the order in which the quantifiers are written
is extremely important. It is easy to fall into logical blunders (even for
discussions in everyday life!) if one is not careful with quantifiers.

0.2 Some naive set theory

We will ignore all the subtle paradoxical difficulties in defining sets and think
of a set naively as a collection of objects called its elements. We use the
notation: x ∈ S if x is an element of a set S (x belongs to S) and x /∈ S if
x is not an element of S, (x does not belong to S).
The simplest way to define a set is by listing all its elements. We use the
notation: S = {π, e, 2.71828,

√
2, 1.4142} to denote the set of five (distinct)

real numbers: π, e, 2.71828,
√

2 and 1.4142 . This notation is of course,
not always applicable especially if we have a set with an infinite number
of elements. In such cases, sets are defined by naming the property which
distinguishes elements of the set from objects which are not in the set. We
use the notation: {x

∣∣ p(x)} (or sometimes {x : p(x)} ), where p(x) is a
statement about the object x which can only be true or false. The set
consists of all objects (of a bigger set) for which p(x) is true. For example,
{x ∈ Q

∣∣ x2 < 2} denotes the set of all rational numbers whose square is
strictly less than 2. We will assume some familiarity with the following
examples:

(i) the natural numbers N = { 1, 2, 3, . . . } ,

(ii) the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }, and

(iii) the rational numbers (or fractions) Q = {n
d

∣∣ n, d ∈ Z, d > 0}.

All these sets lie inside the set of real numbers R which is what this course
is mainly about. Here are some more standard notations that we will use
for sets:
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If A,B are two sets, we say that A is a subset of B and write A ⊂ B if
every element of A is also an element of B. For example, A ⊂ A and ∅ ⊂ A
for any set A , where ∅ denotes the empty set which does not contain any
elements.
A ∪ B = {x | (x ∈ A) ∨ (x ∈ B)} and A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)} will
denote the union and intersection of two sets.
A × B denotes the Cartesian product which is the set of all ordered pairs:
{(a, b)| a ∈ A, b ∈ B} .

One of the important concepts in Mathematics is the idea of a function
(or a map) from a set to another set. We will be mainly concerned with
functions from intervals in R to R. It took a long time for mathematicians
to clarify exactly what should be meant by a function. A simple operational
definition is as follows:

A map or a function f from a set A to another set B, written f : A → B
is a rule that assigns to every element a ∈ A a unique element f(a) ∈ B.
We write a 7→ b = f(a) and say that a is mapped to b. The set A is called
the domain of f and the set of all b ∈ B with f(a) = b for some a ∈ A is
called the range (or image) of f .

The graph of a function f is then defined to be the subset

{(a, f(a)) ∈ A×B
∣∣ a ∈ A}

of the Cartesian product. (In fact, a more rigorous way to define a function
is through its graph).

f is said to be one-one (or injective) if two distinct elements of A never
map to the same element of B. In other words: f : A → B is one-one iff
(∀x, y ∈ A)(f(x) = f(y) ⇒ x = y). f is said to be onto (or surjective) if
every element of B has some element of A mapped to it. In other words;
f : A → B is onto iff ∀ b ∈ B ∃ a ∈ A s.t. f(a) = b. A map which is both
one-one and onto is called a bijection (or a one-one correspondence).

If f : A → B is a map, the image of a set X ⊂ A is defined by f(X) =
{b ∈ B | ∃x ∈ X s.t. b = f(x)} and the inverse image of a set Y ⊂ B is
defined by f−1(Y ) = {a ∈ A | f(a) ∈ Y }.
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0.3 Natural Numbers and the Principle of Induc-
tion

Natural numbers are used for counting and ordering. The main property
(or axiom, if you wish) about N that we will use is the Induction Principle

Axiom 0.3.1 Principle of Induction
In order to prove the proposition P (n) for all n ≥ n0. it is sufficient to show
the following:

N1 P (n0) is true

N2 (induction step) ∀ k ≥ n0, we have P (k) ⇒ P (k + 1)

We also use the inductive property of the natural numbers for recursive
definitions such as in the following definition of the factorial.

0! = 1

∀ k ≥ 0 (k + 1)! = (k + 1)k!

0.4 Rational Numbers

The rational numbers Q are all the fractions a/b with a ∈ Z and b ∈ N (
b 6= 0 ), where we identify two expressions a/b and c/d as defining the same
rational number if ad = bc (this is the usual way we cancel fractions). We
add, subtract, multiply and divide rational numbers the same way as we did
in elementary school (Of course, we do not divide by zero!) and find out
that the set of rational numbers Q form, what is known as a field (which
we will define in the next chapter). It just means that if r, s ∈ Q then
r + s, r − s, r.s and also r/s (provideds 6= 0 are all in Q and the operations
satisfy the usual commutative, associative and distributive rules that we are
familiar with from elementary school. The numbers 0 and 1 of course, play
a special role. 0 is the “identity element” for addition and 1 is the “identity
element” for multiplication. Identity just meaning that it does not change
any element that it operates on.

The Greeks believed a long time ago that fractions were sufficient to
describe all “real” phenomena. However, the Pythagoreans, a philosophical
school founded by Pythagoras of Samos (569 to 475 BC) discovered the
following result.
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Proposition 0.4.1 The real number
√

2 is not a rational number.

Proof (by contradiction) Suppose that
√

2 = a/b with a ∈ Z and b ∈ N.
We may as well assume that a, b have no common factors else we could
cancel them out. Then 2b2 = a2 and so a is even. But then a2 and hence
2b2 is divisible by 4 and so b2 is even. But then b is also even and so a and b
do have a common factor, viz. 2 . Thus we arrive at a contradiction. Hence√

2 is not in Q.
QED

The Pythagoreans realized that one could easily construct a line seg-
mentof length

√
2 by elementary geometry (for example, the diagonal of a

unit square) and so they were forced to the conclusion that rational numbers
were not sufficient to describe their geometric system. Mathematics need
real numbers to describe reality (or at least the shadow of it!).
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Chapter 1

Real Numbers

1.1 Field Axioms

The basic algebraic fact about the real numbers is that they form a field.
Of course, there are many other fields and the theory of fields (for example,
Galois theory) is an elegant algebraic subject. However, this is a course in
analysis, so we will simply assume that the student is familiar with the oper-
ations of addition, subtraction, multiplication and division for real numbers
and the basic rules that they satisfy (commuativity, associativity, distribu-
tivity etc.) For the sake of completeness, we will give the formal algebraic
definition of a field.

Definition 1.1.1 A field is a set F equipped with two operations + : F×F →
F (addition) and · : F × F → F (multiplication) satisfying the following
axioms:

F1 ∀x, y, z ∈ F;x + (y + z) = (x + y) + z and x · (y · z) = (x · y) · z
F2 ∀x, y ∈ F;x + y = y + x and x · y = y · x
F3 ∀x, y, z ∈ F;x · (y + z) = (x · y) + (x · z)

F4 ∃ 0 ∈ F s.t. ∀x ∈ F; 0 + x = x

F5 ∃ 1 ∈ F , 1 6= 0 s.t.∀x ∈ F; 1 · x = x

F6 ∀x ∈ F∃(−x) ∈ F s.t. (−x) + x = 0

F7 ∀x ∈ F with x 6= 0, ∃x−1 ∈ F such that (x−1) · x = 1

One normally omits the symbol · for multiplication and simply juxtapose.
We also write x − y for x + (−y) . Our main algebraic axiom about R is
therefore:
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Axiom 1.1.1 The real numbers form a field under the usual rules of addi-
tion and multiplication.

Other well-known examples of fields are:

1. Q is a field, but N and Z do not satisfy all the field axioms. (Can you see
which of the axioms fail for N and for Z ?)

2. However integers modulo a prime number p denoted by Z/pZ form a
field. (The main axiom to check is the last one about the existence of the
multiplicative invers. can you see that this would fail if p is not a prime, say
p = 12)

3. The complex numbers C form a field. (Do you know any other fields?)

The field axioms trivially imply some algebraic operational rules that we
are all familiar with from elementary school. A few selected examples of
such rules are the following:

(i) The commutative and the associative laws can be extended by induction
to any finite number of elements. The same is true for the distributive law.

(ii) The “neutral” elements 0 and 1 are unique and the same is true for both
“inverses” −x and x−1.

(iii) 0 x = 0 for all x.
Proof: 0x = (0 + 0)x = 0x + 0x . Now add the inverse −(0x) to both sides
of the equation and use associativity of multiplication: 0 = −(0x) + 0x =
−(0x) + (0x + 0x) = (−(0x) + 0x) + 0x = 0 + 0x = 0x

This seems like splitting hairs but that is what we are learning here!

(iv) Simple rules such as −(−a) = a ; (a−1)−1 = a for a 6= 0 ; (−a) b =
a.(−b) = −ab ; (−a)(−b) = ab etc.
Sample proof: 0 = 0a = a0 = a(b + (−b)) = ab + a(−b) and so −(ab) =
0 + (−(ab)) = −(ab) + ((ab) + (a(−b)) = 0 + a(−b) = a(−b).

(v) One important fact is the cancellation rule (or in fancier words, the
absence of zero divisors in a field!): ab = 0 if and only if a = 0 ∨ b = 0.
This implies: ac = ab ∧ a 6= 0 ⇒ c = b . (This is, for example, not true in
Z/12Z) .

Proof: If ab = 0 and suppose a 6= 0. Then ∃ a−1 so that a−1a = 1 , but
then 0 = a−10 = a−1(ab) = (a−1a)b = 1b = b . QED

(vi) Powers are defined inductively by: x0 = 1 , xn+1 = x.xn for n ∈ N. We
also define x−n = (x−1)n = (xn)−1
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A more important result is the binomial formula:

Proposition 1.1.1

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

for any n ∈ N, where the binomial coefficients are defined by(
n

k

)
=

n!
k!(n− k)!

Proof (by induction)
For n = 1 : (x + y)1 = x + y =

(
1
0

)
x1y0 +

(
1
1

)
x0y1

Assume: (x + y)k =
∑k

j=0

(
k
j

)
xk−jyj

Then

(x + y)k+1 = (x + y)
k∑

j=0

(
k

j

)
xk−jyj

=
k∑

j=0

(
k

j

)(
xk−j+1yj + xk−jyj+1

)
=

k∑
j=0

(
k

j

)
xk−j+1yj +

k∑
j=1

(
k

j − 1

)
xk−j+1yj

=
k+1∑
j=0

(
k + 1

j

)
xk+1−jyj

where we use the Pascal Triangle relation:
(
k
j

)
+

(
k

j−1

)
=

(
k+1

j

)
.

This relation follows by a simple calculation with factorials from the defini-
tion of the binomial coefficients, but if we use the fact that

(
n
k

)
represents the

number of different ways of choosing k objects from n objects (that’s why
we read “n choose k” for

(
n
k

)
), it can be seen immediately from the following

combinatorial argument: If we have to choose a committee of j members
from k students (that’s you) and 1 professor (that’s me), then there are only
two mutually exclusive possibilities: either I’m on the committee or I’m not.
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1.2 Axioms of Order

There is a non-empty subset of real numbers called the positive numbers
(notation: a > 0) satisfying the following axioms:

O1 Trichotomy: For any a ∈ R exactly one of a > 0, a = 0, −a > 0 is true.

O2 If a, b > 0 then a + b > 0 and a · b > 0

A field with a relation called an ordering satisfying the three properties above
is called an ordered field. The field Q of rationals is an ordered field (with
the usual ordering) but the field C of complex numbers is not an ordered
field (under any ordering). Our next basic axiom about R is therefore:

Axiom 1.2.1 The real numbers form an ordered field.

We will write a > b or b < a for a−b > 0. It follows from the axioms that
the ordering > is transitive, i.e. , if a > b and b > c, then a > c (because
a − c = (a − b) + (b − c)) We also write a ≥ b to mean the same thing as
a > b ∨ a = b. ( a ≤ b is equivalent to −a ≥ −b because b−a = −a− (−b)).

The axioms trivially imply some simple and familiar properties such as:

(i) 1 > 0 .

(ii) x > 0, y < 0 ⇒ xy < 0 ; x < 0, y < 0 ⇒ xy > 0 .

(iii) If a > b ⇒ a + c > b + c. If c > 0 and a > b, then ac > bc (because
ac− bc = (a− b)c, but if c < 0, then a > b ⇒ bc > ac .

(iv) If 0 < a < b, then a−1 > b−1 > 0, but if a < b < 0, then 0 > a−1 > b−1 .

(v) The square x2 of a real number x 6= 0 is always strictly positive: x2 > 0
(because (−x)(−x) = x2). Of course 02 = 0.

The following notation will be used for intervals on the real line R: An open
interval: (a, b) = {x ∈ R| a < x < b} does not contain its end points. A
closed interval: [a, b] = {x ∈ R| a ≤ x ≤ b} contains both end points. We
will also use some other types of intervals: [a, b), (a, b], (−∞, b], (a,∞) , etc.
Their meaning should be clear from the notation, for example: [a, b) = {x ∈
R| a ≤ x < b} (−∞, b] = {x ∈ R|x ≤ b} .

We define the absolute value of a real number to be:

Definition 1.2.1 |x| = x if x ≥ 0 and |x| = −x if x < 0

10



Then we have−|x| ≤ x ≤ |x|. (in fact, it is true that either |x| = x or x = |x|.
It can never happen that −|x| < x < |x| . If we add the two inequalities for
x and y , we obtain: x + y ≤ |x| + |y| and also −x − y ≤ |x| + |y| . This
proves the following basic:

Proposition 1.2.1 (Triangle Inequality)

|x + y| ≤ |x|+ |y|

for all x, y ∈ R.

Of course, it can happen now that the strict inequality holds, e.g., |2 +
(−1)| = 1 is strictly less than |2|+ | − 1| = 2 + 1 = 3 .

Other very useful inequalities are the following:

Proposition 1.2.2 (Bernoulli’s Inequality)

(1 + x)n ≥ 1 + nx

for every x ≥ −1 and for all n ∈ N

Proof: (by induction) For n = 1, 1 + x = 1 + 1.x, so the inequality is true.
Assuming that it is true for n = k, so that (1 + x)k ≥ 1 + kx, we have

(1+x)k+1 = (1+x)(1+x)k ≥ (1+x)(1+kx) = 1+(k+1)x+kx2 ≥ 1+(k+1)x

since 1 + x ≥ 0 and kx2 ≥ 0 .
QED

Proposition 1.2.3 (Cauchy-Schwarz Inequality)

(x1y1 + · · ·xnyn)2 ≤ (x2
1 + · · ·x2

n)(y2
1 + · · · y2

n)

for every x1, · · · , xn, y1, · · · , yn ∈ R and for all n ∈ N. Moreover equality
holds iff the xi’s are proportional to the yi’s.

Proof: The inequality is trivially true if all x1 = · · · = xn = 0 or if y1 =
· · · = yn = 0, so we can assume w.l.o.g. (without loss of generality) by a
simple scaling, that x2

1 + · · ·+ x2
n = y2

1 + · · ·+ y2
n = 1.

n∑
i=1

(xi − yi)2 ≥ 0 ⇒ 2− 2
n∑

i=1

xiyi ≥ 0 ⇒
n∑

i=1

xiyi ≤ 1

11



n∑
i=1

(xi + yi)2 ≥ 0 ⇒ 2 + 2
n∑

i=1

xiyi ≥ 0 ⇒ −
n∑

i=1

xiyi ≤ 1

Therefore ∣∣ n∑
i=1

xiyi

∣∣ ≤ 1 =
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)
Moreover, equality holds iff xi = yi or xi = −yi for all i .

QED

Proposition 1.2.4 (Geometric Mean / Arithmetic Mean Inequality)
If x1, . . . , xn are positive real numbers then(x1 + · · ·+ xn

n

)n
≥ x1 · · ·xn

Moreover, strict inequality holds unless all the numbers are equal.

Proof (by induction): For n = 1 the inequality is trivially true. We
assume the inequality is true for any n positive numbers, i.e. (AMn)n ≥
(GMn)n where the arithmetic mean of n positive numbers x1 · · · , xn is de-
fined by AMn = x1+···+xn

n and the geometric mean is defined by (GMn)n =
(x1 · · ·xn). (I am just avoiding taking the nth root!).
We want to show the inequality holds for n + 1 positive real numbers and
we may assume w.l.o.g. that x1 ≤ . . . ≤ xn ≤ xn+1. Now

AMn+1 = x1+···+xn+1

n+1 = n
n+1AMn + 1

n+1xn+1 = AMn

(
1 + 1

n+1(xn+1

AMn
− 1)

)
Therefore:(

AMn+1

AMn

)n+1
=

(
1 + 1

n+1(xn+1

AMn
− 1)

)n+1
≥ 1 + ( xn+1

AMn
− 1) = xn+1

AMn

by the Bernoulli inequality. Hence, by the induction hypothesis

(AMn+1)n+1 ≥ (AMn)n xn+1 ≥ (GMn)n xn+1 = (GMn+1)n+1

QED
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1.3 The Completeness Axiom

The main analytic property which distinguishes R from Q is the complete-
ness axiom. There are different ways to introduce this axiom depending
on whether one wants to assume the Archimedean property (see below) as
an axiom or not, but for the sake of simplicity (remember this course is
supposed to be a friendly introduction to analysis!), we will use the least
upper bound property which then automatically implies the Archimedean
property.

Definition 1.3.1 An upper bound of a non-empty subset A of R is an
element b ∈ R with b ≥ a for all a ∈ A. A is said to be bounded from above
if A has an upper bound. A lower bound of a non-empty subset A of R is
defined analogously as an element b ∈ R with b ≤ a for all a ∈ A. A is said
to be bounded from below if A has a lower bound. A is said to be bounded if
it has both upper and lower bounds.

Definition 1.3.2 An element M ∈ R is called a least upper bound or
supremum of a non-empty set A, written lub(A) or sup(A), if M is an
upper bound of A and if b is any upper bound of A then b ≥ M . M (if it
exists!) is uniquely defined by this property.

In other words, M is the upper bound of A such that any other upper bound
of A (different from M) is strictly larger than M . If A is not bounded from
above we often write sup(A) = +∞

Definition 1.3.3 An element m ∈ R is called a greatest lower bound or
infimum of a non-empty set A, written glb(A) or inf(A), if m is a upper
bound of A and if b is any lower bound of A then b ≤ m. m (if it exists!) is
uniquely defined by this property.

In other words, m is the lower bound of A such that any other lower bound
of A (different from m) is strictly smaller than M . If A is not bounded from
below we often write inf(A) = −∞

We can now state The Least Upper Bound Property:

Axiom 1.3.1 If a non-empty subset A of R has an upper bound, it has a
least upper bound.

13



An ordered field that satisfies the least upper bound property is called a
complete ordered field. So to sum up, all we assume about the real numbers R
is that it is a complete ordered (Archimedean) field. (In fact, one can show
that up to “ isomorphism of ordered fields”, that R is the only complete
(Archimedean) ordered field).

Note that the ordered field Q is not complete. For example, the set
A = {q ∈ Q| q2 < 2} is bounded but does not have a least upper bound in
Q. We will see why in a little while. We first list some easy consequences of
the completeness axiom. First of all by just changing signs (and flipping the
inequalities) it is obvious that any subset A ⊂ R which has a lower bound
has a greatest lower bound. If B = {x ∈ R| − x ∈ A}. Then B is bounded
from above iff A is bounded from below and glb(A) = −lub(B) .

Before we state the next property we need to describe more precisely
how the N, Z and Q are imbedded into the reals. First of all N is identified
with multiples of the unit element 1 in R, i.e. n = 1 + · · · + 1 where the
sum is over n terms. The key fact here is that this is an injective (one to
one) map. (This is for example, not true for finite fields). After that Z and
Q can be imbedded in the obvious fashion, so p/q ∈ Q is identified with
p · q−1 since R is a field. An important property about the real numbers
which follows from our axioms is the following:

Proposition 1.3.1 . ∀x ∈ R ∃n ∈ N such that n > x.

Equivalently: ∀a > 0 ∃n ∈ N such that 1/n < a.

Proof: This is equivalent to saying that N is not bounded above. This seems
like a very obvious fact, but we will prove it from the axioms. Suppose N
were bounded above. Then it would have a least upper bound,M say. But
then M − 1 is not an upper bound and so there is an integer n ∈ N with
n > M − 1. But then n + 1 > M contradicting the fact that M is an upper
bound for all of N. QED

The above property of the real numbers is called the Archimedean
property of the Reals and is been attributed to the famous Greek math-
ematician Archimedes (287 to 212 BC) and appears in Book V of The Ele-
ments of Euclid.

We also deduce the following important fact:

Proposition 1.3.2 . Between any two distinct real numbers there is at
least one (and hence infinitely many) rational numbers.

