Math 3D03
 M. Min-Oo
 Assignment \#2

Due: Tuesday, February 3rd, 2015 in class (at the beginning of the lecture period)
Note: You can use symbolic software only to check your answers (for the integrals for example) but you are required to show your calculations

1. Evaluate the following definite (real-valued) integrals:

$$
\begin{gathered}
\text { (i) } \int_{0}^{2 \pi}(\sin \theta)^{n} d \theta \quad \text { for } n \in \mathbb{N} \text {. What happens when } n \rightarrow \infty \text { ? } \\
\text { (ii) } \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x \quad \text { for } 0<a<1 \\
\text { (iii) } \int_{0}^{\infty} \frac{d x}{1+x^{n}} \quad \text { where } n \geq 2 \text { is an integer }
\end{gathered}
$$

2. Do problems 24.20 and 24.21 on page 869 in the text book.
3. Sum the following infinite series:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$
(c) $\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}$
4. How many zeros of the polynomial $z^{4}-5 z+1$ lie in the annulus $1 \leq|z| \leq 2$?
5.

(i) Suppose that $f(z)$ is a non-constant analytic function defined for all $z \in \mathbb{C}$. Show that for every $R>0$ and for every $M>0$ there exists a z such that $|z|>R$ and $|f(z)|>M$.
(ii) Suppose that $f(z)$ is a non-constant polynomial. Show that for every $M>0$ there exists an $R>0$, such that $|f(z)|>M$ for all $|z|>R$.
(iii) Show that there exists an $M>0$, such that for every $R>0$, there exists a z satisfying $|z|>R$ and $\left|e^{z}\right| \leq M$.

