Math 3C03
M. MiIN-Oo0
Short Answers to Assignment #4

1. Show that
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where « is any root (zero) of the Bessel function J,

I did that in class and you can find the notes on the course web page. Besides you can find a more
general formula on page 610 in the textbook

2. Find the electric potential outside a spherical capacitor, consisting of two hemispheres of
radius 1m, joined along the equator by a thin insulating strip, if the upper hemisphere is kept at
+110V and the lower hemisphere at —110 V.

The potential in the exterior is given by:
o
u(r,z = cosf) = Z Bir~ 1P (2)
1=0

The Dirichlet boundary conditions u(1,z) = +110 for 0 < z < 1 and u(1,2z) = =110 for -1 < 2z <0

are satisfied if we choose
20+1 ! 0
B, = 1107+ (/ P(z)dz —/ P(z) dz)
0 -1

Obviously all the even Bsgy’s are zero and for odd [ we can use the formula that I derived in class:
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/ ng_1($) dr = <Z) to get Bop_1 = 110(4/€ — 1) (Z)
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The first few B;’s are given by: By = 165, By = —%, etc.

3. Show that

u(z,y) = i/;:o WZ—W f(¢)de Poisson Formula

solves Laplace equation Au = 0 in the upper half plane y > 0 with boundary values u(z,0) = f(x).

The Green’s function vanishing on the boundary for the upper half-plane in R? is given by
1 -
G(p.q) = 5 (log(|p — ql) —log(|p +qI))

where for ¢ = (x,9) — § = (z,—y) is the reflection across the boundary. With v = (0,-1)T, ¢ =
(z,y) and p = (§,0) (on the boundary) %—f is computed to be:
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Now apply Green’s formula.

4. Find a radially symmetric solution u(r,t) of the two-dimensional wave equation
1 0%u
c2 ot?

on the unit disk: 72 = 22 4 32 < 1, satisfying the boundary condition: u(1,t) =0 for all # > 0 and

initial conditions:

= Vu

u(r,0) =1 —1r? gtu(r, 0)=0

We are looking for a function u(r,t) solving the equation

182u_82u 1@

2o o2 ror
Separation of variables: u(r,t) = y(r)h(t) gives rise to the two equations:

. wz
B = —Ph()  and oY)+ () = ~Spul)

where w is a constant to be determined by the boundary values. The first equation is a simple
harmonic oscillator and if we change the independent variable in the second equation from r to
x = % r, then we obtain Bessel’s equation with v = 0:

y" () + oy () +y(r) =0

whose solution is the Bessel function Jo(z) = Jo( r). In order to satisfy the boundary condition
u(1,t) = 0 for all ¢, we require that wy = cay, where oy, s, ..., are the positive zeros of Jy.

Hence the general solution of the wave equation on a circular drum is a linear combination of the
normal modes:

o0
Z(ak cos cayt + by sin cagt) Jo(agr)
k=1

The initial condition %u(r, 0) = 0 forces all the by’s to vanish. The other initial condition u(r,0) =

1 — r? fixes the coefficients aj by the Fourier-Bessel series: 1 — 72 ~ Zzozl ag Jo(agr). ay is given
by:

1
ag 2 )/0 (1 —72) Jo(ogr) rdr

- J12 (Oék
Using integration by parts and well-known formulas for Bessel functions (or more conveniently
by using Wolfram alpha), we can evaluate the integral and finally get the explicit formula: aj =

——8__ and hence the solution is:
ap Ji(ag)



5. Do problem 21.18 on page 771 in the textbook.

The interior and exterior temperatures are given respectively by:

Ti(r,0) = Z Ay r'Py(cos 0) and To(r,0) = To + Z B;r 1 P(cos 6)
1=0 1=0

The boundary conditions on the sphere at r = a:

oTy o, 1

Ti(a,0) = Tsr(a,0) and klﬁ - kQW = lz_%ql Py(cos0)

imposes the following equations for the coefficients:

B
Ag=24T0  Ad = Ba !
a

and '
klAja + ko(l+1)Ba " =g

which can now be solved to yield the solutions:

r

- l !
Ti(r,0) = T —_— P 0
1(r,0) +; Tl kol £ 1) <a> ) (cos 0)

and
a

= q !
Ty(r,0) = Tne (%) plcost
2(r.6) +lz;k1z+k2(z+1) (r) 1(cos0)

The temperature at the centre of the sphere is T + Z—g

6. (bonus question) Prove the following formulas for Bessel functions (of the first kind):

% @ In(@) = 2" e (@)
% (27" Jn(@) = —27" Jpya(2)

and hence show that the zeros of the Bessel functions interlace, i.e. show that between any two
consecutive positive zeros of J,(z), there is exactly one zero of J,,11(x).

The formulas are proved in the textbook (page 611). To prove the interlacing properties of the zeros,
use Rolle’s theorem which says that between any two zeros of a function there is at least one zero
of the derivative.