14



Proof: Let a, b ∈ R with (say) a < b. Choose n ∈ N so that 1/n < b − a.
Then look at integer multiples of 1/n . Since these are unbounded, we may
choose the first such multiple with m/n > a. We claim that m/n < b. If
not, then since (m− 1)/n < a and m/n > b we would have 1/n > b− a.

QED

A set A with the property that an element of A lies in every interval
(a, b) of R is called dense in R. We have just proved that the rationals Q
are dense in R. The irrationals (= R ∩Qc) are also dense in R.

We now prove the result we stated earlier.

Proposition 1.3.3 The real number
√

2 exists.

Proof : We will get the existence of
√

2 as the least upper bound of the set
A = {q ∈ Q| q2 < 2}. We know that A is bounded above. 2 is an upper
bound for A . (Why?) Let b = lub(A). We now prove that b2 < 2 and b2 > 2
both lead to contradictions and so we must have b2 = 2 (by the trichotomy
axiom for the ordering).

So first suppose that b2 > 2. By the Archimedean property we can
choose an n ∈ N such that n > 2b

b2−2
so that b2 − 2b

n > 2. Then (b − 1
n)2 =

b2 − 2b
n + ( 1

n)2 > 2, since a square is always non-negative. Thus b− 1
n is an

upper bound of A, contradicting the assumption that b is the least upper
bound.

Similarly, if b2 < 2, then a = b + 2−b2

b+2 = 2b+2
b+2 is > b and is in A since

a2 = 4b2+8b+4
b2+4b+4

= 2− 2(2−b2)
(b+2)2

< 2. This contradicts the fact that b is an upper
bound of A.

QED

We end this section by reminding you that real numbers can be defined by
decimal expansions. Given the decimal expansion n+

∑
i>0 ai 10−i of a posi-

tive real number, the set of rational approximations qk = n+
∑

0<i≤k ai 10−i

with k ∈ N form a bounded set and so it has a least upper bound. This is by
definition then the real number defined by the decimal expansion. Every real
number has a unique decimal expansion – except that decimals that termi-
nate in a sequence of 9’s should be truncated. For example 1.29999... = 1.3 .
Rational numbers have decimal expansions which repeat periodically (or ter-
minate). This follows from the Euclidean algorithm. Of course, the reason
that we use the number 10 as our base for decimals probably stems from
the “accidental” fact that humans have ten fingers! One could also use any
other positive integer as a base. Computers use the binary system with base

15



2 (and also base 16). The terniary system (base 3) is useful in describing the
Cantor set, which we will encounter in Chapter 3. The Cantor set consists
of all points in [0, 1] whose terniary decimal expansion does not contain 2.
For example 0.12 = 5/9 in base 3, so is not in the Cantor set.

1.4 Remarks on orders of Infinity

It was not until the 19th century that mathematicians realized mainly
through the pioneering work of Georg Cantor (1845-1918) that infinity comes
in different orders.

Definition 1.4.1 A set is said to be countable if it can be put into one-one
correspondence with N.

Intuitively this means that we can count off all the elements of a countable
set. Examples and some basic properties for countable sets follows:

1. The sets Z and Q are countable.

2. A subset of a countable set is either finite or countable.

3. A countable union of finite or countable sets is finite or countable and
also any (finite) Cartesian product of countable sets is countable.

However:

Theorem 1.4.1 (Cantor) The set of real numbers R is not countable.

Proof:
We will show that the interval (0, 1) ⊂ R is not countable. The method of
proof used below is the famous Cantor diagonalisation argument.
Suppose we could write down the decimal expansions of all the real numbers
in (0, 1) in a countable list: 0.a1a2a3..., 0.b1b2b3..., 0.c1c2c3..., ...
Now define a decimal number: x = x1x2x3... by x1 = a1 + 1 if a1 ≤ 7 and
x1 = 0 if a1 = 8 or 9, x2 = b2 + 1 if b2 ≤ 7 and x2 = 0 if b2 = 8 or 9,
etc. Then the decimal expression of x differs from the nth element of the
countable list in the nth decimal place (and does not end in recurring 9’s).
Hence it represents an element of the interval (0, 1) which is distinct from
all members of the list and hence (0, 1) is uncountable.

QED

A real number is called algebraic if it is a root of a polynomial with
rational (or integer) coefficients. All other real numbers are called transcen-
dental.
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Proposition 1.4.1 The set of algebraic numbers is countable. Hence there
are uncountably many transcendental numbers.

Proof: Since a polynomial of degree n with rational coeficients has (n + 1)
coefficients, such polynomials can be put into one-one correspondence with
Qn+1. This is countable since Q is countable and so there are only countably
many polynomials of all degrees. Such a polynomial can have at most n roots
and so there are only countably many such roots. Now, the set of algebraic
numbers is the countable union of all roots of polynomials of all degrees and
hence is a countable set.

Remark: Although there are uncountably many transcendental numbers,
Liouville was the first to discover give a simple way to write down a decimal
expression of a real number that is not algebraic. For example a decimal
like 0.110001000... (with a 1 in the n! place and 0 elsewhere) is transcen-
dental. This follows from the fact that algebraic numbers cannot be ap-
proximated too well by rational numbers whose denominators are not too
large. There are of course two famous transcendental numbers: e and π.
That e is transcendental was established in 1873 by Hermite and in 1882,
Lindemann finally proved that π is transcendental ending the dreams of all
circle-squarers.

Another famous uncountable set with rather unusual properties that
Cantor introduced and now named after him, is defined as follows:

Start with the unit interval A0 = [0, 1] . Now remove the middle third
(open) segment (1

3 , 2
3) . So what remains is the union of 2 closed intervals

A1 = [0, 1
3 ] ∪ [23 , 1] . Now remove the middle third segment from each of

these two closed intevals so that we get A2 = [0, 1
9 ] ∪ [29 , 1

3 ] ∪ [23 , 7
9 ] ∪ [89 , 1] .

Continuing in this manner ad infinitum, we obtain the Cantor set C = ∪An .

Some important facts about the Cantor set C :

(i) x ∈ C iff the ternary (base 3) decimal expansion of x does not contain
1.

(ii) C is uncountable. (This follows from (i), so please prove it!)

(iii) C is closed and bounded and hence compact (see Chapter 3 for defini-
tions).
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1.5 Exercises

1. Find a formula for
∑n

k=1(2k − 1) and prove your formula.

2. Show that: n2 < 2n < n! for all natural numbers n ≥ 5.

3. Show that
√

2 +
√

3 is irrational.

4. Show that 0 < a < b ⇒ a−1 > b−1 > 0 and a < b < 0 ⇒ 0 > a−1 > b−1

for all a, b ∈ F , where F is any ordered field.

5. Show that ||x| − |y|| ≤ |x− y| for all x, y ∈ R

6. Show that between any two distinct real numbers there is at least one
(and hence infinitely many) irrational numbers.

7. Show that the number of subsets with exactly k elements of a set consist-
ing of n elements (k ≤ n) is

(
n
k

)
. What are the odds of winning the lottery

“6 out of 49” ?

8. Show that
n∑

k=0

xk =
1− xn+1

1− x

for any x ∈ R and for any n ∈ N .

9. Show that k!
(
n
k

)
≤ nk for all n ≥ 1 and 0 ≤ k ≤ n

10. Prove the following identities:

(i)
∑n

k=0

(
n
k

)
= 2n

(ii)
∑l

k=0

(
n
k

)(
m

l−k

)
=

(
n+m

l

)
11. Show that (

1 +
1
n

)n

≤
n∑

k=0

1
k!

< 3

for all n ≥ 1.

12. Show that
(1 + x)n ≥ 1

4
n2x2

for all real numbers x ≥ 0 and for all natural numbers n ≥ 2.
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13. Show from first principles that ∀n ∈ N and ∀ y > 0, ∃ a unique x > 0
such that xn = y .

1.5.1 Short solutions to some of the exercise problems

1.
∑n

k=1(2k − 1) = n2 .
Proof by induction. For n = 1 :

∑1
k=1(2k − 1) = 1 = 12 .

Assume:
∑n

k=1(2k−1) = n2 . Then
∑n+1

k=1(2k−1) = n2+(2n+1) = (n+1)2

QED

2. By induction: For n = 5 : 52 = 25 < 25 = 32 .
Assume: k2 < 2k . Then (k + 1)2 = (1 + 1

k )2 k2 < 2 k2 < 2 2k = 2k+1 , since
(k+1

k )2 < (1 + 1
k )2 ≤ (6

5)2 < 2 for all k ≥ 5
Therefore: n2 < 2n for all natural numbers n ≥ 5 .

Similarly: 25 = 32 < 5! = 120 .
Assume: 2k < k! . Then 2k+1 = 2 2k < 2 k! < (k + 1)k! = (k + 1)! for all
k ≥ 5 .
Therefore: 2n < n! for all natural numbers n ≥ 5.

3. Suppose that r =
√

2 +
√

3 > 0 is rational. Then r−1 =
√

3−
√

2 ∈ Q
and therefore 1

2(r + r−1) =
√

2 ∈ Q , which contradicts what was proved in
the lecture (and by the Greeks!).

4. ∀x (x > 0 ⇒ x−1 > 0) , since x−1 x = 1 = 12 > 0 . So b > a >
0 ⇒ a−1b−1 = b−1a−1 > 0 . Therefore by the order axioms: b > a > 0 ⇒
(a−1b−1)b = a−1 > (b−1a−1)a = b−1 > 0 .
The case a < b < 0 is handled in a similar manner by applying the above
argument to −a > −b > 0 .

5. x− y + y = x . Therefore, by the triangle inequality: |x− y|+ |y| ≥ |x| .
This implies: |x− y| ≥ |x| − |y| . By interchanging the roles of x and y we
also have: |y − x| ≥ |y| − |x| . Combining these two inequalites, we have
|x− y| ≥ ||x| − |y|| .

6. Given a < b , we can choose n > 10
b−a , so that we have at least two

rational numbers of the form m+1
n , m+2

n inside the open interval (a, b) . Now
m+

√
2

n is irrational and lies between a and b .
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9. k!
(
n
k

)
= n(n− 1)(n− 2) · · · (n− k + 1) ≤ nk .

10.
(i) Just apply the Binomial formula to (1 + 1)n .

(ii) (x + y)n(x + y)m = (x + y)n+m . Now apply the binomial formula to
both sides:( n∑

k=0

(
n

k

)
xn−kyk

)( m∑
j=0

(
m

j

)
xm−kyk

)
=

n+m∑
l=0

(
n + m

l

)
xn+m−lyl

and collect terms on the left hand side and look at the coefficient of xn+m−lyl .

11. By the binomial formula:(
1 +

1
n

)n

= 1 + n
1
n

+
n(n− 1)

2!
1
n2

+ · · ·+ n(n− 1) . . . 1
n!

1
nn

< 1 + 1 +
1
2!

+ · · ·+ 1
n!

< 1 + 1 +
1
2

+ · · ·+ 1
2n

< 1 + 2 = 3

where we used the formula for the sum of a geometric series:

1 +
1
2

+
1
4

+ · · ·+ 1
2n

=
1− 1

2n+1

1− 1
2

< 2

12. (1 + x)n = 1 + n x + 1
2n(n − 1) x2 + · · · ≥ 1

2n(n − 1) x2 ≥ 1
4n2x2 for

all real numbers x ≥ 0 and for all n ≥ 2 .
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Chapter 2

Sequences and Series

We now come to one of the most fundamental concept in analysis: that of a
limit of a sequence of real numbers. (It took mathematicians some time to
settle on an appropriate definition!)

2.1 Sequences

Definition 2.1.1 A sequence of real numbers is a map a : N → R.

We normally write ai = a(i) and think of a sequence as an (ordered)
set of real numbers (ai)i∈N = (a1, a2, ..., ak, ...). Sometimes, for notational
convenience, we begin a sequence with a0 instead of a1 or for that matter,
with any an0 .

Examples:

0. The simplest sequence is the constant sequence: (a, a, . . . , a, . . . ), where
a(i) = a for all i.

1. an = 1
n defines the sequence (1, 1

2 , 1
3 , ...) .

2. an = bn defines the geometric sequence (b, b2, b3, . . . ) , where b is any
real number.

3. an = n
2n defines (1

2 , 1
2 , 3

8 , ...) .

4. an =
(
1 + x

n

)n , where x is any real number, defines the well known
formula for compound interest.
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5. One may define a sequence inductively by a recursive formula such as:
an+2 = an+1 +an with initial terms given by a1 = a2 = 1. This gives the Fi-
bonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . . ) ,
first introduced by Fibonacci of Pisa (1170 to 1250).

6. Define an+1 = 1
2(an+ 2

an
) with initial term a1 = 1 . This gives (1, 3

2 , 17
12 , 577

408 , ...).
This sequence can be written as a “continued fraction” and gives a very good
rational approximation for

√
2. It was known (at least the first few terms)

to the ancient Sumerians.

2.2 Convergence

Informally, we say that a sequence of real numbers converges to a limiting
number a if all the terms of the sequence become arbitrarily close to a for
all sufficiently large n . The exact definition now follows:

Definition 2.2.1 We say that a sequence of real numbers (an)n∈N converges
to to a limit a ∈ R (and write: limn→∞ an = a or simply lim an = a) if and
only if the following is true:

∀ ε > 0, ∃N ∈ N such that |an − a| < ε for all n ≥ N .

N , of course, would in general depend on ε, because the quantifier for N
comes after that of ε.

An equivalent definition is as follows:

Definition 2.2.2 A sequence of real numbers (an)n∈N converges to to a
limit a ∈ R if and only if every ε-neighbourhood of a contains all but a finite
number of the terms of the sequence.

where we used the following:

Definition 2.2.3 An ε-neighbourhood of a real number a is the open inter-
val (a− ε, a + ε) = {x ∈ R| |a− x| < ε}

A sequence which converges to a limit is said to be convergent. The
limit of a convergent sequence is unique. A sequence that is not convergent
is called divergent.

Examples:

0. The constant sequence , (a, a, ..., a, ...) converges to a .
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1. The sequence an = 1
n converges to 0 .

This is because ∀ ε > 0, | 1n − 0| = 1
n < ε for all n ≥ N > 1

ε and the existence
of such an N ∈ N is guaranteed by the Archimedean property.

1 bis. More generally (as you know from first year calculus), the same
argument proves that the sequence an = P (n)

Q(n) converges to 0 , where P (n)
and Q(n) are polynomials provided the degree of P is strictly less than the
degree of Q . In case they have the same degree the sequence converges to the
ratio of the coefficients of the terms of highest degree and if deg(P ) > deg(Q)
then the sequence diverges.

2. The geometric sequence (b, b2, b3, . . . ) , converges to 0 if |b| < 1 and to
1 if b = 1 . It is divergent otherwise. (This follows from Proposition 2.2.1
below).

3. The sequence an = n
2n converges to 0. We know from the Exercise 2 at

the end of Chapter 2, that n2 < 2n, so n
2n < 1

n . Now we can use the same
argument that we use for the sequence ( 1

n) in Example 1 above.

4. an =
(
1 + x

n

)n converges to the exponential function ex .(See the exercises
at the end of this Chapter).

5. The Fibonacci sequence is obviously divergent, but the sequence of ratios
of consecutive terms (rn = an

an+1
) is convergent. (Can you guess the limit of

these ratios ?)

6. The sequence defined by an+1 = 1
2(an + 2

an
) and a1 = 1 converges to

√
2 .

(This is one of the exercises at the end of this Chapter)

Here is a very basic limit, which we will use repeatedly. We prove it from
first principles (i.e., we don’t use logarithms and other stuff that we haven’t
defined yet).

Proposition 2.2.1 Let 0 < b < 1. Then limn→∞ bn = 0 .

Proof: Since 0 < b < 1 , b−1 = 1 + h with h > 0 . Therefore, by the
Bernoulli inequality we have:

bn =
1

(1 + h)n
<

1
1 + nh

<
1

nh
→ 0

as n →∞ , by example 1 above, since h is a positive constant.
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The following basic arithmetic rules about computing the limits of sums,
differences, products and quotients of convergent sequences are rather obvi-
ous from the definitions and the trivial proofs will be left to the reader as
an exercise (please do it!), but I will give ample hints below.

Proposition 2.2.2 If an converges to a and bn converges to b, then:

(i) an ± bn converges to a± b respectively.

(ii) an bn converges to a b.

(iii) an
bn

converges to a
b provided b 6= 0. (This implies that bn 6= 0 for n

sufficiently large).

Proof (Sketch):
(i): Let ε > 0 be given. Then ∃n1, n2 ∈ N such that |an − a| < 1

3ε for all
n ≥ n1and |bn − b| < 1

3ε for all n ≥ n2, by the definition of convergence.
Now choose any n0 ∈ N that is greater than both n1 and n2 (for example
n0 = 10(n1 + n2) would do), then n ≥ n0 ⇒ |(an + bn) − (a + b)| =
|(an − a) + (bn − b)| ≤ |an − a| + |bn − b| < 1

3ε + 1
3ε < ε by the triangle

inequality.

(ii) First we use the fact that any convergent sequence is bounded, so that
for example: |an| ≤ 1+|a| for all sufficiently large n . The proof then follows
the same pattern as above using the inequality:

|an bn − ab| = |an(bn − b) + (an − a)|b| ≤ (1 + |a|)|bn − b|+ |an − a|(1 + |b|)

(iii) We first prove that 1
bn

converges to 1
b and then apply (ii).

Since |b| > 0, ∃n1 ∈ N such that |bn − b| < |b|
2 for all n ≥ n1. This implies

(by the triangle inequality) that |bn| > |b|
2 for all n ≥ n1.

Now let ε > 0 be given. Then ∃n2 ∈ N such that |bn − b| < |b|2
2 ε for all

n ≥ n2. Now choose any n0 that is greater than both n1 and n2. Then

n ≥ n0 ⇒ | 1
bn
− 1

b
| = |b− bn

bn b
| ≤ 2

|b|
1
|b|
|b|2

2
ε = ε

QED

We will sometimes use the following notation:

Definition 2.2.4

limn→∞ an = +∞ iff ∀R ∃N ∈ N s.t. n ≥ N ⇒ an ≥ R .
We write limn→∞ an = −∞ if limn→∞(−an) = +∞
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For example, limn→∞ bn = +∞ for all b > 1 , but limn→∞ bn 6= −∞ for
b < −1 .

2.3 Monotonic sequences

Definition 2.3.1 A sequence (an) is said to be bounded from above if the
set of real numbers A = {a1, a2, . . . , an, . . . } has an upper bound. It is said
to be bounded from below if A has a lower bound and is said to be bounded
if it has both upper and lower bounds.

It follows from the definition that any convergent sequence is bounded
(from both above and below).

Quick proof: Let an be a covergent sequence with lim an = a. Since every
ε-neighbourhood of a contains all but a finite number of points of the set
A = {a1, a2, . . . , an, . . .} , A is contained in the union of a finite set and a
bounded interval (a − ε, a + ε) . A finite set of real numbers is obviously
bounded from above by its largest member and bounded from below by its
smallest member.

Note: That a sequence (an) is not bounded from above does not necessarily
imply that limn→∞ an = +∞.

We now want to investigate what the completeness axiom tells us about
the convergence of sequences. The example of the sequence (1, 0, 1, 0, . . . )
shows that bounded sequences do not necessarily have limits. We need the
following.

Definition 2.3.2 A sequence (an) is said to be monotonically increasing if
an+1 ≥ an for all n ∈ N. It is said to be monotonically decreasing if an+1 ≤
an for all n ∈ N. It is said to be monotonic if it is either monotonically
increasing or monotonically decreasing.

Remark: We say the sequence is strictly monotonically increasing (respec-
tively decreasing) if we have the strict inequality in the definition above.

The main result about monotonic sequences, which is an immediate con-
sequence of the completeness axiom for real numbers is the following:

Theorem 2.3.1 Every monotonically increasing sequence which is bounded
from above is convergent. Similarly every monotonically decreasing sequence
which is bounded from below is convergent
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Proof: Let (an) be a monotonically increasing sequence which is bounded
from above. Let a = lub(A), where A = {a1, a2, ..., an, ...}. We will prove
that the sequence converges to a, its least upper bound. So let a be the
least upper bound of the sequence. Given ε > 0, we’ll show that all except
possibly a finite number of the terms of the sequence are in the interval
(a − ε, a] ⊂ (a − ε, a + ε). Since a is an upper bound, we have an ≤ a, but
since a is the least upper bound, a− ε is not an upper bound of the sequence
and therefore there must be a term an0 which is strictly larger than a − ε.
Now since the sequence is montonically increasing an ≥ an0 for all n ≥ n0.
Thus we have shown that ∀ ε > 0, ∃n0 ∈ N such that a− ε < an ≤ a < for
all n ≥ n0.

The statement about a monotonically decreasing sequences follow from
the above proof since (an) is monotonically decreasing sequence and bounded
from below if and only if (−an) is monotonically increasing and bounded
from above.

