

Math 3C03
M. MIN-OO
Short Answers to Assignment #5

1. Solve the heat equation

$$\frac{\partial}{\partial t}u(x,t) = \frac{1}{\kappa^2} \frac{\partial^2}{\partial x^2}u(x,t)$$

on the real line \mathbb{R} with initial condition:

$$u(x,0) = \begin{cases} 1 & \text{for } |x| \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

The solution is given by the convolution with the Heat Kernel as I explained in class.

$$\begin{aligned} u(x,t) &= \frac{\kappa}{\sqrt{4\pi t}} \int_{-\infty}^{+\infty} u(\xi,0) \exp\left(-\frac{\kappa^2(x-\xi)^2}{4t}\right) d\xi \\ &= \frac{\kappa}{\sqrt{4\pi t}} \int_{-1}^{+1} \exp\left(-\frac{\kappa^2(x-\xi)^2}{4t}\right) d\xi \\ &= \frac{1}{\sqrt{2\pi}} \int_{z_-}^{z_+} e^{-\frac{z^2}{2}} dz = \Phi(z_+) - \Phi(z_-) \end{aligned}$$

where $z_{\pm} = \frac{\kappa}{\sqrt{2t}}(\pm 1 - x)$.

2. (i) Find the (Dirichlet) Green's function for the quadrant $Q = \{(x_1, x_2) | x_1 \geq 0, x_2 \geq 0\}$ in \mathbb{R}^2

(ii) Solve the Dirichlet problem:

$$\Delta u = 0 \text{ in } Q \text{ with } u(x,0) = f(x), \quad u(0,y) = g(y) \text{ on } \partial Q$$

(i) Using the method of images, we need three points reflected across the boundary outside of Q :

$$q = (x_1, x_2) \in Q, \quad q^{\pm} = (x_1, -x_2), \quad q^{\mp} = (-x_1, x_2), \quad -q = (-x_1, -x_2)$$

The Green's function for Q is then simply a sum of four terms:

$$\bar{G}(p,q) - \bar{G}(p,q^{\pm}) - \bar{G}(p,q^{\mp}) + \bar{G}(p,-q)$$

where $\bar{G}(p,q) = \frac{1}{2\pi} \log(|p-q|) = \frac{1}{\pi} \log(|p-q|^2)$.

(ii) To solve the Dirichlet problem, we need to find the normal derivatives at the boundaries, which are simply $\frac{\partial}{\partial y}$ on the x -axis and $\frac{\partial}{\partial x}$ on the y -axis respectively. We "plug that in" into Green's formula to get:

$$\begin{aligned} u(x_1, x_2) &= \frac{1}{\pi} \int_0^{\infty} f(\xi) \left(\frac{x_2}{(\xi - x_1)^2 + x_2^2} - \frac{x_2}{(\xi + x_1)^2 + x_2^2} \right) d\xi \\ &+ \frac{1}{\pi} \int_0^{\infty} g(\eta) \left(\frac{x_1}{x_1^2 + (\eta - x_2)^2} - \frac{x_1}{x_1^2 + (\eta + x_2)^2} \right) d\eta \end{aligned}$$

3. Do problem 21.28 on page 773 in the textbook.

By the product rule:

$$\begin{aligned}\nabla \cdot (p\phi \nabla \psi - p\psi \nabla \phi) &= p\phi \nabla^2 \psi + \phi \nabla p \cdot \nabla \psi + p \nabla \phi \cdot \nabla \psi - p\psi \nabla^2 \phi - \psi \nabla p \cdot \nabla \phi - p \nabla \psi \cdot \nabla \phi \\ &= \phi p \nabla^2 \psi + \phi \nabla p \nabla \psi + \phi q \psi - \psi p \nabla^2 \phi - \psi \nabla p \nabla \phi - \psi q \phi \\ &= \phi \mathcal{L}\psi - \psi \mathcal{L}\phi\end{aligned}$$

Now apply Green's (or divergence) theorem.

