Math 3D03
 Short solutions to assignment \#1

1. Compute all values of $i^{\left(i^{i}\right)}$ and $\left(i^{i}\right)^{i}$

All the values of i^{i} are given by: $\exp (i \log (i))=\exp \left(i\left(i\left(\frac{\pi}{2}+2 k \pi\right)\right)=\exp \left(-\frac{\pi}{2}-2 k \pi\right) \quad k \in \mathbb{Z}\right.$
so
(i) $i^{\left(i^{i}\right)}=\exp \left(i^{i}(\log (i))\right)=\exp \left(i e^{-\frac{\pi}{2}-2 k \pi}\left(\frac{\pi}{2}+2 l \pi\right)\right) \quad k, l \in \mathbb{Z}$
(ii) $\left(i^{i}\right)^{i}=\exp \left(i\left(\log \left(i^{i}\right)\right)=\exp (-\log (i))=i^{-1}=-i\right.$
2. Classify all the singular points of the following functions:
(a) $f(z)=\frac{\pi z}{\sin (\pi z)}$
(b) $f(z)=\frac{z-2}{z^{2}} \sinh \frac{1}{1-z}$
(c) $f(z)=\frac{e^{\frac{1}{z}}}{1-z}$
(a) The singular points are at $z=\pi k$, for all $k \in \mathbb{Z}$.
$z=0$ is a removable singularity since $\lim _{z \rightarrow 0} \frac{\sin \pi z}{\pi z}=1$
All the other singularities $k \pi$ with $k \neq 0$ are simple poles since the numerator is non-zero and the derivative of the denominator is non-zero at all .
(b) $z=0$ is a pole of order 2 and $z=1$ is an essential singularity, since

$$
\sinh \left(\frac{1}{1-z}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!}(1-z)^{-2 k-1}
$$

(c) $z=1$ is a simple pole and $z=0$ is an essential singularity.
3. Compute the complete Taylor, respectively Laurent series expansion and the region of convergence of the following functions around the point $z=0$:

$$
\begin{array}{ll}
\text { (a) } f(z)=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right) \quad \text { (b) } f(z)=\frac{e^{\frac{1}{z}}}{1-z}
\end{array}
$$

(a) $\frac{1}{2 i}(\log (1+i z)-\log (1-i z))=\frac{1}{2 i} \sum_{k=1}^{\infty}\left(\frac{(-1)^{k-1}(i z)^{k}}{k}+\frac{(i z)^{k}}{k}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k-1} z^{2 k-1}(=\arctan (z))$.

This Taylor series converges for $|z|<1$.
(b) $\frac{e^{\frac{1}{z}}}{1-z}=\left(\sum_{k=0}^{\infty} \frac{z^{-k}}{k!}\right)\left(\sum_{l=0}^{\infty} z^{l}\right)=\sum_{n=1}^{\infty} a_{-n} z^{-n}+e \sum_{n=0}^{\infty} z^{n}$, where $a_{-n}=\sum_{j=n}^{\infty} \frac{1}{j!}$.

This Laurent series converges for $0<|z|<1$.
4. Evaluate the following complex contour integrals:
(a) $\oint_{C} \frac{d z}{1-z^{4}}$
(b) $\oint_{C} \frac{e^{i z} d z}{1+z^{2}}$
(c) $\oint_{C} \frac{z^{3} d z}{(z-2)^{2}\left(z^{2}+4\right)}$
where C is the ellipse defined by: $3 x^{2}+4 y^{2}=10^{10}$
(a) The four simple roots of $1-z^{4}=0$ are given by: $1, i,-1,-i$ on the unit circle all inside the huge ellipse. A partial fraction decomposition gives:

$$
\frac{1}{1-z^{4}}=\frac{1}{4 i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)+\frac{1}{4}\left(\frac{1}{z+1}-\frac{1}{z-1}\right)
$$

Therefore the required integral vanishes, since the residues cancel in pairs.
(b) The poles are at $\pm i$ (which are inside the huge ellipse) with residues $\frac{e^{-1}}{2 i}$ and $\frac{e}{-2 i}$ respectively, so the answer is $\pi\left(e^{-1}-e\right)=-2 \pi \sinh (1)$.
(c) There is a pole of multiplicity 2 at $z=2$ with residue 1 and simple poles at $z= \pm 2 i$ with residues $\frac{-1}{2(i-1)^{2}}$ and $\frac{-1}{2(i+1)^{2}}$ respectively, so the answer is $2 \pi i$.

Remark: These integrals can also be evaluated by computing the residue at ∞ after making a substitution $w=\frac{1}{z}$ into the "one-form" $f(z) d z$. For example (c) can be evaluated by integrating $\frac{-d w}{w(1-2 w)^{2}\left(1-4 w^{2}\right)}$ clockwise around a small circle $|w|=100^{-100}$.
5. Compute the coefficient of z^{3} in the power series expansion (around $z=0$) of $(T(z))^{4}$, where

$$
T(z)=\frac{z}{1-e^{-z}}
$$

There are many ways to calculate this, but the answer is 1.