QED

Of course, there are convergent sequences which are not monotonic. For
example, an = 1+ (−1)n

n is not monotonic but converges to 1. Also there are
bounded sequences which are not convergent. For example, the sequence
(−1, 1,−1, 1, ...) defined by an = (−1)n is certainly not convergent even
though it is bounded. We have seen some bounded sequences which do not
converge. We can, however, say something about such sequences.

Definition 2.3.3 A subsequence is an infinite ordered subset of a sequence.

Proposition 2.3.1 Any subsequence of a convergent sequence is convergent
(to the same limit).

The proof of the above proposition is trivial. The next result however is
not totally obvious!

Proposition 2.3.2 Every sequence (convergent or not) contains a mono-
tonic subsequence.

Proof: Let M = {m ∈ N | an < am ∀n > m } . There are two possibilities:

Case 1. M is infinite. M = {m1 < m2 < . . . } . Then bk = amk
is a

monotonically (strictly) decreasing sequence.

Case 2. M is finite. Let n1 be larger than the maximum number in M .
Now since n1 /∈ M, ∃n2 > n1 such that an1 ≥ an2 . Furthermore n2 /∈ M
since it is larger than n1 . Thus we can continue this procedure to obtain a
monotonically increasing sequence an1 ≥ an2 ≥ an3 ≥ . . . .
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QED

Combining this last proposition with the basic theorem about monotonic
sequences (Theorem 2.3.1), we obtian the famous result attributed to the
Czech mathematician and philosopher Bernard Bolzano (1781 to 1848) and
the German mathematician Karl Weierstrass (1815 to 1897):

Theorem 2.3.2 Bolzano-Weierstrass Theorem
Every bounded sequence has a convergent subsequence.

Note: A bounded sequence may have many convergent subsequences (for ex-
ample, a sequence consisting of a counting of the rationals has subsequences
converging to every real number) or rather few (for example a convergent
sequence has all its subsequences having the same limit). In fact we define:

Definition 2.3.4 A point a is called an accumulation point of a sequence
(an), if there is a subsequence that converges a.

A point a is an accumulation point of (an) if every ε-neighbourhood of a
contains infinitely many members of the sequence (not necessarily distinct
points!). In other words, x is not an accumulation point of (an) only if
∃ε > 0 such that |an − x| ≥ ε for all n . Therefore the points that are
not accumulation points of a sequence form an open set in the sense that
every such point has a neighbourhood consisting only of points that are not
accumulation points. From this it follows that the complementary set of
accumulation points is closed (for the definition of closed and open sets, see
next chapter). If A denotes the set of all accumulation points of a sequence
(an), then glb(A) and lub(A) both belong to A (provided A is bounded).

Definition 2.3.5 limsupn→∞an = lub(A) if the sequence is bounded from
above. (Otherwise we set limsup = ∞).
Similarly we define liminfn→∞an = glb(A) if the sequence is bounded from
below. (Otherwise we set liminf = −∞).

In simple language, limsup is the largest and liminf is the smallest accumu-
lation point of a sequence. Moreover a sequence is convergent iff limsup is
equal to liminf, so that there is exactly one (finite) accumulation point.
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2.4 Cauchy sequences

One apparent problem with deciding whether a sequence is convergent or
not, using the definition, is that one is supposed to know the limit first. An
elegant way around this problem is to use a fundamental idea first introduced
by the French mathematician Augustin Louis Cauchy (1789 to 1857).

Definition 2.4.1 We say that a sequence (an)n∈N is a Cauchy sequence if
and only if the following is true:

∀ ε > 0, ∃N ∈ N such that |an1 − an2 | < ε for all n1, n2 ≥ N .

Informally this means that any two terms (not just for two consecutive
terms!) of a Cauchy sequence can be made arbitrarily close to each other
if we go far enough in the sequence. Note that this definition does not use
the limit of the sequence. Here are some immediate properties of Cauchy
sequences:

1. Any Cauchy sequence is bounded.
Proof: Let (an) be a Cauchy sequence Setting “ε = 1” in the definition we
see that ∃N such that |an1 − an2 | < 1 for all n1, n2 ≥ N . In particular
all an ∈ (aN − 1, aN + 1) for all n ≥ N and hence the set {an : n ∈ N} is
bounded.

2. Any convergent sequence is a Cauchy sequence.
Proof: Let (an) be a convergent sequence with lim an = a. Given ε > 0, ∃N
so that every an with n ≥ N lies in the 1

3ε -neighbourhood of a. Any two
points in that neighbourhood are obviously at a distance strictly less than
ε apart.

The fundamental property about Cauchy sequences is the following

Theorem 2.4.1 A sequence of real numbers is convergent if and only if it
is a Cauchy sequence.

Proof: By the proposition above, we only have to show that every Cauchy
sequence is convergent, so let (an) be a Cauchy sequence. Since a Cauchy se-
quence is bounded it has a convergent subsequence bk = ank

by the Bolzano-
Weierstrass theorem. Let b be the limit of the subsequence. Then given
ε > 0, ∃nK such that all terms of the subsequence bk with k ≥ K lie in
the 1

3ε -neighbourhood of b. Now since (an) is Cauchy ∃n0 such that all
terms an with n ≥ n0 are at a distance less than 1

3ε apart. Now choose
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N = max(n0, nK). Then all terms of the sequence an with n ≥ N are at a
distance less than ε from b and hence liman = b

Remarks: The fact that Cauchy sequences in R are the same as convergent
sequences is called the Cauchy criterion for convergence. The completeness
axiom to prove the last result is crucial. For example, any sequence of ra-
tional numbers converging to an irrational number is a Cauchy sequence
that is trying to converge but cannot converge in Q. In fact, Cantor (1845
- 1918) used the idea of a Cauchy sequence of rationals to give a construc-
tive definition of the Real numbers. Spaces (not just R) where all Cauchy
sequences converge are called complete. In fact, one can formulate the com-
pleteness axiom for R in terms of Cauchy sequences (provided we assume
the Archimedean property). Here are some equivalent formulations of the
axiom:

C1 Every subset which is bounded from above has a least upper bound.

C2 Every bounded sequence has a convergent subsequence.

C3 Every Cauchy sequence is convergent.

The last property is a useful way of generalizing the idea of completeness
to more general spaces. For the purpose of the next section we need the field
of complex numbers, so a quick reminder:

Definition 2.4.2 A complex number is simply a pair of real numbers writ-
ten as z = x + i y where the magic “imaginary” number i has the “unreal”
property: i2 = −1 .

We add and multiply two complex numbers as follows:

(x1 + i y1) + (x2 + i y2) = (x1 + x2) + i (y1 + y2)

(x1 + i y1).(x2 + i y2) = (x1x2 − y1y2) + i (x1y2 + y1x2)

The complex numbers are denoted by C and they form a field. The
multiplicative inverse of a non-zero complex number z is given by I assume
that you are familiar with simple arithmetic and algebraic properties of these
numbers. For a complex number z = x + iy, x = Re(z) is called the real
part, y = Im(z) is called the imaginary part. z̄ = x − i y is the conjugate
and |z| =

√
zz̄ the absolute value (or modulus) of z. The complex numbers

are denoted by C and they form a field. The multiplicative inverse of a
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non-zero complex number z is given by z−1 = z̄
|z|2 . I assume that you are

familiar with simple arithmetic and algebraic properties of these numbers.
Using the distance |z − w| between two complex numbers z and w, we can
define a Cauchy sequence of complex numbers in exactly the same way as
for real sequences. Using the Pythagorian identity |x + i y|2 = x2 + y2 and
the triangle inequality |w + z| ≤ |w|+ |z| valid in C, one easily observes that
a sequence of complex numbers (zk) = (xk + i yk) is convergent iff the two
real sequences (xk) and (yk) are both convergent. So we arrive at one main
property that we need about complex numbers:

Proposition 2.4.1 C is complete, i.e. every Cauchy sequence in C is con-
vergent.

Remark: The one property for R that is different from C is that we do not
have an ordering for C. There is no such thing as a positive complex number!
On the other hand, there is an algebraic property that is crucial for C (but
not true in R), namely that C is algebraically closed, i.e., every polynomial
(with complex coefficients) has a zero in C. For example z2 + 1 = 0 is
solvable in C (but not in R) and the two solutions are ± i .

2.5 Series

Although computing with series of numbers (real or complex) is the bread
and butter of everyday mathematics and is of great practical and theoretical
importance, we will be brief in our treatment of series, since this is just a
short one semester course.

Definition 2.5.1 A series is simply a sequence of the form sn =
∑n

i=1 ak =
a1 + · · ·+ an where the ai’s numbers (real or complex).
The series is said to be convergent iff the sequence of partial sums sn is
convergent and we write

∑∞
i=1 ai = s if limn→∞ sn = s . s is then called the

sum of the infinite series. By definition, a divergent series is a series that
is not convergent.

Examples:
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1. The geometric series a + a r + a r2 + · · · converges to the sum a
1−r if

|r| < 1. It is divergent otherwise (assuming a 6= 0). This follows from the
identity:

n∑
k=0

rk =
1− rn+1

1− r

and the fact that rn+1 → 0 as n →∞ for |r| < 1 .

2.
∑∞

k=1
1
kp , where p > 0 is an important series in number theory and

defines the zeta function ζ(p). It converges for p > 1 and diverges for p ≤ 1 .
For example ζ(2) = π2

6 .

Proposition 2.5.1
∞∑

k=1

1
kp

converges for p > 1

Proof:

s2n−1 = 1 +
( 1

2p
+

1
3p

)
+

( 1
4p

+ · · ·+ 1
7p

)
+ · · ·+

( 1(
2n−1

)p + · · ·+ 1(
2n − 1

)p

)
≤ 1 + 2

( 1
2p

)
+ 4

( 1
4p

)
+ · · ·+ 2n−1

( 1(
2n−1

)p

)
= 1 + 2

1
2p−1

+
1

4p−1
+ · · ·+ 1(

2n−1
)p−1

<
1

1− 21−p

Therefore sn is a bounded from above (for p > 1), and since it is a
monotonically increasing sequence (being the partial sum of a positive series
it has to converge.

QED

Proposition 2.5.2
∞∑

k=1

1
kp

diverges for p ≤ 1
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Proof: We first look at the harmonic series
∑ 1

k where p = 1.

s2n = 1 +
1
2

+
(1

3
+

1
4

)
+ · · ·+

( 1
2n−1 + 1

+ · · ·+ 1
2n

)
≥ 3

2
+ 2

1
4

+ · · ·+ 2n−1
( 1

2n

)
= 1 +

n

2

Therefore sn is unbounded and the harmonic series is divergent. For
0 < p < 1, we have 1

kp > 1
k for all k, so

∑n
k=1

1
kp ≥

∑n
k=1

1
k for all n and

hence
∑ 1

kp diverges for 0 < p < 1.
QED

2.6 Convergence criteria for series

Proposition 2.6.1 (Cauchy criterium).
∑

ai converges iff
∀ε > 0 ∃n0 ∈ N such that n > m > n0 ⇒ |am + · · ·+ an| < ε

This is just a restatement of the definition of a Cauchy sequence for the
partial sums of a series.

Corollary 2.6.1
∑

an converges ⇒ limn→∞ an = 0

Thi converse is not true. A counterexample is the harmonic series.

Proposition 2.6.2 (Basic Comparison Test):
If ∃K such that 0 ≤ ak ≤ bk for all k ≥ K, then

∑
bk is convergent ⇒∑

ak is convergent.

This follows from the fact that the partial sums of both series form mono-
tonically increasing sequences and the partial sums for

∑
bk dominate those

of
∑

ak .

For ease of language, we will say that a statement is true for all suffi-
ciently large k if ∃ K such that the statement is true for all k ≥ K .

Definition 2.6.1 A series
∑

ai is said to be absolutely convergent if
∑
|ai|

is convergent.

Since |am + · · ·+an| < ||am|+ · · ·+ |an||, it is easily seen, by the Cauchy
criterium, that absolute convergence implies convergence, but the converse
is not true.

32



Proposition 2.6.3 If, for all sufficiently large k , |ak| ≤ C rk for some
positive constants C and 0 ≤ r < 1 (C and r are independent of k!), then
the series

∑
ak is absolutely convergent. (ak can be complex numbers).

Proof: Use the basic comparison test to compare the series
∑
|ak| with the

convergent geometric series C
∑

rk.
QED

Corollary 2.6.2 (RatioTest):
If limk→∞

∣∣∣ak+1

ak

∣∣∣ = q < 1, then
∑

ak is absolutely convergent.

Proof: Choose r = 1
2(1+q). Then for all sufficiently large k ≥ K ,

∣∣∣ak+1

ak

∣∣∣ < r

and hence |ak| ≤ Crk for all k ≥ K with C = |aK |r−K .
QED

Corollary 2.6.3 (Root Test):

If limk→∞

(
|ak|

) 1
k = q < 1, then

∑
ak is absolutely convergent.

Proof: Choose r = 1
2(1 + q). Thew for sufficiently large k ,

(
|ak|

) 1
k

< r and

so |ak| ≤ rk for all k ≥ K.
QED

Definition 2.6.2 An alternating series is a series of real numbers of the
form ±

∑∞
k=1(−1)k ak , where all the numbers ak ≥ 0.

Proposition 2.6.4 (Leibniz test for alternating series):
An alternating series

∑∞
k=1(−1)k−1 ak satisfying

(i) ak+1 ≤ ak for all sufficiently large k

(ii) limk→∞ ak = 0

is convergent.

For your pleasure, the simple proof, which can be found in any elemen-
tary calculus text book, is left as an exercise at the end of this chapter. For
example

∑ (−1)k−1

k is convergent (to log(2) although the harmonic series is
divergent. Series which are convergent but not absolutely convergent are
called conditionally convergent. These series are very sensitive to the order
in which they are summed up. In fact the following rather surprising fact is
true.
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Proposition 2.6.5 Let
∑

ak be a conditionally convergent series of real
numbers and let S be any real number. Then there is a rearrangement

∑
ãn

such that
∑

ãn = S .

Proof: Let
∑

pl be the series formed by the strictly positive terms of
∑

ak

and let
∑

qm be the rest. Since
∑

ak is convergent but not absolutely
convergent, both series

∑
pl and

∑
qm are divergent (to ±∞ respectively).

Let us assume (w.l.o.g.) that S ≥ 0 Now we can always add enough terms of
the positive series to get a smallest (first) partial sum that is strictly larger
than S. After that we add up (or if you prefer subtract!) just enough terms
from the other negative series to make the total strictly less than S. Now
we know that all the terms → 0 (since the original seres is convergent after
all!), so by continuing this process, we arrive at a sequence of partial sums
(with terms rearranged as above) converging to S.

QED

We end this section with a product formula that we need in the next
section for power series.

Theorem 2.6.1 (Cauchy product formula for series).
Let

∑∞
k=0 an and

∑∞
k=0 bn be two absolutely convergent series. Then their

Cauchy-product, defined to be the series
∑

cn with cn =
∑n

k=0 ak bn−k is
absolutely convergent and

( ∑
an

)( ∑
bn

)
=

∑
cn .

Proof: Since the two series are absolutely convergent, we can assume w.l.o.g.
that all the terms are non-negative, so that all the partial sums are mono-
tonically increasing. Since sn =

∑n
k=0 an → S and tn =

∑n
k=0 bn → T ,

the product sequence: sn tn → ST . Therefore, by the Cauchy criterium
s2nt2n − sntn → 0 as n → ∞ . Now smtm is the sum of all terms aibj with
i, j ≤ m. Let um =

∑m
k=0 cm. Then um is the sum of all terms aibj with

i + j ≤ m . So sntn ≤ u2n ≤ s2nt2n and hence, un converges to ST .

2.7 Power Series

Definition 2.7.1 A power series is simply a series of the form∑
an (x− c)n

where c and the an’s are constants and x is a variable (real or complex).
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Given a power series, the principal task is to determine the values of the
variable x, for which the series converges and to study the sum of the power
series as a function of x. Note that a power series always converges at x = c
to the value 0 . The first main result states that a power series converges
(absolutely) for all points inside a circle with center c in the complex plane
and that it diverges outside this circle. (The circle could degenerate to a
point or to the whole plane). We will mainly deal with the case c = 0, since
the general case is just a simple shift.

Examples

1. The geometric series a + a x + a x2 + · · · converges to the sum a
1−x if

|x| < 1. It is divergent otherwise (assuming a 6= 0).

2. The power series:
∑∞

k=0
1
k!x

k is one of the most important power series,
since it defines the exponential function ex for both real and and complex
values of x. Since 1

(k+1)!x
k+1/ 1

k!x
k = x

k+1 , this series converges for all values
of x (by the ratio test).

3. The power series:
∑

k!xk converges only at x = 0 ( again by the ratio
test).

4. The series
∑∞

k=1
(−1)k+1

k xk is convergent inside the unit circle |x| < 1. It
arises by integrating a geometric series and defines the logarithm as we see
later in the course).

Proposition 2.7.1

(i) If the power series
∑

an xn converges for x = x0 then it converges abso-
lutely for all x such that |x| < |x0|.

(ii) If the power series
∑

an xn diverges for x = x0 then it diverges for all
x such that |x| > |x0|.

Proof: We compare with a geometric series. If
∑

anxn
0 is convergent,

anxn
0 → 0 and so in particular, all the terms are bounded: |anxn

0 | ≤ C for
some constant C > 0 . Let b = |x|

|x0| < 1 . Then the geometric series C
∑

bn

is convergent and hence by the basic comparison theorem, so is the series∑
anxn , since |anxn| = |anxn

0 |bn ≤ Cbn . (ii) follows from a comparison
with a divergent geometric series since |x|

|x0| > 1 .
QED
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The “largest” value R for such that the power series converges for all
|x| < R and diverges for all |x| > R, is called the radius of convergence.
This can be computed by the formula R−1 = limsupn→∞|an|

1
n (by the root

test) or by the formula R−1 = limn→∞
|an+1|
|an| (ratio test).

Remark: The ratio and the root tests are related by the following relation:

Proposition 2.7.2 For any sequence of positive real numbers (an) , we have

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
n
√

an

lim sup
n→∞

an+1

an
≥ lim sup

n→∞
n
√

an

I will leave the proof of this proposition as an exercise for you (but
please do it!). We will continue with the more important properties of using
power series to define functions (for example differentiating and integrating
power series) when we deal with uniform convergence in Chapter 7, but
I cannot resist introducing the most important “transcendental” function:
the exponential function, using a power series, in the next section.

2.8 The Exponential Function

Definition 2.8.1 The exponential function is defined by:

exp(z) = ez =
∞∑

n=0

1
n!

zn

for any z ∈ C .

Definition 2.8.2 The number e is defined by:

e = exp(1) =
∞∑

n=0

1
n!

Besides the obvious normalization exp(0) = 1, the exponential function
satisfies the following extremely important functional identity (In fact, it
can be characterized by this property):

36



Theorem 2.8.1
exp(w + z) = exp(w) exp(z)

for all z, w ∈ C

Proof: Multiplying the two series
∑∞

n=0
1
n! wn and

∑∞
n=0

1
n! zn by the Cauchy

product formula we obtain the series
∑∞

n=0 cn , with

cn =
n∑

k=0

wn−k

(n− k)!

n∑
k=0

zk

k!
=

1
n!

n∑
k=0

(
n

k

)
wn−kzk =

1
n!

(w + z)n

by the binomial formula of Chapter 1.
QED

Corollary 2.8.1

(i) exp(−z) = (exp(z))−1 for all z ∈ C
(ii) exp(x) > 0 for all x ∈ R
(iii) exp(n) = en for all n ∈ Z
(iv) exp(z̄) = ēxp(z) for all z ∈ C

Definition 2.8.3 The (real-valued) trigonometric functions are defined by:
cos(y) = Re(eiy) and sin(y) = Im(eiy) for any y ∈ R .

We therefore have Euler’s famous formula

ei θ = cos(θ) + i sin(θ)

and also the power series expressions:

(i) cos(x) = 1
2(exp(ix) + exp(−ix)) =

∑∞
k=0(−1)k 1

(2k)! x2k

(ii) sin(x) = 1
2i(exp(ix)− exp(−ix)) =

∑∞
k=0(−1)k 1

(2k+1)! x2k+1

valid for any x ∈ R .

All the other trigonometric functions (tangent, cotangent, secant and
cosecant) can be expressed in terms of cosine and sine.

Trigonometric identities such as cos(α+β) = cos(α) cos(β)−sin(α) sin(β)
sin(α+β) = cos(α) sin(β)+sin(α) cos(β) follow from the fundamental func-
tional equation for the exponential function. The fundamental identity:
(cos θ)2 +(sin θ)2 , which relates the trigonometric functions to the unit cir-
cle x2 + y2 = 1, follows from the fact that the conjugate of eix is e−ix and
so |eix|2 = 1.

