Math 3D03 Short solutions to assignment #1

1. Compute all values of $i^{(i^i)}$ and $(i^i)^i$

All the values of i^i are given by: $\exp(i \log(i)) = \exp(i(i(\frac{\pi}{2} + 2k\pi))) = \exp(-\frac{\pi}{2} - 2k\pi)$ $k \in \mathbb{Z}$ so

(i)
$$i^{(i^i)} = \exp(i^i(\log(i))) = \exp\left(ie^{-\frac{\pi}{2} - 2k\pi}(\frac{\pi}{2} + 2l\pi)\right)$$
 $k, l \in \mathbb{Z}$
(ii) $(i^i)^i = \exp(i(\log(i^i))) = \exp(-\log(i)) = i^{-1} = -i$

2. Classify all the singular points of the following functions:

(a)
$$f(z) = \frac{\pi z}{\sin(\pi z)}$$
 (b) $f(z) = \frac{z-2}{z^2} \sinh \frac{1}{1-z}$ (c) $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$

(a) The singular points are at $z = \pi k$, for all $k \in \mathbb{Z}$.

z = 0 is a removable singularity since $\lim_{z\to 0} \frac{\sin \pi z}{\pi z} = 1$ All the other singularities $k\pi$ with $k \neq 0$ are simple poles since the numerator is non-zero and the derivative of the denominator is non-zero at all.

(b) z = 0 is a pole of order 2 and z = 1 is an essential singularity, since

$$\sinh(\frac{1}{1-z}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (1-z)^{-2k-1}$$

(c) z = 1 is a simple pole and z = 0 is an essential singularity.

3. Compute the complete Taylor, respectively Laurent series expansion and the region of convergence of the following functions around the point z = 0:

(a)
$$f(z) = \frac{1}{2i} \log\left(\frac{1+iz}{1-iz}\right)$$
 (b) $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$

(a) $\frac{1}{2i} \left(\log(1+iz) - \log(1-iz) \right) = \frac{1}{2i} \sum_{k=1}^{\infty} \left(\frac{(-1)^{k-1}(iz)^k}{k} + \frac{(iz)^k}{k} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} z^{2k-1} (= \arctan(z)).$ This Taylor series converges for |z| < 1.

(b)
$$\frac{e^{\frac{1}{2}}}{1-z} = \left(\sum_{k=0}^{\infty} \frac{z^{-k}}{k!}\right) \left(\sum_{l=0}^{\infty} z^l\right) = \sum_{n=1}^{\infty} a_{-n} z^{-n} + e \sum_{n=0}^{\infty} z^n$$
, where $a_{-n} = \sum_{j=n}^{\infty} \frac{1}{j!}$.
This Learent series converges for $0 < |z| < 1$.

This Laurent series converges for 0 < |z| < 1.

4. Evaluate the following complex contour integrals:

(a)
$$\oint_C \frac{dz}{1-z^4}$$
 (b) $\oint_C \frac{e^{iz}dz}{1+z^2}$ (c) $\oint_C \frac{z^3 dz}{(z-2)^2(z^2+4)}$

where C is the ellipse defined by: $3x^2 + 4y^2 = 10^{10}$

(a) The four simple roots of $1 - z^4 = 0$ are given by: 1, i, -1, -i on the unit circle all inside the huge ellipse. A partial fraction decomposition gives:

$$\frac{1}{1-z^4} = \frac{1}{4i} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) + \frac{1}{4} \left(\frac{1}{z+1} - \frac{1}{z-1} \right)$$

Therefore the required integral vanishes, since the residues cancel in pairs.

(b) The poles are at $\pm i$ (which are inside the huge ellipse) with residues $\frac{e^{-1}}{2i}$ and $\frac{e}{-2i}$ respectively, so the answer is $\pi(e^{-1} - e) = -2\pi \sinh(1)$.

(c) There is a pole of multiplicity 2 at z = 2 with residue 1 and simple poles at $z = \pm 2i$ with residues $\frac{-1}{2(i-1)^2}$ and $\frac{-1}{2(i+1)^2}$ respectively, so the answer is $2\pi i$.

Remark: These integrals can also be evaluated by computing the residue at ∞ after making a substitution $w = \frac{1}{z}$ into the "one-form" f(z)dz. For example (c) can be evaluated by integrating $\frac{-dw}{w(1-2w)^2(1-4w^2)}$ clockwise around a small circle $|w| = 100^{-100}$.

5. Compute the coefficient of z^3 in the power series expansion (around z = 0) of $(T(z))^4$, where

$$T(z) = \frac{z}{1 - e^{-z}}$$

There are many ways to calculate this, but the answer is 1.