4. Do problem 19.8 on page 672-673 in the textbook.

By the product rule for commutators:

$$[x_n, p_{x_n}^2] = [x_n, p_{x_n}]p_{x_n} + p_{x_n}[x_n, p_{x_n}] = 2i\hbar p_{x_n}$$

Now since each x_n commutes with everything in sight **except** with p_{x_n} , we get:

$$[x, H] = \frac{1}{2m} \sum_{n=1}^N [x_n, p_{x_n}^2] = \frac{i\hbar}{m} \sum_{n=1}^N p_{x_n}$$

and hence:

$$L = [[x, H], x] = \frac{i\hbar}{m} \sum_{n=1}^N [p_{x_n}, x_n] = N \frac{\hbar^2}{m}$$

Expressing in terms of a **complete** basis of eigenstates $|r\rangle$ of H with eigenvalues E_r :

$$\langle r_1 | [x, H] | r_2 \rangle = \langle r_1 | x E_{r_2} - E_{r_1} x | r_2 \rangle$$

and so

$$\begin{aligned}N \frac{\hbar^2}{2m} &= \frac{1}{2} \langle 0 | [[x, H]x] | 0 \rangle \\ &= \frac{1}{2} \sum_{k=0}^{\infty} (\langle 0 | (xE_k - E_0 x) | k \rangle \langle k | x | 0 \rangle - \langle 0 | x | k \rangle \langle k | (xE_0 - E_k x) | 0 \rangle) \\ &= \sum_{k=0}^{\infty} (E_k - E_0) \langle k | x | 0 \rangle^2\end{aligned}$$

5. Do problem 22.26 on page 800 in the textbook.

First of all, $J_n = \int_0^\infty r^n \exp(-2\beta r) dr = \Gamma(n+1)(2\beta)^{-(n+1)}$ and so for $\psi = \exp(-\beta r)$, we have

$$|\psi|^2 = \text{vol}(S^2) \int_0^\infty r^2 \exp(-2\beta r) dr = \pi \beta^{-3}$$

and $\langle \psi | H | \psi \rangle = \frac{\hbar^2}{2m} \int |\nabla \psi|^2 - \frac{q^2}{4\pi\epsilon_0} \int \frac{1}{r} |\psi|^2$, where we integrate on all of \mathbb{R}^3 .

$$\int |\nabla \psi|^2 = 4\pi \int_0^\infty r^2 (-\beta \exp(-\beta r))^2 dr = \pi \beta^{-1} \quad \text{and} \quad \int \frac{1}{r} |\psi|^2 = 4\pi \int_0^\infty r \exp(-2\beta r) dr = \pi \beta^{-2}$$

and hence

$$\frac{\langle \psi | H | \psi \rangle}{|\psi|^2} = \frac{\hbar^2}{2m} \beta^2 - \frac{q^2}{4\pi\epsilon_0} \beta$$

which is quadratic in β and has a minimum value of

$$-\frac{mq^4}{2(4\pi\epsilon_0\hbar)^2}$$

$$\text{at } \beta = \frac{mq^2}{4\pi\epsilon_0\hbar^2}$$

As we know from the lectures, this is in fact the exact value of the lowest energy for the hydrogen atom (Bohr model).

6. (*bonus question*) Consider two independent quantum harmonic oscillators with annihilation/creation operators $A_1, A_2, A_1^\dagger, A_2^\dagger$, satisfying the commutation relations:

$$[A_i, A_j] = [A_i^\dagger, A_j^\dagger] = 0, \quad [A_i, A_j^\dagger] = \hbar \delta_{ij} \quad i, j = 1, 2$$

with vacuum state $|0\rangle$ satisfying $A_1|0\rangle = A_2|0\rangle = 0$ and with normalized eigenstates:

$$|n_1, n_2\rangle = \frac{1}{\sqrt{n_1! n_2!}} (A_1^\dagger)^{n_1} (A_2^\dagger)^{n_2} |0\rangle$$

containing n_1 excitations of the first harmonic oscillator and n_2 of the second.

Define the operators:

$$J_+ = A_1^\dagger A_2, \quad J_- = A_2^\dagger A_1, \quad J_0 = \frac{1}{2} (A_1^\dagger A_1 - A_2^\dagger A_2), \quad N = A_1^\dagger A_1 + A_2^\dagger A_2$$

(i) Compute the commutation relations between the operators: J_\pm, J_0, N

(ii) Compute $J_\pm|n_1, n_2\rangle, J_0|n_1, n_2\rangle$ and express the result in terms of the half integral quantum numbers $j = \frac{1}{2}(n_1 + n_2), m = \frac{1}{2}(n_1 - n_2)$

“JUST DO IT” NIKE

Putting $\hbar = 1$ for simplicity, you will find that J_\pm, J_0 satisfy the Lie algebra of $su(2)$:

$$[J_0, J_\pm] = \pm J_\pm, \quad [J_+, J_-] = 2J_0$$

and N commutes with everything. This shows that the rotation algebra can be thought of as two independent harmonic oscillators.