Closely related and very useful functions are the hyperbolic functions
defined by:
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cosh(x) = 1
2(ex + e−x)

sinh(x) = 1
2(ex − e−x)

These functions play an important role in geometry and physics.
The fundamental identity here is: (cosh t)2− (sinh t)2 = 1 . This relates

the hyperbolic functions to the hyperbola x2− y2 = 1 in the same way that
the trigonometric functions came from the circle. There are also transcen-
dental functions that are related to the ellipse, called elliptic functions!

38



2.9 Exercises

0. Complete the proof of Proposition 2.2.2 about the arithmetic properties
of limits.

1. Assume that limk→∞ ak = l. Show that:

(i) limk→∞ |ak| = |l|
(ii) If l > 0 then ∃N ∈ N such that n > N ⇒ an > 9

10 l

2. Let ak =
√

k + 103−
√

k ; bk =
√

k +
√

k−
√

k ; and ck =
√

k(1 + 10−3)−√
k for k ∈ N . Show that ak > bk > ck for all k < 106 , but ak → 0, bk →

0.5; and ck → +∞ as k →∞ .

3. Define a sequence recursively by the formulas: a1 = a, a2 = b and
ak = 1

2(ak−1 + ak−2) for all k > 2 . Show that an converges and find the
limit.

4. Compute: √
1 +

√
1 +

√
1 + ...

i.e., the limit of the sequence defined recursively by ak+1 =
√

ak + 1 with
a1 = 1 .

5. Compute:

1 +
1

1 + 1
1+...

i.e., the limit of the sequence defined recursively by ak+1 = 1 + 1
ak

with
a1 = 1 .

6. Compute the limits of the following sequences if they converge. Do not
use logarithms or l’Hospital’s rule and stuff like that! Verify your answers,
i.e. prove that they are correct.

(i) an = b
1
n with b > 0

(ii) an = n
1
n

(iii) an = (bn + cn)
1
n with b, c > 0

(iv) an = n!
nn
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7. Cauchy condensation test Suppose that (an) is a monotonically decreasing
sequence of positive real numbers such that the series

∑
an is convergent.

Let bn = 2n a2n . Prove that the series
∑

bn is also convergent.

8. Prove the following form of the Bolzano-Weierstrass theorem:
Every bounded infinite set has at least one accumulation point.
(An accumulation point of a set X ⊂ R is a point a such that every ε-
neighbourhood of a contains at least one point of X distinct from a.)

9. Prove Leibniz’ test for alternating series.

10. For each of the the following power series determine all values of x for
which the series (i) converge absolutely; (ii) converges conditionally and (iii)
diverges.

(i)
∑ xn

np with p > 0

(ii)
∑ n2

3n (x + 2)n

(iii)
∑ (n!)2

(2n)!x
n

(iv)
∑

2n n!
nn xn

11. Prove proposition 2.7.2.

12. Suppose that 0 < r < 1 and that a sequence (an) satisfies the
contraction property: |an+1−an| ≤ r |an−an−1| for all n ≥ 10 . Prove that
(an) is a Cauchy sequence and hence converges.

13. Sum the series

1 +
1
3

+
1
5

+
1
9

+
1
15

+
1
25

+
1
27

+ · · · ,

where we sum over all reciprocals of integers whose only prime factors are
3 and 5 . (This is a product of two geometric series).

14. Show that cos(2θ) =
(
cos(θ)

)2−
(
sin(θ)

)2 and sin(2θ) = 2 cos(θ) sin(θ)
from the definitions. Derive similar formulas for the hyperbolic functions.

15. Find a formula for the finite sum:

1
2

+ cos θ + cos(2θ) + · · ·+ cos(nθ)

.
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18. Show that e is irrational.

19. Show that an =
(
1+ 1

n

)n is a bounded monotonically increasing sequence.
What is the limit?

20*. Show that
lim

n→∞

(
1 +

x

n

)n
= ex

for any x ∈ R .
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2.9.1 Short solutions to some of the exercises

2. If k < 106 , then
√

k < 103 and 10−3 k <
√

k .
So:

√
k + 10−3 k <

√
k +

√
k <

√
(k + 103) and ak > bk > ck .

ak =
√

(k + 103)−
√

k =
103

√
k + 103 +

√
k
→ 0

bk =
√

k +
√

k −
√

k =

√
k√

k +
√

k +
√

k
=

1√
1 + 1√

k
+ 1

→ 1
2

ck =
√

k(1 + 10−3)−
√

k =
k 10−3

√
k + 10−3 k +

√
k

=
10−3

√
k√

1 + 10−3
→∞;

3. Let us assume first that a = 0 and b = 1 . The general case follows by
a translation and dilation of this interval. The recursive definition has the
geometric meaning that the sequence is obtained by taking the midpoint of
the preceding two points (beginning with 0 and 1 ). So you go back and
forth, halving your step size everytime!
The sequence is therefore:

(0, 1, 1− 1
2
, 1− 1

2
+

1
4
, 1− 1

2
+

1
4
− 1

8
, · · · )

.
By the formula for the sum of a geometric series:

ak = 1− 1
2

+
1
4
− 1

8
· · · + (−1

2
)k−2 =

1− (−1
2)k−1

1− (−1
2)

=
2
3
(1− (−1

2
)k−1)

Therefore
lim ak =

2
3

since lim(−1
2)k−1 = 0 .

In the general case the limit is

a +
2
3
(b− a) =

a + 2b

3

4. We first prove that the given sequence converges by showing that it is
increasing and bounded from above.
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To prove an+1 > an for all n , we proceed by induction. For n = 1 : a2 =√
2 > 1 = a1 . Assume ak+1 > ak . Then ak+2 = sqrt1 + ak+1 > ak+1 =

sqrt1 + ak . We now show that an ≤ 2 for all n by induction. For n = 1 :
a1 = 1 < 2 . Assume ak < 2 . Then ak+1 = sqrt1 + ak < sqrt1 + 2 < 2 .
Let a = lim an . Then 0 ≤ a ≤ 2 and satisfies a = sqrt1 + a . Therefore a
is equal to the Golden Ratio:

φ =
√

5 + 1
2

5. The limit here is also the Golden Ratio φ .

6.

(i) limn→∞ b
1
n = 1 .

Proof: Assume first that b > 1 . Then an > 1 and we put an = 1 + hn with
hn > 0 . Then, by the Bernoulli inequality: b = an

n = (1 + hn)n ≥ 1 + nhn ,
so 0 < hn ≤ b−1

n and hence hn → 0 . If b < 1 , then since 1
b < 1 and so

limn→∞(1
b )

1
n = 1 . If b = 1 , there is nothing to prove!

(ii) We set an = 1 + εn .
Now n = (1 + εn)n > 1

2n(n − 1)ε2 for all n > 2 , by the binomial formula.
So ε < sqrt 2

n−1 and hence εn → 0 . Therefore limn→∞ n
1
n = 1 .

(iii) limn→∞(b + c)
1
n = max(b, c) .

Proof: Assume w.l.o.g. that b > c > 0 . (bn + cn)
1
n = b(1 + qn)

1
n , where

0 < q = c
b < 1 . Now (1+qn)

1
n < (1+q)

1
n for n > 1 and so Set (1+qn)

1
n → 0

by (i).

(iv) limn→∞
n!
nn = 0 since

n!
nn

=
n

n

n− 1
n

. . .
2
n

1
n

<
1
n

12. By induction: |an+l+1 − an+l| ≤ r |an+l − an+l−1| ≤ · · · r(n + l −
1) |a2 − a1|
By the triangle inequality: |an+k − an| ≤

∑k−1
l=0 |an+l+1 − an+l| ≤ |a2 −

a1|
∑k−1

l=0 rn+l−1 ≤ rn

1−r |a2 − a1| for all n > 10 and for all k ! Since rn → 0 ,
this implies that an is a Cauchy sequence.
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13. By the Cauchy product formula of two absolutely converging series we
have: ( ∞∑

k=0

1
3k

) ( ∞∑
l=0

1
5l

)
=

( ∞∑
k,l=0

1
3k 5l

)
which is the given series and therefore its sum is 1

1− 1
3

1
1− 1

5

= 15
8 .

Remark: It follows from this that the number of primes is infinite, since the
harmonic series diverges and each integer is a (unique) product of primes!

15.

1
2

+
n∑

k=1

cos(kθ) =
1
2

n∑
k=0

(ei kθ + e−i kθ)

=
1
2

n∑
k=0

ei kθ +
1
2
e−i nθ

n∑
k=0

ei (n−k)θ

=
1
2
(1 + e−i nθ)

1− ei (n+1)θ

1− ei θ

=
1
2
e−i n θ

2
(
ei n θ

2 + e−i n θ
2
) ei (n+1) θ

2

(
e−i (n+1) θ

2 − ei (n+1) θ
2

)
ei θ

2 (e−i θ
2 − ei θ

2 )

=
cos(n θ

2) sin((n + 1) θ
2)

sin( θ
2)

44



Chapter 3

Topology of the real line R

3.1 Open sets and closed sets

Definition 3.1.1 A subset U ⊂ R is said to be open if ∀a ∈ U, ∃ δ > 0
such that (a − δ, a + δ) ⊂ U . A subset A ⊂ R is said to be closed if its
complement Ac is open.

We decree the empty set to be open (this actually follows logically from
the definition). Open intervals on the real line are open and closed intervals
are closed. It is trivial to see that any union of open sets is open and hence
any intersection of closed sets is also closed. However, in general, only finite
intersections of open sets are open and only finite unions of closed sets are
closed. For example, the union of all the closed intervals [ 1

n , 1 − 1
n ] is the

open interval (0, 1) and the intersection of all open intervals (− 1
n , 1 + 1

n) is
the closed interval [0, 1] .

Definition 3.1.2 The interior of A ⊂ R is the union of all open sets con-
tained in A. It is always open and is denoted by int(A) (sometimes also by
Å). The closure of A ⊂ R is the intersection of all closed sets that contain
A. It is obviously closed and is denoted by Ā (sometimes also by clo(A) .

If U is open then Ů = U and if A is closed then Ā = A. The closure of a
set A consists of A and all its limit (or accumulation) points where a limit
point of A is a point p such that every neighbourhood of p contains a point
distinct from p which is in A. The limit of any sequence (an) contained in
A, if it exists, belongs to the closure of A.
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3.2 Connected sets

Definition 3.2.1 A subset A ⊂ R is called disconnected if there are two
disjoint open sets U and V with U ∩A 6= ∅, V ∩A 6= ∅ such that A ⊂ U ∪V .
A connected set is a set which is not disconnected.

The fundamental fact about connected sets on R is

Theorem 3.2.1 If A is a connected set on the real line and if a, b ∈ A
with a < b, then the whole interval [a, b] ⊂ A. Any interval [a, b] ⊂ R is
connected. In fact, any connected set of R is an interval (not necessarily
bounded or closed).

Proof: If ∃x ∈ (a, b) such that x /∈ A, then (−∞, x) and (x,+∞) are
two disjoint non-empty open sets such that would disconnect A , i.e , A ⊂
(−∞, x)∪(x,+∞). Now let [a, b] ⊂ U ∪V with U, V two non-empty disjoint
open subsets of R. Then ∃x ∈ U ∩ [a, b], y ∈ V ∩ [a, b] , where we can assume
that x < y. Let z = lub(U ∩ [x, y]) . If z ∈ U , then z < y (since y ∈ V )
and so there is an open neighbourhood of z contained in U ∩ [x, y], This
contradicts the fact that z is the least upper bound. On the other hand, if
z ∈ V then x < z and so there is an open neighbourhood of z contained in
V ∩ [x, y] contradicting the fact that z is the least upper bound.

QED

3.3 Compact sets

Definition 3.3.1 A subset of R is called compact if it is closed and bounded.

Let K be a compact set in R. Then since K is bounded, by the com-
pleteness axiom, K has a unique least upper bound M = sup(K) and a
unique greatest lower m = inf(K). Suppose M /∈ K. Now Kc is open, so
there exists an open neighbourhood of M : (M − ε,M + ε) ⊂ Kc implying
that M − 1

2ε is an upper bound for K which contradicts the fact that M
is the least upper bound. Therefore M ∈ K. Similarly the greatest lower
bound m also belongs to K. We have thus proved:

Proposition 3.3.1 For any compact set K, sup(K), inf(K) ∈ K

46



Let (an) be sequence contained in a compact set K. Since Kis bounded,
by the Bolzano-Weierstrass theorem, (an) has a convergent subsequence
whose limit point belongs to K = K, since K is closed. We have thus
proved:

Proposition 3.3.2 Every sequence of points in a compact set K has a sub-
sequence that converges to a limit point in K.

This property is sometimes used as the definition of compact sets in
R. There is however a more general and useful (albeit rather abstract)
characterization of compact sets which we would like to introduce:

Definition 3.3.2 An open cover of a subset A ⊂ R is a union of open sets⋃
{Uω|ω ∈ Ω} that contains A. A finite subcover of the cover

⋃
{Uω|ω ∈ Ω}

is a finite subset {ω1, ω2, ..., ωn} ⊂ Ω such that Uω1 ∪ Uω2 ∪ ... ∪ Uωn still
contains A.

Let us, for the moment call sets with the property that every open cover
has a finite subcover “kompakt” (German for compact!). First of all such a
set is necessarily bounded, because Un = (−n, n), n ∈ N is an open cover for
any subset of R and unless the set is bounded we will never be able to find
a finite subcover. Secondly, a “kompakt” set has to be closed because if p is
a limit point of the set which does not belong to the set, then we can form
the open cover Ac

n, n ∈ N, where An is the closed interval [p − 1
n , p + 1

n ] .
This certainly covers A since it covers everything in R except the point p.
In fact we now prove the key result:

Theorem 3.3.1 A subset K ⊂ R is compact if and only if every open cover
of K has a finite subcover.

Proof: Let K be a compact set and let
⋃
{Uω|ω ∈ Ω} be an open cover of K.

As a preliminary step, we find a countable subcover Uω1∪Uω2∪...∪Uωn ... that
still covers K. This can be achieved by using the fact that the countable set
Q is dense in R and so the countable set of intervals of the form (r− 1

n , r+ 1
n),

where r ∈ Q and n ∈ N, form an open cover for all of R. Each point x ∈ K is
contained in such an interval (r− 1

n , r+ 1
n) and we choose a definite Uω which

contains it. So by a change of notation we can assume that
⋃
{Uk : k ∈ N}

covers K. Assume, on the contrary, that there is no finite n such that
K ⊂ U1 ∪ ... ∪ Un. Then ∀n,∃xn ∈ K such that xn /∈ U1 ∪ ... ∪ Un. The
sequence (xn) has a subsequence that converges to a limit point x ∈ K.
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Since x is in the open set UN for some N , and since xn /∈ UN for all n > N ,
we obtain a contradiction.

QED

3.4 Elementary topology of Rn

As everyone knows Rn denotes the Euclidean vector space of all n -tuples
of real numbers: {x = (x1, x2, ..., xn)|xi ∈ R}, where n ∈ N.

We denote the distance in Rn by d(x, y) = ||x − y|| , where the norm
(= the length) ||v|| of a vector v is defined as usual by the scalar product
||v||2 =< v, v >. (For simplicity of notation we will denote vectors by simple
letters. n = 1 is a special case!).

The open ball (or disk) of radius r > 0 with centre a in Rn is the set
Br(a) = {x ∈ Rn| d(x, a) < r}. Sometimes we also use the closed ball
defined by Br(a) = {x ∈ Rn| d(x, a) ≤ r}

Definition 3.4.1 A subset A ⊂ Rn is said to be open if
∀a ∈ A, ∃ δ > 0 such that Bδ(a) ⊂ A .
A subset A ⊂ Rn is said to be closed if its complement Ac is open.

Any union of open sets is open and hence any intersection of closed sets
is also closed, but in general, only finite unions of open sets are open and
only finite intersections of closed sets are closed. This basic property of open
sets leads to the following definition of an abstract topological space where
every other “superficial” geometric property is stripped away until we are
left with the bare bones of the topology of open subsets.

Definition 3.4.2 A topological space is a set X with a distinguished col-
lection {Uτ}of subsets called open sets, containing the empty set and the set
X itself with the property that any union and any finite intersection of open
sets is open.

Definition 3.4.3 A subset A in a topological space is said to be connected
if it is not contained in a disjoint union of two non-empty open subsets

Definition 3.4.4 An open cover of a subset A in a topological space is a
union of open sets

⋃
{Uω|ω ∈ Ω} that contains A.

A finite subcover of the cover
⋃
{Uω|ω ∈ Ω} is a finite subset {ω1, ω2, ..., ωn} ⊂

Ω such that Uω1 ∪ Uω2 ∪ ... ∪ Uωn still contains A.
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Definition 3.4.5 A subset A in a topological space is said to be compact if
every open cover of A has a finite subcover.

The key theorem about compact sets in Rn is the following generalization
of the Bolzano-Weierstrass property:

Theorem 3.4.1 A subset of Rn is compact if and only if it is closed and
bounded.

3.5 Exercises

1. Determine for each of the following sets wheter they are (i) open, (ii)
closed, (iii) connected, (iv) bounded and (v) compact:

(i) (−∞, 1] ∪ (0, 5] ⊂ R

(ii) (−∞, 1] ∩ [0, 5) ⊂ R

(iii) {x : |x| ≥ 2} ⊂ R

(iv) {z : 0 < |z| ≤ 1} ⊂ C

(v) {z : |z| > 2} ⊂ C

2. Give an example of an open cover of the set (−1,+1) which does not
admit any finite subcover.

3. Show that a finite union and an arbitrary intersection of compact sets
is again compact

4. Let (Kn)n∈N be a sequence of compact subsets of the real line satisfying
the property: Kk+1 ⊂ Kk, Such a sequence is called a nested sequence.
Prove that the intersection

⋂
{Kn|n ∈ N} is non-empty. (For the sake of

simplicity you can assume that each Kn is a closed interval [an, bn]).

6*. Show that any (non-empty) open subset of R is a countable union of
disjoint open intervals.
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3.5.1 Solutions to some exercise problems

1.

(i) (−∞, 1] ∪ (0, 5] = (−∞, 5] is not open, closed, connected, not bounded
and not compact.

(ii) (−∞, 1] ∩ [0, 5) = [0, 1] is not open, closed, connected, bounded and
compact.

(iii) {x : |x| ≥ 2} = (−∞,−2]∪ [2,+∞) is not open, closed, not connected,
not bounded and not compact.

(iv) {z : 0 < |z| ≤ 1} ⊂ C is not open, not closed, connected, bounded and
not compact.

(v) {z : |z| > 2} ⊂ C is open, not closed, connected, not bounded and not
compact.

2. {(−1+ 1
n , 1− 1

n) | n ∈ N } form an open cover of (−1,+1) without a finite
subcover. The union of any finite subcollection of this nested sequence of
open intervals is of the form (−1+ 1

N , 1− 1
N ) which does not cover (−1,+1) .

4. Let Kn = [an, bn] be a nested sequence of compact intervals of the real
line such that Kk+1 ⊂ Kk , for all k . The sequence (ak) is an increasing
sequence which is bounded from above by b1 and hence it converges to a
limit a . Similarly (bk) is a decreasing sequence which is bounded from below
by a1 and hence it converges to a limit b . Now a ≤ b since ak < bk for all
k and hence the intersection id the non empty closed interval [a, b] .
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Chapter 4

Continuity

It took mathematicians some time to settle on an appropriate definition
of this key concept in analysis. Intuitively continuity means that there
are no sudden unexpected jumps. A continuous function is supposed to
have a graph with no breaks. Continuity can be defined in several different
ways, depending on the degree of abstraction and generality. The “easiest”
definition is topological and a continuous function between two topological
spaces is just a map with the property that the inverse image of any open
set is also open. Remember in a topological space every other “superfluous”
structure has been stripped away so that the only fundamental concept left
is that of an open set, so everything has to be defined in terms of open sets.

4.1 Continuous functions

We will begin with the usual ε, δ-definition for functions on the real line and
show how it can be reformulated purely in terms of open sets.

Definition 4.1.1 A function f : A → R , where A ⊂ R , is said to be
continuous at a point a ∈ A if and only if the following holds:
∀ ε > 0, ∃ δ > 0 such that x ∈ A ∩ (a− δ, a + δ) ⇒ |f(x)− f(a)| < ε

If f is continuous at each point of a subset B of A, then f is said to be
continuous on B.

Definition 4.1.2 We say that a subset B of A is relatively open (or rela-
tively closed) in A if it is the intersection of an open (respectively closed)
set and A.
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Proposition 4.1.1 A function f : A → R , where A ⊂ R , is continuous
on A if and only if for every open subset U ⊂ R the inverse image f−1(U) =
{a ∈ A | f(a) ∈ U} is relatively open in A.

Proof: Assume first that f is continuous and let U ∈ R be open. If f−1(U)
is empty it is open. Otherwise, let a ∈ f−1(U) so that f(a) ∈ U . Since U
is open, ∃ ε > 0 such that Bε(f(a)) = (f(a) − ε, f(a) + ε) ⊂ U . Therefore,
∃ δ > 0 such that f(A∩Bδ(a)) ⊂ Bε(f(a)) ⊂ U , so that A∩Bδ(a) ⊂ f−1(U)
and hence f−1(U) is relatively open in A .
Now suppose that the inverse image (under f) of every open set is relatively
open in A . Now let a ∈ A and ε > 0 be given. Then since Bε(f(a)) is
open, its inverse image: V = f−1(Bε(f(a))), which contains the point a, is
relatively open in A. Therefore ∃ δ > 0 such that Bδ(a) ⊂ V which implies
that f(A ∩Bδ(a)) ⊂ f(A ∩ V ) ⊂ Bε(f(a)).

QED

Now you can see why the characterization of continuity by open sets is
not only more general, but also by far the more elegant description. (The
ε, δ definition has been the main reason why a lot of students dislike analysis
and quit studying mathematics!). By using the definition that closed sets
are nothing but complements of open sets one can now easily prove the
following:

Proposition 4.1.2 A function f : A → R , where A ⊂ R , is continuous
on A if and only if for every closed subset B ⊂ R the inverse image f−1(B)
is relatively closed.

A simple corollary of the above proposition is the following useful fact:

Proposition 4.1.3 f : A → R , where A ⊂ R , is continuous at a point
a ∈ A if and only if whenever (an) is a sequence in A converging to a, the
sequence (f(an)) converges to f(a).

It is also convenient to have a definition of a limit of a function

Definition 4.1.3 Let f : A → R be a function and a ∈ Ā (closure of A).
Then we write limx→a f(x) = l if and only if, whenever (an) is a sequence
in A converging to a, the sequence f(an) converges to l. In other words:

∀ ε > 0, ∃ δ > 0 such that x ∈ A ∩ (a− δ, a + δ) ⇒ |f(x)− l| < ε

If f and g are real valued functions, we define the function f + g by
(f + g)(x) = f(x) + g(x) for all x in the common domain of definition.
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Similarly, we may define the difference, product and quotient of functions.
(The quotient is not defined at points where the denominator is zero). The
following arithmetic properties for continuous functions then follow easily
from the corresponding properties for limits

Proposition 4.1.4 If f and g are continuous, then so are f ± g, f.g and
f/g whenever they are defined .

Another basic property is the following:

Proposition 4.1.5 The composite f ◦g of two continuous functions is con-
tinuous, wherever the composition is defined.

Proof: This follows from the fact that (f ◦ g)−1(U) = g−1(f−1(U)) and the
elegant proposition 4.1.1.

Examples

0. Any constant function f(x) = c is continuous everywhere.

1. The identity function defined by f(x) = x is continuous everywhere.

2. Hence by the above propositions, any polynomial function is continuous
everywhere and any rational function (a ratio of two polynomial functions)
is continuous at all points where the denominator is not zero.

3. We will see later that the elementary “transcendental ” functions like sin,
cos, exp, log, ... are all continuous on their domains of definition.

4. The functions defined by f(r) = 1 for r ∈ Q and f(x) = 0 for x irrational
is defined everywhere but is discontinuous at every point, because Q is dense
in R.

5. Let f be the function defined by f(x) = 0 if x is irrational and f(m
n ) = 1

n
for a rational number m

n (in lowest terms). Then f is discontinuous at every
rational point, but continuous at every irrational point.

4.2 Continuity and Connectedness

The main result of this section is the following important

Theorem 4.2.1 The image of a connected set under a continuous map is
connected.
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Proof: Let A be a connected set and let f be continuous on A. If f(A) were
disconnected, then by definition, there are two disjoint non-empty open sets
U and V such that f(A) ⊂ U∪V . Since f is continuous, f−1(U) and f−1(V )
are two non-empty disjoint open sets such that A ⊂ f−1(U)∪f−1(V ) which
contradicts the assumption that A is connected.

QED

Using the fact that intervals on the real line are connected we obtain the
“classical” Intermediate Value Theorem of first year calculus.

Theorem 4.2.2 Let f be real-valued function continuous on a (connected)
interval I containing the two points a and b. Then for any value y which lies
between the two real numbers f(a) and f(b) there exists a point x between a
and b such that f(x) = y.

Since this is one of the key results, let me give you another “more ele-
mentary” proof of the above theorem.

Alternate Proof: By a some simple translation (i.e., a vertical shift of the
graph of the function), we can assume w.l.o.g. that I = [a, b] , f(a) <
0 , f(b) > 0 and that y = 0. We then define two monotonic sequences (one
increasing and the other decreasing) (ak) and (bk) such that f(ak) ≤ 0 and
f(bk) ≥ 0 for all k ∈ N recursively as follows:
First put: a1 = a, b1 = b . Now suppose ak, bk are defined. Let ck =
1
2(ak + bk) be the mid point of [ak, bk] . If f(ck) ≤ 0 set ak+1 = ck and
bk+1 = bk . If f(ck) > 0 set ak+1 = ak and bk+1 = ck .
We then have: a = a1 ≤ · · · ≤ ak ≤ ak+1 < bk+1 ≤ bk ≤ · · · ≤ b1 = b.
Moreover bk+1 − ak+1 = 1

2(bk − ak) , so that by induction bk+1 − ak+1 =
1
2k (b − a) → 0 as k → ∞ and hence lim ak = lim bk = x , say. Since f is
continuous, lim f(ak) = f(x) ≤ 0 and lim f(bk) = f(x) ≥ 0 and therefore
f(x) = 0 .

QED

Remark: The method used in the above proof can be implemented nu-
merically (say on a computer) to find solve an equation of the form f(x) = 0.
It is called the bisection method. The method of false position uses a similar
idea, but this time instead of taking the midpoint of the interval at each in-
teration step, one uses the intersection point of the x−axis with the straight
line joining (ak, f(ak)) and (bk, f(bk)), i.e.

ck = (bkf(ak)− akf(bk))/(f(ak)− f(bk))

54



.

Another simple consequence is the following:

Proposition 4.2.1 If f : [a, b] → R is continuous and injective then f is
either strictly increasing (i.e. x < y ⇒ f(x) < f(y)) or strictly decreasing.

Proof: We assume w.l.o.g. that f(a) < f(b). Let x < y ; x, y ∈ [a, b] . Define
g(t) = f(y(t))− f(x(t)) , where x(t) = a + t(x− a) and y(t) = b− t(b− y)
for t ∈ [0, 1] , so that ∀ t ∈ (0, 1) y(t)− x(t) = (1− t)(b− a) + t(y − x) > 0 .
g[0, 1] ⇒ R is a difference of composition of continuous functions and hence
is continuous. At t = 0 : g(0) = f(b)− f(a) > 0 . If g(1) = f(y)− f(x) < 0 ,
then ∃ t∗ ∈ (0, 1) such that g(t∗) = 0, by the Intermediate Value Theorem
applied to g . This contradicts the fact that f is injective since y(t∗) > x(t∗) ,
so f(x) < f(y) .

QED
An important consequence is the following:

Corollary 4.2.1 If f : [a, b] → [c, d] is continous and bijective, then the
inverse function g = f−1 : [c, d] → [a, b] is continuous (and monotonic).

Proof: We may assume w.l.o.g. that f is strictly increasing. Let x ∈
(a, b) , y = f(x) ∈ (c, d) and let ε > 0 be given. f maps the ε-neighbourhood
of x (in [a, b]) bijectively onto the interval U = (f(x + ε), f(x− ε)) contain-
ing y in [c.d]. Pick δ = 1

10min
(
f(x + ε) − y , y − f(x − ε)

)
so that the

δ-neighbourhood of y lies inside U . Then g = f−1 will map this neighbour-
hood back into the given ε-neighbourhood U of x = g(y) .

QED

4.3 Continuity and Compactness

The main result of this section is the following extremely important

Theorem 4.3.1 The image of a compact set under a continuous map is
compact

Proof: Let K be a compact set and let f be continuous on K. Let
⋃
{Uω|ω ∈

Ω} be an open cover of f(K). Then since f is continuous,
⋃
{f−1(Uω)|ω ∈

Ω} is an open cover of the compact set K and so has a finite subcover:
K ⊂ f−1(Uω1) ∪ f−1(Uω2) ∪ ... ∪ f−1(UωN ). It is now obvious that f(K) ⊂
Uω1 ∪ Uω2 ∪ ... ∪ UωN .
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QED

As you can see from the proof given above, the theorem is valid in any
topological space, but for real-valued functions it boils down to the following
“Extreme Value Theorem” of first year calculus:

Proposition 4.3.1 Let f be real-valued function continuous on a closed and
bounded set K. Then f attains its absolute minimum and maximum values
on K

Proof: Since f(K) is a bounded set of R, both its least upper bound:
sup(f(K)) and its greatest lower bound inf(f(K)) exist and since f(K)
is closed they are both elements of f(K). QED

Combining the two basic theorems, we can now say that the continuous
image of a closed, connected and bounded interval [a, b] is also a closed,
connected and bounded interval [m,M ] where m is the absolute minimum
and M is the absolute maximum value of f that are attained on [a, b].

As an application of the above ideas and theorems let us state and prove
the following beautiful result.

Theorem 4.3.2 Fixed Point Theorem
Let f : [a, b] → [a, b] be a continuous map. Then ∃ p ∈ [a, b] such that
f(p) = p, i.e. p is a fixed point of the map f .

Proof: We assume that f(a) 6= a and f(b) 6= b because otherwise, either a
or b is a fixed point. Since f maps [a, b] to [a, b] we then must have f(a) > a
and f(b) < b. Let g be defined by g(x) = f(x) − x. g is then a continuous
function such that g(a) > 0 and g(b) < 0, so by the Intermediate Value
Theorem ∃ p ∈ (a, b) such that g(p) = 0 which means that f(p) = p.

QED

The above is an example of an existence result that mathematicians find
extremely useful. There is a generalization of the above theorem for certain
domains in Rn (or even to more general spaces) called the Brouwer Fixed
Point Theorem.

Continuing in the same vein, I would also like to mention another very
important existence result result that is amazingly simple to state and prove
but its appearance is ubiquitous like dandelions.
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4.3.1 The Contraction Mapping Principle

Theorem 4.3.3 : Let f : R → R be a continuous map with the following
contraction property:
∃C ∈ (0, 1) such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ R.
Then, ∃ a unique fixed point p ∈ R such that f(p) = p.

Proof:

Step 0. We first show that f is continuous:
∀ε > 0 ∃ δ = ε

C such that |x− y| < δ ⇒ |f(x)− f(y)| ≤ C|x− y| < ε for all
x, y .

Step 1. Construction of a sequence converging to the fixed point:
Define: x1 = 1 and recursively: xk+1 = f(xk).

Step 2. Proof that the sequence is Cauchy:
|xk+2 − xk+1| = |f(xk+1 − f(xk)| ≤ C|xk+1 − xk| and hence by induction:
|xk+2 − xk+1| ≤ Ck|x2 − x1| for all k ∈ N. Therefore:

|xk+m+1−xk+1| ≤
m∑

i=1

|xk+i+1−xk+i| < |x2−x1|
m∑

i=1

Ck+i−1 < |x2−x1|
Ck

1− C

Since limk→∞ Ck = 0 , (xk) is a Cauchy sequence and hence converges to a
limit lim xk = p .

Step 3. Proof that xk converges to a fixed point:
Since f is continuous, p = lim xk+1 = lim f(xk) = f(lim xk) = f(p).

Step 4. Proof that the fixed point is unique:
If p and q are two fixed points, then |p− q| = |f(p)− f(q)| ≤ C|p− q| with
0 < C < 1 so p = q.

QED

Remark: From the proof we can see that the theorem holds in any com-
plete metric space (see Chapter 7 for the definition of a metric space).

4.4 Uniform Continuity

Definition 4.4.1 A function f : A → R , where A ⊂ Rn , is said to be
uniformly continuous on A if and only if the following holds:
∀ ε > 0, ∃ δ > 0 such that |f(x) − f(y)| < ε for all x, y ∈ A satisfying
||x− y|| < δ.
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The key thing to note here is that the choice of δ should depend only
on ε, the function f and the set A; it has to be independent of the points x
and y.

Examples:

1 The function f(x) = x2 is not uniformly continuous on A = R, but it is
on any bounded interval. It is not uniformly continuous on R , since ∃ ε = 2
such that for every δ > 0 we can find two points x = n and y = n+ 1

n , such
that |x− y| = 1

n < δ , but with |(n + 1
n)2 − n2| = 2 + 1

n2 > 2 .

2. The function f(x) = sin(x) is uniformly continuous on all of R. (The
easiest way to prove this is to use the mean value theorem from the next
chapter)

3. The function f(x) = 1
x is not uniformly continuous on the interval (0, 1]

but is uniformly continuous on [1,∞) . It is not uniformly continuous on
(0, 1] , since ∃ ε = 1 such that for every δ > 0 we can find two points 1

n and
1

n+1 in (0, 1) , satisfying | 1n −
1

n+1 | =
1

n(n+1) < δ , but with |f( 1
n)−f( 1

n+1)| =
1 . It is uniformly continuous in (0,∞) , because | 1x −

1
y | = |x−y|

|xy| < |x − y|
for all x, y ∈ (0,∞) , so for any ε > 0 , we can choose δ = ε uniformly
independent of x and y .

The main result of this section is the following:

Theorem 4.4.1 A continuous function on a compact set is uniformly con-
tinuous.

Proof : Let f be a continuous function defined on a compact set K. If f
is not uniformly continuous then there exists an ε > 0 such that for each k
with δ = 1

k , we can find two points xk, yk ∈ K so that ||xk − yk|| < δ = 1
k

but with |f(xk) − f(yk)| ≥ ε. By the Bolzano-Weierstraas property there
exists convergent subsequences xkl

, ykl
converging to x∗ ∈ K and y∗ ∈ K

respectively. x∗ = y∗ since ||xk − yk|| < 1
k for all k. Since f is a continuous

function f(xkl
) → f(x∗) and f(ykl

) → f(y∗) = f(x∗) contradicting the fact
that there exists a fixed ε > 0 with |f(xk)− f(yk)| ≥ ε for all k.

QED
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4.5 Exercises

1. Prove that every polynomial of odd degree with real coefficients has at
least one real root.

2. Let f : Rn → R be a continuous function. Show that the zero-set of f ,
i.e., the set {x ∈ Rn | f(x) = 0 } is closed in Rn .

3. Let f, g : [a, b] → R be two continuous functions such that f(r) = g(r)
for all rational r ∈ [a, b] ∩Q. Show that f(x) = g(x) for all x ∈ [a, b] .

4. Let f : R → R be defined by f(x) = 1 if x ∈ Q and f(x) = 0 otherwise.
Show that limx→0 f(x) does not exist, but that limx→0 x f(x) = 0 .

5. Let f : K → R be continuous on a compact interval K. Suppose that
∀x ∈ K ∃y ∈ K such that |f(y)| ≤ 1

2 |f(x)| . Prove that ∃a ∈ K such that
f(a) = 0 .

6. If f, g : [a, b] → R are continuous real-valued functions, show that
max(f, g) is also continuous. (max(f, g) is obviously the function defined
by: max(f, g)(x) = max(f(x), g(x)) ).

7. Show that the function f : (0,∞) → R ; f(x) =
√

x is uniformly
continuous but that the function g : (0,∞) → R ; g(x) = x2 is not uniformly
continuous.

8*. Show that there does not exist continuous function f : R → R which
takes on each value (that it takes on) exactly twice. (in other words the
pre-image of a point under f is either empty or consists of exactly two
points).

9. Is the composition of two uniformly continuous functions uniformly con-
tinuous? Justify your answer.

10. Show that if f : R → R is uniformly continuous and if (xn) is a Cauchy
sequence, then f(xn) is also a Cauchy sequence.

11. Show that a uniformly continuous real valued function defined on a
bounded (but not necessarily compact!) set B ⊂ Rn is bounded on B .
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4.5.1 Short solutions to some of the exercise problems

1. This follows from the Intermediate Value Theorem.

2. {0} is a closed set in R , because its complement is the union of two
open intervals: (∞, 0)∪(0,∞) . Since the inverse image of a closed set under
a continuous map is closed, f−1({0}) = {x ∈ Rn | f(x) = 0 } is closed in
Rn .

3. The function h(x) = f(x) − g(x) is continuous and h(r) = 0 for all
r ∈ Q ∩ [a, b] . Suppose that there exists an irrational number x ∈ [a, b] ,
such that h(x) 6= 0 . Let ε = 1

2 |h(x)| > 0 . Then ∃δ > 0 such that |y − x| <
δ ⇒ |h(y) − h(x)| < 1

2 |h(x)| ⇒ |h(y)| > 1
2 |h(x)| > 0 for all y ∈ [a, b] . This

is a contradiction, since every neighbourhood of x contains a rational point
r with h(r) = 0 .

Another way to see it is because the the set of points where f − g = 0 is
a closed set (since it is the inverse image of the closed set consisting of the
single point {0} under the continuous map f − g ). Now the smallest closed
set containingg Q is its closure which is all of R .

4. Suppose limx→0 f(x) exists and is equal to some real number a . Then
for ε = 1

2 (say),∃δ > 0 such that |f(x)− a| < 1
2 for all x ∈ (−δ,+δ). Now

each such neighbourhood contains both an irrational point s and a rational
point r ; but then |f(s)− f(r)| = 1 > 1

2 . Contradiction!

Since f(x) is either zero or one, |x f(x)| ≤ |x| for all x . Therefore: ∀ε > 0 ,
we choose δ = ε to have |x − 0| < δ ⇒ |xf(x) − 0| ≤ |x| < ε . Therefore
limx→0 x f(x) = 0 .

6. Since |f | is a continuous function, it attains its absolute minimum
value at a certain point a ∈ [0, 1] . If |f(a)| > 0 , we obtain a contradiction
from the assumption that there is another point y , where |f(y)| ≤ 1

2 |f(a)| .
Therefore f(a) = 0 .

7.
√

x is continuous on [0,∞) and hence it is uniformly continuous on any
compact subset, for example on [0, 1] . Now, if x, y ≥ 1 , then

|
√

x−√y| = |x− y|
|
√

x +
√

y|
≤ 1

2
|x− y|

This shows that
√

x is uniformly continuous on [1,∞) . (Choose δ = 2ε )!
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However the function g(x) = x2 is not uniformly continuous on (0,∞) .
Consider the two sequences xn = n and yn = n + 1

n . |xn − yn| = 1
n , but

|(xn)2− (yn)2| = 2+ 1
n2 ≥ 2 . So there exists “ε” = 2 > 0 such that for each

δ > 0 , we can find points xn and yn in (0,∞) with |xn − yn| = 1
n < δ and

|(xn)2 − (yn)2| ≥ 2

11. Let f be uniformly continuous on a bounded set B . Suppose, on the
contrary that f is not bounded. Then there exists a sequence (xn) in B ,
such that limn→∞ f(xn) = ∞ (or −∞). Since (xn) is a bounded sequence,
by Bolzano-Weierstrass, it has a subsequence: yk = xnk

which is convergent
and hence Cauchy. We want to show now that f(yk) is also a Cauchy
sequence and hence convergent, contradicting the fact that limn→∞ f(xn) =
∞ (or −∞).
So let ε > 0 be given. Then since f is uniformly continuous, ∃ δ > 0 , such
that |yk+l − yk| < δ ⇒ |f(yk+l) − f(yk)| < ε for any k, l ∈ N . Since (yk)
is a Cauchy sequence, ∃K ∈ N such that k ≥ K ⇒ |yk+l − yk| < δ ⇒
|f(yk+l)− f(yk)| < ε for all l .
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Chapter 5

Differentiation

5.1 Definition and basic properties

Definition 5.1.1 Let f be a real-valued defined in an open neighbourhood U
of a ∈ R. f is said to be differentiable at a if there exists a real number f ′(a)
called the derivative of f at a , such that the folowing holds: ∀ ε > 0, ∃ δ > 0
s. t. ∀x ∈ U , |x− a| < δ ⇒ |f(x)− f(a)− f ′(a)(x− a)| < ε |x− a| .
If f is differentiable at each point of an open set A, then we say that f is
differentiable in A.

In other words, f is differentiable at a point a if there is a number c
called the derivative of f at a such that the error function r(x) = f(x) −
(f(a) + c(x − a)), that remains after approximating f near a by the linear
(affine) function l(x) = f(a) + c(x− a) satisfies:

lim
x→a, x6=a

r(x)
x− a

= 0

.
It follows that if f is differentiable at a, then f is continuous at a , since

near a , f differs from a simple (linear) function l(x) , which is definitely
continuous, by a term r(x) that goes to 0 (even faster than |x − a| !) as
x → a . This suggests the notation:

Definition 5.1.2 We say that a function φ(x) is o(|x− a|) (read: little-oh)
as x → a if limx→a

φ(x)
x−a = 0

We say that φ(x) is O(|x − a|) (read: big-oh) as x → a if the ratio
|φ(x)|
|x−a| = l stays bounded as x → a
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The following arithmetic properties for derivatives then follow easily from
the corresponding properties for limits

Proposition 5.1.1 If f and g are differentiable at a, then so are f +g, f −
g, f.g and f/g (provided g(a) 6= 0) and we have the following formulas:

(i) (f ± g) ′(a) = f ′(a)± g ′(a)

(ii) (Product Rule) (f.g) ′(a) = f ′(a).g(a) + f(a).g ′(a)

(ii) (Quotient Rule) (f
g ) ′(a) = f ′(a).g(a)−f(a).g ′(a)

(g(a))2

Proof:

(i) This is quite trivial.

(ii)
f(x)g(x)− f(a)g(a) = (f(x)− f(a))g(a) + f(x)(g(x)− g(a)) = (c1(x− a) +
r1(x))g(a)+f(a)(c2(x−a)+r2(x)) , where c1 = f ′(a), c2 = g ′(a) and r1, r2

are the corresponding remainder terms. It follows that
f(x)g(x) − (f(a)g(a) + (c1g(a) + f(a)c2)(x − a) = r1(x)g(a) + f(a)r2(x) is
o(|x − a|) since r1 and r2 are o(|x − a|). Therefore, f.g is differentiable at
a with derivative f ′(a).g(a) + f(a).g ′(a).

(iii)
The special case where f is constant = 1 follows easily from the calculation:

lim
h→0

1
h

( 1
g(x + h)

− 1
g(x)

)
= lim

h→0

1
g(x + h)g(x)

g(x)− g(x + h)
h

The general case then follows from the product rule.

QED

Another extremely important formula is the following:

Proposition 5.1.2 The Chain Rule
If g is differentiable at a and f is differentiable at g(a), then the com-

posite f ◦ g is differentiable at a with derivative given by:

(f ◦ g) ′(a) = f ′(g(a)). g ′(a)
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Proof:
Let b = g(a) , y = g(x) , c1 = f ′(a) , and c2 = f ′(b) .
f(y) − f(b) = c1(y − b) + r1(y) , where r1(y) is o(|y − b|) and y − b =
c2(x− a) + r2(x) with r2(x) in o(|x− a|) .
Since f(y)− f(b) = c1(c2(x− a)+ r2(x))+ r1(y) , the chain rule now follows
because |y − b| is O(|x− a|) .

QED

Examples

0. The constant functions f(x) = c are all differentiable everywhere. (Their
derivatives are dead zero everywhere !)

1. The “identity map”’ f(x) = x is differentiable. (f(x)− f(a) = x− a , so
the derivative is dead constant = 1 everywhere !)

1(bis). By the elementary arithmetic for derivatives (the last two proposi-
tions) we see that all polynomials and rational functions (wherever they are
defined) are differentiable and their derivatives can be computed easily and
mechanically (by Maple for example!) by the above rules.

2. As you all know, the basic transcendental function exp(x) = ex is also
differentiable everywhere. However, this fact does not follow from the ratio-
nal arithemetic rules above and has to be proved. The most natural place to
do this in Chapter 7, when we discuss uniform convergence of power series,
but I will sketch an elementary proof that the derivative of ex at x = a is
equal to ea :
Proof: By the functional equation ex+y = ex ey , we have:

ea+h − ea

h
= ea eh − 1

h

but by the definition of the exponential function: eh − 1 =
∑∞

k=1
hk

k! =
h + r(h) where r(h) = h2

∑∞
k=2

hk−2

k! is obviously o(|h|) , by the estimates
we learned in Chapter 2.
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5.2 Local properties of the derivative

Suppose f is differentiable at a and that c = f ′(a) > 0. Let l(x) = f(a) +
c(x − a) . By the definition of the derivative ∃ a δ-neighbourhood Uof a,
where we have |f(x) − l(x)| < 1

10c|x − a| . This implies (for every x ∈ U )
f(x) > l(x)− 1

10c(x−a) = f(a)+ 9
10c(x−a) which is > f(a) if x > a and <

f(a) if x < a . So there exists δ > 0 such that a− δ < x < a ⇒ f(x) < f(a)
and a < x < a + δ ⇒ f(x) > f(a) . It follows that f is strictly increasing in
a neighbourhood where the derivative is strictly positive. We can apply the
same argument to −f to show

Proposition 5.2.1 A differentiable function is strictly increasing in an
open interval where the derivative is strictly positive (everywhere in that
open interval) and is strictly decreasing if the derivative is strictly negative.

As you well remember from first year, a relative or local maximum of a
function f is a point a such that f(x) ≤ f(a) for all x in a neighbourhood of
a. Similarly, a relative or local minimum is a point b where f(x) ≥ f(b) for
all x in a neighbourhood of b. We say a is a strict relative maximum (resp.
minimum) if we have strict inequalities in the above definition (except of
course at x = a !). A relative extremum is then the collective term used
for either a relative maximum or a relative minimum. Since f can neither
be strictly increasing nor strictly decreasing near a relative extremum, we
obtain as a corollary of the above proposition the following familiar fact:

Corollary 5.2.1 The derivative of a differentiable function vanishes at rel-
ative extrema.

In fact we can say more if we assume that not only f but also it’s
derivative f ′ is differentiable near a relative extremum a

Corollary 5.2.2 Suppose both f and f ′ are differentiable in a neighbour-
hood of a and assume f ′(a) = 0 . Then

(i) f ′′(a) > 0 ⇒ a is a strict relative minimum.

(ii) f ′′(a) < 0 ⇒ a is a strict relative maximum.

Proof: Just apply the proposition to the derivative of f .
QED

Another related important result is the behaviour of a differentiable func-
tion at a point where the derivative does not vanish. We will prove the gen-
eral form of this result, called the Inverse Function Theorem in Rn in the
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next section, but for now, let me derive a simple formula for the derivative
of the inverse function (not the reciprocal!) of a continuously differentiable
function at a point where the derivative is non-zero (so it is either positive
or negative).

Definition 5.2.1 f is asaid to be continuously differentiable or C1 in an
open interval if f is differentaible at all points of the interval and the deriva-
tive f ′ is continuous in that interval.

Proposition 5.2.2 Suppose that f is continuously differentiable in a neigh-
bourhood of a and that f ′(a) 6= 0. Then f is bijective in a neighbourhood of a
and the inverse function g = f−1 is differentiable at b = g(a) with derivative
given by

g ′(b) =
1

f ′(a)

Proof: If we can assume that the inverse function is differentiable at b then
the formula in fact follows from the chain rule. We know that f is strictly
increasing (let’s say) in a neighbourhood of a so it maps a small interval
U around a bijectively onto a small interval V around b = f(a). To prove
that the inverse function is differentiable, let y = f(x) so that x = g(y) for
x ∈ U , y ∈ V . Now

g(y)− g(b)
y − b

=
x− a

f(x)− f(a)
=

(f(x)− f(a)
x− a

)−1

provided x 6= a so that f(x) 6= f(a) . (This is where we used the fact
that f ′(a) 6= 0 ). Now take the limit on both sides and use the fact that
x → a ⇔ y → b since f is continuous.

QED

5.3 Some global properties of the derivative

Proposition 5.3.1 Rolle’s Theorem
Suppose that f : [a, b] → R is a continuous function which is differen-

tiable at all points of the open interval (a, b) and assume that f(a) = f(b).
Then ∃x ∈ (a, b) where f ′(x) = 0 .

Proof Since [a, b] is compact and f is continuous on a compact interval
[a, b], f attains both its absolute maximum and its absolute minimum value
at some point in [a, b]. If this point is either a or b, then the function is
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constant on the whole interval because of our assumption f(a) = f(b). A
constant function has derivative zero everywhere. If f is not constant either
the absolute minimum or the absolute minimum occurs at an interior point
in (a, b), but there the function is differentiable and by the corollary from
the last section the derivative vanishes (i.e. it is zero) at that point.

QED
By applying Rolle’s Theorem to the function

g(x) = f(x)− f(b)− f(a)
b− a

(x− a)

which obviously satisfies g(a) = g(b)(= f(a)) and the other continuity and
differentiability requirements of Rolle’s theorem, provided f does, we easily
derive the following major result of this section:

Theorem 5.3.1 Mean Value Theorem
Suppose that f : [a, b] → R is a continuous function which is differen-

tiable at all points of the open interval (a, b) . Then ∃x ∈ (a, b) where

f ′(x) =
f(b)− f(a)

b− a

.

The following (very important) corollaries are immediate consequences
of the Mean Value Theorem: (I remember telling you how they follow from
the mean value theorem in Math 1A03!)

Corollary 5.3.1 Suppose f is continuous on [a, b] and differentiable in
(a, b). If f ′(x) = 0 forall x ∈ (a, b) , then f is constant on [a, b] .

Corollary 5.3.2 Suppose f is continuous on [a, b] and differentiable in
(a, b). If f ′(x) > 0 forall x ∈ (a, b) , then f is strictly increasing on [a, b] ,
i.e. ∀x1, x2 ∈ [a, b] x1 < x2 ⇒ f(x1) < f(x2) .

Corollary 5.3.3 Suppose f is continuous on [a, b] and differentiable in
(a, b). If f ′(x) < 0 forall x ∈ (a, b) , then f is strictly decreasing on [a, b] .

Obviously if we weaken the assumption to f(x) ≥ 0 (resp. f(x) ≤ 0),
we have to drop the word “strictly”. We can only claim that the function
is non-decreasing (resp. non-increasing). We also note that in contrast to
the last section, the statements here are global in the sense that it applies
to the whole interval [a, b] . We of course also assume more. The condition
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on the derivative is not just at a point! Applying this kind of argument to
the derivative of f we have the following global result about convexity, but
first the definition:

Definition 5.3.1 A real valued function f (not necessarily differentiable)
is said to be convex on [a, b] if the following inequality holds:

f
(
(1− t) x + t y

)
≤ (1− t) f(x) + t f(y)

for all t ∈ [0, 1] and x, y ∈ [a, b] .

If z is the point (1 − t) x + t y , then t = z−x
y−x and 1 − t = y−z

y−x . So
convexity implies

(i) f(z)− f(x) ≤ t
(
f(y)− f(x)

)
(ii) f(z)− f(y) ≤ (1− t)

(
f(x)− f(y)

)
This proves

Proposition 5.3.2 If f is convex on [a, b] , then for any three points x <
z < y in the interval [a, b] ,

f(z)− f(x)
z − x

≤ f(y)− f(z)
y − z

Proof: Just put t = z−x
y−x and 1− t = y−z

y−x in (i) and (ii) above.

Now by the mean value theorem: f(z)−f(x)
z−x = f ′(p) and f(y)−f(z)

y−z =
f ′(q) for some p ∈ (x, z) and q ∈ (z, y) . So if f ′(p) ≤ f ′(q) for all p < q in
[a, b] , f would be convex. We have thus proved the following propositions
and its corollary:

Proposition 5.3.3 Suppose f is continuous on [a, b] and differentiable in
(a, b). If f ′ is monotonically increasing in (a, b) , then f is convex on [a, b] .

Corollary 5.3.4 Suppose f is continuous on [a, b] and twice differentiable
in (a, b). If f ′ ′(ξ) ≥ 0 for all ξ ∈ (a, b) , then f is convex on [a.b] .
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5.3.1 The Logarithm

The natural logarithm is the inverse function of the exponential function.
As we have seen above, the exponential functions exp(x) = ex has derivative
exp ′(x) = exp(x) , which is always positive since it is a square (ex = e

x
2 e

x
2 =(

e
x
2

)2
> 0 ). Moreover, since limx→+∞ ex = +∞ (because ex > 1 + x for

all x > 0 by definition) and limx→−∞ ex = 0 (because e−x = (ex)−1 ),
exp : R → (0,∞) is a strictly increasing function bijective map. Its inverse
is called the natural logarithm.

Definition 5.3.2 The (natural) logarithm log : (0,∞) → R is defined to
be the inverse funsction of the exponential function. It therefore satisfies
log(ex) = x for all x ∈ R and elog(y) = y for all y > 0 .

By what we know about inverse functions in general, it now follows that
log : (0,∞) → R is a strictly increasing bijective and differentiable map
with derivative given by:

log ′(y) =
1
y

5.4 Differentiation in Rn

The derivative of a function of several variables is a linear map, so we will
use the notation L(Rn; Rm) for the vector space of all linear maps from Rn

to Rm.

Definition 5.4.1 Let f be a Rm-valued defined in an open neighbourhood
U of a ∈ Rn. f is said to be differentiable at a with derivative f ′(a) ∈
L(Rn; Rm) if and only if the following holds: ∀ ε > 0, ∃ δ > 0 such that
∀x ∈ U , ‖x− a‖ < δ ⇒ ‖f(x)− f(a)− f ′(a)(x− a)‖ < ε‖x− a‖

In other words, f is differentiable at a point a if there is a linear map
A = f ′(a) called the derivative of f at a such that the error function r(x) =
f(x) − (f(a) + A(x − a)), that remains after approximating f near a by
the linear (affine) function l(x) = f(a) + A(x − a) is in o(‖x − a‖) , i.e., it
satisfies:

lim
x→a, x6=a

r(x)
‖x− a‖

= 0
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Differentiability obviously implies continuity as in the scalar case n = 1 .
If f is differentiable at each point of an open set U , then we say that f
is differentiable in U . f is said to be C1 on U , if the map a 7→ f ′(a) is
continuous in U .

We have the usual arithmetical rules for the derivative as in the case of
n = 1:

Proposition 5.4.1 If f and g are differentiable at a, then so are f +g, f −
g,< f, g >, wherever they are defined. (Here <,> is the scalar product).
The following formulas hold:

(i) (f ± g) ′(a) = f ′(a)± g ′(a)

(ii) (Product Rule) < f, g > ′(a)(v) =< f ′(a)(v), g(a) > + < f(a), g ′(a)(v) >

Proposition 5.4.2 The Chain Rule
If g is differentiable at a and f is differentiable at g(a), then the com-

posite f ◦ g (if defined) is differentiable at a with derivative given by:

(f ◦ g) ′(a) = f ′(g(a)) ◦ g ′(a)

All the proofs are appropriate vectorial modifications (like using ‖, ‖
instead of |, | ) of the proofs I gave you for the scalar case and does not
involve any fundamentally new ideas, so I will skip them. Instead I will now
state and prove the Inverse Function Theorem and its Corollary the Implicit
Function Theorem.

5.4.1 Inverse Function Theorem

Theorem 5.4.1 Let f : U → Rn be a C1 map, where U is an open set
in Rn, containing a . If A = f ′(a) = dfa is invertible, then there ex-
ists a neighbourhood V of a such that f restricted to V maps V bijec-
tively onto W = f(V ). Moreover the inverse function g = f−1 is con-
tinuously differentiable on W with derivative given by the Chain Rule (so
that dgf(x) = (dfx)−1 ).
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Proof:

Step 0.
By two translations, we may assume that a = 0 and f(a) = 0 . Furthermore
by composing f with a linear map A−1 = (df0)−1 we may also assume that
df0 = I , where I is the identity matrix. Now let h(x) = f(x) − x . Then
dh0 = 0 .

Step 1.
Since f and hence h are C1 , ∃ r > 0 , s.t. ‖dhx‖ < 1

2 , for all x ∈ B3r(0) ,
where we define ‖A‖ to be the maximum length of all column vectors of A .
Applying the Mean Value Theorem to the components of h we find that for
every x1, x2 ∈ B3r(0) , |f(x1)−x1−f(x2)+x2| = |h(x1)−h(x2)| < 1

2 |x1−x2| .
So if f(x1) = f(x2) , then x1 = x2 . Therefore f is injective on B3r(0)

Step 2.
To prove surjectivity, we pick a point y in Br(0) and define (inductively
and constructively!) a sequence as follows:

x0 = 0 , x1 = y , xk+1 = y − h(xk) = y − f(xk) + xk

Step 3.
As in Step 1, we have: |xk+1 − xk| = |h(xk) − h(xk−1)| < 1

2 |xk − xk−1 ,
provided xk , xk+1 ∈ B2r By induction we show that xn ∈ B2r(0) , and
hence that |xn+1 − xn| < 1

2 |xn − xn−1| for all n .
For n = 0: x0 = 0, x1 = y ∈ Br(0) ⊂ B2r(0) and since ‖dh‖ < 1

2 in B3r(0),
|x2 − x1| = |h(x1)− h(x0)| < 1

2 |x1 − x0| .
Assume xk ∈ B2r(0) , for all k ≤ n . Then |xk+1 − xk| < 1

2 |xk − xk−1| <
· · · < 2−k|x1 − x0| for all k ≤ n and hence by summing up the geometric
series we obtain: |xn+1| = |xn+1−x0| ≤

∑n
k=0 |xk+1−xk| < 2|x1−x0| < 2r .

Step 4.
We claim now that xk is a Cauchy sequence and hence converges (This
was actually proved in Problem # 1 of your Assignment #2 !). By the
same argument as in Step 3, |xn+k − xn| ≤ 2−n|x1 − x0| = |y| , so xn is
a Cauchy sequence and it converges to a limit x , which is in B2r , since
|xn − x0| < 2|x1 − x0| = 2|y| for all n.

Step 5.
We have thus proved that f restricted to the inverse image of Br(0) is
a bijective map. The differentiability of the inverse function follows in a
similar fashion as in the case of a single variable and the chain rule then
gives the formula for the derivative of the inverse function.
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Corollary 5.4.1 (Implicit Function Theorem) Suppose f = (f1 , . . . , fm) :
Rn × Rm → Rm is continuously differentiable in an open neighbourhood of
(a, b) and let f(a, b) = 0 . Let A be the m×m matrix

(
∂

∂xn+k
fk(a, b)

)
k=1,...,m

.
If det(A) 6= 0 , then there exists an open neighbourhood U of a and an open
neighbourhood V of b such that ∀x ∈ A , there exists a unique y = g(x) ∈ B
satisfying the implicit equation: f(x, g(x)) = 0 . Moreover g is differentiable
in A .

(Sketch of proof): Apply the inverse function theorem to the function
F : Rn × Rm → Rn × Rm , defined by F (x, y) = (x, f(x, y)) . The inverse of
F is of the form F−1(x, y) = (x,G(x, y)) . Then g(x) = G(x, 0) will satisfy
the equation f(x, g(x)) = 0 .
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5.5 Exercises

1. Show that f : (0,∞) → R defined by f(x) = xn ex ; n > 0 attains its
absolute maximum value at the point x = n .

2. Let f : R → R satisfy the inequality:

|f(x)− f(y)| ≤ C(x− y)2

for all x, y ∈ R , where C is a fixed positive constant. Prove that f is a
constant function.

3. Suppose f is a differentiable real-valued function defined on R satisfying
|f ′(x)| ≤ 10 for all x ∈ R . Show that the function F (x) = x + 1

100f(x) is
an injective (one-to-one) map.

4. Let f(n) denote the nth iterate of f, i.e. f(n) = f ◦ f ◦ . . . ◦ f (n-times).
Express the derivative of f(n) in terms of f ′ and prove that if m ≤ |f ′| ≤ M ,
then mn ≤ |f(n)

′| ≤ Mn .

5. Let p1, p2, . . . , pn be positive numbers satisfying
∑n

k=1 pk = 1 and let
f : R → R be a convex function. Prove Jensen’s inequality:

f
( n∑

k=1

pk xk

)
≤

n∑
k=1

pk f(xk)

for all real numbers x1, x2, . . . , xn .

6.
Let f : R → R be a twice continuously differentiable function with

f(0) = 0, f(1) = 1 , and with f ′(0) = f ′(1) = 0 . Prove that ∃x ∈ [0, 1]
with |f ′′(x)| ≥ 4| .
In more physical terms; a particle which travels a unit distance in unit time
and starts and ends with zero velocity (like landing on Mars!) has at least
at some time an acceleration ≥ 4 (in absolute value).

7. Let f : [0, 1] → [0, 1] be continuous on [0, 1] and differentiable in
the interior (0, 1) with f(0) = 0 . Assume that |f ′(x)| ≤ 10|f(x)| for all
x ∈ (0, 1) . Prove that f(x) = 0 for all x ∈ [0, 1] .
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8. Let f : R → R be a strictly increasing and convex function which is
three times differentiable. Assume that: f(0) = 0 . Starting with an initial
value x1 > 0 , we now define inductively a sequence by the formula (Newton’s
method ):

xn+1 = xn −
f(xn

f ′(xn)

Prove that limn→∞ xn = 0 .

9. The Legendre polynomial of order n is defined by:

Pn(x) =
1

2n n!
dn

dxn

(
(x2 − 1)n

)
Prove that:
(i) Pn has exactly n distinct zeros in (−1,+1)
(ii) Pn satisfies the differential equation:

(1− x2)Pn
′′(x)− 2xPn

′(x) + n(n + 1) = 0

5.5.1 Hints and short solutions

6. First we prove a little lemma:
If a twice differentiable function h satisfies:h(0) = h ′(0) = 0 and h ′′(t) < 4 ,
for all t ∈ [0, 1] , then h(1

2) < 1
2 .

Proof of Lemma: Since h ′′(t) < 4 , the function h ′(t) − 4 t is strictly de-
creasing and hence h ′(t) − 4 t < h ′(0) − 0 = 0 for 0 < t < 1 . This implies
that h(t)−2 t2 is also strictly decreasing and hence h(1

2)− 1
2 < h(0)−0 = 0 .

q.e.d.
If |f ′′(t)| < 4 for all t ∈ [0, 1] , then both f(t) and g(t) = f(1) − f(1 − t)
satisfy the assumptions of the lemma and hence f(1

2) < 1
2 and f(1)−f(1

2) <
1
2 contradicting the fact that f(1) = 1 !
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Chapter 6

Integration

6.1 Definition of the Riemann Integral

Let f be a bounded (not necessarily continuous) real valued function de-
fined on a closed (and bounded) interval [a, b] ⊂ R or more generally, on a
multidimensional rectangle R =

∏n
i=1[ak, bk] ⊂ Rn. We denote the length

(or more generally the n-dimensional volume ) of R by |R|. (|R| is just the
product of all the side lengths of R and is always positive). A partition R
of R is a finite collection of subintervals (subrectangles) {Ri ⊂ R}i=1,··· ,N ,
whose interiors are all mutually disjoint and whose union is R. A refine-
ment of a partition R is a partition S such that each subrectangle Sj of S
is contained in a subrectangle Ri of R. For each interval (or rectangle) Ri,
we set m(f,Ri) = inf(f(Ri)) and M(f,Ri) = sup(f(Ri)). These numbers
are finite since f is bounded. Now define:

US(f,R) =
∑N

i=1 M(f,Ri)|Ri|

LS(f,R) =
∑N

i=1 m(f,Ri)|Ri|
UI(f) = inf{US(f,R) |R is a partition of R} and

LI(f) = sup{LS(f,R) |R is a partition of R}

These are all (finite) real numbers for any bounded function defined on
a closed and bounded rectangle. US stands for upper sum, LS for lower
sum, UI for upper integral and LI for lower integral. It is obvious from the
definitions that US ≥ LS for any partition and that LS(f,R) ≤ LS(f,S)
and US(f,R) ≥ US(f,S) if S is a refinement of R, since inf(A) ≤ inf(B)
and sup(A) ≥ sup(B) if B ⊂ A and volume is an additive function on
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rectangles. Given two partitions R and S, we can define their join (or
common refinement) R∨S to be the partition consisting of all intersections
Ri ∩ Sj . R ∨ S is a refinement of both R and S. By looking at the upper
and lower sums of this common refinement we arrive at the following:

Proposition 6.1.1 UI(f) ≥ LI(f) for any bounded function f defined on
a bounded rectangle.

Definition 6.1.1
We say that f is Riemann-integrable on R if UI(f) = LI(f) and the com-
mon value is defined to be the integral of f on R:∫

R
f = UI(f) = LI(f)

The function defined by f(r) = 1 for r ∈ Q and f(x) = 0 is discontinuous
at every point and is not Riemann-integrable on any closed interval, because
the upper sums are always the length of the interval and all the lower sums
are zero. Next year in Math 3A03 you will learn that this function is in-
tegrable in the more general Lebesgue sense and that the integral is zero,
because although Q is dense in R, it is still a negligible set from the point
of view of Lebesgue measure.

We will show that all continuous functions are integrable on a closed
bounded interval.

Proposition 6.1.2 If f is continuous on a closed and bounded rectangle
R ⊂ Rn, then f is integrable.

Proof: We know that f is bounded and uniformly continuous on the
compact set R. Let ε > 0 be given. Then ∃δ > 0 such that ||x− y|| < δ ⇒
|f(x)− f(y)| < ε

|R| . Now let P be a partition where every subrectangle has

all side lengths less than δ
10
√

n
so that any two points in a subrectangle are at

a distance less than δ apart. This means that the minimum and maximum
values taken by f on each of these subrectangles are less than ε

|R| apart, so
that the difference between the upper sum and lower sum for this partition
is less than ε which was arbitrary, proving that the upper and the lower
integrals coincide.

QED

Now let f be a bounded function defined on an arbitrary bounded set
A ⊂ Rn. We extend the definition of f to a rectangle R which contains
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A by simply setting f(x) = 0 for all points x /∈ A. We then say that f is
integrable on A if this exetended function is integrable on R and define the
integral to be the integral over R of the extended function. The integral, if
it exists, does not depend on the extension. However, there are complicated
bounded sets A, for which even constant functions are not integrable.

6.2 Basic properties of the Integral

The three main arithmetic properties of the integral are the following:

Proposition 6.2.1 If f and g are (Riemann-)integrable functions on a
bounded set A, then

(Linearity)
∫
A(c1f + c2g) = c1

∫
A f + c2

∫
A g

(Monotonicity) If f(x) ≥ 0 for all x ∈ A, then
∫
A f ≥ 0. In fact if f(x) > 0

for all x ∈ A, then
∫
A f > 0

Proposition 6.2.2 (Additivity) If A1 and A2 are disjoint sets, on which f
is integrable, then

∫
A1∪A2

f =
∫
A1

f +
∫
A2

f

We will leave the proof of these simple properties as an exercise for you.
Monotonicity is an important property and we state some immediate

consequences:

M1 If f(x) ≥ g(x) for all x ∈ A, then
∫
A f ≥

∫
A g.

M2 If m ≤ f(x) ≤ M for all x ∈ A, then m|A| ≤
∫
A f ≤ M |A|.

M3
∣∣∣ ∫

f(x)
∣∣∣ ≤ ∫

|f | provided |f | is integrable.

Another property that follows immediately from the above properties is
the following Mean Value Theorem for integrals.

Theorem 6.2.1 If f is continuous on [a, b] then there exists a value c ∈
(a, b) such that ∫ b

a
f(t) dt = f(c) (b− a)
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Proof: Let m = f(p) be the absolute minimum value of f on [a, b] and
M = f(q) be its absolute maximum value. Then by monotonicity: m =
f(p) ≤ 1

b−a

∫ b
a f(t) dt ≤ M = f(q) . Now since f is continuous, by the

Intermediate Value Theorem, there exists a point c (between p and q ) such
that f(c) = 1

b−a

∫ b
a f(t) dt

QED

6.3 Fundamental Theorem of Calculus

We state and prove now the fundamental theorem of calculus, which relates
integration and differentation for functions of a single variable. The for-
mulation of the corresponding theorems in higher dimensions (for example,
Stokes’ theorem that you learned last term in in Math 2A03) are a lot more
elaborate although fundamentally the proofs are based on the following one
dimensional fundamental theorem of calculus.

Theorem 6.3.1 If f is continuous on [a, b] then the function defined by

F (x) =
∫ x

a
f(t) dt

for x ∈ [a, b] is continuous on [a, b] and differentiable in (a, b) with deriva-
tive given by F ′(x) = f(x) .

Proof: Let x ∈ (a, b) . For h 6= 0 sufficiently small we have, by the
additivity property and the mean value theorem for integrals:

F (x + h)− F (x) =
∫ x+h

x
f = h f(ch)

for some ch , where ch ∈ (x, x + h) , if h > 0 and ch ∈ (x + h, x) if h < 0 .
Now since f is continuous f(ch) → f(x) as h → 0 . Therefore

limh→0
1
h

(F (x + h)− F (x)) = f(x)

It is easy to see from the estimate above that not only is F continuous on
[a, b], but in fact, it is Lipschitz continuous.

QED
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The function F (x) =
∫ x
a f(t) dt is then what is known as an “antideriva-

tive” in first year calculus, since it satisfies F ′(x) = f(x) . It is also some-
times called the indefinite integral. Two antiderivatives differ by a constant
on any connected interval. This follows from the mean value theorem for
derivatives, since two antiderivatives have the same derivative! Perhaps a
more familiar form of the fundamental theorem that you remember from
first year calculus is the following:

Corollary 6.3.1 Let F : [a, b] → R be an antiderivative for f : [a, b] →
R , in the sense that F is continuous on [a, b] , differentiable in (a, b) with
F ′(x) = f(x) . Then ∫ b

a
f(t) dt = F (b)− F (a)

6.4 Improper Integrals

Improper integrals are integrals for unbounded sets and/or unbounded func-
tions. We will restrict ourselves in these notes to the real line.

Let (a, b) be an open interval in R. To deal with unbounded intervals,
we will allow a to be −∞ and b to be ∞. Let f : (a, b) → R be a function
not necessarily bounded or continuous. Then:

Definition 6.4.1 f is said to be integrable on (a, b) if f is locally-integrable,
i.e. f is integrable on every closed and bounded subinterval of (a, b) and if∫ b

a
f = lim

c→a+

(
lim

d→b−

∫ d

c
f

)
exists (as a finite limit).

If the limit exists we say that the improper integral is convergent. The
order of the limits in the definition actually does not matter.

Here are some familiar examples from first year calculus:

1.
∫ 1
0 x−pdx is convergent iff p < 1.

2.
∫∞
1 x−pdx is convergent iff p > 1.
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3.
∫∞
0 e−xdx converges to 1.

4.
∫∞
−∞ e−x2

dx converges to
√

π.

In order to test other improper integrals we often use the following:

Proposition 6.4.1 (Comparison Test)
Suppose f and g are locally integrable on (a, b). If 0 ≤ f(x) ≤ g(x) for

all x ∈ (a, b), and if g is integrable on (a, b)then f is also integrable on (a, b)
and we have

∫ b
a f ≤

∫ b
a g.

As a corollary it follows that if |f | is integrable it follows that f is
integrable but the converse is not . Functions f with |f | integrable are
called absolutely integrable. Otherwise (if f is integrable without |f | being
integrable) we say that f is conditionally integrable.

6.4.1 The Gamma Function

The gamma function is the continuous extension of the familiar factorial
function n!, which is defined for positive integers only.

Definition 6.4.2

Γ(x) =
∫ ∞

0
tx−1 e−t dt (x > 0)

The improper integral is easily seen to be convergent at both end points.
At t = ∞ , the integral converges, by comparison with the convergent inte-
gral

∫∞
1 t−2 dt, since limt→∞ t2 tx−1e−t = 0 for all x > 0 .

At t = 0 , the integral converges because tx−1e−t ≤ tx−1 for t > 0 and the
integral

∫ 1
0 tx−1 is convergent since x > 0 .

Moreover, the Gamma function is always positive and Γ(1) = 1 , since∫∞
0 e−t dt = 1 .

Since d
dt

(
tx e−t

)
= x tx−1 e−t − tx e−t , it follows from the fundamental

theorem of calculus that:

x

∫ b

a
tx−1 e−t dt−

∫ b

a
tx e−t dt = bx e−b − ax e−a

Letting a → 0+ and b → +∞ to compute the indefinite integral we get
lima→0+ ax e−a = 0 limb→+∞ bx e−b = 0 (for x > 0 ). This proves the
following fundamental functional equation satisfied by the Gamma function,
which makes it the continuous interpolation of the factorial!
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Proposition 6.4.2 The gamma function Γ(x) is positive and satisfies the
functional equation:

Γ(x + 1) = xΓ(x)

We therefore have n! = Γ(n + 1) for n ∈ N . Another important fact is
that

Γ(
1
2
) =

∫ ∞

0

√
t e−t dt = 2

∫ +∞

0
e−x2

dx =
√

π

which follows from the substitution t = x2 .

6.4.2 Stirling’s Formula

If an and bn are two sequences of real numbers we will use the notation
an ∼ bn to mean limn→∞

an
bn

= 1.

Theorem 6.4.1

n! ∼
√

2π nn n
1
2 e−n

Proof: Let

dn = log(n!) + n− (n +
1
2
) log(n)

Then

dn − dn+1 = − log(n + 1)− 1− (n +
1
2
) log(n) + (n +

3
2
) log(n + 1)

= (n +
1
2
) log(

n + 1
n

)− 1

=
1
2x

log(
1 + x

1− x
)− 1

where x = (2n + 1)−1 > 0 .
By a power series expansion for the logarithm we obtain (for sufficiently

small and positive x):
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1
2x

log(
1 + x

1− x
)− 1 =

1
x

(x +
x3

3
+

x5

5
+ · · · )− 1

=
x2

3
+

x4

5
+ · · ·

<
x2

3
(1 + x2 + x4 + · · · )

=
x2

3(1− x2)

=
1
12

(
1
n
− 1

n + 1
) since x =

1
2n + 1

Therefore
0 < dn − dn+1 <

1
12

( 1
n
− 1

n + 1
)

This simultaneously shows two important properties of the sequence dn :

(i) dn is strictly decreasing

(ii) (dn − 1
12n) is strictly increasing

It follows from (ii) that dn is bounded from below and so by (i) is a conver-
gent sequence with limit lim dn = d .

We claim that ed =
√

2π .
The proof relies on the famous product formula of John Wallis (1616-1703):

2.2.4.4.6.6. . . . (2n)(2n)
1.3.3.5.5.7. . . . (2n− 1)(2n + 1)

→ π

2
as n →∞

(The derivation of this formula is one of the exercise problems at the end of
this chapter)
Taking the square root we get

2.4.6. . . . 2n

3.5.7. . . . (2n− 1)
1√

2n + 1
→

√
π

2

but the left hand side is

22.42.62. . . . (2n)2

1.2.3.4.5.6. . . . (2n− 1)(2n)
1√

2n + 1
=

22n (n!)2

(2n)!
1√
2n

1√
1 + (2n)−1
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Taking logarithms we find

2 log(n!)− log((2n)!) + 2n log(2)− 1
2

log(n) → log(
√

π)

On the other hand, by the definition of dn :

e2dn−d2n = 2 log(n!)− log((2n)!) + 2n log(2)− 1
2
(log(n) + log(2))

Therefore d = lim(2dn − d2n) = log(
√

2π)

6.4.3 The Euler-Maclaurin Summation Formula

Let P (t) be a polynomial of degree n and f(x) be a function which is con-
tinuously differentiable (n+1)-times for all x in an open interval containing
a pointa . Then by differentation we find for 0 ≤ t ≤ 1 :
d
dt

∑n
k=1(−1)kP (n−k)(t)f (k)(a + t(x− a))(x− a)k

= −P (n)f ′(a + t(x− a))(x− a) + (−1)nP (t)f (n+1)(a + t(x− a))(x− a)n+1 .

where for a function F , F (k) denotes the k-th derivative of F .
Since P (n)(t) is a constant c = P (n) , we obtain by integrating from t = 0
to t = 1 , the following identity due to Darboux:

Proposition 6.4.3 (Darboux Formula)

P (n)(0)
(
f(x)− f(a)

)
+

∑n
k=1(−1)k

(
P (n−k)(1)f (k)(x)− P (n−k)(0)f (k)(a)

)
(x− a)k

= (−1)n(x− a)n+1
∫ 1
0 P (t)f (n+1)(a + t(x− a)) dt

This innocuous looking little formula is quite powerful! For example, if
we use the polynomials: P (t) = (t − 1)n , we obtain Taylor’s formula that
you all learn in first year:

Proposition 6.4.4 (Taylor-Maclaurin’s Formula)

f(x)− f(a) =
n∑

k=1

f (k)(a)
k!

(x− a)k + Rn+1

where the remainder term is given by:

Rn+1 = (−1)n+1(x− a)n+1
∫ 1
0 (1− t)n f (n+1)(a + t(x− a)) dt
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Functions for wchich the Taylor-Maclaurin formula remains true (in a
neighbourhood of a) when n →∞ are called analytic.

To obtain the Euler-Maclaurin summation formula we first introduce a
very important sequence of rational numbers named after Bernoulli. The
Bernoulli numbers B2j , are defined as coefficients in the power series ex-
pansion:

x

ex − 1
= 1− x

2
+

∞∑
j=1

(−1)j−1B2j
x2j

(2j)!

They can also be defined through:

1
2

x cot(
x

2
) = 1−

∞∑
j=1

1
(2j)!

B2j x2j

(Maple or some other software will compute them for you: B2 = 1
6 , B4 =

1
30 , B6 = 1

42 , B8 = 1
30 , B10 = 5

66 etc.)

These numbers are intimately related to a family of polynomials also
named after Bernoulli. They are defined as the coefficients which you obtain
when the function x etx−1

ex−1 is expanded in a Taylor Maclaurin power series

x
etx − 1
ex − 1

=
∞∑
1

βn(t)
xn

n!

The Taylor-Maclaurin summation formula is derived by using the Bernoulli
polynomials in the Darboux formula. These polynomials satisfy the impor-
tant recursive relation:

βn(t + 1)− βn(t) = ntn−1

This is easily checked from the definition of the polynomials by putting
t + 1 for t and then subtracting.

Multiplying the two powers series for ext−1 and t
et−1 , we find that these

polynomials are related to the Bernoulli numbers as follows:

βn(t) = tn − 1
2
n tn−1 +

(
n

2

)
B2 tn−2 −

(
n

4

)
B4 tn−4 + · · ·

This implies:
β(n−2j−1)(0) = 0 , β

(n−2j)
n (0) = (−1)j−1 n!

(2j)! B2j ,
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β
(n−1)
n (0) = −1

2 n! , β
(n)
n (0) = n! .

Moreover by differentiating the recurrence relation βn(t + 1) = βn(t) , we
have: β

(n−k)
n (1) = β

(n−k)
n (0) for all k . Putting these all together for β2n in

the Darboux formula we obtain:
f(x)− f(a)− 1

2

(
f ′(x) + f ′(a)

)
(x− a)

+
∑n−1

j=1
(−1)(j−1)

(2j)! B2j

(
f (2j)(x)− f (2j)(a)

)
(x− a)2j

= Rn+1 = 1
(2n)!(x− a)2n+1

∫ 1
0 β2n(t)f (2n+1)(a + t(x− a)) dt

Applying this formula to a derivative , i.e if we write f ′ instead of f and
assuming that we can neglect the error term Rn+1 , we obtain (by using the
fundamental theorem of calculus!):∫ a+h

a f(t) dt = 1
2h

(
f(a) + f(a + h)

)
+

∑n−1
j=1

(−1)j−1

(2j)! B2jh
2j

(
f (2j)(a + h)− f (2j)(a)

)
where we have replaced x by a + h . Now for the special case of a ∈ N and
h = 1 , we can add up all these formulas to obtain the famous:

Theorem 6.4.2 (Euler-Maclaurin Summation Formula)

n∑
k=m

f(k)−
∫ n

m
f(x) dx =

1
2
(f(m)+f(n))−

∞∑
j=1

(−1)j

(2j)!
B2j

(
f (2j−1)(m)−f (2j−1)(n)

)
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6.5 Exercises

1. Suppose f : [0, 1] → R is integrable. Show that

(i) exp
( ∫ 1

0 f(x) dx
)
≤

∫ 1
0 exp(f(x)) dx

(ii)
( ∫ 1

0 |f(x)|p dx
) 1

p ≤
∫ 1
0 |f(x)| dx for 0 < p < 1

(iii)
( ∫ 1

0 |f(x)|p dx
) 1

p ≤
∫ 1
0 |f(x)| dx for p > 1

2. Suppose f : [0, 1] → R is continuous. Show that as N →∞

1
N

N∑
k=1

f(
k

N
) →

∫ 1

0
f

3. By using the sequence of partitions 0 < a < · · · < a qn = b , where

q = n

√
b
a , show that

lim
n→∞

n
(

n

√
b

a
− 1

)
=

∫ b

a

1
x

dx = log(
b

a
)

4.

(i) Show that ∫ 1

0
log(1 + x) dx = 2 log 2− 1

(ii) Deduce that
1
n

log
((2n)!

nn n!

)
→ log

(4
e

)
as n →∞

5. Prove that the following limit exists:

γ = lim
n→∞

( n∑
k=1

1
k
− log(n)

)
The limit, denoted by γ ≈ 0.57721 . . . , is called Euler’s constant is closely
related to the Gamma function, for example Γ ′(1) = −γ . It is still unknown
whether γ is irrational)
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6. (i) Compute Sn =
∫ π

2
0 sin

n
2 (x) dx . (Hint: n Sn = (n− 1) Sn−2 ).

(ii) Deduce Wallis’ formula:

2.2.4.4.6.6. . . . (2n)(2n)
1.3.3.5.5.7. . . . (2n− 1)(2n + 1)

→ π

2

7. Using an appropriate change of variables, derive the following alternate
expressions for the Gamma function:

Γ(x) = 2
∫ ∞

0
t2x−1 e−t2 dt =

∫ 1

0

(
log(

1
t

)x−1
dt

8. Prove that the logarithm of the Gamma function is convex.

9. Find the first four non-vanishing terms of the Taylor-Maclaurin series for
the following functions about the point x = 0 :

(i) f(x) =
∫ x
0 log(1 + t) dt

(ii) f(x) = exp(sin(x))

(iii) f(x) = log( sin(x)
x ) f(0) = 0

(iv) f(x) = x cot(x) f(0) = 1
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6.5.1 Hints and short solutions

3(i) d
dx

(
(1 + x) log(1 + x)− x

)
= log(1 + x) . Therefore by the fundamental

theorem of calculus:
∫ 1
0 log(1+x) dx = 2 log 2−1 = log

(
4
e

)
, since 1 log 1−

0 = 0 .

(ii) Choose the partition 0 < 1
n < . . . < n−1

n < 1 and form the Riemann
sum for the integral

∫ 1
0 log(1 + x) dx :

1
n

∑n
k=1 log(1+ k

n) = 1
n log

( ∏n
k=1

k+n
n

)
, but

∏n
k=1

k+n
n = (2n)!

n! nn and the Rie-

mann sum converges to the integral as n → ∞ . Therefore log
(

(2n)!
nn n!

) 1
n →

log
(

4
e

)
as n →∞ .

4. Let γn = 1 + 1
2 + 1

3 + · · · + 1
n − log(n) . Then γn+1 − γn = 1

n+1 −∫ n+1
n

dt
t > 0 , since 1

t is a strictly decreasing function. This shows that γn

is a monotonically decreasing sequence. Moreover the sequence is bounded
from below by 0 , because

∑n−1
k=1

1
k is a upper Riemann sum for

∫ n
1

dt
t =

log(n) and hence dn > 1
n > 0 . Therefore γn converges to a limiting value

γ , because it is bounded from below by 0 .
# 5.

For n ≥ 2 , we have:

d

dx

(
sinn−1(x) cos(x)

)
= (n− 1) sinn−2(x) cos2(x)− sinn(x)

= (n− 1) sinn−2(x)
(
1− sin2(x)

)
− sinn(x)

= (n− 1) sinn−2(x)− n sinn(x)

Therefore by the fundamental theorem of calculus:

(n− 1)
∫ π

2

0
sinn−2(x) dx = n

∫ π
2

0
sinn(x)

since sin(0) = cos(π
2 ) = 0 . By induction, we obtain:

S2n =
(2n− 1).(2n− 3) . . . 3.1

(2n).(2n− 2) . . . 4.2
S0 =

(2n− 1).(2n− 3) . . . 3.1
(2n).(2n− 2) . . . 4.2

π

2

S2n+1 =
(2n).(2n− 2) . . . 4.2

(2n + 1).(2n− 1) . . . 5.3
I1 =

(2n).(2n− 2) . . . 4.2
(2n + 1).(2n− 1) . . . 5.3

1
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Since 0 ≤ sin x ≤ 1 , for x ∈ [0, π
2 ] we have 0 < Sn ≤ Sn+1 ≤ Sn+2

and because n Sn = (n − 1) Sn−2 . limn→∞
S2n+1

S2n
= 1 . This proves Wallis’

formula:
lim

n→∞

2.2.4.4.6.6 . . . 2n.2n

1.3.3.5.5.7 . . . (2n− 1).(2n + 1)
=

π

2
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Chapter 7

Metric spaces and Uniform
Convergence

The central idea of convergence is fundamental in a much more general
context. In particular, in this chapter we want to discuss convergence of
functions. In order to do this in a systematic way, it is convenient to work in
the framework of general metric spaces. Although topological spaces provide
the most general framework for discussions of continuity and convergence, it
is necessary for many problems in analysis to work with the more concrete
spaces called metric spaces, where the notion of a distance is the key idea.

7.1 Definitions and examples

Definition 7.1.1 A metric on a set X is an assignment of a non-negative
number, called the distance d(x, y) ∈ [0,∞) to every pair of points x, y in X
satisfying the following axioms:

M1.(Positivity) ∀ x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.

M2.(Symmetry) ∀ x, y ∈ X, d(x, y) = d(y, x)

M3.(Triangle inequality) ∀ x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

A metric space is a set X, together with a metric.

Exactly as for Rn , we define an open ball with centre a and radius r > 0
in a metric space to be the set Br(a) = {x ∈ X | d(x, a) < r } and we
call U ⊂ X open if ∀ a ∈ U ∃ r > 0 such that Br(a) ⊂ U . This defines a
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topology for X in the sense of Chapter 3 , so metric spaces are special cases
of topological spaces and all the general definitions and theorems, using open
sets as the fundamental concept in Chapters 3 and 4 about connectedness,
compactness and continuity hold for metric spaces (in particular!).

Definition 7.1.2 A sequence (xn) of points in a metric space (X, d) is said
to converge to a limit x ∈ X if and only if the sequence of real numbers
d(xn, x) converges to 0 .

Definition 7.1.3 A sequence (xn) of points in a metric space (X, d) is said
to be a Cauchy sequence if ∀ ε > 0,∃N , such that n ≥ N ⇒ d(xn+k, xn) < ε
for all k ∈ N .

As was the case for real numbers, it is easy to see that every convergent
sequence is a Cauchy sequence, but the converse need not be true in a general
metric space.

Definition 7.1.4 A metric space is said to be complete if every Cauchy
sequence is convergent.

Examples

0. The Euclidean vector space Rn with the usual metric d(x, y) = ||x−y|| is
the mother of all metric spaces. (Warning: the four dimensional Minkowski
space-time R1,3 of special relativity where the distance is defined by an inner
product that is not positive-definite is not a metric space.) Similarly, Cn is
usually given the same metric as R2n . All these spaces are complete metric
spaces.

1. The vector space Rn can also be equipped with other non-Euclidean
metrics. Important examples are defined by the Lp norms : ||x||p defined by(
||x||p

)p =
∑n

i=1 |xi|p (for p > 0). The distance is then given by: d(x, y) =
||x − y||p. (You will check all the axioms as an exercise at the end of this
chapter. The first two properties of the metric are easy to check. The
triangle inequality is a bit harder.) One can extend this definition to infinite
sequences of real numbers provided we restrict to those sequences whose Lp-
norm

∑∞
i=1 |xi|p is finite. All these spaces are also complete.
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2. (The most important metric for the purposes of this section!).
Let X = C0[a, b] be the set of all real-valued continuous functions on the
compact interval [a, b]. Since all continuous functions on a compact set are
bounded we can define a metric on this space by:

d(f, g) = sup({|f(x)− g(x)| |x ∈ [a, b]})

. The corresponding norm ||f || = d(f, 0) is called the supremum norm. We
will see in the next section that this is a complete metric space.

3. Using integrals, we can also define Lp norms on C0[a, b] as follows:

(
||f ||p

)p =
∫ b

a
|f(x)|p

but I will leave the study of these spaces to your next course in analysis.

Remarks

0. A sequence in Rn (or Cn )converges iff each of its components converges.
The situation for infinite-dimensional spaces is more delicate. For example
each component of the shift sequence in “R∞ ”: a1 = (1, 0, 0, ...), a2 =
(0, 1, 0, ...), a3 = (0, 0, 1, 0, ...), ... converges to 0 , but it would not be wise to
say that the whole sequence converges to 0.

1. For the finite dimensional spaces Rn , convergence with respect to the
Lp-norma is the same for all p , but this is quite different when we consider
infinite dimensional function spaces. You will learn all of this next year,
hopefully!

2. Convergence in the metric space X = C0[a, b] equipped with the metric
d(f, g) = sup({|f(x)−g(x)| |x ∈ [a, b]}) is our main concern for this section
and convergence in this space is given a special name:

Definition 7.1.5 A sequence of functions (fn) in C0[a, b] is said to con-
verge uniformly to a function f if and only if ∀ ε > 0,∃N , such that
n ≥ N ⇒ |f(x)− g(x)| < ε for all x ∈ [a, b] .

7.2 Uniform Convergence

Definition 7.2.1 A sequence of functions (fn) defined on a set A is said
to converge uniformly to a function f if and only if ∀ ε > 0,∃N , such that
n ≥ N ⇒ |fn(x)− f(x)| < ε for all x ∈ A .
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This is in contrast to the following much weaker notion of convergence
we could have used:

Definition 7.2.2 A sequence of functions (fn) defined on a set A is said
to converge pointwise to a function f if for every point x ∈ A and ∀ ε >
0,∃N , (depending possibily on x), such that n ≥ N ⇒ |fn(x)− f(x)| < ε .

Remarks

0. The sequence of functions fn(x) = xn converges pointwise but not uni-
formly in [0,+1] . The limit function f is obviously discontinuous at the end
point 0 .

1. The sequence of functions fn(x) = nx
1+|nx| converges pointwise but not

uniformly in R .

Proposition 7.2.1 If a sequence of continuous functions fk : [a, b] → R
converges uniformly to f : [a, b] → R then f is continuous on [a, b] .

Proof:
The classic proof of this (which thousands of mathematicians had to

learn in the last 100 years) is actually very simple and is based on the fact
that: |f(x)−f(y)| ≤ |f(x)−fk(x)|+ |fk(x)−fk(y)|+ |fk(y)−f(y)| (triangle
inequality). All three terms on the right-hand-side are made to go to 0 by
using the assumptions of the theorem, so let’s just do what others have done
before us !

Let x ∈ [a, b] and ε > 0 be given. Then because we have uniform
convergence we can find a K such that the first term |f(x) − fK(x)| and
the last term: |fK(y)−f(y)| are simultaneously less than (say) 1

10ε . Now the
second term : |fK(x)−fK(y)| can also be made less than 1

10ε by choosing y
sufficiently close to x , (i.e. ∃ δ > 0 s.t. |x−y| < δ ⇒ |fK(x)−fK(y)| < 1

10ε ),
since fK is a continuous at x .
Adding the three terms together finishes the proof, since 3

10 < 1 !
QED

One nice way to paraphrase what we just proved is to say that

lim
y→x

lim
n→∞

fk(y) = lim
n→∞

lim
y→x

fk(y)

,
so uniform continuity implies commutativity of two different limits.
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Corollary 7.2.1 C0[a, b] is a complete metric space with respect to the met-
ric defined by the supremum norm.

The proof given above can be strengthened to show that:

Proposition 7.2.2 If a sequence of uniformly continuous functions fk :
[a, b] → R converges uniformly to f : [a, b] → R then f is uniformly contin-
uous on [a, b] .

More importantly, we can relate uniform convergence to differentiation
and integration:

Proposition 7.2.3 Let fk : A → R be a sequence of continuous functions
converging uniformly on a compact set A. Then

(i)
∫ b
a fk →

∫ b
a f as k →∞ for any interval [a, b] ⊂ A.

(ii) If each fk is continuously differentiable and if f
′
k → g uniformly on A,

then f
′
= g.

Proof:
(i) Let ε > 0 be given. Then ∃K such that k ≥ K ⇒
supx∈A |fk(x)− f(x)| < ε

b−a ⇒
∣∣∣ ∫ b

a (fk − f)
∣∣∣ ≤ ∫ b

a |fk − f | < ε

(ii) By (i): f
′
k → g uniformly on A ⇒

∫ x
a f

′
k →

∫ x
a g for any x ∈ A. By the

fundamental theorem of calculus: fk(x) − f(a) =
∫ x
a f

′
k and since fk(x) →

f(x) we have
∫ x
a g = f(x) − f(a). Therefore again by the fundamental

theorem of calculus g(x) = f
′
(x)

QED
Remarks

1. The sequence of functions fn defined on [0, 1] , whose graph consists of
isosceles triangles with base [0, 2

n and of height n all have area 1 , so that∫ 1
0 fn = 1 , for all n , but the limit function is 0 everywhere except at 0 .

2. The sequence of functions

fn(x) =
x

1 + n x2

converges uniformly to a limit function f , but

lim
n→∞

f ′(0) 6= f ′(0)
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7.2.1 Uniform convergence of power series

The main message of this section is that on any compact set which is strictly
inside its radius of convergence a power series converges uniformly and there-
fore we can integrate and differentiate power series term by term on any
compact set inside its radius of convergence. The standard way to establish
this is to prove a general, but very useful comparison theorem, called the
Weierstrass M-Test for a series of functions (not necessarily a power series)

Proposition 7.2.4 (Weierstrass M-test) Suppose
∑

Mn is convergent se-
ries of strictly positive numbers. If a sequence of continuous functions (fn)
defined on a compact set A satisfies |fn(x)| ≤ Mn for all x ∈ A , then the
series of functions

∑
fn(x) is uniformly and absolutely convergent on A .

Proof: The partial sums Sn(x) =
∑n

k=1 fk(x) form a Cauchy sequence
in the complete metric space C0(A) , since for any n > m :

|Sn(x)− Sm(x)| ≤
n∑

k=m

Mk

for all x ∈ A (and Mn is a Cauchy sequence).
QED

Corollary 7.2.2 Suppose a power series
∑

an xn converges for |x| < R
(with R > 0 ). Then it converges uniformly on |x| ≤ ρ for each ρ < R .

Proof: Apply the Weierstrass M-Test: |an xn| ≤ Mn = |anρn| .

7.3 Weierstrass approximation theorem

Theorem 7.3.1 If f is a continuous function on [a, b] , then there exists a
sequence of polynomials (Pn) which converges uniformly to f .

Proof: After applying a translation and a dilation, we may assume
w.l.o.g. that [a, b] = [0, 1] and also that max{ |f(x)| |x ∈ [0, 1] } = 1 .

Define the Bernstein polynomials that approximate f by the formula:
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BPn(f, x) =
n∑

k=0

f
(k

n

)(n

k

)
xk (1− x)n−k

For each f , BPn is obviously a polynomial of degree n (in x . They satisfy
the “binomial” identity:

BPn(1, x) =
n∑

k=0

(
n

k

)
xk (1− x)n−k = (1− x + x)n = 1

This implies:

BPn(f, x)− f(x) =
n∑

k=0

(
f
(k

n

)
− f(x)

) (
n

k

)
xk (1− x)n−k

Let ε > 0 be given. Since f is uniformly continuous on [a, b] , ∃ δ > 0
such that |x− y| < δ ⇒ |f(x)− f(y) < 1

2ε .
We now split the sum into two pieces: a sum

∑ ′ where we sum over all k
which satisfy |x− k

n | < δ and
∑ ′′ being the sum of the rest.

By uniform continuity the first sum is less than 1
2ε

∑(
n
k

)
xk (1−x)n−k < 1

2ε .

To estimate the second sum we borrow some ideas from probabilty theory!
We think of it as the probability of a random variable to lie in a certain
range. The random variable X is given by the binomial distribution of n
Bernoulli trials with “success” probability x . The mean (expected value) of
X is n x and its variance (E((X−E(X))2) is n x(1−x) (see an elementary
text book on probability). Since max |f | ≤ 1 , the second sum is bounded
from above by

∑ ′′ (n
k

)
xk (1 − x)n−k , where we sum only over those values

of k which satisfy |x− k
n | ≥ δ . We now interpret this sum as the probability

that the random variable differs from its mean by more than n δ (i.e. a
“tail estimate”). Using now the well known Tchebychev’s (or Markov’s)
inequality:

Prob(|X − µ| ≥ a) ≤ σ2

a2

where µ is the mean and σ is the variance of the random variable X , we
can estimate the second sum to be less than x(1−x)

n2δ2 ≤ 1
4n2δ2 . which can be

made less than 1
2ε for n sufficiently large.

QED
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7.4 Exercises

# 1 Show that each of the following defines a complete metric on Rn :

(i)

d(x, y) =
n∑

k=1

|xk − yk|

(ii)
d(x, y) = max

1≤k≤n
|xk − yk|

# 2 Let (X, d) be a metric space. Show that

ρ(x, y) =
d(x, y)

1 + d(x, y)

is a metric on X . Is every subset of X bounded in the new metric ρ ?

# 3. For each of the following sequence of functions defined on the closed
interval [0, 1] , determine whether the convergence is uniform or just point
wise and calculate the limit functions. Are the limit functions continuous ?

(i)
fn(x) =

n x

1 + |n x|

(ii)
fn(x) = n x (x− 1)n

(iii)
fn(x) =

x

1 + n x2

# 4. Let [[x]] denote the distance from x to the nearest integer (sketch the
graph !). Show that the function:

f(x) =
∞∑

k=1

[[3k x]]
3n

is continuous for all x ∈ R , but is not differentiable at any point !
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# 5. Give an example of a sequence of continuous functions fn defined on
[0, 1] that converges pointwise to zero but such that

lim
n→∞

∫ 1

0
fn(x) dx = 1

# 6. Recall that the Fibonacci numbers are defined by: an+1 = an + an−1

with a0 = a1 = 1 .

(i) Show that
∞∑

n=0

an xn =
−1

x2 + x− 1

for all |x| < 1
2 .

(ii) Deduce the following formula for the Fibonacci numbers:

an−1 =
1√
5

((1 +
√

5
2

)n −
(1−

√
5

2
)n

)

# 7*. Prove that: ∫ 1

0
x−x dx =

∞∑
n=1

n−n
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7.4.1 Hints and short solutions to the exercises

2. Except for the triangle inequality, the other axioms are trivially satisfied,
since d satisfies them! The triangle inequality follows from the following fact:
If a, b, c are positive real numbers then

a ≤ b + c ⇒ a

1 + a
≤ b

1 + b
+

c

1 + c

which I leave as an easy exercise for you. All sets are bounded in the new
metric, since ρ(x, y) ≤ 1 for all x, y .

3.

(i) fn(x) = n x
1+|n x|

This sequence converges pointwise to the function f(x) = +1 for 0 <
x ≤ 1 and f(0) = 0 . The convergence is not uniform since the limit function
is not continuous.

(ii)fn(x) = n x (x − 1)n This sequence converges pointwise to the constant
function f(x) = 0 for every x ∈ [0, 1] . Although the limit function is
continuous, the convergence is not uniform since the maximum value of
fn(x) on the interval [0, 1] (occurring at x = 1

n+1 ) is n
n+1

(
1− 1

n+1

)n which
approaches e > 0 as n →∞ .

(iii)fn(x) = x
1+n x2 This sequence converges pointwise to the constant func-

tion f(x) = 0 for every x ∈ [0, 1] . The convergence is uniform since and
the maximum value of fn(x) on the interval [0, 1] which occurs at x = 1√

n

is 1
2
√

n
which approaches zero as n → ∞ . The limit function has to be

continuous (as it is obviously!). Note that the derivative at zero of all the
fn’s is f ′(0) = 1 and so they do not converge to f ′(0) = 0 !

6. Let f(x) =
∑∞

n=0 an xn . Then

(1− x− x2)f(x) =
∞∑

n=0

an xn −
∞∑

n=0

an xn+1 −
∞∑

n=0

an xn+2

=
∞∑

n=0

an xn −
∞∑

n=1

an−1 xn −
∞∑

n=2

an−2 xn

= 1 + x− x +
∞∑

n=2

(
an − an−1 − an−2

)
xn

= 1

102



Convergence is guaranteed for all |x| < 1
α , where α = lim |an+1

an
| = 1+

√
5

2
is the golden ratio and α < 2 .

(ii) Since the roots of the polynomial x2 + x − 1 are −α = −1−
√

5
2 and

1
α = −1+

√
5

2 , we have a partial fraction decomposition:

∞∑
n=0

an xn =
−1

x2 + x− 1
=

1√
5

( 1
x + α

− 1
x− 1

α

)
Expanding the right hand side into two geometric series:

1
α(1 + x

α)
=

∞∑
n=0

(−1)nα−n−1 xn α

1− α x
=

∞∑
n=0

αn+1 xn

and comparing coefficients we get the formula for the Fibonacci numbers:
√

5 an = αn+1 − (−1)n+1α−n−1 =
(

1+
√

5
2

)n+1
−

(
1−
√

5
2

)n+1
.

7.Prove that: ∫ 1

0
x−x dx =

∞∑
n=1

n−n

x−x = e−x log(x) =
∑∞

k=0
(−1)k

k! xk
(
log(x)

)k , so all we have to prove is that

(−1)k

k!

∫ 1

0
xk

(
log(x)

)k
dx = (k + 1)−(k+1)

The improper integral is convergent, because x log x → 0 as x → 0 . More-
over, since d

dx

(
xk+1

(
log(x)

)l
)

= (k + 1) xk(log(x))l + l xk(log(x))l−1 ,

∫ 1

0
xk

(
log(x)

)l = − l

k + 1

∫ 1

0
xk

(
log(x)

)l−1

Inductively, we see that∫ 1

0
xk

(
log(x)

)k
dx = (−1)k k!

(k + 1)(k+1)
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